A COMPUTER-ASSISTED FORMULATION OF AN ABSTRACT
MODEL FOR SOME ASPECTS OF
NEOCORTICAL LEARNING

by

Stephen Fraser Zeigler

Computer Sciences Technical Report #341

November 1978

A COMPUTER-ASSISTED FORMULATION OF AN ABSTRACT MODEL
FOR SOME ASPECTS OF NEOCORTICAL LEARNING

BY

STEPHEN FRASER ZEIGLER

A thesis submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILCSOPHY

at the
UNIVERSITY OF WISCONSIN - MADISON

1978

Copyright by
Stephen Fraser Zeigler
1978

All Rights Reserved

ii

A COMPUTER-ASSISTED FORMULATION OF AN ABSTRACT MODEL

FOR SOME ASPECTS OF NEOCORTICAL LEARNING

Stephen Fraser Zeigler

Under the supervision of Professor Larry E. Travis

ABSTRACT

This dissertation presents an abstract model for some

aspects of neocortical operation. Contributions in three

areas have Dbeen attempted: Knowledge representation,
learning mechanisms, and neocortical modeling.
Recognizer/Predictors (RPs), data structures resembling

small, uniform frames, but applied in parallel, are proposed
to represent knowledge. Pattern induction is proposed as a
mechanism for learning and correcting RPs, by detecting and
abstracting regularities from episodic memories of RP usage.
RPs and pattern induction are described in the context of
MUL, a computer program modeling infant-like development in
a simple environment.

The abstract concepts of RPs and pattern induction are
used to suggest a new model for neurons of the neocortex.
In this model, neocortical neurons begin in an unfixed state
in which they have no meaningful output. Each neuron

records episodes, storing the activity the neuron receives

iii
at its input synapses from fixed neurons. Each neuron
performs pattern induction upon its collection of episodes
until it discovers some suitable regularity; it then
undergoes fixation, by modifying its input synapses to
recognize (become activated by) future instances of that
regularity. Fixed neurons correspond to RPs.

Among other mechanisms introduced are default
activation and inhibition. Default activation of an RP (or
fixed neuron) involves activation in the absence of an
instance of the regularity recognized by that RP (or fixed
neuron). Such default activation is shown to be wuseful in
initiating motor responses, approximation, generalization,
and. anticipation of future experience. Inhibition 1is a
mechanism to correct improper defaulting behavior;
inhibition is implemented by inhibitory RPs (or inhibitory
neurons), and the learning of inhibitions 1is also
accomplished by a pattern induction process.

Among the advantages claimed for the proposed
neocortical model:

- A definite, unchanging meaning is assigned to each neuron.

- Neurons may discover regularities 1in the activities of
other neocortical neurons, to recognize progressively more
complex concepts.

- Neural activation patterns may be meaningfully recorded as

episodic memories.

iv

- Pattern induction provides a plausible mechanism to assign

meanings to neurons, even in the absence of direct
feedback or obvious examples, provided by an external
wteacher”, and in spite of noise or malfunction.

Pattern induction, and the resulting RPs (or fixed
neurons), are useful independently of the meaning of the
inputs to the RP or neuron.

The proposed neocortical model 1is compatible with
biochemical and neurophysiological evidence of neocortical

function.

Acknowledgements

I deeply appreciate the efforts, encouragement, and
guidance of Professor Larry Travis. His invitation to
participate in the TELOS design and development project
precipitated the first successes of this research, as well
as providing valuable experience and financial support.

Marty Honda and Rich LeBlanc know that working with
them and Larry on TELOS was the highlight of my university
career.

I would 1like to thank the ather members of my
committee, especially: Charlie Fischer, whose humor
provided perspective as his teaching provided knowledge; and
Raphael Finkel, whose 1insights were as valuable as his
rewrites.

Thanks also to my friends in Madison, and to Thom,
Linda and Bill for the roost and boost.

I wish, finally, to thank my family, especially my
parents. They gave me curiousity, persistence, and an

appreciation of knowledge, as well as their love.

I dedicate this dissertation to Marti, my friend, my
co-worker, my support, and my inspiration. You have given
me a past filled with joys, yet with each dawn fulfill a

promise of a still better future.

vi

TABLE_OF_ CONTENTS

I. Introduction......veeeeerrorerenoneonsonossoassonsos 1
1. The world of the neonate.......... ..o 2

2. Background: knowledge representation............. 5

3, Background: learning.......c..eeviveeeincoennns 12

4, Background: neuroscience and psychology......... 18

5. An overview of MUL...... .. e, 30

II. Knowledge representation........ccevveevvocecacensos 22
1. Becker's schemata.....oovvvireeneniioorrnoenens 22

2. The shelf environment....... ..o vevrerenensonens 23

3. Becker's schemata illustrated.............c..c .. 24

4. The recognizer/predictor (RP)...........c.cvuv 26

5. Interparameter relations.........cvevivverenennn 29

6. Defaults, and the removal of "=>"............... 31

7. Representation of time in RPs........... ...t 34

8. The importance factor.......ccuiveenrereroeensson 37

9. Examples of perception by RPs............c0vtvts 38

10. RPs in relation to frames and productions....... 42

11. Generalization in RPS......evverivennrenronsroos J46

12, Inhibition.. ... ior e rnveeoosonnscasoacencsos 53
III. Learning by pattern induction..........ccveevvennnn 58

1. AN EXAMPLlE . .o vuenreeronssnsnosaennsosnecssoses 58

vii

2. Episodic memory:

the history of MUL experience...........uovvuuen. 61
3. An overview of pattern induction................ 62
4, Instance selection.........civiiriinerrnnnnenann 65
5. Caused-based relations between kernels.......... 66
6. Non-predictive pattern induction................ 69
7. Predictive pattern induction................... .11
8. Why pattern induction?.......ouiii i nrennnnnns 73
9. The benefits of pattern induction............... 75
17 P 77
1. MUL's mental CycCle. . vvn ittt tee et nennnens L7

2., Supporting defaults:
the request for instantiation (RFI)............. 81
3. Importance assessment.......... .ot rnrnennn 82
4, Performance measurementc.ovvvrrnneenns 86
5. The conflict. .. .ttt iiiiinierninennn 88
6. Problems during MUL development.............0... 91
7. Results with the shelf environment.............. 99
8. Problems revealed by hand-coding RPs........... 108
9. Motivation and the bottle-filling environment..112
10. Comments on computer modeling.........vevuvve.. 116
V. MUL as a model of the cortex....vuvvir e ennnns. 118
1. The RP @8 NeUPON vttt it i i i irneetneinnens 119
2. Defaulting among CNS NEUPONS . . vttt n v et o nsennns 126

3. Inhibition in the cortex.........cccveveevvevens 128

4. Problems with neuroscientific studies.......... 133

5. Neurological questions raised by MUL........... 135

6. Evidence from experimental psychology.......... 138

7. Estimating the size of episodic memories....... 141

8. Subcortical elementS....vcvevrvoronsenonsnossos 143

9,)LONE-term MEMOLY « v v oo ensnononeesssssooess 147

10, MUL as a cognitive model, in summary........... 151

VI, CONCLlUSLION ... evervuersroosnnnenaesnsssnoenansssons 153
1. Pattern induction.....veeve i rnonnes 153

‘2. Representing knowledge: RPs and inhibitions....155

3, Directions for future research................. 159
Appendix 1. The TELOS programming language............. 163
Appendix 2. MUL DrogramsS..........oeeoeeeenmasnnacenc s 179

RE T C NS v v v v v e s o s enonnsonsssosasesssnsnssnosssssansess 211

Chapter 1: Introduction

"We, like most Al researchers, wish to build a learning
machine. We believe that the most promising approach is to
model natural developmental stages (as exhibited by
children), and that a learning machine will wuse processes
similar to those employed'by children."®

- R. Shank [Shank 77]

This dissertation presents a model for aspects of
intellectual development in the human infant, specifically
for some operations of the neocortex in learning to perceive
and respond to the environment. The model evolved in
response to explorations of the properties of computer
simulations. Speculation about the brain has influenced the
model, but no attempt was made directly to imitate brain
parts during program development. Once the model stabilized
and reached 1its final form, 1in order to evaluate 1its
plausibility and credibility, attempts were made to
correlate it with neuroscientific hypotheses concerning
neocortical structure and operation at the level of
individual neurons.

The research is intended as a contribution 1in three

related areas, knowledge representation, learning, and

2
neural modeling. Later sections of this chapter review
previous work by other researchers in each of these areas.
Chapter 2 describes the evolution of the computer model's
knowledge representation. Chapter 3 defines the learning
mechanism used to build knowledge for the model. Chapter 4
presents the operation of the model as it applies learned
knowledge to recognize and anticipate 1its sensory inputs,
describing results from program executions. Chapter 5
compares aspects of the program's structures and behaviors
with those of neurons in the cortex, touching upon the roles
of subcortical elements. Chapter 6 concludes with a review
of the model's salient features and suggests some areas for

future work.

1.1 The world of the neonate

The neonate faces a difficult task, at least difficult
for observers to understand. It receives massive amounts of
input having diverse meanings and varying importance. It
must control a body by manipulating hundreds of outputs
affecting both its relations with the external environment
and its internal body states. No external teacher is easily
or generally available at this stage: the infant cannot
isolate a teacher as an object, nor 1is there a teacher

always present. Elders, when available, do little more than

3
move the infant about, feed it, and clean it. It must begin
to make sense of all those inputs and outputs on its own.

The infant, though without a teacher, is not without
help. Evolution has provided, within the infant's body,
useful machinery. Many outputs are controlled by specific
"hard-wired" (that is, non-learned) subsystems. Many inputs
are preprocessed by genetically preprogrammed processors
that may cause specific motor responses in certain simple
but crucial situations (e.g., reflexes). An important
question is “How much of the infant's activity 1is
genetically preprogrammed and how much has to be learned?*

This research assumes that a fairly large repertoire is
preprogrammed, but that learning may occur 1in many ways and
at many places 1in the brain. A recent popular book, "The
Dragons of Eden", gives a readable description of
assumptions about brain organization adopted for this
research [Sagan 781]: the many parts of the brain are
categorized into three subsystems: 1) the reticular system,
composed of the reticular formation and many special-purpose
brain elements (e.g., the collicullus superior); 2) the
limbic system, composed of the 1limbic cortex and several

other elements including the thalamus and hippocampus; and
3) the neocortex, a thin, crumpled, comparatively uniform
sheet of about 10 billion neurons, accepting inputs from and

producing outputs to the lower layers of the brain

Yy

These three subsystems are presented above in order of
decreasing evolutionary age, of increasing architectural
uniformity, and - it is assumed - of decreasing influence
from genetics on specific function. Learning 1is thus
assumed to play a correspondingly increasing role in the
development of function in these subsystems. The "lower"
limbic and reticular systems play the dominant role in the
responses of the infant, as it must depend on preprogrammed
activity wuntil it can learn. The neocortex is thought to
assume partial control of various body parts as it 1learns
their operation and effects. However, the lower systems are
not to be considered ireplaced" by the cortex. They remain
active, carrying out the actions initiated by the cortex and
continuing their preprocessing roles for sensory input.
They can even seize or assume control from the cortex during
panic situations or during familiar tasks like walking.

The <cortex is taken to be the site of most learning in
the brain. Too little is known about the cortex for 1its
operation to be deduced directly. Instead, the research
began with the following unsupported and vague hypothesis
for how learning might occur:

In the infant, new knowledge is obtained by detecting

and abstracting regularities in memories of past

experiences.
This hypothesis differs only in form from speculations of

Aristotle and others on what has since been called

5
wipntuitive induction” [Cohen and Nagel 34]. Regardless of
form, the hypothesis raises at least the following
questions:

1) How is the knowledge to be represented?

2) How are past experiences to be remembered?

3) What are regularities in experience?

4) How can regularities be detected and wused to

construct new knowledge?

1.2 Background: knowledge representation

The field of artificial 1intelligence has seen the
development of a variety of structures for the
representation of knowledge. This research has been
strongly influenced by the representation structures of L.
Uhr and J. Becker.

Unr is concerned primarily with visual perception,
attacking the problem at about the same level as does this
research [Uhr T4, Uhr 75, Uhr 77]. That is, his SEER model
receives input on a retina; that input is preprocessed by
thard-wired" elements before being delivered to the learned
perception mechanisms. Uhr suggests that knowledge can be

encoded by structures he calls transforms.

"A transform specifies:
A) A set of If-conditions to be satisfied,

B) a Threshold test for success or failure,

C) a set of consequences, the Implieds,
D) a Region within which the transform 1is to be
applied, and

E) a set of Expectations." [Uhr T4, p.18-19]
Uhr presents a structure he calls the ‘'"recognition cone" to
control transform application. The cone consists of a
sequence of rectangular buffer arrays, diminishing in size
to a single-celled apex. Each transform is bound to a
particular buffer (perhaps to a subregion of that buffer),
examining the contents of that buffer (or region) and
looking for information that satisfies its If-conditions.
Whenever the If-conditions are satisfied sufficiently to
pass the Threshold test (probabilistic weights are used),
then the transform succeeds and the Implieds are effected.
Implieds could specify values (names) to place in cells in
the next buffer toward the apex of the cone, or suggest
another transform to apply, or direct that some motor output
be performed.

The recognition cone structure has found application in

this research, as will be seen in later chapters. While
transforms are not employed, several of their properties are

considered to be important for knowledge representations:

1) hierarchical construction - each transform might use

results of other transforms.

7

2) probabilistic applicability - experiences are not

exact, but may be incomplete, noisy, or otherwise

incorrect.

3) parallel applicability - at least in part (layer by
layer, for example).

4) directed application - the ability to suggest other
transforms to apply.

The principal reason that transforms were not used directly

was their complexity. Understanding of the learning

mechanisms we were investigating required their application

to simpler structures.

The work of J. Becker on intermediate level cognition
contains a proposal for a simpler knowledge representation,
and some suggestions as to how it might be learned. In
Becker's words:

“"The heart of JCM [as Becker called his model]l is a
particular formal structure for representing
information. Such a structure, called a “schema", is
essentially a sequence of observations in which one
observation has gained predominant emphasis. To
illustrate this very sketchily, let us suppose that a
schema has the form:

[Sensation 1 => Action 1 =>

Action 2 => Sensation 2]

8
The element 'Sensation 2' is emphasized, as 1s shown
by the big arrow, '=>', preceding it. This schema may
be interpreted as saying 'Sensation 1, followed by
Action 1, followed by Action 2, 1leads to Sensation
2'.v
[Becker 73, p.396]
Sensations and actions are each encoded as kernels, composed
of predicate and arguments. For example, the information
that Becker's model senses the color red in a retina cell
number 01532 would be expressed by the appearance of this
kernel:
<color 01532 red>
Input to Becker's JCM is a stream of kernels. The goal of
the model 1is to -encourage the appearance of certain
“pleasurable kernels by introducing appropriate action
kernels. Schemata are used in a goal-directed manner: the
model searches for schemata having pleasurable kernels
emphasized; the unemphasized portions of these schemata are
then compared against the currently received kernels; 1if
needed action kernels are not present, they may be
introduced; if needed sensory kernels are not present, then
the entire schemata utilization algorithm can be recursively
applied with the missing kernels marked as “pleasurable’.
The schema that entails the fewest (or easiest) actions to
obtain a pleasurable kernel is applied, in the sense that

the action(s) it suggests are actually performed.

9

Becker's schemata have several appealing features.
Their structure 1is simple enough to be an object of
comprehensible 1learning mechanisms. They are meant to
operate at about the same sensory/motor level as was planned
for this research. They have an elaborate weighting system
(not illustrated 1in the example) that allows their
probabilistic application, making them suitable for
inexactly-observed (real) environments. Schemata also have
deficiencies. Their goal-directed, serial application
scheme is not generally useful since the vast majority of
sensory kernels are neither good nor bad. Schemata are not
hierarchically formed, although they may be used
cooperatively. Finally, schemata have no facility for
suggesting other schemata to be applied.

The representation structures developed for this
research have their roots in Becker's schemata. More will
be said about them in the next section (concerning Becker's
proposals for learning) and in Chapter 2 (where our

knowledge representation structure is detailed).

Productions, as developed in [Newell and S3Simon 73,

Waterman 75] and reviewed in [Davis and King 771, share many
properties with Becker's schemata. The general form of a
production is:

<antecedent item(s)> => <consequent action(s)>

10

Productions (as used by Newell and Simon) are applied to a
“short-term memory" (STM) containing a limited, ordered set
of objects. A production is applicable if the items in 1its
antecedent match objects in the STM. When a production is
applied, the action(s) specified in its consequent part a}e
performed.

There are many variants of productions, and many
different ways to determine which production(s) to apply.
In "pure" production systems {(i.e., Newell and Simon's), the
antecedent items and the contents of STM are atomic symbols.
All productions are ordered in a 1list. During the
application cycle, the productions are examined 1in order
until a production 1is found applicable - that is, its
antecedent symbols apbear in proper order in STM. This
production is then applied. Variations on this scheme allow
more complex objeéts in STM (e.g., assertions, or Becker's
kernels) and correspondingly more complex descriptions 1in
the antecedent part. The application system also has
variants, including goal-directed application mechanisms
similar to Becker's.

Productions have, or can be altered to have, properties
(hierarchical construction, probabilistic and parallel
applicabilities, directed application, and simplicity)
desirable in a knowledge representation. When kept close to
their ‘"pure" form, they are simple. Their application can

be made probabilistic by the addition of weights like those

11
on Becker's schemata. They could be applied in parallel, as
is suggested in [Uhr 78]. They could be hierarchical in
construction, by putting special objects in the consequent
part in order to "key" higher-level productions. Several
variants of productions suggest further productions to
apply, either with such special objects or by direct
specification of productions in some consequent function.
However, were all the above alterations made, productions

might lose the very important property of simplicity.

Another knowledge represenfation that has had an
important influence on this research is the frame proposed
by Minsky [Minsky 75, Kuipers 75]. As an -information
structure, the frame is a record-like structure whose fields
are called slots. When a frame 1is used, its slots are
filled with appropriate values or objects, possibly
including other frames. Associated with each slot are, at
the least, restrictions on the kind of objects or values
that can be put in the slot. Other slot information might
include indications for steps to be taken when the slot
cannot be filled, might provide a default value for the slot
or suggest ways to get a value, or might suggest other
frames that might be more applicable.

Frames are of greater complexity than Becker's
schemata, especially since their semantic interpretation in

the AI literature generally concerns abstractions of entire

12
situations or complex events. When considered strictly as
data structures whose size can be arbitrarily small, frames
contribute a counterpoint for schema-like representations.
They also contribute the idea that no slot need be
"emphasized" (in Becker's words), and fhat all slots can be
filled either with actual or default values. These ideas

will be discussed at greater length in Chapter 2.

Transforms, schemata, productions and frames are not an
exhaustive 1list of knowledge representations that have
influenced this work. Others will be mentioned in the next
section, which discusses the learning of knowledge
representations. Also, this research iﬁcluded participation
in the design and implementation of TELOS, a programming
language based on PASCAL and intended for research in
artificial intelligence [LeBlanc 77, Travis 771]. The
strengths of this 1language significantly influenced the
approach to the research by allowing a very flexible
evolutionary approach to knowledge representation
development. TELOS and its contributions to this research

are discussed further in Appendix 1.

1.3 Background: learning

The 1learning investigated in this research is a matter

of detecting and abstracting regularities in memories of

13

past experience. The approach is to be distinguished from

other current investigations of learning models in several

ways:

1D,

2)

3)

It is at the 1level of individual inputs to and
outputs from the neoc&rtex. Cortical inputs may
have straightforward interpretations (for example,
red is seen at retina position 01532), complex
interpretations (for example, "there 1is a moving
edge crossing a particular spot of the retina"),
generated by visual preprocessing elements, or
unknown interpretations (most inputs to the
neocortex have unknown functions). The learning
model is therefore designed to be independent of the
meanings of its inputs and outputs. (For purposes
of exposition, discussions in this dissertation will
involve easily-interpreted sensory and motor
inputs.)

The number of observables is expected to be very

large. Observables include not only the original
cortical inputs and motor outputs, but also
internally generated observables corresponding to
features detected or predicted among the other
observables. Further, the observables arrive in
parallel.

No "teacher" is present (externally). Experience 1is

not broken into neat pieces called examples. Nor is

14
essential input information especially segregated
from wunimportant input information. Finally, there
is no direct feedback as to what is good or bad,
except perhaps in some few situations where pleasure

or pain is involved.

Learning in the absence of examples and feedback has
not been a popular topic in recent AI work. A perusal of
the "knowledge acquisition®" section of the proceedings of
the fifth international conference on AI [IJCAI 77] confirms
Feigenbaum's observation that research on learning has moved
toward automation of knowledge acquisition and away from
unassisted general 1learning [Feigenbaum 78]. For example,
research on skill acquisition for Meta-Dendral [Buchanan
72], for annotated production systems [Goldstein and Gumson
771, and for interactive transfer of expertise ([Davis 771
are too domain-specialized and too linguistically oriented
(and thus at far too high a level) to have much significance
for our problem of developing mechanisms and structures
applicable to general perceptual learning.

Other work, while not directly applicable, 1is
sufficiently general that concepts have been influential.
Winston's research introduces a method for 1learning
predicate-net descriptions of block structures, by providing
examples, non-examples, and ‘'near-misses" [Winston 751.

While his work is too concerned with examples to be directly

15
applicable here, it does introduce the useful idea of
comparing two complex descriptions to assess similarities
and differences. Hayes-Roth generalizes these 1ideas to

Interference Matching, a technique that finds a maximal

common description given two or more desc}iptions of
examples [Hayes-Roth 77, 78]. Interference matching 1is
general enough to be applied with any knowledge
representation, but 1s computationally intractable and
requires heuristic solution. Since interference matching
tends to discard irrelevant knowledge, the technique could
be applied in situations where examples are less neatly
delineated. However, given current computing economics, the
expense required for such matching is intolerabie.

Michalski attacks a related problem of generalizing
rules from incomplete descriptions [(Michalski 771,
Generalizing rules as such is, in 1itself, a knowledge
acquisition problem not faced at the level of learning in
this research. What is of interest here are Michalski's
mechanisms for generalizing rules: dropping predicates from
a description; introducing variables for constants; listing
simple exceptions (by indicating that an expression is true
except for values 1in a particular set); generalizing to
ranges for linearly-ordered values, or to
first-common-ancestor for tree-ordered values; introducing

new functions to describe the generalizations. While these

16
generalization techniques were eventually discarded in this

research, they did inspire fruitful experimentation.

Becker, mentioned in the previous section for his
knowledge representation, proposes somé methods for learning
his schemata. He suggests that totally new schemata can be
introduced when an 1input kernel is not matched by the
emphasized part of any schema. That kernel becomes the
emphasized part of the new schema. The new schema is
additionally composed of kernels that precede the now
emphasized kernel in STM. In addition, Becker speculates
that unneeded parts of old schemata can be deleted by
altering the many weights associated’ with the schemata.
Finally, Becker suggests that when a schema is unreliable -
that is, its emphasized part does not always appear when the
actions it includes are taken - the unreliable schema can be
discarded or modified by differentiation. Differentiation
is a process that adds requirements for new kernels to the
unemphasized parts of old schemata, in order to further
specify the conditions producing the emphasized part.

Learning in accordance with Becker's suggestions can be
performed in the absence of an external teacher. However,
it raises several problems. Because of the large number of
parallel 1inputs expected, there 1is no easy way to select
kernels for the unemphasized parts of new kernels. Learning

by weight modification often produces oscillating weight

17
values - not much information is preserved in a weight. The
lack of hierarchical representation in schemata will make
complete schemata very cumbersome - meaningful situations
cannot often be described in three or four sensory/motor
kernels. Further, if schemata‘ can be made hierarchical,
then modification of a schema would be a serious affair, in
effect altering the meanings of any schema that references

it.

The idea that learning can be accomplished by detecting
regularities in memories of past experiences is being
explored by Langley [Langley 78a, 78bl, concurrently with
this research. His system; called BACON.1, is currently
being programmed and no results are yet available. BACON.1
appears to be a descendent of Lenat's AM, itself an
interesting approach to learning by discovery [Lenat 761].

Langley's BACON.1 operates in simple environments
similar in complexity to those wused for tests in this
research. However, the concepts 1involved are high-level
ones. For example, his model 1is being programmed for
planetary motions with the aim of discovering Kepler's laws.
Toward that end, he specifies several heuristics to
recognize constancies and trends among incoming data. These
heuristics specify rather precise actions. For example, one
states that if the value of an attribute of object x 1is

consistently less than the value of that attribute for some

18
object vy, then introduce a new attribute calculated as the
ratio of the values for the two objects.

BACON.1, while applying its learning to higher level
problems than are approached in this research, 1is
encouragingly similar'in intent to that of this research.
The results of the two projects may well fruitfully contrast

and/or interact.

1.4 Background: neuroscience and psychology

As was indicated in the introduction, neuroscientific
and psychological concepts and theories played only an
indirect role in ghe development of this research. The
concepts and theories were consulted after the fact (i.e.,
after our model had stabilized) to see whether they added
any credibility to it and whether they suggested possibly
interesting interpretations. Specific sources used in this
consultation are cited at the appropriate point of reference
within the dissertation. The remainder of this section 1is
intended only as a brief overview of some of the important
literature covering an immense field of research, starting
from psychologists examining the whole person and working

down to chemists examining molecules.

For insight into the intellectual development of the

child, the work of Piaget remains classic [Piaget 54, Piaget

19
and Inhelder 691]. A more modern treatment is given in
[Hamilton and Vernon 761, a collection that also abstracts
many representative experiments from experimental
psychology. For computer models of development in the
child, see'[Shank 771. All of these works characterize the
infant's development in terms of stages, 1illustrating the
stages with observations on emerging capabilities. Section

5.6 in this dissertation presents such a characterization.

For comments on current theories concerning the
architecture of the neocortex, [Brazier and Petsche 78] is
useful. Of particular interest in this collection 1is
[Creutzfeld‘ 781, which supports the idea that the neocortex
is a single uniform organ differentiated only by the nature
of the inputs it receives. Theoretical models of the cortex
are often based on the work of Hebb, who introduced the
concept of the cell assembly [Hebb 49]. Inhibitory effects
were later introduced into cell assemblies [Milner 57]. A
group of researchers including B. <Zeigler and 3. Kaplan
have had some success in statistical and computer-simulation
modeling of such cell assemblies [Whitehead 77]. In the
tradition of Hebb, these workers suggest that each
assemblage of neurons represents and recognizes some entity.
There have also been interesting attempts to model systems
of individual neurons [Witte 73]. The whole field of

neuronal modeling is given a good review in [MacGregor 771.

20

There has been a great deal of work on biochemical
analyses of neuron functions. Recent work is covered well
in [Davison 771, which discusses biochemical correlates of
brain structure and function. Modeling done at this level
is“ largely a matter of mathematical characterization of
properties of synaptic transmission and impulse propagation

[Scott T71.

1.5 An overview of MUL

The model developed in the next chapters is called MUL,
an acronym for Method Underlying Learning. Since the method
inQestigated involves "mulling" things over to find
regularities, 'MUL' is doubly appropriate.

The following chapter, Chapter 2, gives a historical
evolution of MUL's kﬁowledge representation structure. In
its final form, called the RP for Recognizer/Predictor, the
structure is even simpler in form than schemata or
productions. It resembles a mini-frame having a small
number of slots (called components), usually no more than
two or three. Each component references another RP. RPs
are used as recognizers in much the same way as Uhr's
transforms: an RP is "activated" as a recognizer when all
the RPs referenced by 1its components are activated at
appropriate times. Under <certain conditions, an RP may

cause the default activation of some RPs referenced by its

21
components, a process similar to defaulting for frames.
Improper defaulting may be prevented by a mechanism called
inhibition. A unique inhibitor RP is associated with each
RP; an RP may not be activated by default if its associated

inhibitor RP is already active.

The RP, with inhibitions, appears to have a number of
advantages over other knowledge representations. For
example, the desired properties 1listed in Section 1.2 -
hierarchical structure, parallel application, probabilistic
application, and directed application - will be shown to be
properties of RPs. Other advantages are discussed later.
In addition, RPs are simple and thus are good candidates for
the object of general learning. Chapter 3 describes the

pattern induction learning method implementing the detection

of regularities in memories.

Finally, RPs and inhibitions can be related to cortical
neuron structure, as is done in Chapter 5. That chapter
suggests correspondence with evidence from neuroscience and

from experimental psychology.

22
Chapter 2: Knowledge representation

s s s st e

The structures representing knowledge in MUL must meet
three requirements, They must be learnable in the sense
that a relatively small program can fabricate such
structures in a reasonable period of time. They must be
usable in the sense that the program can apply them to
recognize and anticipate 1ifts experiences, They must be
powerful in the sense that the program must recognize and
differentiate a variety of possibly complex relationships.

Like the rest of MUL, the knowledge representation
medium has evolved during this research. To give an
understanding of the final form of the representation, the
stages of that evolution will be presented in an historical

fashion,

2.1 Becker's_schemata

The proposals of J.D. Becker [Becker 73] inspired
MUL's initial knowledge representation. sHis schemata,
discussed in Chapter 1, have the general form:

[condition(s) => action(s) => result(s)]
When the antecedent condition(s) are met and the action(s)

are performed, then the result(s) may be expected.

a3

Sensory information is provided to Becker's model in
the .form of kernels, predicate-argument structures described
in Section 1.2. To provide a source .for concrete examples.
the next section presents a variant of Becker's shelf

environment.

2.2 The shelf environment

The shelf environment is a smooth shelf nine units long
populated by tall smooth white blocks and short rough black
blocks. A1l blocks are one unit wide. Short ones are one
unit high, and tall ones are two units high. Blocks are
positioned so that they do not overlap unit boundaries. Our
organism sits before the shelf and may move left or right in
one unit jumps. Its eye sees the .3x3 unit section of shelf
immediately before it, including a spot of red where its
hand lies. The hand may touch the'top, middle or bottom
units of the shelf, but must remain directly in front of our
organism. Ten Kkernels of sensory information are provided
to our organism at the beginning of each time unit: nine
retina kernels (e.g., <color bottom middle red>) and one
touch kernel .for the texture of the object immediately
behind the hand (e.g., <texture smooth>), For each time
unit, the organism may select a motor output .from among:

<move left>, <move right>, <raise arm>, <lower arm> oOr

{rest>. The output will be executed if possible.

ah

The following is a schema for the shelf environment as
it might appear in Becker's proposed long-term memory.
$color(10) middle(0) left(T7) :one(10)> (10) -> (10)

<move left>(9)

=> $color(10) middle(1) middle(8) none(5)> (10)

charge: ,0 .confidence: 9 cost: 2
It consists of a set of kernel descriptions (partially)
ordered by 1little and big arrows, The numbers in
parentheses are .weights between ~10 and 10 associated .with
the immediately preceding schema feature. A high positive
weight means that the associated feature must be present if
the schema is to be applied. A high negative weight means
that the associated.feature must not :be present. A weight
near izero indicates that the associated feature 1s not
important. Components of a kernel description that have
near-zero weights .will be replaced by variables ifor
expository purposes only - no change is meant in Becker's
representation., Such variables are prefixed .with a "2",
following the MICROPLANNER convention. The weight on each
‘kernel description indicates whether a kernel must (or must
not) be found to match that kernel description. The weight
(10) on the.first arrow ("->") means that the <move left>
must be generated following the observation of a kernel

matching <color ?x left ncone> or the remainder of the schema

a5

cannot be expected. The variable "?x" in our revised
notation means that the matching kernel may be for any of
top, middle or bottom retina positions because the .weight on
middle is izero.

The above schema therefore has the following
interpretation: if a <color top left none>, a <color middle

left none>, or a <color bottom 1left none> kernel 1is

observed, and MUL causes a <move left> kernel, then a kernel
matching <color ?y middle ?c¢> should be observed. From
Becker's original schemata, ¢ has a strong but not absolute
requirement to bind to "none". Becker proposes that the
weights result ,;from learning. A generalization operation.
for instance, might continue to .weaken the requirement that
?y be bound to "middle" in Becker's schemata. (The process
for establishing and adjusting these weights is only .weakly
defined in Becker's proposals.)

The charge of izero indicates that the desirability of
obtaining a kernel matching <color ?y middle ?c> is neutral.
The cost of two indicates that, once this schema 1is
suggested by the occurrence of a kernel matching <color ?x
left none>, two units of energy must be expended to create a
<move left> kernel, Finally, the confidence of nine
indicates that 90% of the times ¢this schema has been
activated, a kernel matching <color ?y middle ?c¢> has been

seen.

26

2.4 .The_recognizer/predictor (RP)

Becker's schemata .lack descriptive power because they
are not hierarchical in .construction. A schema is formed of
descriptions for kernels, and kernels represent - for Becker
~ only primitive sensory inputs or motor outputs. .In order
to specify the conditions of its applicability, each schema
must inoclude a .long.list of descriptions .for sensory and
motor kernels that should or should not be present. Even in
the simple shelf environment, quite complex schema are
necessary to describe, .for example, occasions when the color
black is to be expected at the .lower .left; ‘since only
conjunctions of kernel descriptions are allowed in schemata,
a separate schema is needed to represent each such occasion.

Becker's mechanism .for schema application 1is also
inappropriate for our present modeling. Becker requires
that sensory information arrive and schema be applied in

series - parallel arrival and application are desired for

MOL.

These problems .forced the alteration of both kernel and
schema. To sfacilitate hierarchical knowledge
representation, kernels were given a general role: instead

of representing only primitive sensory/motor information,
kernels were changed to represent an instance of any

situation or feature of a situation that can be represented

a7

by an .BE. An .RP (Recognizer/Predictor) was introduced as
the new knowledge representation unit, This early version
of the .RP retained the structure of the schema except that,
because activity proceeds in parallel, Becker's arrows (as
indicators of temporal sequencing) were no longer useful.
As an example, the schema discussed in Section 2.3 could be
partially represented by this .RP:

#102: (<color ?x left none> <move left>) =>

<color ?y middle 7?c>

Sensory and motor kernels are still present, of course.
They are to be regarded as activations of preprogrammed RPs.

Learned RPs like #102 are used in a way resembling the
use of productions in productionusystems, except that more
than one RP may be used at a time. RP #102 could be used
when a <move left> kernel occurs in parallel with at least
one of <color top left none>, <color middle left none>, or
<cblor bottom left none>., In general, however, kernels will
have the form:

<RP_identifier {actual parameters, if any}>

(Notation: items within '{' and '}' are optional.)

For example, when RP #102 is activated, a kernel will be
created having #102 as its RP_identifier and having as its
three actual parameters the values that were bound to the
three variables of #102, ?x, ?y, and ?c.

Such RPs are activated when kernels are received that

match all the kernel descriptions (components) of the RP.

28

For example, RP #102 has three components. Suppose a
<move left> kernel, a <color top left none> kernel, and a
<color bottom middle black> kernel are concurrently
received. Then RP #102 could be activated, producing a new
kernel, <#102 top bottom black>, This kernel commemorates a
particular instance when the situation described by #102 was
actually observed.

If such RPs are activated only when 2all their
components have been matched, then they act only to
recognize situations. This version of the RP could also be
used 1in predicting occurrences by interpreting its
right-most kernel description to be "emphasized" in Becker's
sense, If all the other kernel descriptions can be matched
with actual kernels, then MUL can anticipate a kernel
matching the emphasiized kernel description.

Such RPs are not yet effective structures for knowledge
representation, They have 1inherited from schemata a
tendency to become meaninglessly overgeneralized. For
example, #1102 anticipates the arrival of a kernel matching
the description <color ?y middle ?¢>, an anticipation that

will inevitably be met; the anticipation is therefore

useless., (The next section discusses possible remedies for
overgeneralization.) Also, parallel kernel arrival
mitigates the usefulness of temporal relaticonships among
kernels, but at least gross inter-kernel timing must be

expressible. (This timing problem is discussed in Section

29

2.7.) To their credit, however, such RPs can build on the
descriptive power of other RPs to describe complex
situations. For example, such an RP might now contain a
kernel description for RP #102's activation kernel.

Though such ,RPs may be built to represent arbitrarily
complex events, each individual RP may be of bounded (even a
small »fixed) size. For example, it is conceivable that
(<#1000...> <move left>) => <#1902...> might represent the
appearance of a black block at the left of the visual field
after a move left from a particular spot on the shelf: RP
#1000 describes the particular spot and RP #1902 describes

the appearing black block.

2.5 Interparameter relations

Unfortunately, this early RP design inherited from
Becker's schemata an 1inability to preserve relationships
among the values bound to parameters when the BRPs are
generalized, For example, the following RP has 4 parameters
(?x,?c1,?c2, and ?t):

103: (<color bottom middle white> <arm ?x>) =>

(<color middle middle ?c1> <color top middle ?c2>
{texture ?t>)
If #103 is to be wused to predict incoming kernels, then
considerably more information is needed. As it stands, an

application of #103 predicts that a kernel matching <texture

30

?t> will be observed. But this condition is always true,
since some (perhaps null) texture is always felt. It is of
greater'interest to predict a wvalue for ?t. This prediction
is possible; when x = 'raised', then t = 'none', otherwise t
= 'smooth'. Similarly, both <¢1 and c¢2 can be calculated
given knowledge of the value of x.

Interparameter relations are intended to save this
informatiocon, Qur example, RP #1103, might have been
represented in this way given such relaticas:

(<color bottom middle white> <arm ?x>) =>

(<color middle middle f(!x)> <color top middle
g(1x)> <texture h(!x)>)

where

(x=raised) => (f(x)=white, g(x)=red, h(x)=none)

(x=centered) => (f(x)=red, g(x)=none, h(x)=smooth)
RP #103 might then have an RP activity kernel of <#103 Ix>
since all other parameters are dependent on x.

Of course, RP #103 is a particularly simple example for
such interparameter relations., One could easily imagine RPs
for which parameter values might be functions of several
parameters, some or all of which appear only in the "result"
or right-hand side of the RP. Still worse, the
interparameter relationship may not be single-valued (i.e.,
may not be a function). In these cases, the expected
kernels can not be uniquely described - any of a class of

kernels may fulfill the expectation.

31
Although a mechanism was formulated ;for the
representation of arbitrary relationships among parameters,
it was abandoned because the learning procedure for the
relationships was very similar to the procedure used to
learn new RPs themselves., The information contained in the
relationships can not actually be 1lost except through
ovenzealous generalization. For instance, in our example RP
#103, the information could be preserved by maintaining two
distinct RPs:
303.1 (<color bottom middle white> <arm raised>) =>
(<texture none>...)
103.,2 (<color bottom middle white> <arm centered>) =>
(<texture smooth>...)
The ovenzealous generaliization expected in Becker's proposed
system was not a problem in this research. The learning
procedures employed preserved the distinct RPs #103.1 and
#103.2, Alternative mechanisms for generalizing are
presented in Section 2.11, 1involving RPs that behave as

disjunctions of kernel descriptions.

2.6 Defaults, and the removal of ("=>"

As the role of the RP shifted toward recognition and
away from Becker's goal-pursuit, the concept of prediction
gave way to the broader concept of defaults. From the above

production-like form, having a distinguished right-hand

32

side, RPs were altered to a frame-like form, with any
component being defaultable. This change in RP structure
was accomplished by a corresponding change in the "goal" of
RP usage, from an attempt to produce certain kernels to an
attempt to anticipate all kernels. Both changes were
motivated by the <change in the meaning and behavior of
kernels, as is explained below,

Kernels now represent instances of arbitrarily complex
situations because they represent activations of arbitrarily
complex RPs; kernels may now appear or fail to appear for
correspondingly complex reasons:

1) A kernel may not have appeared yet, because the
situation 1t represents may not have occurred or
been recognized yet. 1In this case, it may be useful
to create a matching kernel on the anticipaticon that
such a kernel will be observed. Further
expectations can then develop on the basis of this
expectation.,

2) A kernel has not appeared, because the situation it
represents has not and will not occur,.

3) A kernel has not been obtained because of
interference from other Kkernels. Interference 1is
often observed in the computer model, where time and
space limitations dictate heuristic implementation.
\)Processing to determine which RPs can be activated

at any given time may be quite expensive, so sone

33

deserving RPs may not be activated., or their
activation forgotten. Time or space resource
limitations in the computer model might cause such
lapses.

y4) A kernel may not have appeared because it in turn

awaits the appearance of another kernel .
Determining 1if a kernel can appear may therefore
involve determining if other kernels can appear,
potentially an exponentially expensive task.

5) A kernel may fail to appear because of noise or

sensory malfunction,

Although Becker's schemata and learning mechanisms are
adequate for prediction (#1 above), they can be expected to
behave very poorly for the other cases. Whenever a schema
Imatches in all but one kernel, Becker's generalization
process tries to remove that kérnel from the schema.
Removal may be an acceptable strategy when only simple
sensory kernels are present, but compounded RPs introduce
the cases described by 3 and 4 above. Case 5 would cause
instability in the schema feature weights.

These weaknesses make it productive for RPs to behave
as though any unmatched component :were a consequent. When
suitable matches are found for some of the components, the
RP creates a '"pressure" towards finding matches for the

remaining components. Such pressure causes a search for an

existing (but overlooked) kernel., If the search fails, a

34

sufficiently great pressure causes the construction of an
appropriate kernel, called a default kernel. Default
kernels may be later supported, either because an
appropriately matching actual kernel is eventually
experienced, or because kernels matching the default's
components are later encountered or defaulted.

Forming a default kernel is a rather drastic step.
iUntil support for the default 1is found, the default
represents an imaginary fact. Defaults should therefore be
constructed only when the probability of finding support is
high. To estimate that probability. RPs maintain a
statistic for each component recording the historical
success of defaulting that component, as measured by whether
the default was eventually supported. This statistic
appears as a factor between 0.0 and 1.0 in parentheses after
each component. A value near 1.0 indicates that defaults of
the associated component have been very successful. A value

near 0.0 indicates that no defaulting should be done for

that component,

2.7 Representation of time 2n RPs

Becker's proposed program requires serial input of
kernels and assumes that the order of arrival of the kernels
is important. In MUL, on the other hand, kernels arrive and

are processed in parallel; the relative timing between

35

appearance of kernels is not very predictable. In addition,
because MUL may choose to terminate processing on a kernel
due to resource limitations, some RPs activated by each
kernel may not be applied immediately. (They may be applied
later as a result of searches triggered by defaulting.)
Finally, kernels may appear out of normal recognition
sequence because of defaulting.

For all these reasons, inter-kernel temporal sequencing
in MUL carries less information than for Becker's schemata.
;However, at least gross ﬁemporal sequence information must
still be represented. In MUL, components of an RP may be
required to match kernels observed in preceding time units,
A time wunit begins with the input of all sensory kernels
that represent the current state of MUL's environment, and
it continues long enough for MUL to perform some (but likely
not all possible) steps of perception and learning from this
new information.

For example, the following RP was formed in this
version of MUL:

#143: (<color middle middle red> (0.0) previous

<color middle middle red>(.8))
This RP recognizes the concept that the hand is seen in the
middle position of its vision field at two consecutive time
units. The fractions 1in parentheses on each component
measure the past success MUL has had in defaulting each

component should 1t not be observed. The attribute

36

"previous" may be attached to any component of an RP with
the effect that a kernel matching .that component must be
present, not in the current, but in the immediately previous
time unit.

Episodic memory, discussed in more detail in Section
3.2, maintains a record of each kernel including the time
unit in which it occurred or was expected to occur. In this
way, MUL may receive the actual sensory inputs from time
unit t, but enter expected kernels for t+1, t+2, and -so on
into the future, or for t-1, t-2, and so on into the past.
Expectations about the future are evaluated for correctness
when the corresponding time unit is actually experienced.
Expectations about the past must be verified by existing
kernels. [In -what .follows, the time of occurrence or
appearance associated with a kernel indicates the time unit
associated with that kernel in episodic memory. This time
bears no direct relation to the "current time", which names
the time unit actually being experienced, and is important
only to the environment simulator program,]

A typical activation of RP #143 would begin with the
appearance of a <color middle middle red> kernel at some
time ¢t. The kernel may appear because of sensory
stimulation (MUL is actually experiencing time unit t) or
because the activation of some other RP caused the
appearance of this kernel by default (MUL is experiencing

t-1, or t=2, or so forth), Whatever the <cause of its

appearance, this kernel matches either component of #1143, if
#1443 is examined for possible activity. If the kernel is
bound as a match for the second component, then #143 will be
activated at t if <color middle middle red> has appeared for
the time unit t-1. Because the default coefficient of the
first component is izero, no attempt 1is made to default
<color middle middle red> at t-1., When the new kernel Iis
bound as a match for the first component of #143, the second
component suggests there is an 80% probability that a
similar kernel will appear in the following time unit t+1.
If no such kernel is already expected at t+1 (it may have
appeared as the result of defaulting by other RPs), then RP
#143 would cause the second kernel to appear as a default.
When time t+1 arrives, sensory input of <color middle middle
red> would validate this default; otherwise the default is
in error. Of course, unless some mechanism inhibits the use
of RP #143, MUL could reapply RP #143 to the defaulted
kernel to default a similar kernel at t+2, then at t+3., and
so forth, The importance factor maintained for each kernel
is one mechanism that limits defaulting purely on the basis

of other defaults.

2.8 The importance .factor

MUL must continually make decisions concerning

allocation of its time and space resources. These decisions

38
are based on a measure of each kernel's potential importance

to MUL's activity. One contributor to importance 1is the
confidence MUL has in a given kernel. Since default kernels
can be introduced in the absence of direct support, they are
not as confidently accepted (and thus have diminished
importance). In turn, RP activity kernels activated by
imagined kernels have even less importance.

{Unreliable kernels aside, MUL must still face resource
allocation problems. For example, a MUL process might build
thousands of RPs to distinguish various nuances in the
orientation of grass blades in a lawn. Even if all their
recognitions and defaults are absolutely trustworthy, a
single RP capable of anticipating a potential disaster might
deserve greater attention,

Section 4.3 discusses a "limbie"™ mechanism for
evaluating the potential benefit or danger of events, Such
a mechanism is fundamental not only in resource allocation,
but also in general motivation and choice (see Section 4.9).
In MUL experiments with the shelf environment, the
performance (behaviors) of the programs never reached
sufficient complexity for questions to have to be decided on
motivational grounds. Another environment, discussed in
Section 4.9, did require motivational direction for MUL's

activities.

2.9 Examples of percepiion by RPs

39

MUL's perceptions of and responses to 1its environment
are indicated by its RP activity. The RP activation process
is discussed in detail in section 4.1. We pause now to
follow examples of that process.

Suppose at time t MUL sees a black block toward the
left of its visual field. Information that the color black
is present in that area 1is transmitted by activation of
appropriate sensory RPs, some of which might be:

RP# 7: componentless, sensing "color lower left black"

RP#11: componentless, sensing "ecolor middle left

black"

RP#14: componentless, sensing "color upper left none"

[Note: ‘"componentless" RPs have no components (that

is, no kernel descriptions) and therefore are never

activated by recognition., Each componentless RP has a

specific duty or task in MUL, For example, sensory RPs

like #7, #11, and #14 above are connected to sensory
devices and are activated by conditions external to

MUL . Motor output RPs 1like #l: componentless,

requesting "lower arm", are connected (indirectly) to

motor effectors for MUL; activating a motor RP -
possible either by default or by "reflex" - results in
an attempt to perform the associated motor activity.

Inhibitory RPs, to be introduced in Section 2.12, are

componentless RPs that act to prevent the default

activations of certain other RPs, In general,

4o
componentless RPs are given meaning both by the duty
assigned them and by what other RPs can activate them
by default.]

These sensory RPs may be activated asynchronously or,
as in the MUL versions examined, synchronously with each
step of the environment. (Synchronous environment
“stepping" enhances the understandability of MUL activity.)

At time t, RPs #7, #11, and #14 will be activated by
the presence of the black block. The activation of these
RPs may in turn cause activations of other RPs. Suppose MUL
has learned an RP of the form:

RP#105: (<color lower left black>(0.0)

{color middle left black>(0.0))

When RPs #7 and #11 are both active concurrently, all
conditions are met for the activation of #105. Given a
sequential machine, detecting that an RP, in this case #105,
can be activated 1s too expensive an operation to perform
for each of hundreds of RPs. For the purpose of simulation,
only important activity will trigger computation. Suppose
the activation of #7 at time t is sufficiently important to
trigger computation. Then MUL finds RPs that have a
component matched by an activation of #7. RP #105, by
virtue of its first component, is such an RP. The other
component of #105 is then inspected to determine if #105 can

become active. Since the activation of #11 matches this

41
second component, #105 is activated: an RP activity kernel
for #105 is created in time t.

Sometimes RPs are found to be only partially activated
(have at least one unmatched component). For instance,
RP#106: (<color lower left black> previous (0.0)

<color lower left black> (0.9))
In the case of RP #106, the activation of #7 at t matches
the first component, suggesting that #106 might be activated
in the next time period t+1. Presuming that no activation
of #7 at t+1 has already been defaulted, MUL will anticipate
that #7 will become activated at t+1 on the strength of the
0.9 statistic for success 1in defaulting #106's second
component. MUL is still experiencing time t; the
anticipated kernel enters episodic memory for time t+1, and
will be supported at that time if RP #7 is indeed activated
by sensory input when t+1 is experienced.

In addition, the activation of #7 at t matches the
second component of #106 if #1006 is activated at ¢t. MUL
will then search to see if #106's first component can be
matched at t-1 (i.e., was #7 active at t-17?). If a black
object was present in the left of MUL's visual field at t-1,
then #7 will have been activated and #106 can be activated
at t. If not, the first component will not be defaulted.
The low statistic (0.0) indicates that defaults of this

first component have not been successful.

42
Some RPs may cause defaults of higher level RPs, which
causes effort toward verifying the default. In the case of
RP #150 below, the activation of #7 matches component one.
RP#150: (<color lower left black> (0.0)
<RP#120> (0.9))
Component two of #150 anticipates the activation of some
RP#120. For instance:
RP#120: (<color lower right white> (1.0)
<color middle right white> (0.6))
RP #150 indicates that MUL has reason to believe that 1if
black is seen in the lower left, then there 1is a‘good chance
of seeing a tall white block to the right. Since RP
activity for the right side of the retina may not have been
examined vyet, #150 can cause future examination to look for
a white block by defaulting RP #120. Later processing may
verify this default.
This example is meant only as an introduction to the
fundamentals of MUL perception. Details of the process are

presented in Chapter 4.

2.10 RPs in relation to frames and productions

At this stage in its evolution, the RP shared some
properties with the frame formalism of Minsky [Kuipers 75].
RP structure was more uniform than that of frames: such RPs

have only a small number of uniform slots (usually 3 or

43
less), each with an index of the suitability (measured by
historical success) of filling the slot by default. The
uniform structure facilitates learning. In this version of
the RP, slots are filled by any Kkernel that 1) occurs in the
proper time period; 2) represents activation of the proper
RP:; and 3) contains any required values.

Such an RP is unlikely to possess the same ‘'unified®
interpretation as a frame. The RP will not, in general,
categorize an object or characterize a scene. Rather, it is
lower level: it represents a piece of an object (in a
particular context), or a part of a scenario. Such RPs are
uniformly small compared to frames. However, the
interaction among RPs can result in a "mass" of RPs
performing the more complex functions of the higher-level
Minsky-type frames.

RPs lack the features of frames that perform various
error-recovery functions. Frames can suggest alternative
frames when serious anomalies prevent the continued use of
the current frame. In masses of RPs, this direction can be
performed by any RP: suggesting an alternate RP 1s as
simple as defaulting an RP activity kernel for that RP.
Previous computations (recognition and default by RPs)
remain usable in support of the new RP, analogously to the
computations which establish "terminals" that may be applied

to alternative frames in frame theory.

uu
The adaptive property of frames, their ability to
adjust to minor changes in supporting information, was not
yet a demonstrable property of this version of RPs. RPs had
to be made more flexible, able to recognize generalized
concepts. This problem is the subject of the next section.
The major difference between perception by frame and
perception by RP is that many RPs are active, while only one
frame 1is active at any time. MUL's perception of its
experiences is therefore difficult for =2 human observer to
decipher. (Performance evaluation is discussed in Section
4.4.)
The RP has advantages over frames for the study of
learning mechanisms because its small size and uniform
structure require less implicitly coded high-level knowledge

in the programs,

The RP and its use share some features with productions
[Davis and King 77]. Like pure productions, RPs have a
simplicity of form conducive to machine learning. RPs have
no separate consequent part; components may sometimes be
defaulted, however. This default process, especially since

it results 1in Kkernel creation, 1s analogous to the
introduction of items into the processing stream during

production triggering. In addition, defaulting a

motor-output kernel requests the performance of that motor

45
activity, in much the same way that evaluation of a
production's consequent may precipitate motor activity.

Some differences between RPs and typical production

systems are important, however:

- RPs are meant to operate in parallel: many RPs may
exist in partially matched states at any given time.

- The order in which kernel patterns are matched is
unimportant, except where defaulting may result.

- Typical production systems apply productions to
kernels present in a small "working memory". While
MUL employs a working memory (called the short term
memory or STM), kernels are not required to be in
that memory when causing RP activity. The only
requirement is that the Kkernels exist in the proper
relative time units of the very large episodic
memory.

- RPs are not required to have any defaultable
components, nor are they restricted from having
several. In this way, RPs can behave as though they
have several, or no, consequents.

- RP activation causes creation of an appropriate
RP-activity kernel.

- RP use does not involve backward chaining, since no
specific goal is present.

RPs may be activated in both a bottom-up (recognition)

mode and a top-down mode (default). It may be argued that

46
RPs are a special variety of production, just as they may be
considered small and primitive frames. The RP structure
appears to occupy middle ground, combining the structure of
frames with the diminutive size and simplicity of

productions.

2.11 Generalization in RPs

The RP structure discussed in preceding sections was
used in the first MUL versions [Zeigler 78]. However, it
was not the final structure explored. One source of
difficulty was the use of incompletely-specified components
(for example, <texture ?t>) in defaulting. Defaulting an
incompletely-specified component can be effected either by
creating an incompletely-specified kernel corresponding to
the component or by creating a 'typical" kernel matching the
component. Alternatively, the default of
inexactly-described components could be forbidden. Both of
the latter possibilities were investigated experimentally -
the incompletely-specified kernel possibility is equivalent
to defaulting a completely-specified component referencing

an appropriately generalized RP. (For example, the default
of <texture ?t> can be achieved by defaulting RP #155 if
#155 has the single kernel description <texture ?t>.)
Forming a '"typical" kernel has the benefit of establishing a

connection with episodic memory, since the construction of a

b7
typical kernel is accomplished by searching episodic memory
for a good match (see Section 4.2). Problems arise,
however, in detecting whether the default was later
supported - the typical kernel may not be easily associated
with the actual kernel appearing later. Not only does this
lack of associability make the evaluation of default sﬁccess
difficult and expensive, it also produces many similar new
kernels that disrupt the perception process.

A second problem arose in designing a language for
inexact description. Becker's inexact descriptions could by
degrees require a particular value, forbid a particular
value, or accept any value. This 1language 1s not very
expressive, but it 1is easy to implement. A variation on
Becker's descriptions is to specify a set of permissible
values rather than a single value. Value sets were used in
early MUL versions. While more expressive than the
all-or-one patterns of Becker, they still could not

represent requirements concerning permissible combinations

of parameter values. Certainly, sets are not the only
language for expressing interparameter relationships and
parameter restrictions; Michalski discusses a number of such
mechanisms together with methods for introducing them during
an induction learning task [Michalski 77]. However, his
mechanisms all rely on orderings on possible parameter
values. Orderings are difficult to preprogram for

parameters of sensory RPs (how is ‘*red" order-related to

43
"plack"?), and can not be anticipated for learned RPs. Such
order-based generalization techniques were therefore not
employed in MUL.

A third problem with inexactly-described components 1is
that they are computationally more awkward than
ungeneralized RPs, as examining a single referenced RP is
easier than discovering and examining each of a set of RPs
matching some description. While this problem 1is one of
implementation on a serial computer, 1its effect 1is to
squander resources that could better be directed toward

learning, the real object of this research.

The need for inexact component descriptions is
eliminated by introducing a new and different kind of
mechanism to represent generalization. RPs are already
generalizations in two ways:

- Each RP deals with only a small number of the many kernels
present. The RP has generalized that the other kernels
are irrelevant for its purposes.

- RPs may be applied in the absence of particular kernels,
by defaulting them. Defaulting allows the recognition
process to be “inexact", in that kernels may appear either
by recognition or by default, and even when appearing by
recognition may be supported by other defaults.

When MUL is presented with an entirely new scene, it 1is

capable of partly interpreting the scene by using RPs which

49
generalize 1in the above ways. These ways are not
sufficient, however. The RP, as it stands, can only

represent conjunctions. Defaulting, which allows kernels to

appear for reasons other than recognition, is performed only
on the expectation that the default will be supported -~ that
its components will be matched, or (if it is sensory) that
it will correspond to actual input, or (if it is motor) that
its associated action will be performed.

Wwhat is needed 1is a mechanism that can represent
disjunction, to be activated if any of 1its components 1is
matched without requiring anything of its unmatched
components. An RP structure was designed to accomodate
disjunction by becoming active if any of its components was
active, but this design was not used: instead, the effect
of disjunction is achieved by introducing another variety of
componentless RP, called disjunctive RPs. Unlike the
already present sensory/motor RPs, these new RPs are not
connected to any external faculty. Therefore they can be
activated only by default, and require no later support.

To illustrate the correspondence between componentless
disjunctive RPs and disjunctions, suppose that a disjunction
of some RPs #1 and #2 is of interest. Introduce three new
RPs:

#3: componentless

#lh: <#1>(0.0) <#3>(1.0)

#5: <#2>(0.0) <#3>(1.0)

50

Given these RPs, when #1 is activated, #4 will be activated,

causing the default activation of #3. Similarly, when #2 is

activated, #5 will be activated, causing a default

activation of #3. The result: #3 is activated if either #1

or #2 is activated and no further support is required. The

behavior of #3 corresponds to the behavior expected for a

disjunction of #1 and #2.

Disjunction could have been represented by the new RP
mentioned above that requires the activation of only one
component to become active itself. Componentless RPs are
used instead for several reasons:

- Componentless RPs are already present in MUL, so no
additional mechanism is required.

- Componentless RPs may be activated by any number of other
RPs. For example, adding some RP#6 to the disjunction
represented by #3 requires only the addition of:

#7: <#6>(0.0) <#3>(1.0)

Thus, componentless RPs can correspond to disjunctions
with a variable number of disjuncts.

- Each element of the disjunction (#2 above, for example)
may not precisely describe an element of the disjunction.
By using a default mechanism to activate a disjunctive RP,
the problem of refining the descriptions of disjuncts
reduces to the more general problem of controlling

defaults, a problem solved in the next section.

51

The meaning of a disjunctive RP is thus far determined

only by what other RPs can default it. However, the general
meaning of RPs cannot be allowed to change because that
would invalidate episodic memory and alter the meaning of
any RPs that reference the altered RP. Disjunctive RPs,
then, must be assigned some particular meaning if they are
to be useful in MUL. The next section introduces the
inhibitory RP as one type of disjunctive RP with definite

meaning.

When RP components are required to reference a
particular RP, rather than inexactly describe some class of
RPs, the form of the RP 1is as follows: each RP is a
(possibly empty if componentless) list of several other RPs
(with timing information). The format for RP display in the
remainder of the dissertation will be:

RP #n: (<#component 1, factor 1 {,previous} >
{#component 2, factor 2>)
Where
#n: The identifying number of this RP.
#component 1: The identifying number of the RP referenced
as the first component.
factor 1: A fraction between 0.0 and 1.0. If factor 1
exceeds .75, then component 1 can be
defaulted, with confidence proportional to

the value of factor 1. Factors below .75

52
are shown as 0.0 to emphasize that they
prevent defaulting.

previous: An optional attribute whose presence
indicates that component 1 is to be active
in the time unit preceding the activation of
component 2, and any resultant activation of
RP #n.
#fcomponent 2: The identifying number of the second
component's referenced RP.
factor 2: The same as factor 1, but for the second
component.
Componentless RPs are described as such, and a brief
explanation of their meaning is provided. For example:
RP #n: componentless, sensing “color middle middle red“

RP wuse 1s straightforward: when all RPs on the
component list are active at appropriate relative times,
then the containing RP becomes activated; default activation
of components may occur when a sufficient number of the
other component RPs are active, provided that the history of
such a default is favorable. (Further control of defaulting
is discussed in the next section.) The kernels representing
activations of the components of a kernel are called the
support for that kernel. Kernels that originate by
recognition always have such supporting kernels for each
component, and are therefore "completely supported".

Kernels that originate by default may lack support for

53
several, even all, components. Ideally, all kernels are
eventually completely supported. *Indirect support! for a
kernel refers to the support (including indirect support) of

the of the support for that kernel.

2.12 Inhibition

The RP structure described in the preceding section was
studied in the second major MUL version (discussed in
Chapter U4). The process of defaulting was found to be too
inexact, however. The only restraint on defaulting had been
a simple measure of historical success. For example,
consider the defaulting activity of RP #143 from Section
2.7. In its now ungeneralized form, RP #7143 looks this way:

RP #143:(<#15,.2,previous> <#15,.8>)

where RP #15 1is a sensory RP representing

<color middle middle red>.
When RP #15 is activated at times t and t+1, RP #143 can be
activated for time t+1. If MUL is -currently experiencing
time t, no sensory information has yet arrived for t+1, so
#15 can not already be active at t+1 by sensory activation.
(#15 might be active at t+1 due to defaulting by other RPs.)
In any case, #143 will insure the activation of #15 at t+1
with an importance factor about .8 that of #15's activation
at t. This reduction in importance reflects the statistical

history of such defaulting: about 4 out of 5 times that #15

54
is activated 1in some time unit, #15 will also be activated
in the following time period. This RP has a straightforward
interpretation: if MUL's hand is in front of its eye, about
4 out of 5 times the hand will still be there at the next
time unit.

Such a default, though often correct, is not as useful
as one would like. The more confidence MUL can place in a
default, the greater the usefulness of that default.
Unfortunately, even the problem of deciding whether or not a
default is "correct" is not well defined. The only method
yet mentioned has 1involved verifying whether or not the
default receives suppprt - but defaults may not recelve
support for several reasons without being incorrect: they
may not have been sufficiently important to command
resources for support detection; they may involve
speculation about past events that have been partially
erased from episodic memory; they may be unsupported because
of noise or sensory malfunction. Worse, incorrect defaults
may receive support from other incorrect defaults.

For the purposes of this section, we assume that at
least some incorrect defaults of a given RP can be detected
as incorrect. Further, we assume the -existence of some
mechanism that discovers RPs whose activation forewarns that
defaulting the given RP will be incorrect. That is, RPs
that are often activated before the given RP is incorrectly

defaulted, but which are seldom activated when the given RP

55
is correctly defaulted. Mechanisms to perform these tasks
are described in Chapter 3.

With these assumptions, suppose that RP #15 above 1is
being incorrectly defaulted. The assumed mechanism is able
to suggest that activation of RP #126 below 1is often
observed in the time unit before improper defaults of #15.

RP #126: (<#5,0.0> <#15,0.0>)

where RP #5 is the motor RP meaning 'lower arm'.

If MUL can be warned that defaulting #15 will be incorrect
when #1126 1is active 1in the previous time unit, then many
improper defaults of #15 will be avoided.

The mechanism that warns of improper defaulting 1is

called Inhibition. With any RP, there may be associated a

single, unique, componentless inhibitory RP. For example,

when it is first decided that #15 is to be inhibited, the
following componentless RP is created:

RP #402: Componentless, inhibiting #15
Whenever MUL is about to default an RP, it first determines
if the inhibitory RP associated with the RP to be defaulted
is active in time unit t. If so, no defaulting is done. If
not, the default activation proceeds as usual.

MUL can prevent the improper defaulting of #15 Dby
activating #15's inhibitor, #402, at appropriate times. kP
#500 activates #402 whenever #126 is activated, warning MUL
not to default #15.

RP #500: (<#126,previous,0.0> <{#402,1.0>)

56

The following 1is a reiteration of the RPs accumulated to

govern the default of #15:

15: componentless, sensing 'color middle middle red'
#143: (<#15,previous 0.2> <#15,0.8>)

5: componentless, requesting 'lower arm'

#1261 (<#5,0.0> <#15,0.0>)

#402: componentless, inhibiting #15

#500: (<#126,previous,0.0> <#402,1.0>)

In operation, these RPs have the general meaning:

If the hand is centered at time t, anticipate that the
hand will also be centered at time t+1 unless the arm
is to be lowered.

These six RPs are not a complete RP mass for #15. Other RPs

than #143 could default #15; other RPs than #500 could

default #402 to inhibit #15.

The concept of inhibition and its implementation via
componentless RPs has several convenient properties.

- Inhibitions control defaulting without altering the
content or meaning of existing RPs. It is important that
RPs have fixed meanings. First, the learning mechanism
depends on an episodic recording of past experience. That
recording 1is made by remembering which RPs were active at
what times. If the meaning of an RP were allowed to
change, the episodic memory for that RP would be

invalidated. Second, RPs are hierarchical. If an RP may

57
change in meaning, then all RPs that reference that RP
directly or indirectly will also have altered meanings.
Inhibitory RPs represent, semantically, the negation of
the RP they inhibit. For example, the activation of #402
can be interpreted as meaning *the color of
(middle,middle) is NOT red". Inhibitory RPs are a form of
disjunctive RP. Their disjuncts are all RPs that default
them, each disjunct representing a situation when the
inhibited RP should not be activated.

Inhibitory RPs are themselves activated by default; thus
their behavior may in turn be controlled by other
inhibitory RPs. For example, #402 can itself be inhibited
if it is being defaulted at inappropriate times.

Inhibitions provide the foundations for the detection of
incorrect defaults. Inhibitions prevent activation by
default only. They do not prevent activation from sensory
input or by recognition. What, then, is the significance
of the concurrent activation of both an RP and 1its
inhibitor? The occurrence of this situation, called a
conflict, 1is evidence that an 1improper default has
occurred. For example, suppose #402 is activated for time
unit t, but when t is experilenced, #15 is activated by
sensory input. Then #402 has been improperly defaulted.
More will be said about conflicts later 1in the

dissertation.

58

Chapter 3: Learning by pattern induction

Learning in MUL is accomplished by introducing new RPs.

The method for learning is pattern induction: a study of

the history of past RP activity (and/or RP structure) to
discover a pattern (regularity) in that activity. New RPs
are then constructed to describe a typical instance of that
pattern to enable recognition and anticipation of future

instances of the pattern.

3.1 An Example

The following is a scenario of the progress of learning
as it occurs in later MUL versions. Later sections of this
chapter explain the 1inner workings of pattern induction,
here mentioned only for 1its outputs. To simplify the
presentation, only the following five sensory/motor RPs are
mentioned. The actual MUL interface with the shelf

environment has 44 sensory/motor RPs.

RP #1: componentless, sensing Meolor top middle red*

RP #2: componentless, sensing "color top middle none™
RP #3: componentless, sensing "ecolor middle middle red®
RP #4: componentless, sensing "color bottom middle red

RP #5: componentless, requesting “raise arm"

59
The history of activity for these RPs might reveal a number
of patterns. For instance, the color at the top middle
retina position will always be none (unless the hand is
raised) because no blocks are 3 units high. Pattern
induction might therefore produce the RP:
#10: (<#2,0.90,previous> <#2,0.95>)
The interpretation of RP #10 is that if RP #2 is active at
time t, there is a 95% probability that #2 will be active at
t+1. Conversely, if #2 is active at t, there is a 90%
probability that #2 1is active at t-1. This RP's activity
will be refined when further pattern induction discovers
that when #2 is incorrectly defaulted at t+1 by RP #10, the
{raise arm> RP #5 is present. In the most advanced MUL
version, this new knowledge is represented by the
introduction of one or two new RPs (if #2 already has an
inhibitor, then #11 1is not needed - the old inhibitor is
used):
#11: componentless, inhibiting #2
#12: (<#5,0.0,previous> <#11,1.0>)
<if "raise arm' seen at t, then default "NOT
color top middle none” at t+1; however, the
activation of #11 at t does not suggest the
default of #5 at t-1>
RP #2 cannot be defaulted at t+1 after any RP defaults #11
at t+1. The componentless RP #11 represents the situation

"the color of (top, middle) is not none'.

60

This RP mass will bDe further refined when later
experience exhibits cases where #2 is improperly inhibited
by #11. In particular, 1if the hand is lowered (that is,
rests in bottom, middle) and the <raise arm> RP #5 1is
activated, the resulting activation of #12 activates #11.
But #2 is activated by external sensory information because
<raise arm> moves the hand 1 unit to the (middle, middle)
position.

This situation 1is an example of a conflict: the
activation of #2 says that the (top,middle) retina spot sees
"mone', but the activation of #11 says that the color seen
in the (top,middle) is NOT "none". Pattern induction might
remedy this conflict by inhibiting #11:

#13: componentless, inhibiting #11

#14: (<#4,0.0,previous> <#13,1.0>)

The resulting RP mass, composed of RPs 10,11,12,13 and
14, can be verbalized as follows:

npredict that the color of (middle, middle) will
remain none except when {raise arm> is activated
and the arm is not lowered.™
This RP mass is not yet completely accurate in anticipating
the activity of #2 = certainly <lower arm> can have effects
comparable to <raise arm>. The important thing is that the

RP mass can be further refined if required by experience.

61

In general, then, the task of pattern induction is to
discover patterns of RP activity exemplified by "RP X (or
some combination of RPs) regularly occurs at some
interesting times". Later sections of this chapter describe
mechanisms for performing this task, including a

MUL-specific interpretation for "interesting".

3.2 Episodic memory: the history of MUL experience

A history of MUL experiences 1s the foundation of

pattern induction. This history, called episodic memory, 1is

composed of one record for each RP activation in each time
unit. Each record, called a kernel, identifies the time
unit containing it, the RP it represents an activation of,
the kernels for activations of its components (if‘any), and
(if it originated by default) the kernel for the activation
of the RP that defaulted it. Since both the sensory/motor
experiences of MUL and MUL's processing of real or imagined
experiences are represented by RP activations, the episodic
memory is a history of both mental and physical experience.
Kernels are erased (forgotten) only when no Space

remains in the machine. In current MUL versions, the oldest

kernels are forgotten first (FIFO). More sophisticated
forgetting schemes would assess the relative importance of
kernels to future pattern induction, perhaps themselves

using inductive mechanisms.

62

3.3 An overview of pattern induction

The task of pattern induction 1is to detect and describe
regularities in memories of past experiences - that is,
implement learning as hypothesized in Section 1.1. Given
that knowledge is to be represented by RPs, the task can be
rephrased: detect regularities in the RP activation history
of episodic memory, and describe those regularities by
introducing new RPs. Still wundefined, however, 1is the
nature of a regularity and the mechanism for detecting one.

Becker's suggestions for introducing new schemata
provide a model for one sort of regularity, called a

predictive regularity. When an RP is activated

unexpectedly, MUL may be motivated to find grounds for
anticipating that activation in the future. (An RP
activation is unexpected if it is not a default: default
activations anticipate experience.) Becker's approach -
building a new schema from the kernels that preceded the
unexpected kernel - is inappropriate in MUL: RP activations
occur in parallel, complicating the concept of "preceded';
RP activations are multitudinous, making such selection of
components for new RPs impossibly arbitrary. MUL can,
however, make use of 1its episodic memory. Instead of
attempting to build new RPs on the basis of Jjust one
unexpected activation, MUL waits until several activations

of that RP have been unanticipated. New RP(s) are built to

63
reflect the similarities 1in events leading up to the
unexpected activations. Further, episodic memory may be
examined for occasions when the (unanticipated) RP was not
activated, to detect differences between the events leading
up to activations and the events that did not lead up to
activations. The process of assessing similarities and
differences in sets of examples and non-examples is similar
to the experimental methods of agreement and difference as
described by John Stuart Mill [Cohen and Nagel 34]. The
process 1is also comparable to that investigated by Winston
[Winston 75] and later by Hayes-Roth [Hayes-Roth 781, except
that the choice of 1incident, and of examples and
non-examples of that 1incident, is left to MUL. The
mechanism implementing the discovery of predictive
regularities, called predictive pattern induction, is
detailed in Section 3.7.

Predictive regularities are neither easily described
nor easily discovered among RP activations for the shelf
environment. An RP is created primarily to recognize a
feature of +the flow of RP activations. If (as yet)
unobserved RP activity can be predicted, the default
mechanism can represent it and inhibitions can make those
predictions reliable. But the central problem was one of

introducing RPs to recognize features of the flow of RP

activations, the task of non-predictive pattern induction.

The implementation wused 1in this research depends on a

64
selection process to suggest an "interesting" RP activation.
This process is not so straightforward as selecting an
unanticipated activation, although unexpectedness may be one
factor in the selection (see Section 3.4). Once an
activation is selected, episodic memory is searched to find
other activations of the same RP. Subsequent investigation
attempts to discover similarities among the events (RP
activations) accompanying activations of the selected RP,
similarities that can be abstracted as new RPs.
Occasionally, the new RPs can default (and thus anticipate)
future activations of the selected RP. Defaulting roles are
assigned to the components of the new RPs by later analysis
of the new RPs' activity when applied to episodic memory.
Most components are not found to be defaultable; most RPs
act only to recognize events.

Both predictive and non-predictive pattern induction
are used in MUL. Outlines of algorithms for both varieties
are presented later in this chapter. Non-predictive pattern
induction 1is used to 1introduce new RPs to define and
recognize new features of an environment. Predictive
pattern induction is unsuitable for learning arbitrary new
RPs because few features involve predictive relationships.
Predictive pattern induction, on the other hand, is used to
introduce 1inhibitions that prevent improper defaulting.
Non-predictive pattern induction is unsuitable for

introducing inhibitions because the new RPs must anticipate

65
a particular event, namely an impending conflict, and

prevent it by activating an inhibitory RP.

3.4 Instance selection

Both predictive and non-predictive pattern induction
begin with the selection of an 1instance, an anomalous
occurrence that, if more were known about it, would have
been anticipated or avoided. In predictive pattern
induction, the object of attention is a kernel that caused a
conflict and therefore should have been 1inhibited. The
mechanism for choosing such a kernel is described in Section
4.5. Briefly, the kernel must have appeared by default, not
have been completely supported, and have caused a conflict.
‘In the case of non-predictive pattern induction, the object
of attention is a kernel selected as "important® to MUL and
was unanticipated. Various measures of 1importance are
examined in the remainder of this section.

One measure of importance is the “importance factor®
associated with each kernel for answering resource
allocation questions (Section 4.3). This factor 1is
primarily a measure of the confidence MUL has in a kernel.
As such, it is of some use in deciding what kernel to learn
about: kernels that have high importance factors represent
real experiences; those having low importance factors are

supported only by defaults and so in some sense represent

66
imaginary experiences. Pattern induction is best confined
to dealing with real experiences (see Section 4.6).

Importance factors are also a function of an
"intrinsic" importance of the kernel to MUL. Kernels are
given higher importance factors if they represent
unanticipated sensory experilences. Intrinsic importance may
also be assessed by specialized mechanisms. For example,
when pain and pleasure sensors are added (Section 4.9),
kernels for their activation are considered very important.

Importance factors alone are not sufficient to select a

particular kernel as a subject for non-predictive pattern

induction if only because many kernels may have equally high
importance factors. What 1is needed 1is some measure of
whether more should be 1learned about a kernel. Many MUL
versions selected kernels that precipitated the fewest
activations of RPs, on the assumption that little must be
known about the kernel if it caused 1little RP activity.
Choosing kernels that precipitate the greatest RP activity
can also be rationalized: 1if the kernel precipitates many
RP activations, then it must be a good kernel to anticipate

(its arrival is telling MUL a lot).

3.5 Cause-based relations between kernels

Non-predictive pattern induction implements a search

for similarities among RP activations at several particular

67
time units. The search is too expensive to be performed
over more than a small fraction of the RPs activated during
a single time unit, as 200 RPs are likely to be activated
each time unit even for simple environments like the shelf.
Therefore, a small number (about eight) RPs are selected for
examination, forming a set called RELATED RPS. Ideally,
activations of the selected RPs are the most likely to be
related (as cause-effect or by common cause) to the
appearance of the “interesting" kernel, K, selected for
pattern induction. In practice, the RPs must be selected by
the heuristic methods described below.

In early versions of MUL, RELATED RPS was filled by
random selection on the rationale that activations of
several RPs are 1likely to be causally related to the
appearance of K, and random choice would be likely to net
one of them. The choice was restricted to RPs activated in
the same time unit as, or one unit before the appearance of
K. Random choice results in a large number of essentially
useless RPs, exemplified by:

(<color middle middle none> <color top left none>)

Performance markedly improved with the introduction of
additional relatedness requirements to control membership in
RELATED RPS. These requirements were preprogrammed and at
first applicable only to sensory/motor RPs. For example,
when non-predictive pattern induction is applied to

activations of the sensory RP <color middle right black>,

68
_reprogrammed restrictions confine RELATED RPS to RPs for
neighboring retina positions (e.g., <color 1lower right
black>) or to the RP sensing the color seen in the (middle
right) position in the immediately preceding time unit.
Spatial and temporal contiguities limit RELATED_RPS
during low-level sensory learning, but must be generalized
to apply to learned RPs. MUL later employed an area/level
construction to define relatedness among RPs, similar to
Uhr's recognition cone in both effect and justification [Uhr
77173. Each sensory/motor RP 1is assigned to some area of
level 1 of a recognition=-cone-like formalism. In general,
RELATED_RPS may contain only other RPs at the same level and
area as the RP whose activation is recorded by K, and that
are activated either during the same or the immediately
preceding time unit as K. Any new RP formed is assigned to
the next higher level in an area given by a preprogrammed
transition function. In all current versions, the
transition function is a simple fixed mapping from area to
area, but could conceivably be more complex (see Section
6.3). The area/level mechanism is a crude way to organize
RPs into categories in which each RP deals with similar
information at a similar conceptual level. Level 1,' for
example, contains an area receiving inputs from sensory RPs
from the bottom three retina cells, another area receiving

inputs from the middle three retina cells, and so forth. At

69

higher levels, the number of areas diminishes until, at

levels 4 and higher, only one area is present.

3.6 Non-predictive pattern induction

This section presents an outline of the algorithm wused

for non-predictive pattern induction.

1)

2)

3)

[select an interesting kernel K]

By the methods discussed in Section 3.4, a kernel, K,
is selected as an instance requiring further learning.
To review, K will generally be unanticipated and have a
high importance factor. Further selection is based on
lack of use as an RP component (in early versions) or
on RP activity precipitated (in later versions). As a
notational convenience, the function ACTIVATED_RP (K)
designates the RP for which K is an activation, for any
kernel K.

[(find history of ACTIVATED_RP(K)]

Construct a sample, PAST_OCCURRENCES, of other past
time units in which ACTIVATED RP (K) is also active.
[build RELATED RPS]

Construct a sample, RELATED_RPS, of RPs whose
activations might be useful in anticipating K or might
be of importance when seen to co-occur with K. As

explained in Section 3.5, RELATED_RPS is generally a

4)

5)

70
random sample of RPs from the same level and area as
ACTIVATED RP (XK), and active either in the same time
unit as, or one time unit previous to K.

[abstract a history of the activations of RP(s) in
RELATED RPS in the time units of PAST_OCCURRENCES]
For each RP, R, in RELATED_RPS Do
For each time unit, T, in PAST OCCURRENCES Do
TABLE [R,T] := 1 if R is activated at T
(T-1 if R entered RELATED_RPS
because it was active in the time
unit preceding that of K).
otherwise TABLE [R,T] := 0
[construct new RPs]
A new RP is created, with a first component requiring
an activation of the RP, R, whose TABLE row 1is most
frequently one. The second component of the new RP
requires an activation of ACTIVATED RP(K). Thus, the
new RP has the form:

#n: (<R,P1{,previous}> <ACTIVATED_RP(K),P2>)
The attribute "previous" is included only if R entered
RELATED RPS because it was active 1in the time unit
preceding K. "P1" and Wp21 gre statistical measures of
the propriety of activating RP #n's components by
default. To set initial values of P1 and P2, find a
set, 31, of the most recent occurrences of R and a set,

S2, of the most recent occurrences of ACTIVATED_RP (K).

71
PAST_OCCURRENCES might do for 32. P1 reflects the
degree to which S1 is contained in S2, and P2 reflects

the containment of S2 in S1.

Early MUL versions added a third component to the new
RP if some RP, R2, had TABLE entries identical to those for
R. The correspondence among three RP activations (for R,
R2, and ACTIVATED RP(K)) was considered less likely to Dbe
pure coincidence than the correspondence among just two (for
R and ACTIVATED RP(X)). Later work, particularly with
hand-coded RPs, suggests that two-component RPs are
adequate, and decrease redundancy.

In addition, several RPs might be produced for a single
pattern induction attempt. Each RP whose TABLE entries
contain more than some minimum number of 1's would be named
as a first component of an RP like {#n above. Multiple RP
creations are advisable because of the expense of

constructing TABLE.

3.7 Predictive pattern induction

Predictive pattern induction can be used to introduce
RPs [Zeigler 78], but 1is generally ineffective because
predictive relationships are not often observed among RP
activations. In later MUL -evolution, predictive pattern

induction was given up as a mechanism for general RP

T2
introduction though it re-emerged as a mechanism for
learning inhibitions. The following algorithm prevents
future conflicts by introducing inhibitive RP masses.

D) [selection of an RP X to inhibit]
An RP, X, is found (by methods described in Section
3.4) to have been improperly defaulted. MUL applies
predictive pattern induction to define the conditions
preceding the 1improper default so that an RP mass can
be constructed to recognize those conditions and
activate an inhibitory RP to prevent future improper
defaults of X.

2) [formation of “not X¥]
If X does not already have an inhibitor RP associated
with it, create a componentless RP, N, as the inhibitor
of X. N is called the "not X" RP of X, because its
activation conceptually represents situations when X
should not be activated. In some versions, X is made
equivalent to "not N“ by making X in turn the inhibitor
of N, but for RPs, not (not X) is not equivalent to X.

3) [examine the history of X's activation]
Find several past activations of X that caused
conflicts and should have been inhibited; record their
times of appearance in an array, IMPROPER. Alsd find
several activations of X that did not cause conflicts;

record their times of activation in an array, PROPER.

73
4) [introduce an RP, Z, to activate N when X 1is to be
inhibited]
Find or construct an RP, Y, that was often activated in
(or Jjust prior to) time units in IMPROPER, but that
rarely was activated in (or just prior to) time wunits
in PROPER. That is, Y is activated about the time that
X should be inhibited. Introduce the RP:
#Z: (<Y,0.0{,previous}> <N,1.0>)
The ‘‘previous" attribute is included if activations of
Y are found for time units just prior to those in
IMPROPER. Now, Z can forestall the improper default of
X by activating N (that 1is, "not X") under the
conditions recognized by Y. Generally, possible Z's
will be generated until all improper defaults of X are

inhibited, or until some resource is exhausted.

3.8 Why pattern induction?

The lack of examples (explicitly identified as such)
from which to learn is an influential constraint on the
development of pattern induction. Pattern induction as we
have studied it must not only select examples from which to
learn, it must also decide the nature and content of those
examples. That is, a set of similar events must be selected
as a "training¥ set from a 1long history of mental and

physical experience, some of which might be only

T4
"imaginary". From the experiences preceding these similar
events (again, hundreds or thousands of RP activations) must
be extracted a useful (hopefully predictive) relationship
between other events and events in the "training set" of
similar events. The above process might be repeated for
several "interesting" kernels in each step.

Limitations on resources available influence algorithm
design. It would be helpful to construct more complete
information about event similarity or spend more time
devising descriptions of similarities in the circumstances
of similar events. The interference-matching technique used
in Hayes-Roth's SPROUTER program [Hayes-Roth 78] 1is an
example of how greater resources could be well spent.
However, to Jjustify the 1increased expense, assurance is
required that the end product 1is wuseful. This assurance
could be at least partially based on a sophisticated (and
expensive) selection of subject events. Further, a large
amount of irrelevant information (at least to a particular
subject event) is present for each event; some mechanisms
(expensive, of course) must screen out such irrelevant
coincidences. Even the Hayes-Roth technique does not often
detect regularities in the events leading up to the
occurrences of the subject events because the distinguishing
features of those events have not yet been recognized - the

appropriate RPs have yet to be learned.

75

3.9 The benefits of pattern induction

Pattern induction is expensive in the forms
investigated for this research. It 1is important to
understand the benefits expected from such pattern induction
in return for the cost.

First, such pattern induction is inherently stable. It
will not <create drastic alterations in knowledge in an
effort to recognize and anticipate new inputs. New RPs must
usually prove usable in several past experiences before they
can be introduced. Once introduced, RPs are never altered
and so they always recognize the same general event.
(Inhibitions change only the prediction behaviors of RPs.
Also, RPs are not forgotten 1in current versions of MUL,
though forgetting may eventually be required in future MULs
to reclaim storage resources.)

Second, pattern induction as we have investigated it is
a self-correcting learning process. RPs cannot be incorrect
as recognizers, though they may be redundant or irrelevant
to future experience. While RPs can be used to default
kernels at improper times, these defaults (if truly harmful)
will produce conflicts that later stimulate the learning of
corrective 1inhibitions. Inhibitions themselves can be
inhibited, to refine their behavior. It would be an
interesting experiment to excise some RP(s) from MUL to

observe MUL's recovery. Some sensory RPs might also be

76
removed, although performance must deteriorate with the loss
of information.

Third, pattern induction, as we have investigated 1it,
is universal. It may be applied to activation histories of
both learned and preprogrammed RPs without altération.
Also, it may be applied to any environment with which an “RP
activation" interface can be established. This versatility
applies only to pattern induction and RP application: such
tasks as importance assessment (Section 4.3), motivation
(Section 4.9), performance of basic motor and sensory
activities, and environment simulating require
environment-specific code.

Finally, pattern induction, as we have investigated 1it,

acts to remove the need for ‘'close® matching during RP

application. Close matching has not disappeared, but has
moved to the relatively less sensitive and more stable area
of pattern induction. RPs in later MUL versions always
match exactly or not at all. wClose' matching 1is still
allowed, but is incorporated in the default process. JSince
defaulting is controlled by inhibitions, MUL can learn and

ad just “"close' matching by learning new inhibitions.

7
Chapter 4: MUL

iPreceding chapters introduced the recognizer/predictor
(RP) as the repository for MUL's knowledge, and presented
pattern induction as a class of mechanisms for learning new
RPs. This chapter begins by developing the machinery for
using BPs. Detailed consideration is given several problem
areas for MUL design, notably the calculation of kernel
importance, the evaluation of MUL behavior, and issues of
motivation in MUL. The chapter concludes with discussions

of various MUL experiments.

4,1 MUL's mental cyele

MUL's wuse of RPs in the perception of its environment,
its learning of new RPs, and the activity of the environment
itself are carried out in the fixed sequence described
below. The rigidity of the cycle is a result of both the
need to represent such tasks wusing a single-processor
sequential machine and the desire to obtain comprehensible
and reproducible results. MUL's activities could be
performed by fairly independent concurrently-executing
processes. Section 6.3 suggests a formalization of RP wuse

that is particularly well suited to parallel processing,

78
The following algorithm describes MUL's activity cycle.

Numbers in brackets refer to explanatory notes following the

algorithm itself,

0. if resources for given environment step are exhausted
then [update environment]

a) select [1] and perform motor activity, if any
(activate [2] motor RPs if a "flail" action [31]).

b) update environment with respect to any changes
from causes external to MUL.

c) using the updatéd environment, activate the proper
sensory RPs.

1. select a kernel, k, from a buffer called STM (ordered
by importance value).

2. for each RP, r, having a component referencing
ACTIVATED_RP (k) (up to some MAX number, ordered by RP
importance):

a) calculate the time wunit, rp_date, in which RP r
may be activated by k: given that kernel k occurs
in time unit t, if the component of r referencing
k has the attribute previous, then let rp_date be
t+1, otherwise let rp_date be t.

b) if r is not already active at rp_date, then
b.1) see if kernels can be found (in episodic

memory) that record activation(s) of the

RP(s) referenced by the other component(s)

3.

4,

79

of r at proper times with respect to
rp_date.

b.2) if a component RP is not already activated
at the proper time, is defaultable [4], and
is not inhibited at that time, then
activate the component RP as a default.

b.3) if all components of r are active, then
activate r for time unit rp_date,

if perception resources are not yet exhausted, then go
to step 1.

while resources remain, do pattern induction.

Notes:

(1]

Selecting a motor RP

1) if a motor RP has been activated for the current
date,

2) and the action indicated by the motor RP 1is
possible (a lowered arm cannot respond to <lower
arm>, for example),

3) then alter the environment to reflect the outcome
of the action,

- if MUL has activated more than one motor RP, choose

the activation with the highest importance factor.

- if MUL has not activated any motor RP, then MUL's

motor apparatus is considered to be uncontrolled; a

[2]

£31]

(4]

80

"flail® action is chosen at random and performed.
Generally, the flail action 1is to "REST", doing

:nothing.

Activating an RP: if the activation has sufficient

importance, then

1) introduce a kernel recording the activation into
episodic memory.

2) place a vreference to the kernel into the STM
puffer. If STM is full, then eliminate STM's
least important member (by importance factor) or

ignore the new kernel if it is least important,

Initially, MUL knows nothing about its motor
capabilities. To expose those capabilities, MUL is

equipped to flail: If MUL 1is not generating motor

outputs (thereby demonstrating control of those
outputs) then some motor output will be randomly

selected (usually "rest").

A component of an RP is considered defaultable (in the
MUL versions examined) if all other components have
been activated and if the statistics for that component

indicate success with at least 75% of past defaults.

81
4,2 Supporting defaults:

the request for instantiation (RFI)

Default activations are initially unsupported. MUL may
support a default by finding timely activations (called
instantiations) for each component (if any) of the defaulted
RP. As explained below, supporting a default involves
investigation of whether particular RPs (those referenced as
components of the defaulted RP) are active or can in turn be
defaulted. In this way, RPs are able to suggest other RPs
to apply.

Given an unsupported default of RP x, these steps are
taken to support it:

1) If x has no components, do nothing (if x is a
sensory RP that is incorrectly defaulted, then it
will be in conflict :with the actual sensory data
received later).

2) Examine each component of x. If the component RP
is active at the proper time, then record the
kernel as supporting the activation of x.

3) If any component(s) of x are not already active at
the required times, and the default of x has a
sufficiently large importance .factor, then
appropriate kernels may in turn be defaulted for
those components, The RP responsible for the

default activation of x is also responsible for

82

kernels defaulted to support the activation of x.
The activation of that responsible RP indicates
that x 1is to be active, and thus indicates that
x's components are to be active, as are x's
component's components, and S0 forth. In
practice, defaulting cannot be continued to
components of defaulted components because
defaulted kernels are given importance factors too
small to enable further defaulting.

,Later MUL versions employed a delayed instantiation

implemented by the Reguest For Instantiation (or RFI)

mechanism. Instead of immediately attempting to support a
default RP activation, MUL creates an RFI referencing the
default. When MUL has nothing better to do, it selects an
RFI and tries to find or default support for the referenced
default. As with facts in STM, the importance of the
unsupported default is used to decide when and if an RFI is
processed. The processing of RFIs is interleaved with STM

processing.

4,3 Importance assessmen

The importance factor first discussed in Section 2.8 is

used ubiquitously to control the course of MUL's activities,

as in the timing of RFI and STM processing.

The

83

initial importance of kernels 1is a function of

their origin. Kernels arise in four basic ways:

1.

Kernels introduced by sensory mechanism have their
importance initialized to a constant value (0.9).
For the MUL model as it currently exists, all
sensory information is equally important .when it
is first received. (More complex environments
almost certainly require more complex calculations
to establish this initial importance. In animals
it is 1likely that several specialiized subsystems
exist in lower brain level, for example, the
limbic system, apparently screening out
unimportant information and calling attention to
and emphasizing important information.)

Kernels introduced by recognition have their
importance factor initialized to that of their
least important supporting kernel. An alternative
formula used in early MUL versions was to average
the importance of the supporting kernels.
Averaging was unacceptable because improperly
defaulted kernels (having low importance factors)
could often be used with good kernels to produce a
moderately important but completely improper
kernel. The minimum-component formula was much

more conservative: once a kernel was considered

84

bad, it could never support kernels of greater
importance than its own,.

Kernels introduced by direct default are given an
initial importance based on the activations of the

RPs that defaulted them, called their defaulters.

That initial importance is the product of the
importance factor of the defaulter, a fractional
importance diminisher (0.9), and the probability
that the default will be supported.

Kernels introduced by default in support of an RFI
have initial importance factor calculated as the
importance factor of the RFI (a function of the
importance of the default referenced by the RFI)
diminished by’ a constant fraction (about 0.7).
The great diminishing insures that only kernels
which are relatively certain to appear are

defaulted in this indirect way.

Importance factors may not remain constant. Three

situations may change the importance of kernels:

1

2)

Whenever a kernel is determined to be a cause for
later conflict (discussed in the next section),
then its importance 1is diminished by a constant
fraction (0.75 in later MULs).

Whenever a defaulted kernel is found to be 1in

agreement with actual sensory input, its

85

importance is altered to a constant .0.8 ‘value.
Thus, unanticipated sensory inputs have a higher
importance factor (0.9) and are more likely to be
selected for pattern induction., It is possible to
diminish the importance of all correctly
anticipated kernels, rather than just sensory
kernels, but the cost of detecting such situations
was considered to outweigh the benefit for the
environment used.

3) Whenever an RFI is selected for processing, the
importance of the kernel it names may be altered
depending on whether and how support 1is obtained
for it. If no supporting kernels must be
defaulted, then the new importance value 1is the
minimum importance of its supporting kernels,.
Otherwise, a loss of faith in the RFI kernel is
effected by diminishing its importance by a

constant factor (0.,75).

These formulas have so far been adequate even‘ though
there is no compelling rationale for the particular constant
factors mentioned. MUL has so far proved relatively
insensitive to any but major alterations in importance
calculations. .However, with more complex environments where
only a small fraction of kernels could be examined, the

treatment of importance values is likely to influence the

86
rate and perhaps even the long-term quality of MUL

perception and learning.

One adjustment could significantly improve MUL's
performance, though at a high cost., Suppose kernel A
supports the activation of kernel B. If A undergoes a
change in importance, B's importance might depend on A's and
should therefore be recalculated. Changes in importance
should also propagate down to kernels created by default, if
more or less confidence can be placed in their defaulters.
;Propagation of importance changes has not yet been

attempted.

4,4 Penformance measurement

With all the hundreds of RP creations and thousands of
activations, how is MUL's improvement in its ability to
recognize and anticipate its environment to be detected?
MUL's only observable activities (before the development of
inhibition) were the construction of new RPs and RP use for
recognition and default of kernels.

The earliest estimations of perception quality were
subjective: a small number of the RPs were examined after
each run, their quality assessed by guessing whether the RP
would be useful to MUL or not,. This evaluation was
unacceptable for two reasons, First, due to their sheer

numbers, not all RPs or their activities could be examined,

87

Second, it proved difficult to reliably assess RP
usefulness,

The evaluation problem was partially solved with the
adoption of a statistical approach. Counts of the number of
occurrences of various events were automatically recorded

for each environment step. Of interest were these events:

number of defaults taken

- average importance of the defaults

- number of kernels defaulted in support of RFIs

- average importance of defaults in support of RFIs

- number of failures (Originally, a failure was an
unverified default of a sensory RP. That 1is,
sensory data received did not include an activation
of that RP. JLater, failures were defaults that
caused conflicts and triggered attempts to introduce
new inhibitions.)

- average importance of failures

- number of kernels generated

- number of kernels examined to see what RP activity
they precipitate

- number of RFIs generated

- number of RFIs acted upon

- number of RPs ggnerated

~ number of sensory RP activations correctly defaulted

(that 1is, defaulted without being identified as a

88

cause of a confliect, as discussed in the next
section)

- time required for processing

By examining and comparing these statistics for
different MUL versions, some opinions can be formed on their
relative merits. One measure of MUL's "understanding" of an
environment is its ability to anticipate future developments
in that environment. Thus, a crude measure of performance
was the number of correctly defaulted sensory RP
activations.

The statistical approach was not without problems.
Versions often differed extensively, prohibiting direct
comparison of vresults by statistical means. A better
measure for performance was needed, and was found in the

"econflict".

4,5 The conflict

The development of mechanisms for inhibition opened a
new dimension for performance measurement: the conflict.
jHistorically, the idea of the conflict grew from the
contradictions observed between defaulted and actual
activations of sensory RPs. For instance,'MUL might default
<color middle middle red> in anticipation of events at time

t, yet when t 1s experienced some incompatible RP is

89

activated instead. Before inhibition mechanisms .were
introduced, these contradictions were detected in an ad hog
manner. With inhibition the occurrences of <color middle
middle red> were preprogrammed to inhibit the activation of
any RP suggesting a different color than red for that retina
position. When sensory data, for instance <color middle
middle black>, arrived for t, a conflict was detected: the
sensation-activated RP was inhibited. The conflict idea was
extended to cover any instance when an 1inhibited RP 1is
activated, whether by recognition or sensory input.
(Defaulting cannot be done on inhibited RPs.)

The introduction of the conflict concept made
performance measurement easier, by pointing out MUL's
mistakes. Conflicts also formed the basis for creating new
inhibitions: Conflicts show that some RP must have been
incorrectly defaulted. But which RP? The appearance of
both the inhibiting kernel and the inhibited kernel could be
based on information obtained by default. The conflict
could have been prevented by inhibiting any of the defaults
supporting either of the conflicting kernels.

Instead of trying to select a culprit RP on the basis of
one conflict, an algorithm was used to mark several possible
culprit kernels, An improper default often causes several
conflicts, and thus is repeatedly marked. The activated RP
of the most heavily marked kernel can then be selected for

inhibition.

90

The algorithm for marking culprit kernels hinges on two
observations. First, the appearance of the culprit must
support or indirectly support the appearance of one of the
conflict kernels. Second, the culprit must be a defaulted
kernel. A kernel, x, supports a kernel, vy, if x 1is
recognized by y (that is, ACTIVATED_RP (x) 1is named as a
component of ACTIVATED_RP (y), and x occurs at the proper
time with respect to y). A kernel x indirectly supports a
kernel y if x supports some kernel z and z directly or
indirectly supports vy. Since MUL kernels preserve
references to the kernels which directly support them, a
recursive algorithm can generate all kernels supporting the
kernels in conflict. Culprits are supporting kernels having
insufficient support themselves (that 1is, introduced by
default). In practice, kernels in direct support of a
conflict are assumed to be more 1likely to be improper
defaults than those at greater distances from the conflict.
The distance between a kernel x supporting another Kkernel y
is one if the x directly supports y. Otherwise the distance
is 1 plus the distance between the kernel directly supported
by x, and y. Since x may directly support several kernels,
some of which may not support y at all, the support and
distances are actually generated starting from Y. MUL
generates and marks culprits only if they are within a

distance of four from the conflict.

91
4.6 Problems during MUL development

This section reviews some of the salient problems
encountered during MUL's evolution,. Substantial program
alterations were often made (aided much by TELOS), ,Local
program fixes were generally avoided in favor of appropriate
alterations in underlying ideas.,

The first MUL version used distinct structures for
recognizing and predicting, although their net effect was
similar to the RP structure described in Section 2.4 and
[Zeigler 78], Sets of allowed values were used to implement
incomplete component description, for both recognizer and
predictor structures. Interparameter relationships were not
preserved., Inhibitions and RFIs were not yet part of the
model., The pattern induction mechanism was essentially
predictive, 1introducing recognizer structures only when no
predictive structure was discovered.

A first problem with this MUL version was a
predilection for schizophrenia. No mechanism distinguished
what MUL imagined from what it truly experienced. MUL could
fantasize (i.e., default) something and then support the
fantasy with more fantasy, moving irretrievably into a dream
world. A tag of "IMAGINARY" had to be added for meaningful
experiments to proceed, In later versions, this tag was
removed and the problem solved by assigning a decreased

importance factor to unsupported defaults and then requiring

92

that any kernels used in pattern induction have at least a
minimum importance factor.

Once MUL was persuaded to concentrate on the real
world, it became obvious that not all RPs could be inspected
during pattern induction. The RELATED_RPS set was
introduced to restrict the induction. Initially,
RELATED_RPS was constructed using specific relatedness
guidelines like "RPs concerning a retina cell are related to
RPs concerning neighboring retina cells". Only when the
generalized level/area relatedness mechanism was introduced
did the quality of pattern induction become acceptable (see
Section 3.5).

Early MUL versions used an antecedent/consequent form
for their predictor structure, This form was found
inadequate to <convey temporal sequence information for
predicted Kkernels. For example, <color middle middle red>
might, as a consequent, be predicted. Such a prediction is
useless without information about precisely when that kernel
is being predicted to appear in relation to other events.
The RP structure attacked this problem by enabling kernels
to be defaulted during particular time units.

Another serious problem in early MULs was
predicti&n-reality discontinuity. Prediction-reality
discontinuity often occurred when an inexactly-described
consequent was predicted. The kernel created to instantiate

such an inexactly-described consequent usually would not

93
correspond to any kernel actually experienced., A simple

mechanism to circumvent this discontinuity was to require
that all consequents predict unique kernels, Kernels then
recorded recognizer'activation. Recognizers could describe
events incompletely by using incompletely-specified
components; a unique predicted kernel could thus effect an
incompletely-specified prediction. Normal recognizing and
predicting actions would then verify the predictions if they
were valid. Incompletely-specified component description
was later abandoned in favor of the RP structure.

The incompletely-specified component knowledge
representation . form was abandoned in response to the
overgeneralization problem discussed in Section 2.11.
Overgeneralization frequently produced true but useless
predictors exemplified by "when some color is seen in a
retina position, anticipate that any color will 1later be
seen in that position", Overgeneraliization was also
responsible for introducing incorrect predictors. Without
inhibitions, predictors that are wrong even one percent of

the time cause great confusion.

The next MUL versions were constructed around the
concept of the RP, as described in Section 2,11. Inhibition
mechanisms had not yet been introduced, but RFIs were
introduced to establish better control of the "support

default" task.

94

One of the first serious problems encountered in the RP
versions was that of redundant RPs. Pattern induction would
often produce an RP identical to an existing RP. MUL has
very limited space and time resources SO that wunlimited
redundancy was considered too damaging to be allowed. This
duplication was initially difficult to detect because RPs
might have several components. Equivalence up to
permutation in the order of components was complete
operational equivalence for this model. This problem was
solved by developing a canonical form for RPs. Canonical RP
repreéentation made it economical to detect and reject RPs
containing the same components as already existing RPs as
pattern induction produces them.

Redundancy is still present among RPs, however. For
example, suppose three RPs #1, #2, and #3 are consistently
coactivated. ;Pattern induction might produce several new
RPs:

#201: (<#1,0,0> <#2,0.0>)

#202: (<#2,0.0> <#3,0.0>)

#203: (<#1,0.0> <#3,0,0>)

#2084: (<#1,0,0> <#2,0.0> <#3,0.0>)

Even worse, new RPs #201, #202, #203, and #204 would
coactivate, together with #1, #2, and #3. MUL could be
strangled with RPs like:

#205: (<#1,1,0> <#2,1.0> <#201,1.0>)

-95

Fortunately, the level/area mechanism wused to build
RELATED_RPS for pattern induction eliminated many
intolerable RPs 1like #205. But RPs 1like #206 still
persisted.

#206: (<#204,0,0> <#202,1.0>)

RP #206 is not totally useless, however. Suppose an RP
defaults #204. Activations can be defaulted for RPs #1, #2,
and #3 if the RFI for #204 has a sufficiently large
importance factor; if not, then #206 can activate #202 by
default, to allow continued investigation based on the
presence of #202, Thus, #206 is not strictly redundant.

In the above example, the default of #204 was
sufficient to determine the status of RPs #1, #2, and #3 as
activated. RP#206 served to assist only in rare cases.
:However, the activation of #206 would presumably be
unanticipated and therefore would trigger pattern induction.
Suppose some RP, #207, was learned that anticipated #206:

#207: (... <#206,1,0>)

Now, activations of #207 are unanticipated, triggering
pattern induction to learn:

#208: (... <#207,1.0>)

Clearly there will always be unexpected activations, so that
pattern induction must not be performed on activations
solely because they are unexpected. A further requirement
is that learning to anticipate the activation would be

helpful. Anticipating an activation is helpful if that

96

activation directly or indirectly anticipates otherwise
unanticipated sensory RP activations. This definition,
however, was not explicitly encoded in MUL. Instead, the
effect was approximated by lowering the importance factors
of successfully anticipated sensory RP activations and
raising the importance factors of unanticipated sensory RP
activations. Later RP wusage then produces kernels of
greater importance for any RPs involving the unanticipated
sensations.

Adjusting importance calculation reduced redundancy to
tolerable levels. Still further reduction 1is possible if
the number of components for RPs is kept at two or less.
The trade-off is that a greater number of RPs must be
activated to recognize any particular event, Future
research may find limitation to or, at least, emphasis on
two-component RPs desirable.,

Redundant RPs can also be reduced by taking suitable
precautions during the construction of RELATED_RPS. An RP,
x, is redundant with respect to RP, y, if all situations in
which x is activated will result in an activation of y. A
method was developed to test for such redundancy. First, a
prototypical situation activating y is created, by
hypothesizing activations (and RFIs) for each component of
y. The RFIs will result in activations (and RFIs) for the
components of the components of y, and so forth until the

default process dies from lack of support. If the normal

97
perception c¢ycle 1is performed on this hypothesized set of

activations, any RP which can be activated must in some
sense be redundant with y and can therefore be excluded from
RELATED_RPS. [{Unfortunately the cost of this hypothesizing
technique is excessive. In order to be useful, RELATED_RPS
must not contain RPs redundant with the pattern induction
target y, and it must not contain an RP, 2z, 1if y 1is
redundant with z., Practical resource limitations prevented

this sort of exacting approach to redundancy elimination.

Another problem encountered in early RP-type MULs was a
tendency toward '"tunnel vision", MUL is composed of
parallel processes at least at lower levels of the
level/area RP structure. During MUL simulation as a
sequential process, an important kernel can result in an
avalanche of RP activations from only a few level/areas,
These bursts of activity often dominated fixed-size
structures 1like STM, pushing out kernels from other
level/areas. To mitigate this effect, fixed-size structures
were constructed with flexible partitions by area,
guaranteeing that no area could be totally ignored. Section
6.3 suggests even more complete partitioning of MUL
resources by level/area, an approach that would further

decrease tunnel-vision effects.

98

The development of the inhibition mechanism led to yet
other MUL experiments and still more problems. Salient
among these problems was that of inhibition timing.
Inhibitions were often activated after they were needed -
that is, after the RP they inhibited had been defaulted.
For example, the following RP mass predicts #1 if #2 is
present and #3 has not already been activated.

#200: (<#2,0.0> <#1,0.9>)

#201: componentless, inhibiting #1

#202: (<#3,0.0> <#201,1.0>)

If #3's activation is examined for RP activity before {#2's
activation, then #202 will default #201 and thus correctly
prevent use of #200 to default #1. If, however, #2's
activation is examined before #3's, then #1 will be
defaulted by #200 before #3 has an opportunity to inhibit #1
by defaulting #201. The result 1is a conflict, resulting
(most likely) in an attempt to inhibit #1 by other means.

Later MUL versions combatted this problem by being
careful when introducing new RPs for inhibitory purposes;
new RPs must have components that are always activated prior
to conflict-producing activations of the RP to be inhibited.
This precaution was not foolproof because MUL shows
extraordinary flexibility in the order of kernel occurrence,
While it appears that no system can completely eliminate the
problem of inhibition timing, it 1is hoped that the more

rigid partitioning of resources suggested in Section 6.3 may

99

provide a more predictable time frame for kernel appearance
in MUL, so that inhibition timing c¢can be more precisely

accessed and controlled.

4,7 Results - with the shelf environment

Once the RP formalism and RFI were incorporated, MUL
versions began showing respectable performance in the shelf
environment ., This section will discuss the performance of
the first respectable version and the final version for the
shelf environment.

Recall that the shelf environment provides ten sensory
input kernels during each time unit, and expects one motor
output Kkernel,. 0f the sensory kernels, two are always
activated (<color top left none> and <color top right none>)
and should therefore be easily predicted. The remaining
eight sensory kernels are dependent on the position of the
organism and the orientation of its hand. These kernels can
be accurately anticipated only if the next movement is known
and the territory revealed by the movement is known,. The
movements are decided by random flailing in all tests
because the program has never been run long enough that it
might gain control of its motor capabilities. Thus eight of
the ten kernels are difficult to anticipate.

The following graphs show results on various

performance measures for a first respectable MUL version

100
(called PRIMITIVE) and the final MUL version run on the

shelf environment (called ADVANCED), PRIMITIVE used the RFI
mechanism, ADVANCED incorporated inhibitions_ and many
alterations designed to attack problems mentioned in the
preceding section.

Graph I shows the number of anticipated sensory inputs.
In the graphs, smoothed (by averaging) values are
represented for ADVANCED by the solid line and rfor PRIMITIVE
by the dashed line., ADVANCED does considerably better than
PRIMITIVE, averaging 5.92 correct to PRIMITIVE's 2.64.
Initially, neither version was able to predict anything, as
only sensory/motor RPs were known, At time unit 5, enough
experience had been gathered to support pattern induction to
learn more RPs, Fluctuations in anticipation quality are
caused mainly by MUL's movements. For example, at time unit
6 a <move right> put both versions into unknown sensory
territory. That MUL is able to anticipate anything about
unknown territory indicates that its RPs indeed generalize.

The accuracy of MUL's sensory anticipation is a good
measure of its knowledge of its environment., ,However, it 1is
an all-or-nothing measure. In order that a sensory event be
anticipated, an activation of the appropriate sensory RP(s)
must be defaulted. Often, however, the RPs that might
default the sensory kernel are activated with importance
factors too small to cause the default of a component, In

such cases, the sensory event has still been anticipated (as

101

a part of a higher level event) but MUL has not considered
it worthwhile to instantiate the anticipation by activating
supporting sensory RPs.

Graphs IT and IIT present measures of MUL's
anticipation quality that are sensitive to uninstantiated
high-level defaults. Graph II shows average overall default
importance. Graph III shows the average importance of
defaults that caused conflicts. A comparison of these
graphs indicates that importance values are far higher for
proper defaults, as desired; MUL pays greater attention to
proper defaults. These graphs may also explain why
high-level defaults are often left uninstantiated: defaults
have low importance factor values compared to the 0.9
importance values normally observed for activations
originating from recognition, In ADVANCED the average
default has insufficient importance to cause the default of
supporting kernels.

Generally lower average default values of ADVANCED are
a result of modifications in the importance calculation
formulas. The modifications were introduced to steer
pattern induction toward dependable activations and away
from unsupported defaults. ADVANCED shows a decidedly lower
average failure importance, however, more a result of better
overall RP quality than importance calculation

modifications.

102

Number Of Sensory Inputs Anticipated

Graph I:

<
<
i
}
!
)
a>
) et
Qe
==
< X
> =
Qo
<< Q.
[
2
[= © t~ 0

Z 3E0 0L

4 L OV O DT

+ O
1=
1
1
i
'
1
1
t
1
+un
| asl
1
1
1
]
]
i
)
1
+ Q
rm
]
]
1
)
)
1
i
1
+n
10
1
1
i
'
1
1
1
t
+ o
| M
1
1
1
1
1
1]
1
[}
+
-
i
1
i
t
t
]
]
i
+ O
1o
]
]
[}
t
1
1
i
]
+n
1
1
t
]
1
]
]
1
i
+ O

Time Units (Environment Steps)

0D OV J

.900

.800

.700

.600

.500

400

. 300

.200

. 100

.000

Graph I1: Average

A - ADVANCED =——
P« PRIMITIVE ==~

Importance Of Defaults

g
PP
'IP‘P P P
n AR
/X AN g Nee L
SNV N et
\\ p “ \/ \\’ P
P e
p
4 P P
P
A

Time Units (Environment Steps)

103

104

Average Importance Of Conflicting Defaults

Graph 1I1:

A - ADVANCED =——
P - PRIMITIVE ==~

.900 +
!
!
1
{
800 +
t
1
{
'
700 +
!
H
!
i
600 +
!
!
1
!
500 +
t
!
!
!
L8400 +
t
H
1
!
300 +
'
!
{
!
200 +
!
!
!
!
100 +
!
!
t
1

~EQoLsL OO

AAARAPP
e o o o o o e e o
5

000 +

49

35

e e A i o
25 30

20

-
15

10

Time Units (Environment Steps)

O T o3I Cc=

oo n

4500

4000

3500

3000

2500

2000

1500

1000

500

105

Graph 1IV: Number Of Kernels In Episodic Memory

A - ADVANCED —=w
P - PRIMITIVE ==-—

Time Units (Environment Steps)

[=s N]

waosooehn

360

320

280

240

200

160

120

80

40

.4......-...;.........4..—...—...;.._......+...._...+..........+—......—¢........—+..........+

Graph V: Elapsed Time (In CPU seconds)

A - ADVANCED -—
P - PRIMITIVE —~=-

A pp
I
o v o o o B e T o i o 4 e e o o o v v e +
5 10 15 20 25 30

Time required for processing

100

107

All these graphs cover only MUL's first 30 time units
of existence. Obviously 30 time units is a short time on
which to base conclusions about RP/pattern-induction
properties, but computing resource 1limitations discouraged
attempts at longer runs. Graphs IV and V tell the story.
The number of kernels in memory is limited (by the physical
storage available) to a maximum of about 4000. As more RPs
are learned, this maximum decreases to about 3000 when 500
RPs have ©been 1learned. Storage 1limits, then, can be
expected to set a maximum on the time spent for each time
unit: about 50 computer seconds were allocated to one MUL
time unit as memory became filled. To run ten times longer
(still only 300 MUL time wunits) would require over four
hours of computing time on the UNIVAC 1110, and would
require that at least 90% of all episodic memory be
forgotten.

This sheer c¢ost has been a major and unwelcome
influence in MUL design. For example, the pattern induction
process is allowed to introduce RPs on minimal evidence. In
addition, many RPs may be introduced on the basis of one
pattern induction attempt. Worse, 30 time units was found
to be too short a time for inhibitions to be incorporated
extensively in MUL. In order to study some ideas concerning

long-term behavior of MUL, an RP mass was hand-coded.

108

4.8 Problems revealed by hand-coding RPs

The power of RPs for knowledge representation was put
to the test by hand-coding complete understanding of the
shelf environment. The result consisted of 233
two-component RPs and 29 inhibitions. The hand-coding
became more than a test of representation as it revealed an
interesting problem.

Suppose a two-unit-tall black block stands isolated on
the shelf and a one-unit-tall black block stands alone in
some other region of the shelf. Suppose also that a
knowledgeable MUL awakens in front of one or the other of
the blocks. If its hand 1is centered, MUL has no way of
knowing whether the block it sees is tall or short. If MUL
should then raise or lower its hand, the previously obscured
spot will become visible, and MUL can then detect whether
the block is one or two units in height. If MUL recenters
its hand, MUL should be able to predict what it will see if
it again moves its hand. But how can such information be
stored as RP activity?

One possible answer lies in the *“reverberatory"
behavior possible among RPs. The following RP mass starts
and maintains a reverberation (that is, repeated activation
of an RP #300) whenever activated by the sight of black 1in

the middle of the retina.

109
#23: componentless, sensing "color middle middle
black"
#300: componentless
#301: (<#23,0.0> <#300,1.0>)
#302: (<#300,0.0,previous> <#300,1.0>)
When #23 is activated at some time t, then #301 will cause
the activation of #300. #302 will then cause the default
activation of #300 at t+1, t+2, and so forth wuntil the
importance of the unsupported defaults dwindles
sufficiently. If at t+1 the center retina spot still
reports black, the activation of #300 at t+1 will be
strengthened by the activity of #301. Suppose thgt MUL
obscures that middle position by moving its hand. #23 will
no longer be active, but #300 will still be reactivated for
several, perhaps many, time units by #302. The presence of
an activation of #300 remembers that MUL has seen black.
MUL anticipates what «color will be seen upon lowering 1its
hand with the following RP mass:
#4: componentless, requesting "lower arm”
#25: componentless, sensing "color middle middle red*
#400: (<#300,0.0> <#25,0.0>)
#401: (<#400,0.0> <#4,0.0>)
#U402: (<#401,0.0,previous> <#23,1.0>)
A problem arises if MUL moves left or right before
moving 1its hand. Unless some mechanism interferes, #301

will go right on reactivating #300, leading to unfounded

110
expectations of seeing black after a hand move.’
Fortunately, an inhibition could turn off the reverberation:

#303: componentless, inhibiting #300
#2: componentless, requesting '"move left"
#3: componentless, requesting "move fight"
#304: (<#2,0.0,previous> <#303,1.0>)
#305: (<#3,0.0,previous> <#303,1.0>)
This mass of RPs can extinguish the reverberation as
follows: 1if a <move left> (or <move right>) is done at time
t, then #304 (or #305) will result in the activation of #303
at t+1. The presence of #303 inhibits the default of #300
by #301, ending any reverberation in progress.
To be accurate, #303 must itself be inﬂibited when the
hand is not centered, as a <move left> could move MUL in
front of a tall black block. #300 should be activated by

#302 in this situation.

No reliable method has yet been discovered to detect
opportune times to introduce reverberatory RP masses. Their
utility seems great, however, in MUL-like systems. For
example, reverberatory circuits have been suggested by
neural modelers [cf. Hebb 49, Whitehead T78]. Reverberator
subsystems have also been detected in the cortex, as
discussed in Section 5.10. Reverberatory masses may have a

role in short-term memory, an idea explored below.

111

The STM described previously as part of the RP activity
cycle acts like a buffer. Specifically, the MUL perception
activity seems to be a parallel process forced into a
sequential model, with the "STM" buffer merely an instrument
of that translation. In MUL the function of STM as a
temporary knowledge store is eliminated, as kernels leave
STM when processed. Besides, as Graph IV shows, hundreds of
kernels traverse STM in each time unit, even for a simple
environment. It is difficult ¢to rationalize why any
particular kernel should remain long in STM, especially for
the hundreds, even thousands, of time units over which the
human STM seems to operate.

The reverberatory RP mass,-in contrast, does seem to
possess many characteristics of human STM. It could remain
active over many time units. It can be “"boosted" by
exterior excitement, as with #302. Harder to explain is the
size limitation, the famous 7 plus-or-minus 2 size,
postulated for the STM mechanism [Coltheart 76]. It is
conceivable that the size limit is a function of retrieval:
only about seven reverberating masses might be accessed
before remaining masses die out. More likely, reverberating
RP masses interfere with one another so that 1limitations
arise from exponentially intensifying competition for

activation resources (attention?).

112

Hand-coding RPs and inhibitions for the shelf
environment exposed the need for a short-term memory apart
from the STM buffer used in MUL. Hand-coding also
demonstrated that, given reverberation, the RP knowledge
representation could provide a means for MUL to anticipate
activity in the shelf environment.

Tests of the hand-coded RPs emphasized the need to
anticipate future motions in order to fully anticipate
environment conditions. Instead of inventing some arbitrary
schemes for motion control, MUL was moved to an -environment
where particular motions would have reasonable motivation.
The environment change also facilitated study of some
aspects of behavior not réquired in the shelf environment,

particularly motivation itself.

4.9 Motivation and the bottle-filling environment

In theory, MUL was to learn to control 1its own
activities in the shelf environment. In practice, the costs
of long runs prohibited fair investigation of that theory.
Two steps were taken. First, an environment of reduced
complexity was constructed. Second, MUL was given a
"teacher" to help it learn proper motor activity.

The simplified environment is called the bottle-filling

environment. MUL is given control of a valve which it can

open and close. When the valve is open, a liquid flows from

113
a nozzle onto a platform where a bottle should receive it.
MUL can sense the status of the valve and whether or not a
bottle is on the platform. MUL also <can sense what
percentage of the bottle 1is filled. A teacher sits with
MUL, putting empty bottles on the platform and taking full
bottles off. MUL is to learn to open the valve only when an
empty bottle 1is presented and to close the valve only when
the bottle is full.

In this environment virtually all activity is
predictable. When the valve 1is open the bottle fills
steadily because of the physics of the environment. The
teacher always removes a full bottle as soon as MUL turns
off the valve, bdt never removes a partially empty one.
Also, the teacher always places an empty bottle on the
platform within about four time units of removing a full
bottle. Only MUL's valve operations ére unpredictable. MUL
is to learn to manipulate the valve to fill bottles but not
spill liquid.

To motivate MUL, the teacher possesses a “paint
communication channel to MUL. When MUL opens or closes the
valve at an inopportune time, the teacher signals'with pain.
The pain signal is received by MUL as the activation of 1its
pain RP. By arranging to have the pain RP inhibit itself,
any RPs that learn to default pain will cause conflicts.
These conflicts cause the formation of inhibitions to

prevent the default of pain by inhibiting the occurrence of

114
situations leading to pain. For example, suppose some RP x
defaults pain:

RP x: (<y,0.0> <pain,1.0>)

When RP y is activated, RP x will probably also be
activateﬁ, defaulting pain. Because pain inhibits itself, a
conflict arises. To resolve the conflict, MUL must prevent
the activation of RP Xx. (The <pain> RP 1is treated
exceptionally to insure that it cannot be inhibited by new
RPs.) Inhibition of RP x will not be attempted since 1its
activation 1is a result of recognition and therefore is not
identified as a culprit in the conflict. Thus, MUL tries to
learn grounds for inhibiting y or something in y's support.
RP vy récognizes features of a painful situation; prevention
of y's activation may avoid the painful situation.

MUL also has a "pleasure center', to be activated by
the teacher as a reward for good behavior. Pleasure
influences MUL in a way similar to that of pain. MUL learns
RPs that inhibit pleasure. These RPs act by defaulting the
pain RP, specified by preprogramming as the inhibitor of

pleasure.

Mixed results were obtained from the bottle-filling
task. MUL 1is able to anticipate environment activity very
well. MUL does not, however, learn to fill the bottles
correctly. That is, MUL can anticipate that pain is coming,

but does not learn to avoid it. The failure apparently

115
stems from over-caution in creating inhibitions.
Performance might be improved by adopting less exacting
requirements for predictive pattern induction. MUL requires
that an inhibition never be activated when it should not be.
This rigid requirement is a carry-over from early inhibition
experiments when inhibitions could not themselves be
inhibited, and should probably be relaxed.

Predictive pattern induction also requires that the
inhibitions be activated before the event to be inhibited.
While-relaxing this requirement may not be advisable, it can
be made easier to meet. That is a goal of the level/area
perception cycle discussed in Section 6.3.

A final approach to improve performance 1is the
introduction of RPs having "differential" behavior =~ that
is, RPs that are activated by a change in RP activity
patterns. For instance, in the shelf environment when MUL
moves its hand to a centered position, the <color middle
middle red> RP is activated and will continue to be
activated until MUL again moves its hand. An RP exhibiting
differential behavior is #3 below:

#1: componentless, sensing *“color middle middle red®

#2: componentless, inhibiting #1

#3: (<#2,0.0,previous> <#1,0.0>)

RP #3 is activated (by recognition) only by the first
appearance of the centered hand. The activation of #3 is

easily associated with the <raise hand> or <lower hand> RP

116
that caused 1it, because those arm-move RPs will always be
active in the time unit preceding activations of #3.
Pattern induction mechanisms should easily discover this
simple relationship, while discovering a relation Dbetween
arm-move RP activations and activations of #1 is difficult.
RP #3 has provided an intermediary between activations of #1
and the causes of those activations.

RPs exhibiting differential behavior are helpful
whenever MUL observes that an RP tends to be continuously
activated over several consecutive time wunits. In the
bottle environment, such RPs would center attention on the
events that initiated spillage, rather than on events during
the spillage. Some differential RPs might also be
preprogrammed for some environments, motion detectors, for

example.

4,10 Comments on computer modeling

Currently affordable computer simulation and hand
simulation has not verified the model but that has not been
the point of it. The value of the computer runs and the
hand-coding has been in pointing out problems in the model,
and in forcing the model to be coherently and clearly
stated.

The worth of computer modeling is magnified by the use

of TELOS in model specification: the TELOS language

117
facilitates extensive program modifications to accommodaﬁe
model changes. Models programmed in a 1less flexible
languages are difficult to modify extensively, encouraging
the modeler to make 'local fixes" to remedy model
insufficiencies - with the result being a kludge with little

conceptual coherence.

How 1is MUL to be evaluated? It may be viewed as a gedanken
model, as was Becker's, to be evaluated by argument and
analysis. Eventually, it, or models like it, may suggest
simulations or empirical experiments which are more directly
verifiable. Such indirectness of verification is
unfortunate, but is to be expected in scientific theorizing.
MUL may also be evaluated in its compatibility with other
evidence and theorizing. Toward this end, we now turn to
cbmparing the structure and behavior of MUL with those of
the human cerebral cortex, as they are conceived and
hypothesized in the partly empirical but also largely

gedanken theorizing of neurophysiologists.

118
Chapter 5: MUL_as_a _model_of the.cortex

MUL was inspired by observations of early-stage human
intellectual development, It becomes of increasing interest
to the extent that it can be interpreted in quite different
areas of observation and theory. Toward this end, this
chapter will discuss possible correspondence between MUL
construction, behavior and problems and that of the human
infant,

Specifically, RPs are compared to cortical :neurons.
The idea of neuron fixing is introduced, corresponding to
the formation of a new RP. It is proposed that neurons can
be directed to record the synaptic activity they receive as
episodes, forming a neuron-local episodic memory. -Further
proposals suggest that neural fixing 1s a response to
regularities discovered by the neurbn in its local episodes,
thus introducing pattern induction. Discussions follow on
defaulting and inhibition in the cortex,

iLater sections of the chapter relate the behavior of
the modified MUL model with observations about human
infants. Subcortical elements are discussed in order to put
the cortical model and the difficulties inherent in
brain-studies in perspective. Section 5.9 summarizes the
four forms of memory in the MUL model: echoic, short-term,

perceptual, and episodic. Finally, some insights arising

119
from the model are presented concerning possible future

progress.

.5.1 The RP_as_:neuron

The neuron and surrounding glia cells seem to Dbe the
basic functional unit of the central nervous system [Hyden
73]. The RP as the basic unit of knowledge representation
in MUL exhibits functional similarities with neurons.

A sending neuron communicates information to a
receiving neuron by emitting chemicals (called
neurotransmitters) into confined spaces (called synapses)
next to the receiving cell's covering (called its membrane).
Neurons generally establish synapses at the termination of a
long branching extension called an axon, although neurons
exhibit wide variety in structure. When a neuron .fires, it
changes the membrane of its axon where the axon connects to
the <cell body. The membrane change propagates down the
axon, triggering the release of neurotransmitters at the
synapses as they are encountered.

Current theory suggests that neurons fire when ion
concentrations within the cell body reach certain threshold
values. The ion concentrations are altered by the action of
neurotransmitters at the neuron's post-synaptic receptor
sites. These sites are usually located on the neuron cell

body or on non-axon branching structures called dendrites,

120

The effect of the receipt of neurotransmitters at a
particular post-synaptic site seems to depend on factors
like the distance of the site from the cell body; the size,
structure, and efficiency of the site; the type of
neurotransmitter; and the metabolic conditions in the
neuron. Normally, action at a single synapse will not alter
ion concentration enough to cause neuron firing. Instead,
harmonious effects at several synapses are thought to
integrate, combining to push ion concentrations over the

required thresholds.

Recognition by RPs is similar to firing by neurons 1in
that several inputs of at least some threshold strength
combine to cause activation of +the RP or neuron. Many
differences exist, however, between the RP and the
hypothesized neuron just described. Instead of cataloging
these differences, a somewhat different theoretical neuron

will be presented.

Central to the theoretical neuron postulated in this
dissertation is the concept of fixation. Each cortical
neuron is initially unfixed; the firing (if any) of an
unfixed neuron is not meaningful. Each neuron eventually
becomes fixed; the firing of a fixed neuron means that the

neuron has recognized a specific pattern in the activities

at its post-synaptic sites. A fixed neuron is hypothesized

121

to correspond to an RP., These post-synaptic sites involved
in the specific pattern recognized by a neuron correspond to
the components of the RP. Only a small percentage of the
roughly 2500 post-synaptic sites of any fixed neuron are
likely to be components. ,However, fixed neurons probably
have more than the two or three "components" associated with
RPs, In addition, while RPs specify only that components be
active (or have been active just previously), neurons might
be able to specify more complex requirements.

Neurons begin as unfixed, and at some point Dbecome
permanently fixed; pattern induction is the mechanism of
fixation. We postulate that each unfixed neuron formulates
episodic memories of the post-synaptic activities it
experiences, probably first as RNA molecules, and 1later as
corresponding peptide chains. Each neuron performs a
chemical equivalent of pattern induction on its episodic
memories to discover regularities in post-synaptic
activities, When an unfixed neuron discovers a regularity,
it fixes 1itself to recognize future instances of that
regularity.

Each neuron performs pattern induction in parallel with
other unfixed neurons. ,However, every neuron in the brain
does not fix at once. Only the activity of fixed neurons 1is
meaningful, 50 neurons record episodes only for
post-synaptic activity caused by fixed neurons. Initially,

only subcortical (in particular, sensory/motor) :neurons are

122

fixed. In the neonate, then, only neurons receiving
substantial input directly from fixed (sensory/motor)
neurons may compile sufficient episodic memories to enable
fixation. As these cortical neurons fix, neurons that
receive output from them may begin the fixation process.
Each cortical neuron has thus far been regarded as an
independent processor, influenced only by the activity of
the neurons making synaptic contact at 1its post-synaptic
sites. It is unlikely, however, that each neuron alone
selects the regularity upon which it fixates. Many, if not
most, regularities are not useful for recognition. The
"blades of grass" example of Section 2.8 illustrates the
corresponding problem for BRPs. MUL solves the problem by
introducing an instance selection mechanism to define what
events are worth pattern induction. We postulate the
existance of a subcortical instance selector, called UNEX,
capable of detecting {UNEXpected neuron activity and of
assessing the importance of such activity. When (UNEX
detects unexpected neuron activity, it alerts unfixed
cortical neurons in the region of that activity. Only when
alerted by (UNEX do unfixed neurons make episodic recordings,
Thus, any regularities the neurons discover will relate to
occasions when some important and insufficiently anticipated

event was occurring.

123

Some neurological evidepce supports this proposed
neuron activity:

- Cortical neurons apparently have a genetically (rather
than experientially) defined synaptic structure, implying
that synaptic distribution is probably not a result of
learning. This conjecture 1is strongly supported by

studies of in vitro neuron cultures. Cortical neurons can

be removed from developing brains and grown in cultures.
Requiring only the timely addition of a chemical known as
the Nerve Growth Factor, these cultures develop 1in
remarkable mimicry of their in situ counterparts [Crain
76]. Genetic control of general synapse placement implies
that evolution has solved one difficulty with the MUL
computer model: the formation of RELATED_RPS. For each
unfixed neuron, the subset of its post-synaptic sites that
receives inputs from fixed neurons corresponds to the
RELATED_RPS set in MUL pattern induction.

- Myelination, a process where neurons have their axons
insulated by glia cells, may indicate neural fixation.
That is, a cortical neuron is fixed if and only if it 1is
myelinated. The myelination process follows a course
similar to that expected for the fixation process
postulated above, and has similar results. When an axon
becomes myelinated, its conductive properties are altered:
the membrane alterations of nerve firing are, perhaps for

the first time, quickly and reliably propagated throughout

124

the axon structure. This myelination is regarded as the

last step in the development of neurons. It is generally

completed for subcortical neurons before birth. It
proceeds in the inner layers of the cortex, where
subcortical inputs are directly received, before

continuing to the outer layers (in any particular cortical
region). It proceeds in sensory projection areas and the
motor . area long before beginning in the "associlation
areas"” of the cortex, or regions presumed to be
responsible for higher mental functions. Myelination
continues through puberty, possibly into adulthood in the
frontal lobe of the cortex. Myelination is carried out by
glia cells, meaning that the fixation of a neuron can
communicate be detected by other cells, It seems
reasonable to suggest that the neurons receiving output
from the fixing cell can also detect the fixation [Altman
677. Also, glial proliferation is slowed in the visual
cortex of visually deprived rats [Davison 77], a fact that
could indicate slower fixation rates.

There is certainly a subcortical mechanism corresponding
to UNEX, at 1least in part, Infants show distinct
alertness in response to changes in their environment,
When the changes represent totally new phenomena, the
infant's alertness may be intense and prolonged.
Alertness can be measured externally by eye and head

movement, heart rate, and respiration rate [Reese T77].

125

More specific to learning, alertness 1is marked by
preparation for heightened protein manufacture, as
discussed below.

The neurons in areas thought by neurophysiologists to be
engaged in learning show heightened 1levels of RNA. At
first the gross substructure of the new RNA reflects that
of cell genomes. That is, the RNA produced seems to be
messenger RNA from the «cell's DNA. .Later, as learning
progresses, the RNA shows unique composition indicating
that it may be forming in response to learning. The
effects of the 1learning will not appear 1if protein
synthesis is chemically prevented, but will appear
sometime after the synthesis is allowed to resume as long
as the wunique RNA is still present [Hyden 67]. This
observation indicates that RNA formed in response to
experience, perhaps representing episodes, 1is wused to
create specific polypeptides, perhaps permanent episodic
memories.

Evidence now suggests that synaptic activity may have
impact upon neuron mechanisms other than the membrane 1ion
permeability. In particular, the effect of at least some
neurotransmitters appears mediated by the construction of
cyclic AMP at the post-synaptic site, Cyclic AMP has been
implicated in control of diverse intracellular activities,

as it also mediates intracellular effects of hormones,.

Most important, cyclic AMP apparently initiates a specific

126

series of reactions resulting in protein synthesis
[Nathanson 77]. Further, another chemical, called GMP, is
apparently produced when synapses are not active, These
chemicals, cyclic AMP and GMP, may act to direct episodic
memory construction, '

- The number of dendrites increases markedly throughout
cortex development. This increase. and the increase 1in
glia cells, accounts for brain size increases. (The
number of neurons is apparently constant.) Dendrites may
increase in order to provide storage facilities for the
protein/RNA episodic store postulated above, as well as to
extend synaptic input. No reliable evidence suggests that
new synapses form on aﬁy large scale for learning rather

than developmental reasons.

5.2 Defaulting among CNS :neurons

The concept of defaulting is important in the effective
use of knowledge as represented by RPs., If fixed neurons
act like RPs, then neurons also should exhibit defaulting
behavior.

Suppose a fixed neuron receives activations at most of
its required input synapses, but some required synapse(s)
remains unactivated. For defaulting to occur, the neuron

must encourage, even force, the inactive neuron(s) to fire.

127

One possible mechanism might be some sort of reverse
communication across synapses. No neurophysiological
evidence supports the existence of this mechanism, but none
denies its existence either.

Another péssible mechanism relies only on normal
synaptic mechanisms themselves. Research has indicated that
synapses are not always axon-to-dendrite but may be
dendrite-to-dendrite, axon-to-axon, or dendrite-to=-axon
[Shepard 7T4]. In particular, structures called "reciprocal”
synapses consist of a pair of synapses between two neurons.
The two synapses are oriented in opposite directions, so
that activation in either cell should activate the other.
Defaulting, thén, might conceivably be 1implemented by
reciprocal synapses, ;However, reciprocal synapses appear
infrequently, while defaulting seems to be required quite
often.

In still another possible mechanism, a neuron could
cause default activity by growing a branch from its axon to
the component neuron to be defaulted. Axonal growth has
been observed after damage to an axon and during maturation,

but has not been observed in mature cortical tissue.

Defaulting was useful in the MUL model as a means of
anticipating future input among other things. Anticipation
was accomplished by keeping track of RP activations

and their relative times of occurrence in a global episodic

128

memory. The same technique 1is not easily applied to
neuron-local episodic memories of the type proposed for
pattern induction to attain fixation; maintaining such a
global episodic memory would require that each neuron
communicate not only its current activity status, but its
expected status to a global storage place, In our
discussions above, we have not postulated chemical or
structural mechanisms adequate for such communication.
Instead, the mechanism of anticipation probably involves the
as yet unexplored UNEX, since, if .UNEX 1is to detect

unexpected neuron activity, it must have a means of

representing expectations. In Section 5.8, an attempt is
made fo identify UNEX with the hippocampus, a subcortical
element with which the cortex has much direct and indirect
communication. Anticipation may be accomplished through
some representation of expectations in the hippocampus. The
lack of even rudimentary understanding of the many
subcortical elements communicating with the neocortex

prevents effective attacks on this problem.

5.3 Inhibition_in_the cortex

Inhibition 1is another crucial mehcanism in MUL .
Inhibition serves both as a mechanism to refine behavior (by
preventing improper defaulting) and as a mechanism involved

in behavior evaluation (through the conflicts it causes).

129
Inhibition is also a main feature of neuron activity, and
its purpose may be similar.

The activation of a neuron may be inhibited, or at
least strongly discouraged, by moving the neuron's ion
concentrations away from their threshold-for-firing values.
Apparently such moves can be brought about by activity at
inhibitory synapses on the neuron. These inhibitory
synapses are usually found on neuron cell bodies., If
located on a cell body, a single synapse can have a powerful
effect on ion concentrations at the axon base (where the
thresholding is apparently measured).

As in MUL, inhibitions seem to develop in a given area
of the cortex after neuronal fixing has begun in that area.
Biochemical evidence for this observation is obtained by
measuring the amount of inhibitory neurotransmitters present

in brain areas as they develop. These measurements show a

steady rise in relative amounts of inhibitory'
neurotransmitters with respect to excitatory
neurctransmitters. Further evidence arises from studies of

the effects of inhibition-blocking. In these studies, drugs
that prevent inhibition are injected into animals: Young
animals show little effect while older animals are mentally
incapacitated, indicating a shift toward reliance on
inhibitory mechanism with age [Reese T76].

Inhibition 1is so centrally important to MUL that a

neurophysiological basis for inhibition is strongly

130
suggested if the MUL model 1is to be substantiated.

{Unfortunately, no neuroscientific evidence has yet Dbeen
found other than the indirect evidence mentioned above,.

To continue by way of speculation, suppose that
gcortical neurons do employ a MUL-like inhibition. The
cortical equivalent of a conflict, then, would occur when a
fixed neuron (possibly subcortical) receives activations on
all of 1its components (thus recognizing the regularity for
which it is fixed), but also receives activation at one or
more inhibitory synapses,

Inhibitions could prevent defaulting if neurons are
capable of distinguishing between ion concentration changes
caused by neurons trying to activate them by default and
those caused by activity in their '"component" synapses.
Such a discriminitive capability would appear to require
information other than concentrations alone. Perhaps ion
concentration changes are not the only mechanism used to
decide when cortical neurons are to fire.

Inhibitions could be learned by a process similar to
MUL's predictive pattern induction. The process would begin
with the detection .of a conflict: a neuron finds itself
inhibited but has received activations at all its
"component" synapses,.

First, the cause of the conflict must be determined.
In MUL a 1likely -culprit is selected from the set of

defaulted RPs that support either the RP activation that

131
defaulted the inhibitor or the inhibitee. If a similar

mechanism 1is employed in the cortex, then a mechanism to
communicate backwards across synapses seems required. Given
such a mechanism, the occurrence of a conflict could trigger
a backward signal across all currently active synapses of
the neuron containing the conflict.

When such a backward communication is received by a
neuron, the signal could be communicated to all the active
synapses of that cell. If the cell was activated as a
default, then it could consider itself a culprit. It would
be able to tell if it was activated by default (because, by
definition, that means that at least one of its "components"
will be unactivated). If the cell was not activated by
default, the backward communication might be propagated on
to all the neurons whose firing activated "components",
although this backward propagation might reach avalanche
proportions if it were allowed to continue'indefinitely. In
MUL such an avalanche 1s stopped simply by 1limiting the
propagation to four steps. It is doubtful the neurons could
keep count, though a similar effect might be achieved by
some kind of diminishing signal intensity.

Neurons that have designated themselves as culprits are
to be inhibited. If a culprit possesses an inhibitory
synapse from an unfixed neuron, the new inhibition could be
implemented by fixing that neuron to fire upon the required

occcasions, If the unfixed neuron has preserved its recent

132
input patterns then upon some kind of triggering signal it
can fix itself in the way suggested in Section 5.1 (how
unfixed neurons transform themselves into RPs capable of
recognizing a particular input pattern).

The concept of the componentless inhibitory RP can be
introduced to advantage at this point. There 1is quite
strong empirical -evidence that only a small number of
inhibitory synaptic sites occur directly on neuron cell
bodies. Only sites on the cell body are likely to have a
sufficiently powerful effect to single-handedly inhibit a
neuron, so one might suppose that for any given neuron there
is by only a small number of potential inhibitors. The
inhibitors might be cells that act 1like componentless
inhibitory RPs. A componentless neuron might be activated
by any activation from a synapse with a fixed neuron.
Alternatively, such a neuron might preserve several sets of
input requirements and fire if aﬁy were met, In either
case, the inhibiting neuron would not Dbecome fixed as
requiring a certain unique, definite patterns of inputs.

Current orthodoxy suggests without proof that neurons
either inhibit or excite at all tbeir synapses. If so, then
neurons corresponding to componentless inhibitory RPs must
have only one (operative) output synapse, namely the one to
the cell to be inhibited., If instead a componentless "RP"
neuron can designate a particular output synapse as

inhibitory then the inhibition 1learning process might

133

involve any unfixed neuron contacting the culprit's cell
body. Any such neuron that learns to fire at appropriate
times to inhibit the culprit can fix itself, making its
synapse to the culprit inhibitory. The other outgoing
synapses would remain excitatory. In this way inhibiting
neurons would behave the same as excitatory neurons during
both 1learning and excitement phases, except that some

synapses may become inhibitory during fixation.

5.4 Problems swith neuroscientific studies

The proposals of neocortical operations made in this
dissertation are just that, only proposals. No evidence
directly confirms or refutes them. But the neurological
study of cortical neurons 1in general is restricted ﬁo
compiling circumstantial evidence. Neurological evidence is
accumulated by three metﬁods: microscopic study, electronic
study, and chemical study. Each method has its problems.

Neurons, if stained, may be seen with 1light
microscopes., Neurons often have very complex structures
with hundreds of dendrites intertwined among glia cells and
among the dendrites and axons of hundreds of other neurons.
The Golgi stain is used to study neuron structure because it
capriciously stains about one percent of the neurons (for
unknown reasons). The affected neurons are stained almost

completely: only wultra-small "dendritic spines" may avoid

134

the stain. The structures of individual neurons are
insufficient to determine neuron connectivity, however,

Electron microscopic techniques have been helpful in
determining neuron structure. Unfortunately, neurons must
be fixed (killed), sliced, and "stained" with electron-dense
chemicals before they can be studied. Such treatment may
introduce artifacts that mislead researchers. Further, it
is difficult to reconstruct the overall structure of the
neurons from slices, even to determine whether the cell
parts seen are axons or dendrites [Cottrell T7T71.

Electronic measurements can indicate neuron activity.
EEGs indicate gross, aggregative neuron activities.
Measurement of potentials within individual neurons can be
accomplished by microelectrodes inserted within the brain.
Microelectrodes are not small enough to record activity in
small dendrites, but can be positioned within large axons
and dendrites, énd within cell bodies. Unfortunately, it is
not possible to select particular neurons in a cortex for
study; this capability would permit the insertion of more
than one electrode in a single cell so that activity within
a single neuron could be more precisely monitored. Also, if
particular neurons could be selected, electrodes in several
dendrites, cell bodies, and axons of interconnected nerves
could resolve questions about relations between input

synaptic activity and neuron firing. In any case,

135

microelectrodes may alter the electrical behaviors of the
cells they penetrate, making such studies suspect.

Chemical analysis of neuron activity 1is generally
hampered because cells cannot be individually -examined.
Instead;, groups of cells are assessed for a composite
chemical property or ©behavior. One exception may be
important: the distribution of radioisotopically tagged
chemicals can be determined by a microscopic examination.
;Here, too, problems prevent straightforward interpretations
of results, For instance, the tagged chemicals can enter a
neuron only after diffusion or transport across the neuron
membrane and can approcach a neuron membfane only after
traversing the glial «c¢ell "blood-brain barrier", This
complex path leaves much room for interference by
extraneuronal factors [Rose 77].

In short, every study of cortical neuron behavior is
necessarily indirect, providing only circumstantial evidence
about that behavior. Even the circumstantial evidence is
often suspect because all factors could not be controlled by
the experimenters. Finally, the evidence is often ambiguous

and open to a wide range of interpretations.

5.5 Neurological questions raised by MUL

Given the difficulties inherent in neurological study,

it is not surprising that no neurological model has gained

136

universal support. Certainly the proposed model raises more

neurological questions than can yet be answered. This

section briefly discusses some of those questions.

The MUL model requires the recording of episodic
memories. In the MUL program a global history of all RP
activities is maintained. Global recording is convenient on
a single-processor computer. In the cortex, neuron-local
recording by RNA and protein formation has been proposed.
Local recording of episodes relieves the need for
sophisticated communication mechanisms between neurons and a
central recording site. While circumstantial evidence in
the form of generally elevated RNA and later protein
formation among learning neurons supports the local episodic
memory theory, the -evidence also supports a variety of
altogether different theories, Episodic memory does require
some distinctive mechanisms, as listed below.
Neuroscientific research may confirm or infirm the presence
of such mechanisms. (Speculative activity like this
dissertation can play an important role in suggesting what
the research might look for.)

- Mechanisms must exist for distinguishing the episodic
recordings from different synapses, and from a given
synapse over time. That is, recordings must be somehow
identified as to when and where they were made.

- Pattern induction over episodic memory recordings requires

comparison of episodic recordings. If recordings are to

137

be compared, they must be comparable. Specifically, they
must be locatable within a common time frame. The
synaptic recorders must have a standard "recording speed".

- When episodic memories exhibit regularity, some mechanism
must "fix" the neuron, presumably by adjusting synapses to
detect that regularity. Note: MUL as a program did
better with RPs having a small number of components,
because small fixed-size data structures are more easily
programmed and because smaller RPs were less likely to be
redundant. Neurons might have many components, however.
With neurons, the redundancy problem seems to be avoided
because each neuron has a unique set of connections to
other neurons. In MUL terms, each neuron has a unique
RELATED_RPS set. Cortical neurons have about 5000
synapses on the average, It is likely that fixed neurons
would place requirements on substantially'more than two or
three of their synapses.

Episodie memory is not the only unsubstantiated
mechanism suggested by the MUL model . Backward
communication across synapses needed for learning
inhibitions (and possibly for defaulting) has not yet been
observed 1in neurological studies, nor has a UNEX mechanism
that detects unexpected events been located or explicated
with any great plausibility.

It may seem unreasonable that the MUL model presumes so

many novel and complex activities in neurons. However, the

138

complexity required does not seem incommensurate with Kknown
cell operations of metabolism and reproduction. Also, the
proposed activities operate at the molecular level, a level
that has not been amenable to study and understanding.

At least we can conclude that the MUL model is not
incompatible with known neuroscientific evidence concerning
cortical neurons, after allowances for distortions in MUL

caused by its implementation on a single-processor computer.

5.6 Evidence from experimental psychology

This section will discuss some results from

psychological studies in relation to the proposed MUL
cognitive model.

Piaget studied the growth of young children and
organized the many changes he observed into a set of stages
in intellectual development [Piaget 54]. The stages he
observes seem compatible with the hypothetical development
of a MUL-model intellect.

The new-born infant, until about two months, stareés at
new scenes for long periods. In the MUL model such behavior
is expected: the infant would not yet have learned any
voluntary motor behavior and so his vision must be under
control of lower "hard-wired" brain centers. In the infant,
lower brain centers are apparently responsible for quite

complex behaviors, notably the orienting response. When a

139

new object 1is presented to a newborn, the baby turns and
fixates on the first edge of the object. In addition, the
baby's heart rate increases, 1its respiration rate 1is
altered, and its sensory receptor sensitivity is enhanced
[Reese 76]. It is not unreasonable to speculate that this
orienting reflex 1is, at 1least in part, an externally
observable effect of the proposed UNEX mechanism.

A four-month old baby can track moving objects but does
not seem to recognize them as specific entities., For
example, when a moving object is altered during a brief
passage behind a screen, the four-month infant shows no
excitement. ,However, he can visually scan new objects. For
example, when presented with a new object, he scans the
object rather than fixating on the first edge of the new
object as would a neonate, It seems reasonable to expect
that a MUL-modeled intellect would develop in a similar
fashion. That is, as :UNEX repeatedly signals the importance
of a moving object and generates movements to look toward
the movement, the cortical neurons would record episodes of
moving objects and efforts to orient toward them. Such
events must show regularities among some neural firings, so
neurons might begin to fix to recognize then. The young
infant cannot yet make a thorough study of objects if only
because he lacks sufficent motor control to manipulate the

object. Therefore, it seems unlikely that his object

140
characterizations would be complete enough to differentiate
objects.

By six months, the infant can pick up objects. JHe can
also track erratically moving objects. Also, if he is
physically moved, he can follow a stationary object.

As the infant approaches one year of age, he can search
for an object hidden under a cloth, if he sees the object
being hidden. If the object is moved while under the cloth,
the infant will still search where he saw the object placed
even though the cloth there lies flat.

By a year and one half, an infant will find an object
under a cloth regardless of how it was hidden.

Literally hundreds of experiments and observations have
been made with infant development., The above are fairly
representative. The responses observed are probably not
uniquely the result of development in any particular area of
the brain. For example, learning to scan objects probably
involves development in the visual cortex, the motor cortex,
the association areas of the cortex, and subcortical brain
elements such as the cerebellum and the collicullus
superior, It is not yet possible to separate the

contributions made by development in these and other areas.

141

o o i i L W A kSt A S S e A A

Not only does development proceed simultaneously at
many points in the central nervous system, but that
development may be exceedingly complex. Suppose the MUL
model is valid. This section estimates a lower limit on the
amount of episodic recording that occurs in the
visually-involved cortex of the neonate.

The neonaie brain receives about two million vision
input nerves at the visual cortex. We estimate that each of
these inputs has more than fifty synapses with cortical
neurons. Since sensory inputs are considered fixed and
cortical neurons are unfixed, the neonate would by this
estimate make episodic recordings of roughly 100 million
fixed-to-unfixed synapses. Optical receptors can respond
within a tenth of a second to new stimuli, so, as an
estimate, suppose that episodic recordings record at roughly
10 bits (synapse active or not) per second. When a neonate
is presented with a new scene, he can stare at fthe new scene
for many seconds before becoﬁing habituated: suppose, then,
that episodes 1last 10 seconds. The volume of information
recorded by the neonate in its first 10 seconds of contact
with a new scene is thus roughly estimated as (10 seconds) X
(10 bits/second/synapse) X (50 synapses/optical input) X

(2,000,000 optical inputs) = 10 billion bits of information.

142

In two months time, if the infant is excited only one
percent of the time, it would still be excited for 50,000
seconds. Assuming that each neuron has at least 2000 output
synapses, then, as each neuron fixes, the number of
fixed-to-unfixed synapses 1is 1likely to rise exponentially
(at least so 1long as the number of unfixed neurons
outnumbers the number of fixed). As a rough guess, suppose
that on the average about one half, or 1000, synapses of
each newly fixed cell will impinge on unfixed neurons. If
we estimate that about 100 million (1% of the roughly 10
billion) cortical neurons will fix in the first two months,
then about 100 billion new fixed-to-unfixed synapses will
exist. All in all, we can estimate that in two months time,
episodes will be recorded for 50,000 seconds at an average
of 50 billion synapses at a rate of 10 bits per second, so
that by age two months, the infant has likely recorded more
than 25,000 trillion bits of information. Further, these
records probably include more information than an on/off
synaptic activity pattern. (The identity or location of the
synapse is needed, for example.)

This staggering amount of information makes clear that
MUL-like models based on normal computer architectures will
not be effective in any but toy environments. It also helps
explain why the brain is the most active protein-producer in

the body, and the largest single user of energy.

143

e A A T Y S S A ST

JLearning in a human infant 1is a slow and complex
process, as it is in the MUL model. As has been discussed,
it is not yet possible to judge where or when or how an
infant learns particular knowledge. One source of
difficulty is the complexity of operations in the cortex and
the inability to observe them directly. Given that indirect
observations must be used, further difficulty arises from
interference from the activities of various subcortical
elements, a complication not dealt with in the program
version of MUL,

Many behaviors have been shown to arise in subcortical
areas. For example, the orienting reflex described in
Section 5.6 must be subcortical in origin because it is
present 1in infants having no cortex. Several other
high-level functions are apparently "hard-wired"™ into
subcortical elements of the brain. For instance, infants
are capable of short but complex motions like grasping.
They are also capable of depth perception, including
focussing their eyes on a given distance and coordinating
eye movements,

In addition to complex behaviors performed
independently of the cortex, the inputs to and outputs from
the cortex may be complex. Visual input from the retina 1is

not merely a transmission of rod and cone outputs to the

144

visual cortex. For one, inhibition-centered systems in the
retina and retina ganglia apparently perform edge-detection,
image sharpening, and motion-detection. At an even more
complex level, the retinal ganglia can apparently do spatial
frequency analysis akin to fourier analysis. This type of
analysis is very important because 1its results are
image~-size independent. Size-independent input may allow
easy recognition of shapes at various distances from the
observer [Granitt T77].

In addition to the cortex-independent reflexes and
input preprocessors, the brain evidently contains several
subcortical elements that can learn, further obscuring the
contributions of the cortex. Among these are the cerebellum
and the limbic system.

The cerebellum apparently learns often-used motor
output sequences. Its main inputs and outputs are very
high-speed muscle status sensors and muscle activators.
When the cerebellum has learned a motor pattern, and that
pattern is activated, the cerebellum apparently acts to
oversee the execution of the pattern by monitoring progress
and issuing corrective orders [wWitte T73].

Of all the subcortical elements, the limbic system is
probably the most complex and most influential. It has been
hypothesized to be evolutionarily older than the cortex,
related to the so-called basic drives: the gquest for food

and water, self-protection, territoriality, and

145

reproduction-directed behaviors, In general, the limbic
system seems to be responsible for deciding when sensory
inputs describe a pleasurable situation, or a situation to
be feared, or an unusual situation worthy of more study
{Sagan 78, Quarton 67].

Of particular interest in the 1limbic system is the
hippocampus, It is thought that the hippocampus stores or
at least evaluates expectations about near-term sensory
activities [Quarton 67]. That is, it stores expectations
about future experiences. The hippocampus, then, may be the
organ (UNEX) that can detect unusual or unexpected events.
Other parts of the 1limbic system might then assess the
goodness or badness of the new events and perhaps initiate
emotional responses to them.

Many subcortical elements will not be discussed, but
the thalamus deserves brief consideration. This element has
been called the gateway to the cortex because most inputs to
the cortex actually originate 1in the thalamus,. It is
hypothesized that the thalamus acts as a switching center.
It may act as the "importance assessor" of the MUL model, by
sending through input to be considered and filtering out
input to be ignored. On what basis and by what means the

selection might be decided remain open problems,.

This section has touched on only the more important of

the many subcortical elements. It is thought that the brain

146

may actually consist of three layers: the primitive,
reptilian reticular-formation responsible for involuntary
motor activities; the limbic system responsible for
ascribing value to experiences; and the cortex responsible
for thought and voluntary activity. In addition, a variety
of special purpose elements may perform specific tasks in
the brain, as for instance, eye focusing. Further, each of
these layers seems to be able to do some learning.

The following observations put the MUL model in
perspective, as a model for cortical operation (rather than
a model for the entire human brain).

- The behavior of the human is likely a function of activity
in all of these brain 1layers and elements. It is not
likely that any behavior can be isolated as purely
cortical.

- Neurons of the cortex receive inputs from and produce
outputs to the lower brain elements. When neocortical
neurons can recognize and anticipate activity, they may
begin to shape that activity, for example, by creating
expectations in ~UNEX, or by taking partial control of or
acting to initiate various motor tasks. Subcortical
elements act not only as preprocessors for and controllers
of the cortex, but also as teachers for the cortex,
Cortical neurons learn from regularities in the behaviors

of subcortical elements.

147

5.9 Long-term memory

This dissertation describes learning as a process of
cortical neuron fixation. For several reasons, it appears
that another sort of learning occurs in the cortex (or at
least in some cortical areas). Specifically, it is
hypothesized that the episodes recorded within certain
neurons may be recalled from outside the neurons.

In the MUL model, information is represented in four
different memories, although in only three has an access
mechanism been provided to reach the information.

1. Echoic memory

Current experiénce is represented by neural firing
patterns or, in MUL, by RP activations for a particular time
unit. Neural firing patterns rapidly decay (in the absence
of reverberation), If two different visual stimuli are
presented in quick order, then we would expect the patterns
to co-mingle as neurons fired from the first stimulus will
still be active when neurons begin firing from the second
stimulus. " If the first stimulus is presented just 1long
enough for the cortical neurons it initially fires to become
inactive, and then a second stimulus is presented, then we
might expect that the neural firing pattern from the second
stimulus might closely follow the pattern of the first,

overriding and destroying 1it. These phenomena - decay,

148

integration, and erasing - are observed properties of human
"echoic" memory [Coltheart 76].
2. Short-term memory

It was hypothesized in Section 4.8 that RPs could
be re-excited in reverberatory feedback loops.
Reverberation in such circuits can preserve information as
long as nothing interferes with the reverberations. No
mechanism has been described that could learn (that 1is,
establish appropriate synaptic arrangements for) purely
cortical reverbatory microcircuits, although apparently such
circuits may exist in the cortex. Feedback loops may occeur
as a result of neural development, or they may arise from
the action of subcortical elements, notably the thalamus.
Competition for thalamic attention may limit the amount of
short-term memory to about seven items for any one cortical
area. Memory by reverbatory excitement seems to possess
characteristics ascribed to short-term memory 1in humans.
Short-term memory is a general memory [Coltheart 76]1. It
must be rehearsed. It seems to exist independently for
different cortical regions. For each cortical region, it
can preserve only a small amount of information. The
information may be complex, but apparently contains only
information local to the processing done in 1its particular
cortical region. Also, humans apparently can choose what

they preserve. These properties are compatible with a

149

re-excitement memory that must be rehearsed through thalamic
interaction.

3. :Perceptual knowledge

Neural fixation, as a permanent change in response

to experience, is also a form of memory. It can properly be
called perceptual knowledge. It seems unlikely that neural
fixation is the only mechanism for the long-term
preservation of knowledge, because the number of neurons is
fixed and fixation must eventually deplete the supply.
Cortical neurons are almost completely myelinated by the end
of puberty, so that if fixation does entail myelination,
then no further significant learning of this kind is done
past about the age of 20,

4, Episodic memory

It has been suggested that neural fixing patterns

are preserved as molecularly recorded episodes within
individual neurons. :Until now in our speculation, those
episodes were used only in neural fixation. If by some
mechanism the information encoded within episodes could be
made available outside the neuron that contains them, we
would have the basis for a powerful long-term memory.

Episodic memory may not be accessible in fixed neurons
of the kinds so far hypothesized. There are, however,
several different cell types distributed throughout the
cortex. While different cell types may exist to provide

different classes of RELATED_RPS or different functions

150

within the fixing model (e.g.. inhibitory cells), it 1is
possible that some cell types do not fix in the suggested
way but instead have the different role of collecting
accessible episodic memories. Or, accessible episodic
memory may reside in a subcortical element. Wherever it
resides, several properties might be ascribed to accessible
episodic memory.
- it would be of large capacity
- it could continue throughout the 1life of the
cortex/brain, although forgetting could easily
occur if episodes decay
- it would preserve portions of particular
experiences, or pattern induction's
generalizations of them
Some general evidence supports an accessible episodic
store. For one, people do remember episodes! The wusual
sketchiness of those memories might result because episodes
are recorded within a particular neurcn and the neuron could
record only the activity that it received directly
(necessarily a rather local view). Further, people
generally remember little of their experience before the age
of about 5 years, and their memory for episodes improves
asymptotically up to a level usually reached at puberty. If
accessible episodes record the activities of synapses with

fixed neurons, then the delayed onset and steady improvement

in episodic memory roughly parallels the neural fixation of

151
neurons capable of perceiving meaningful "global" qualities
of situations. Finally, electronic stimulation in the
temporal region of the cortex seems to trigger the
re-experience of previous episodes in the subject's life.

This idea of accessible episodic memory has not been

explored in a MUL program model,

5.10 MUL_as_a_cognitive model. in_summary

The MUL model has been extrapolated to become a model
for the human cortex. Too little is known about the cortex
for the model to be declared good or bad. Additionally, the
model addresses such low-level activities of the cortex that
little can be said about the combined activities of millions
of cortical elements (at the level mainly addressed by MUL)
and dozens of ill-defined subcortical elements.

In all, the implications of the MUL model are somewhat
discouraging. It suggests that sophisticated information
processing is done at a subcellular 1level, at 1least for
learning and memory. It suggests that the meaning of the
firing of a particular neuron will probably not have an
easily defined meaning, such as "the sky is blue". We may
conclude that computer models for human cognition may be a
long way off, and that neuroscience must solve many

subcellular puzzles before neuron behavior can be

understood. In general, the intellectual development in a

152
particular individual may always be nearly indecipherable to

external observers, not easily interpreted, and not easily

influenced by any but crude ways,

153

Chapter 6: Conclusion

This c¢hapter summarizes first the concept of pattern
induction as we have postulated it and then the RP structure
suggested for the representation of perceptual knowledge.
The final section suggests directions for possible future

research.

6.1 Pattern induction

Pattern induction is the analysis of episodic memory to
discover recurrent relationships among events. This
research has not suggested, nor is it intended to suggest,
the definitive program-model implementation of pattern
induction. However, the algorithms and data structures that
are presented (for ©both predictive and non-predictive
pattern induction) are a useful step toward mechanisms at
least sufficient for an implementation.

The general concept of pattern induction, as opposed to
the specific algorithms and data structures proposed to
accomplish' it, has several attractive characteristics.

These characteristics are discussed in Section 3.9 but are

summarized below:

154

- Pattern induction is cautious. It will normally 1learn
only after several similar experiences (although the
experiences might conceivably be imaginary).

- Pattern induction is self-correcting. New RPs are never
incorrect, and are never modified once learned. Instead,
pattern induction modifies RP use in defaulting: new RPs
activate inhibitory RPs to prevent improper default
activation. Inhibitory RPs may be activated only by
default; .any inhibition (correction) may itself be
inhibited (corrected) by new RPs introduced by pattern
induction.

- Pattern induction 1is universal. The interpretation of
preprogrammed RPs is not important to the learning
process. A given RP may mean <color middle middle black>
or <bottle filled>: pattern induction will attempt to
anticipate 1its activations 1in any case. In particular,
new RPs can be introduced and their activity patterns
analyzed in turn by the same pattern induction algorithm.

The particular pattern induction mechanisms developed for
this research possess the above characteristics in varying
degrees. These mechanisms are universal. They are cautious
but have difficulty in defining and locating similar
experiences. They have at least shown a potential for
self-correcting behavior.

The rough calculations presented in Section 5.7

indicate the enormity of resources required for pattern

155
induction in the human cortex, if something like what we
have postulated does occur there. Even with vastly improved
computational speeds and memory sizes, it is difficult to
conceive of pattern induction proving useful in the human
environment on a single-processor machine. Something
approaching a neural-net 1like architecture, perhaps of

millions of processors, would appear to be required.

6.2 Representing knowledge: RPs and inhibitions

The MUL program led to a new knowledge representation,
the RP. In final form, RP structures are simple:

- Each RP typically contains three components.
(Componentless RPs are exceptions.) Each component
references another RP and specifies a time for that RP's
activation relative to the times of activation of the RPs
referenced in the other components. Each component
provides information (a weight) concerning whether that
component's RP should be defaulted.

- Componentless RPs are used for sensory/motor interfaces,
for generalization, for inhibition, and for reverberatory
short-term memory.

- Inhibition 1is an effect of activations of inhibitory RPs.
Inhibitory RPs are always componentless, and have the
interpretation of "NOT x" for the single, unique x they

inhibit.

156
The operation of RPs is also simple. At any time unit t, an
RP x can become activated in any of four ways:

1) Recognition - when activations can be found for each
component RP of x at their proper time units in
relation to t.

2) Defaulting - when x is referenced as a component of
some RP y and an activation is found for the RPs
referenced in vy's other components in the proper
time unit relative to t, and x is not inhibited for
time t.

3) RFI supporting - when x 1is referenceﬁ as a component
of some RP y, and y has been defaulted with a
sufficiently great importance for the appropriate
time wunit with respeect to t, and x is neither
already active nor inhibited.

4) Sgnsation - when x is a componentless sensory/motor
RP and conditions in the environment at time t cause

Xx's activation.

Inhibitions play a direct role in RP activation only by
preventing RP activation by default. Here again the
mechanics are simple: a default of RP x is not performed if
the RP inhibiting x is activated in the time unit of the
default.

Inhibitions also play an indirect role in modifying RP

behavior. Whenever an RP is inhibited yet activated at the

157
same time, a <conflict 1is recorded. These conflicts are
later examined by a pattern induction mechanism that
produces new inhibitions to prevent the conflicts in future

activities.

RPs have several attributes that recommend their use
for knowledge representation and learning.

- They are easily applied. There is no need to perform
complex "closeness" evaluation to determine if an RP
should be activated. Even the defaulting process can take
only one well-defined action knamely, to default an
activation of a specific RP). Defaulting also documents
the action it takes: the default RP activation is
preserved in episodic memory, allowing future pattern
induction to adjust the defaulting action. Finally, RPs
are applied without backtracking.

- They are easily corrected. RPs can be wrong only in their
defaulting activity: RPs can not be incorrect as
recognizers except perhaps for irrelevancy or redundancy.
Improper defaulting is corrected by inhibitions without
modification of the meaning of existing RPs. Inhibitions
change only the applicability of RPs, not their meaning.
Since each RP may be referenced by other RPs, changing the
meaning of one RP would alter the meaning of all RPs that
reference it. Such wide-spread alteration seems

impossible to control. Further, changing the meaning of

158
an RP invalidates the past history of that RP in episodic
memory.

- RPs are uniform and small. Learning algorithms are thus
more easily programmed.

Knowledge representation by RPs is not without potential

problems, specifically concerning its expressive power. An

important question is whether such a simple structure

represents all knowledge. The answer is probably no.

First, RPs seem weak in representing slow events. Each
RP can represent activity across only one time unit. Events
occurring across three tihe units must be represented by at
least two RPs. 1In general, 'nm' RPs can represent events
across 'n+1' time units. Events separated by an indefinite
but short time can be represented by the reverberatory RP
masses suggested. However, RPs do not seem suited to
representing long-term events, occurring over hundreds or
thousands of time units.

Second, RPs seem weak 1in supporting generalization.
While generalizations can be represented by introducing
disjunctive componentless RPs, the only mechanism thus far
used to introduce these disjunctive RPs is inhibition.
Activation of an inhibitory RP denies the activation of the
RP it inhibits, forming the practical ‘'negation® of the
concept recognized by the inhibited RP. It seems doubt ful
that all generalizations can be easily represented or

discovered as negation.

159

6.3 Directions for future research

A major direction for future effort is to apply the
lessons learned by interpreting the MUL program as a
cognitive model. This interpretation not only suggests new
directions for an improved and extended program, but it also
suggests where the MUL model has Dbeen distorted to
accommodate a desire to program it for a particular
computational architecture and within existing computational
resource limits. Conversely, programming the MUL model has
produced a detailed, although tentative, model of the
operation of the human cortex.

The importance of MUL as a cognitive model will not be
evaluated in this dissertation. We leave that to others.

To enhance the value of MUL as a cortical model,
several specific alterations are needed:

- The primitive 1level/area hierarchy used to define
RELATED _RPS must be improved. Levels and areas are used
to mimic the effects of particular dendritic and axonal
interconnections in <confining the areas of activity of
neurons in the cortex. The effects of these
interconnections should be representable in some better

way.
- The MUL program had difficulty learning and using

inhibitions. A reason for the difficulty was the lack of

orderliness in RP activations. To accommodate the single

160
processor, the program allocates resources to the most
important RP. It now seems preferable to at least
simulate parallelism, even if only a single actual
processor is available. RPs may be treated as being
imbedded in a distributed structure all parts of which are
to be examined for activity in ©parallel. Instead of
immediately activating an RP when it is discovered to be
activatable (by recognition) or when it is to be activated
by default, the program would wait until all currently
active RPs have been examined. Then, all activatable
uninhibited RPs would be activated at once. These new
activations would make still other RPs activatable, but
again, no RP would be activated wuntil all current
activations are processed. This strategy more closely
mimics neuronal activation timing. It also allows more
time for inhibitions to become activated. Finally, the
more predictable sequencing should make inhibitions easier
to learn.

The neural model suggests that neurons might have more
than two components, possibly with more time specificity
than one time unit. Neurons as postulated can apparently
maintain this flexibility because they do their own
pattern induction in parallel over hundreds or thousands
of inputs. The MUL program as it stands must do 1its
induction serially, for one 1input of one RP at a time.

Further, neurons apparently have their RELATED _RPS set up

161
by the genetically-directed development of their dendritic
and axonal structures. The MUL program must continue to
calculate RELATED RPS for each RP.

Another idea suggested by brain structure regards the
introduction of reverberation. The thalamus has been
hypothesized to re-excite neurons as a mechanism for
short-term memory. Further work on the MUL model might
investigate how a hypothetical thalamus "importance
analyzer' decides which neurons to re-excite, by exploring
similar activity with RPs.

An important development in the cortical model is the
supposition that episodic memories could be generally or
globally accessed in some way. Access to episodic
memories provides a 1long-term memory for particular
occurrences that are not available if only RPs (or
neurons) encode long-term memories. Accessible episodes
show promise 1in the representation of complex events, an
area of weakness in knowledge representation by RPs and
neurons., An access mechanism must be proposed and
supported both in the MUL program and in neural models.
Many important brain centers and functions are ignored or
trivialized in MUL, both as a program and as a model, even
many that directly influence or are influenced by the
cerebral cortex. Many of these centers manifest
construction that surpasses the cerebral cortex 1in

complexity. Of particular importance are the centers that

162
give input to the frontal lobes of the cortex, thought to
be the conscious planning center of the brain. The
notions of planning and hypothesizing at a conscious level
have not been explored in this research.

- Subcortical brain elements may act as "teachers" for the
cortex. That 1is, the cortex "observes" the inputs to
these centers and their responses to the inputs, and these
centers possibly provide indicators of relative importance
(say for the survival of the organism). For example, the
orienting response may "teach" the cortex how to move the

eyes to scan objects.

The main purpose of further work on MUL programs must
remain to formulate ideas about cortical structure and
function. It should by now be clear that MUL simulations
require far too much from current machines to duplicate
human behaviors, even in drastically simplified
environments. The model does not compete with other
representation models like the frames of Minsky, the schemas
of Norman and Rumelhart, or the scripts of Shank. Nor is it
in conflict with the neural models for <cell assemblies
inspired by Hebb. It applies to operations at the level of
single neurons; as such, it complements these higher-level
approaches. They are still needed for understanding and
explaining aggregative activities of hundreds of millions of

neurons of the brain.

163
Appendix 1: The TELOS programming language

TELOS 1is a programming language intended for the
complex applications common in artificial intelligence
[Travis 77, LeBlanc 77]. Based on PASCAL, TELOS is designed
to extend that language by providing facilities for
modularization (by data and control abstraction), for
pseudo~-parallelism (by coroutines and generators), for
inter- and intra- process communication (by an event
mechanism unifying messages and software interrupts)., and
for an associative data base. Only the data base related
facilities were implemented for the TELOS compiler used in
MUL research.

Even without modularization, coroutine, and event
mechanisms, TELOS was an invaluable aid to MUL research.
Without TELOS, MUL research could not have avoided <costly
investment in software specific to particular MUL versions,
investments that would have to be repeated with each major
change in the MUL model. It is unlikely that the MUL model
could have evolved in the same way had the use of TELOS not
diminished software investment to acceptable levels. The
remainder of this appendix discusses aspects of TELOS
important to MUL research. (The discussions assume

knowledge of PASCAL [Wirth 71].)

164

The heaviest investments required in a MUL model
involve the construction of knowledge stores. Mechanisms
must be provided to store knowledge, alter knowledge, and
retrieve knowledge (often assoéiatively). Any change in
knowledge representation requires alteration of all these
mechanisms., A major contribution of TELOS has been to
provide these mechanisms automatically and efficiently, via
the TELOS data base.

The TELOS data base is composed of data base objects
(DBOs). DBOs are dynamically created by user calls to the
system STORE function. (TELOS data base functions will be
distinguished by capitalization.) The call STORE(<ptr>) will
cause the creation of a new DBO having as its value a
transcription (into the data base) of the object referenced
by <ptr>. The only constraint on <ptr> is that it must be a
pointer-valued expression: any objects referenced by
pointers may be transcribed into the data base. STORE
returns a reference called a DBOP (for DBO pointer) to the
new DBO. User programs may use DBOPs as they would
pointers, to obtain access to DBO values. DBO values may
also be accessed by associative lookup, as will be explained
later.

The following 1is the declaration of the data structure
representing kernels in the final MUL version. Its

semantics with respect to MUL will be discussed in Appendix

23

165

only its TELOS data base properties are important here.

Numbers in parentheses refer to notes found below.

(1)

(2)

kernel_type = Packed Record (1)
importance_factor : Real Sequencer; (2)
activation_time : Integer Indexed; (3)
activated_rp : DB -> rp_type Indexed; (U4)
support : Array [1..max_components] Of DB ->

kernel_type; (5)

defaulter : DB -> kernel_type;
caused_conflict : Boolean;

End; (#*of kernel_type¥*) (6)

TELOS records have the same structure as PASCAL records,
and may be packed to conserve storage (at the expense of
time) . [TELOS keywords are capitalized for readablity
only.]

When record objects are stored into the TELOS data base,
keywords in the field declarations direct the data base
routines. A field marked 'Sequencer' determines the
order in which data base objects (DBOs) of this type are
returned by associative retrieval operations. A field
marked 'Indexed' has an inverted index list constructed
for values found in that field (used to meet
Requirements: see below). A field marked 'Unstored' is

not placed in the data base, and its value is ignored.

(3)

(4)

(5)

166

Values in the field named 'activation_time' are placed
in an inverted-index structure, Later associative
retrievals may access kernel_type DBOs having a
particular value in their activation_time field.
With the DBQP (for database object pointer) TELOS allows
direct access to specific objects in its data base. The
field 'activated_rp' provides a cross reference from
each kernel directly to the DBO representing the
recognizer/predictor (RP) for which the kernel 1is an
activation. The DBOP facility allows direct read access
to and write access via a CHANGE function. In general,
DBOP types are declared by:

dbop_type = DB -> object_type
A field or variable of type dbop_type can reference an
object of type object_type in the data base.
Though TELOS provides for variable-sized arrays in
certain circumstances, the 'support' array has a fixed
size of max_components (=3). Since the number of
components of RPs 1is variable, some elements of
'support' may not be used. For each specific kernel,
the number of components (equal to the number of
'support' elements used) is given by accessing the RP
referenced by the 'activated_rp' field. In particular,
given a kernel referenced by a DBOP 'K', the number of
components is given by:

K-> .activated_rp->.num_components

167

(¥'num_components' is a field in an rp_type
record¥*)
The dereference operator, '=>', accesses the object
named by a pointer or DBOP, as in PASCAL.
(6) Comments within TELOS may appear anywhere, and are

demarcated by '(¥' and '¥)"',

As an example, suppose RP #10 is activated by sensation
at time t, where:

RP #10: componentless, sensing "color middle middle red"
Given that the variable "rp_to_activate" (declared as type
"DB -=> rp_type") contains a reference to the DBO
representing RP #10, the following code activates RP #10 at
time t by storing an appropriate kernel in episodic memory:

(®¥'new_kernel' is a pointer to a PASCAL~-type heap object
of type 'kernel_type'. The following code sets up the
desired kernel in the heap, for later transcription
into the data base¥)

With new_kernel => Do (#the PASCAL With-statement

opens the fields of the object
referenced by new_kernel for
direct access¥)

Begin

importance_factor 0.9; (¥*¥the importance of

"

sensory input#¥)

activation_time := t;

168

activated_rp := rp_to_activate;

defaulter := NIL; (*this kernel is not a result of
defaulting¥)

caused_conflict := False; (*discussed in Appendix 2%)

(#note: since RP #10 is componentless, rp_to_activate
-> .num_components is zero, so that no elements of
'support' are used¥)
End;
(*the following statement stores a copy of the desired
kernel into the data base, joining other kernels for
time t of episodic memory¥)

K := STORE (new_kernel);

Associative access to the TELOS data base is
accomplished by wuser routines, called "Match_Routines", in
the control of TELOS associative retrieval routines. When a
user program requests associative retrieval, it provides a
pointer to a PASCAL-like heap object called a parameter
record. Parameter records look and act like PASCAL records.
They always have a field named 'Routine' for reference to a
Match_Routine, Remaining fields are named and typed the
same as the formal parameters of the referenced
Match_Routine, TELOS associative retrieval routines use the
provided parameter record to obtain a referénce to and
parameter values for the Match_Routine to be wused in the

retrieval,

169

For example, MUL versions often need to know whether a
particular RP was active at some particular time, that is,
whether a kernel is present at that time for that RP. The
presence of such a kernel 1is detected by attempting to
retrieve the kernel from the data base. This Match_Routine
is used (the numbers in parentheses refer to notes that
follow):

Match_Routine find_activation_rtn (rp: DB->rp_type;
time: Integer)
Matching K : DB->kernel_type; (1)
Begin
find_activation_rtn := (K => .,importance_factor >
minimum_importance); (2)
End; (3)
Requirements (4)
Begin
Require (rp,time); (5)
End; (6)

(1) Match_Routines are 1like PASCAL functions 1in several
ways. When executed, they communicate with TELOS system
routines by returning a value of True or False through
their name (in this case, 'find_activation_rtn'). This
Match_Routine has two formal parameters, 'rp' and
'time'. Every Match_Routine has an additional special
parameter, ('K' in this case). The type of the special

parameter indicates the type of the DBOs to be retrieved

(2)

(3)

(4)

170

from the data base ('kernel_type' DBOs in this case).
In operation, TELOS routines wuse the Requirements
section (see notes 4 and 5) to extract candidate DBOs of
this type for the retrieval. Each candidate is tested
to determine if it should actually be retrieve& by
calling the body of the Match_Routine with a reference
to the candidate assigned in the Match_Routine's special
parameter. An example of the use of
'find_activation_rtn' appears after these notes.

When executed for a candidate DBO, Match_Routines
specify that the candidate should be returned by
assigning a value of True to their name before returning
control to TELOS routines. In this case, a candidate
kernel is acceptable if its importance_factor is greater
than some 'minimum importance'. Match_Routine bodies
may contain arbitrary TELOS code, possibly involving
other data base operations. Appendix 2 presents a
complex Match_Routine body implementing predictive
pattern induction.

This End closes the body of find_activation_rtn, When
the body is executing to test a candidate DBO,
encountering this End returns control to TELOS routines,.
Execution of the Requirements section of a Match_Routine
gives the TELOS associative retrieval routines

information about how candidate DBOs should be selected.

171

TELOS currently uses inverted-indexing to identify
candidates.

(5) Calls to the TELOS Require procedure require that any
candidates contain the values specified as actual
parameters, in fields that have inverted index 1lists.
By executing the requirements section of
find_activation_rtn, TELOS associative retrieval
routines 1learn that candidates for the retrieval must
contain the value in the parameter rp, and the value in
parameter time, in some Indexed field. Requirements
sections may contain arbitrary TELOS code, possibly
involving other data base operations.

(6) This End indicates the end of the Requirehents section,
and of the Match_Routine declaration.

Match_Routines can be executed only system routines, for

example, by the TELOS data base routines, in turn called by

users to perform data base operations. Parameter records

supply the information needed by the data base routines. A

parameter record for find_activation_rtn can be declared by:

find_activation_prec :->
Parameters Of find_activation_rtn:
Given the following additional declarations:
kernel_array = Array [1..5] Of DB=> kernel_type;

number_of_kernels : 0..5;

172

The following code would return, in ‘'kernel_array[1]', a
DBOP to the kernel for the activation of the RP named by
'rp_in_question' at episodic time unit 'time_in_question'.
New (find_activation_prec); (¥create a parameter record
in the heap¥)
With find_activation_prec -> Do
Begin Routine := Routine_Ref (find_activation_rtn);
(¥*assign a reference to find_activation_rtn to
the Routine field of the parameter record. Any
Match_Routine having a parameter structure
identical to that of find_activation_rtn may be
assigned to Routine. The TELOS function
Routine_Ref returns a reference to a routine¥)

rp := rp_in_question;

time := time_in_question;
End;
number_of_kernels := 1;

Find (find_activation_prec, kernel array,
number of kernels);
The procedure FIND is provided by TELOS for associative
retrieval. If the above code were executed, FIND would
perform several activities. First, FIND determines the type
of the DBOs it 1is to find by examining the implicit
parameter to the Match_Routine named by find_activation_prec
-> L.Routine; it could Jjust as well examine the component

types of the array provided as the second parameter.

173

(Actually, these types are known and checked at compile
time.) Second, FIND <calls the Requirements part of
find_activation_prec -> _.Routine, giving values to actual
parameters from the remaining fields of the parameter
record . In the above case, Requirements for
find_activation_rtn is executed with parameters rp =
rp_in_question and time = time_in_question. That execution
results in a call to the TELOS Require function for the
values of rp_in_question and time_in_question., Third, FIND
searches the inverted index 1lists of DBOs of type
"kernel_type" for DBOs containing the values rp_in_question
and time_in_question. Fourth, for each DBO meeting the
iﬁdexing requirements (a candidate) FIND executes
find_activation_rtn with parameters rp and time bound as
before and the implicit parameter, K, assigned a reference
to the candidate. If find_activation_rtn returns True then
kernel_array [foo] (foo is initially 1) is set to reference
the candidate, foo 1is incremented, and if foo exceeds
number_of_kernels (the third parameter to FIND), FIND
terminates. When no candidates can be found, or all
candidates have been examineq, FIND sets the third
parameter, number_of_kernels, to the number of DBOPs that

were inserted into kernel_array (=foo-1).

TELOS provides several other operations on the data

base, besides STORE and FIND. Field values within DBOs can

174
be altered with the CHANGE operation. For example, CHANGE

(rp_in_question -> .caused_conflict, True) assigns the value
True to the caused_conflict field of the DBO referenced by
rp_in_question. DBO values are completely altered by the
REPLACE operation, that transcribes a heap object over ‘the
old value of the DBO. (Any DBOPs to the DBO now access the
newly transcribed value.) DBOs can be entirely removed by
the REMOVE operation. (Any DBOPs to the removed DBO become
invalid.) Additional capabilities involve the
context-dependency of DBO values; as contexts were not used
in MUL research, these capabilities are not discussed [see
Honda T771.

Early MUL versions made use of another wunique
capability of TELOS: its Pattern_Get procedure. The
~Pattern,Get procedure is a sort of inverse to the FIND
operation: FIND takes a description of objects (as a
parameter record for a Match_Routine) and searches the data
base for DBOs fitting that description; Pattern_Get takes an
object and searches the data base for DBOs that contain a
description (again as a parameter record for a
Match_Routine) that describes the object. Early MUL
versions used this pattern retrieving mechanism to implement
partial component descriptions (discussed in Section 2.5 and
criticized in Section 2.11). By using Pattern_Get, these
versions could find those RPs with components that matched a

given kernel.

175
The properties of TELOS are not fully conveyed 1in the

above brief discussion. Below, TELOS properties are listed

to further understanding of that language and its importance

to MUL research,

- TELOS extends PASCAL, inheriting both program structure
and basic capabilities from PASCAL. TELOS programs for
MUL research are, if examined cursorily, indistinguishable
from PASCAL programs.

- The TELOS implementation built on the University of
Wisconsin UW-PASCAL compiler. Thus, TELOS is compiled and
executes just as does PASCAL unless data base operations
are employed. In addition, TELOS adopts the -extensive
compile- and run-time checking wused by UW-PASCAL: all
operations are type-checked; array references are checked,
at run-time, if necessary; pointers (and DBOPS in TELOS)
aré checked to insure that they reference valid objects;
and tags of variant records are checked. The future will
see the completion of interactive debuggers for both TELOS
and UW-PASCAL,

- TELOS (and UW=-PASCAL) provide an external compilation
facility so phat parts of programs may be compiled
separately. References to global objects, types, and
routines are type-checked from information in an
"Environment" section [LeBlanc T78].

- TELOS provides powerful tools for building a customized

data base:

176

. Any data structure from the heap can be put in the

data base. That is, TELOS does not force users to
employ particular data structures, but allows them
to compose data structures to fit their needs.

TELOS automatically adjusts data base operations to
deal with any structures the user desires in the
data base. The details of data base operations are
hidden from the user.

The user has simple, if coarse, control over the
expensive indexing operations used for associative
retrieval. The user may specify -exactly which
fields (and which values within fields) are to be
Indexed, and which are to be Unstored.

The user is given direct access to objects 1in the
data base, via DBOPs. DBOPs are useful in several
ways:

i) With direct access to ﬁBOs, the expense of
associative retrieval is often avoided
entirely.

ii) DBOs need not be copied from the data base in
order to be examined.
iii) Specific DBOs can be altered, replaced, or
removed directly.
iv) DBOs may cross-reference one another, so that

net structures can be constructed,.

177

E. The user is given control during associative
retrieval operations, allowing those operations to
be arbitrarily complex to suit the user's needs.

F. With parameter records, the user can construct calls
to procedures, functions, and Match Routines at
run-time. With these parameter records it is
possible to implement program-constructed programs.
Since parameter records are data structures, they
may be created, destroyed, placed in the data base,
or manipulated in any other way that a data

structure can be manipulated.

The evolutionary development of MUL may not have been
realized without TELOS. Of particular importance was the
extensive checking performed by TELOS, checking that could
often detect the errors that accompany extensive program
modifications. Equally important was the relief TELOS
provided from details of data base manipulation, without
sacrificing access to that data base. Finally, the
efficiency of TELOS made at least partial exploration of MUL
behavior feasible. (MUL runs sometimes involved a quarter
of a million separate associative retrievals from a data
base containing thousands of objects.)

Future development of TELOS will include the
implementation of the designed abstract data type

capabilities, coroutines and generators, and event

178

mechanisms. It is to be hoped that MUL research will
benefit from the availability of full TELOS as much as it

has benefited from the TELOS data base facility.

179

Appendix 2: MUL programs

MUL, in its ADVANCED versions, is implemented as a 2000
line TELOS oprogram. The program is composed of five

modules, pefforming environment simulation, RP introduction

(by non-predictive pattern induction), inhibition
introduction (by predictive pattern induction), perception,
and control. These modules manipulate two data bases; a

knowledge store containing RP representations and an
episodic store containing kernel representations. This
appendix discusses the data structures and algorithms of the

five modules and two stores.

The data structure for RP representation, named the
“rp_type", 1is declared as follows (numbers in parentheses

reference later notes).

rp_type = Packed Record
identifier : id_record; (*used for RP output only*®)
num_components : 0..max_components; (1
components : Array [1..num_components] Of
Record (2)
rp : DB => rp_type Indexed;
is_previous : Boolean;
failure_count : 0..1000;

End;

(1)

(2)

(3)

(4)

180
inhibitor : DB => rp_type Indexed; (3)
area : area_descriptor ()
uses : Integer;

End;

'max_components' is 3. Componentless RPs have zero in
their 'num_components' field.

The 'components' array contains elements for each
component (if any) of the RP. Each component has an
'rp' field <containing a DBOP to the component RP, an
'is_previous' field set True if the component RP must be
active in the previous time unit, and a 'failure_count'
field recording a count of the number of times the
component was incorrectly defaulted. 'failure_count' is
used in conjunction with 'uses' to determine whether,
and with what confidence, each component may be
defaulted.

The 'inhibitor' field contains a DBOP to the RP whose
activation is to inhibit default of this RP. An
inhibitor RP is created only if this RP has been
improperly defaulted and must be inhibited. If no
inhibitor has been created, the ‘'inhibitor' field
contains the value Nil.

The 'area' field contains two sub-fields, 'region' and
"level'. As discussed in Section 3.5, ‘'area' is used

for the construction of related_rps, and for resource

181
allocation within MUL programs. To 1llustrate the
representation of RPs within the knowledge store,
consider this RP:

RP #10: <#5,0.0,previous> <{#4,0.8>

RP #10 might be represented this way 1in the knowledge

store:
identifier : #10 (and some other information)
num_components 2

components([1]

.rp : DBOP to RP#5 in the knowledge
store
.is_previous : True

.failure_count : 9999, indicating that over 75% of
defaults of this component were
invalid. No further defaults of
this component will be attempted.

components[2]

.r'p : DBOP to RP#4 in the knowledge
store
.is_previous : False

.failure count : 5
components[3] (unused. RP#10 has only two components.)
inhibitor : DBOP to the RP inhibiting
RP#10, if any
area : (values for region and level

might be 6 and 2 respectively)

182
uses : 25 (this RP has been activated 25

times)

The data structure for kernel representation, named the
"kernel type", is declared as follows:
kernel type = Packed Record

importance_factor : Real Sequencer;

activation_time : Integer Indexed;

activated rp : DB -> rp_type Indexed;

support : Array [1..max_components] Of DB ->

kernel type;

defaulter : DB ;> kernel type;

caused_conflict : Boolean;

End;
Suppose K is a DBOP to some kernel in the episodic store.
K -> .activated_rp contains a DBOP to the knowledge store
representation of the RP whose activation is recorded by
kernel K (the kernel referenced by K).
K -> .activation_time specifies the time unit of episodic
memory in which the kernel K exists. The support array
contains DBOPs to the kernels recognized by kernel K (if
any). K -> .defaulter is Nil unless kernel K appeared by

default; in that case, K -> .defaulter contains a DBOP to

the kernel recording the activation of the RP responsible
for the default of kernel K. K -> .caused_conflict is set

True if kernel K is ever marked as a culprit having caused a

183
conflict. The kernel type structure is further discussed in

Appendix 1.

The general operation of the MUL program 1is specified
by the <control module, called Main. The Main module is

coded roughly as follows:

(*#* Main programs ¥)
initialize; (* set up environment and establish MUL's
sensory and motor RPs *)
While True Do
Begin
...(%* code for statistics on MUL behavior #)...
update_environment; (* alter the environment to
reflect any physical changes precipitated by
MUL motor activity or by other agents in the
environment. Also, provide new sensory input #*)
perceive; (#* perform perception on the new sensory
kernels, any Kernels remaining unprocessed from
last time #)
learn_new_rps; (#* perform non-predictive pattern
induction to discover new RPs involving
important, recently-encountered kernels %)
learn _new_inhibitions; (% perform predictive pattern
induction to introduce new RPs to inhibit recent

improper defaults ¥*)

184

End; (¥ Main program loop *)

The initialize procedure contains code to initialize an

environment simulation and to establish the sensory/motor RP
interface to that environment. This interface includes not
only the sensors themselves (retina cells, for example), but
also the "subcortical® preprocessors of inputs (and
outputs). Because of environmental simplicity,
preprocessing is trivial but does 1involve establishing
inhibitions to detect defaults that contradict experience or
are otherwise undesired.
| As an example, the following excerpt from the
initialization for the bottle-filling environment creates
RPs sensing valve status:
(# declarations of types and variables used in excerpt #)
Type valve status = (open, closed);
Var rp_template :-> rp_type; (¥used to set up new RPs%)
db_rp : DB => rp_type; (#* used for auxilliary,
temporary purposes %)
valve rp : Array [open..closed] Of DB -> rp_type;
(* used to preserve valve status sensory RPs
for environment interface %)
Begin...(* other initializations #*)
New (rp_template);
(# create RP#1: componentless, sensing "valve open" ~)

With rp_template -> Do

185
Begin
identifier.number := 1; (¥ “valve open" is RP#1 #)
(¥ code dealing with other fields of identifier

is uniformly ignored throughout Appendix 2 #)

num_components := 0; (* componentless sensory RP #*)
inhibitor := Nil; (* set later in initialize #)
area.region := 1; (# valve status RPs are assigned

to region 1 #)
area.level :=z 1;
uses := 0;
End;

valve_rplopen] := STORE(rp_template);

(¥ create RP#2: componentless, sensing *“valve closed" #)

rp_template -> .identifier.number := 2; (*# “yalve
closed" is RP#2 *¥)

(# other fields of rp are same as for RP#1 %)

valve rplclosed] := STORE(rp_template);

(* this code creates inhibitions to cause conflicts
whenever the valve is asserted to be both open
and closed concurrently ¥)

New(inhibitory_rp);

inhibitory_rp =>:= rp_template ->; (* most fields of
componentless RPs are the same regardless of the
meaning of the RPs #)

inhibitory rp -> .identifier.number := 3; (# NOT ®valve

open' is RP#3 #)

186
(# establish new componentless RP as the inhibitor of
RP#1 %)
CHANGE(valve_rplopen] -> .inhibitor,
STORE(inhibitory rp));
(# CHANGE is used to alter DBOs. Simple assignment is
not allowed, to protect data base integrity. #)
(* create inhibitor for RP#2, as RP#4 *)
inhibitory_rp =-> .identifier.number := 4
CHANGE(valve rplclosed] -> .inhibitor,
STORE(inhibitory _rp));
(# finally, create RPs such that each valve state
inhibits the other valve state ¥)
With rp_template -> Do
Begin
num_components := 23
With components[1] Do
Begin rp := valve _rplopen]; is_previous := false;
failure_count := 0; (# should remain zero in
later usage *)
End;
With components[2] Do
Begin rp := valve rplclosed] -> .inhibitor;
is_previous := false; failure_count := 0;
End;
identifier .number := 5;

End;

187
db_rp := STORE(rp_template); (* creates RP#5:
<#1,1.0> <#4,1.0> the default coefficients of
1.0 will appear with use *#)
With rp_template -> Do

Begin

component[1].rp valve_rplclosed];

component[2].rp valve_rplopen] => .inhibitor;

identifier .number := 6;
End;
db_rp := STORE(rp_template); (# creates RP#6:

<#2,1.0> <#3,1.0> #)

The effects of the code segment just presented is to
create the following RP mass for sensing valve status:

RP #1: componentless, sensing "valve open'

RP #2: componentless, sensing “valve closed"

RP #3: componentless, inhibiting #1

RP #4: componentless, inhibiting #2

RP #5: <#1,1.0> <#4,1.0>

RP #6: <#2,1.0> <#3,1.0>

The update environment procedure maintains,

inaccessible to the rest of the program, information on the
current state of the environment. It detects any motor
activity MUL has indicated, tries to perform that activity

(or flail if no activity is specified), and then sends

188
appropriate sensory information to MUL, to reflect the new
environment state.

Update_environment detects desired motor activity by
searching episodic memory for activations of motor RPs for
the time unit just experienced. (Motor RPs are activated
only by default, or by flailing.) The default of a motor RP
is interpreted as a request that the associated motor
activity be performed. If, for example, the ‘'close valve"
RP was active at the “current" time, update_environment
would change 1its environment information to indicate a
closed-valve state; if the valve could not be <closed
(because it was already closed, perhaps) the
update_environment indicates a problem by (depending on the
version) either activating NOT ("close valve") or activating
the "pain" RP, or both.

If no motor RP is activated for the time wunit being
experienced, then update_environment causes a random flail.
Usually, a "rest" event is chosen so that MUL does nothing.

Once the environment simulation has been altered to
reflect movement on the part of MUL and on the part of other
agents (the ongoing processes, like the bottle filling, or
the actions of the teacher), wupdate_environment sends new
sensory information by activating sensory RPs. For example,
it knows the status of the valve, and has access to the two
RPs indicating the valve state : if the valve is open, it

activates (if necessary) valve rplopen], otherwise it

189
activates valve_rp[closed]. The RP may already be active by
default; if so, the importance of the kernel is adjusted

reflecting the verification of the default.

The perceive procedure operates on the buffers STM and
RFI to activate any RPs that can become active, if possible
within certain resource limitations. It selects the most
important item in STM or RFI. If the item 1s a kernel
reference from STM, perceive tries to activate unactivated
RPs having the kernel's activated rp as a component. If the
most important item is a kernel from RFI, then perceive
tries to activate (or find activations for) each component
of that kernel's activated_rp.
The following code processes a kernel reference from
STM; given these declarations:
Var num_rps, i, n, unactivated : Integer
new_kernel, activation, kernel : DB -> kernel_ type;
has_as_component :-> Parameters of
has_as_component_rtn;
(# this Match Routine is described later *)
rp_array : Array [1..max_rsz Of DB => rp_type;
kernel array : Array [1..1] Of DB -> kernel_type;
.(#*# code to remove a kernel reference from 3TM,
assigning it to kernel #)
(# find RPs referencing kernel -> .activated rp as a

component #)

has_as_component => .rp := Kernel -> .activated_rp;
num_rps := max_rps; (# constant 50. No more than 50
rps are activated by any single Kkernel. *)
FIND(has_as_component, rp_array, num_rps);
For i := 1 To num_rps Do (# for each RP having
kernel -> .activated rp as a component Do...%)
Begin this rp := rp_arraylil;
(* determine which component corresponds to
kernel -> .activated_rp %)
this_component :=1;
While this_rp =-> .components[this_component}.rp <>
kernel =-> .activated_rp
Do this_component + := 1;
(# calculate 'time' in which this_rp
might become active #)
time := kernel =-> .activation_time
+ Ord(this_rp => .components(this_component].
is_previous);
(# see if this_rp is already active at time
Function "is_active" uses "find_activation_rtn",
Match Routine discussed in Appendix 1, to return
True if "this rp" is active at “time", by findin
a kernel in episodic memory. 1Mactivation" retur
a DBOP to the kernel. =)
If is_active(this_rp, time, activation) Then

Begin

190

a

g

ns

191
If activation -> .support[this component] = Nil
Then
CHANGE(activation -> .supportlthis_component],
kernel);
Go To next_rp; (* exit *)
End;
(# activate this _rp, if possible #)
unactivated := 0; (* will be set to the first
unactivated component #)
n := 1;
(# find all unactivated components. If more than one
are unactivated, then rp cannot be activated. #%)
While n <= this_rp => .num_components Do
If n = this_component Then n := n + 1
Else With this_rp -> .componentsin] Do
If is_active(rp, time-Ord(is_previous),
activation) Then
Begin new_kernel -> .supportln] :=z activation;
n :=n + 1 End;
Else If unactivated <> 0 Then Go To next_rp
Else unactivated :=z n;
(* “new_kernel" will represent the activation of
this_rp %)
new_kernel -> .activation time := time;
new_kernel -> .support{this_component] := kernel;

«+.(* code calculating new_kernel ->

192
.importance_factor, as the importance of
the least important supporting kernel %)
If unactivated <> 0 Then (# try to default
component[unactivated] %)
If Not default(This rp, unactivated, new_kernel)
then
Go To next_rp; (* defaulting may not be
possible, see below *)
(# activate this_rp by creating new_kernel *)
With new_kernel => Do
Begin activated rp := this_rp; defaulter := NIL;
caused_conflict := False;
End;
(* "enter kernel" does a STORE(new_kernel), but
also inserts the new kernel into STM, and detects
conflicts if this rp is inhibited ¥)
enter kernel(new_kernel, new_db_kernel);
(# if defaulting was necessary, mark the default #)
If unactivated <> 0 Then
CHANGE (new_kernel =-> .supportlunactivated] =->
.defaulter, new_db_kernel;
next_rp;

End; (# For i := 1 To num_rps...*)

The above 1is a somewhat simplified but basically

accurate reproduction of the code executed for each kernel

193
referenced in the STM buffer. The *“default' function is

given below, to clarify that activity:

Function default (defaulting rp : DB -> rp_type;
component to_default : 1..max_components;
defaulter :-> kernel _type) : Boolean;
(% "default" returns True only if defaulting was possible *)
Const lessened_faith = 0.9;
threshold = 0.4; (* defaults must exceed this in
importance ¥)
Var result : DB -> kernel type;
default_kernel : => Kkernel type;
i : Integer;
Begin default := False; (* prepare for possible failure #)
With defaulting rp -> .components[component_to_default] Do
Begin New(default_kernel);
(# calculate the importance of the default #)
default kernel -> .importance_factor :=
defaulted -> .importance_factor * lessened_faith
¥ (1 - 2 # failure count/(1 + defaulting rp->.uses));
If default_kernel -> .importance_factor > threshold Then
Begin
default_kernel -> .activation_time := defaulter ->
.activation_time - Ord(is_previous);
If Not is_inhibited(rp, default_kernel ->

.activation_time) Then

194

With default_kernel -> Do

End;
End;

Begin (*default is possible*) default := True;
activated_rp := rp;

(# default has no support yet *)

For i := 1 to rp -> num_components Do

support[i] := NIL;

defaulter := Nil; (# this field will be set
later #)
caused_conflict := False;

enter_kernel(default_kernel, result);

...(% code to add new kernel into the RFI
buffer #%)

End; (# If Not is_inhibited *)

(# If default_kernel ->.importance_factor... #)

(* With defaulting rp...%)

End; (# Function default *)

The "is_inhibited" function examines the episodic store

to see if the inhibitor (if any) is active at the time

of interest.

Function is_inhibited (rp : DB -> rp_type; time : Integer)

Boolean;

(¥ "is inhibited" returns True only if rp =-> .inhibitor

is active at "time" #)

Var ignore

DB -> kernel type;

195
(# a DBOP to the activation
is not useful *)
Begin
If rp -> .inhibitor = Nil Then is_inhibited := False
Else is_inhibited := is_active(rp =-> .inhibitor, time,
ignore);

End; (*# Function is_inhibited...¥)

The Match_Routine "has_as_components" searches the knowledge

store for RPs whose components name the specified "rp".

Match_Routine has_as_components(rp : DB => rpwtype)
Matching candidate : DB -> rp_type;
Begin
has_as_components := (rp <> candidate => .ihhibitor);
(*# since the candidate is Required to reference 'rp"
somehow, we need only insure that the reference
is as a component (the inhibitor field is also
indexed) #)
End;
Requirements
Begin Require(rp)

End; (* Match Routine has_as_components *)

The perceive procedure 1is also responsible for

processing items from the RFI buffer. Suppose a default

196
kernel referenced by "K" is extracted from the RFI buffer.
perceive will first determine if the components of K =>
.activated rp are already active; if so, K => .support 1is
filled in. Failing that, perceive will activate the
unactivated components of K -> .activated rp, so long as K
- .importance_factor exceeds a threshold (0.4). The
importance factors of these new defaults are set to 0.75 of

K -> .importance_factor to discover unsupported defaulting.

The learn new RPs procedure is responsible for

introducing new RPs by non-predictive pattern induction.
learn new_RPs selects several (up to 8) kernels to learn new
RPs for, on the basis of highest values for the formula
[(max_rps - num_rps) #* kernel =-> .importance_factor]
calculated for each kernel processed from the STM buffer.
Pattern induction is performed on each of these kernels,
following the algorithm specified in Section 3.6. Detailed
analysis of the code in learn_new_rps is not presented, but

is provided for learn new_inhibitions, discussed next.

The learn new inhibitions procedure attempts to

construct new RPs to default the inhibitor of an RP under
conditions that seem to have involved defaults of that RP in
conflict. An overview of the mechanism used by

learn_new_inhibitions is provided in Section 3.7.

197
Conflicts are detected and culprits determined in the

enter kernel procedure. When a new Xkernel 1is created,

enter_kernel determines if that kernel's activated rp 1is
inhibited; if so, a «conflict is registered, and possible
culprit kernels are marked (by having their caused_conflict
fields set True). Culprits are defaults that directly or
indirectly support either the kernel or the defaulter of its
inhibitor (including the inhibitor activation itself).
Action is not taken to inhibit future defaults of the
culprits until the time unit containing the conflict has
been processed. In this way, time is allowed for improper
defaults to cause further conflicts; the defaults that cause
the greatest number of conflicts are assumed to be improper
and are provided to learn_new_inhibitions to be inhibited.
When learn_new_inhibitions is called, it is given a
reference (in "bad default") to a default that is assumed to
be improper. It then examines episodic memory to discover
if an RP X (or a small group of RPs that could be components
of a new RP X) is consistently activated before improper
defaults of bad _default => .activated_rp but is rarely
activated before proper activations of bad_default ->
.activated _rp. Activations of RP X will be made to cause
inhibition of bad_default =-> .activated_rp, by introducing a
new RP to cause activations of X to default bad_default ->

.activated_rp -> .inhibitor.

198
The search of episodic memory (for X) 1s accomplished
by associative retrievals controlled by Match_Routine
build_inhibition_rtn. This routine will be presented
following the declaration of the variables used, and
description of the initialization preceding the call to
build inhibition_rtn.
Const max_examples = 10;
max_rps = 8;
Var
num_improper, num_proper, num_rps, num_compnts,
best_cover : Integer;
proper_times, improper_times : Array[1..max_examples]
Of Integer;
dbo_num : Array[1..max_examples] Of Integer;
try : Arrayl[1..max_components] Of Integer;
rp_set : Array(1..max_rps] Of
Record
rp : DB => rp_type;
is_previous : Boolean;
with_proper, with_improper : Packed Array
[1..max_examples] Of Boolean;
End;
learn_new_inhibitions begins by initializing the “proper*
and "improper" arrays with samples of times when bad_default
-> .activated _rp was properly activated or improperly

defaulted respectively. This operation 1s performed by

199
associative retrieval with the Match_Routine
proper_improper_times described below. When called, the
parameter "rp" is assigned a reference to bad_default ->

.activated_rp.

Match_Routine proper_improper_times(rp: DB -> rp_type)
Matching K : DB -> kernel_ type;
Begin
If K => .caused_conflict Then
Begin num_improper := num_improper+1;
improper(num_improper] := K => .activation_time;
(# DBO_Number(<DBO>) is a TELOS routine that returns
a count of the number of DBOs that were placed in
the data base before <DBO>. This identifier is
uSed here as a cheap mechanism to insure that the
RPs to cause the inhibition will be active before
the improper default is made. ¥)
dbo_num{num_improper] := DBO_Number(K);
End;
Else
Begin num_proper :=z num_proper+1;
proper[num_proper] := K -> .activation_time;
End;
(¥ sufficient = 4, see below *)
proper_improper_times := (num_proper > sufficient) And

(num_improper > sufficient);

200
End;
Requirements
Begin Require(rp) End;

The above Match Routine illustrates an important use of
associative retrieval. Note that the Match_Routine performs
its work outside the accept/reject candidate formalism of
associative retrieval. The Match_Routine 1is called such
that accepting one candidate satisfies the retrieval (that
is, the third parameter to FIND is 1). In this way, the
expensive associative retrieval may be terminated when
arbitrarily complex conditions are met, in this case when
sufficient samples of proper and improper activations have
been found.

learn_new_inhibitions initializes several other
variables, and then calls for associative retrieval with the
build_inhibitions_rtn Match_Routine. This Match_Routine 1is
called twice, first with parameter time set to bad_default
-> .activation _time, and then with time set to bad_default
-> .activation _time -1. From each time, the Match_Routine
attempts to discover RPs or combinations of RPs activated
just prior to the times in "improper', but that were not

activated immediately prior to the times in "proper'.

Match Routine build inhibitions_rtn (time : Integer)
Matching K : DB -> kernel type;

Begin time_difference := bad_default ->

201

.activation_time - time;
(#build_inhibition_rtn terminates associative retrieval
only if it has found material to forge a new inhibition#)
build_inhibition_rtn := False;
(* the next spot of rp_set is used for imformation about
K -> .activated_rp #)
With rp_set{num_rps+1] Do
Begin rp := K -> .activated_rp; is_previous 1=
(time_difference <> 0);
countl := O;
(#is K -> .activated_rp active prior to "proper" times?%)
For 1 := 1 To num_proper Do |
If is_active (K -> .activated_rp, proper[i] -
time_difference, kernel)
Then Begin countl := countl+1; with _proper(il] :=
True End
Else with_proper(i] := False;
If countl = num_proper Then Go To exit; (% K =>
.activated_rp is useless #)
count2 := 0;
(#*is K->.activated rp active prior to “"improper" times?#)
For i := 1 To num_improper Do Begin
with improper[i] := is_active (K -> .activated_rp,
improper[i] - time_difference, kernel);
If with _improper[i] Then

If DBO_number(kernel) > dbo_num[i] Then

If

202
with_improper[i] := False
Else count2 := countl+1;
count2 = 0 Then Go To exit; (# K -> .activated_rp

is useless ¥)

cover := (num_proper =- count2) + countl; (#* measure

If

of the usefulness of K -> .activated_rp *)
cover > best_cover Then
Begin (* inhibition possible on activation of this
RP alone *#)
try[1] := num_rps+1; num_compnts := 1;
best_cover := cover;
(# 'try' contains information on the best RP(s) yet
found to activate the new inhibition #)
If count2 = 0 Then (# => useless to combine this RP
in a group #)
Begin build_inhibition_rtn := (countT:num_proper);
(# "perfect"? ¥*)
Go To exit; End;
End;
inhibition might be based on a new RP formed with
K -> .activated rp as one component, and the other
component chosen from rp set to decrease the number of

occasions when activations precede 'proper" times #)

For 1 := 1 To num_rps Do

Begin tcover := cover;

For j := 1 To num_proper Do

203

If with proper(j] Then

If Not rp_setlil.with_proper(j] Then tcover t:=1;

countl := 0

For j := 1 To num_improper Do

If with_improper[j] Then
If Not rp_set[i].with_improper(j]
Then tcover -:= 1
Else countl := counti+1;
If (tcover > best cover) And (countl > 0) Then

Begin (# inhibition might be based on a new RP,
with components <K => .activated_rp,- >
<rp_setl[il.rp,- > %)

try[1] := num_rps+1; tryl2] = i;

num_compnts := 2;

best_cover := tcover;

If tcover = (num_proper + num_improper) Then
Begin build inhibition_rtn := True; Go To exit;
End;

End;

End; (# For i...%)

num_rps := num_rps+1; (* add K => .activated_rp

to rp_set %)

build_inhibition_rtn := (num_rps = max_rps); (# quit if

rp_set filled *)

End;

exit

204

End; (* Body of build_inhibition_rtns #)
Requirements
Begin Require(time) (* only RPs active at “time"

are considered #)

End;

When learn new_inhibitions completes the two associative
retrievals with build_inhibition_rtn, the “try" array should
contain information for an adequate inhibition. The new
inhibition is incorporated in this way:
If num_compnts > 0 Then (* "¢ry" has meaningful
information in it #)
Begin
(# if try specifies a new rp, create it #)
If num_compnts > 1 Then With rp_template -> Do
Begin ...(¥* code to set 'identifier' and 'area' #)
inhibitor previous := (rp_set [try[1]].is_previous
And rp_set [try[2]].is_previous);
num_components := 2;
components[1].rp := rp_set [try[1]l.rp;
components{1].is_previous := (rp_set [try[1]]
.is_previous And Not inhibitor_previous);
components[2].rp := rp_set [tryl2]].rp;
components[2].is previous := (rp_set [tryl(2]]
.is_previous And Not inhibitor_previous);

(# 'uses', "failure_counts" set in "add_new_rp",

205
a routine that stores the new RP after putting
it in canonical form and verifying that it is not
a duplicate #)
X := add_new_rp(rp_template);
End
Else With rp_set([try[1]] Do
Begin X := rp; inhibitor_previous := is_previous;
End;
(¥ create inhibitory RP for bad_default ->
.activated rp, if necessary #)
If bad_default -> .activated_rp =-> .inhibitor = Nil
Then
Begin ...(#% code to set up componentless RP in
rp_template ¥)
CHANGE(bad_default => .activated_rp -> .inhibitor,
STORE(rp_template)); .
End;
(# create RP to inhibit bad_default -> .activated_rp
when X is active #)
With rp_template -> Do
Begin ...(¥% code establishing "identifier" field

values *)

num_components = 2;
component[1]l.rp := X;
component[1].is _previous := inhibitor_previous;

component[1].failure_count := 9999; (* this

206

component is not to be defaulted #*)

component[2].rp := bad_default -> .activated_rp ->
.inhibitor;

component[2].is _previous := False;

component({2].failure_count := 0;

inhibitor := NIL;

uses := 0;

End;

STORE(rp_template);

End; (# If num_compnts...¥%)

The actual MUL programs contain code that has not been
reproduced in these excerpts. The additional code performs
such tasks as statistics gathering and exceptional-case
handling, tasks that are not important to the basic 1ideas

behind the programs.

207

The following is a list of the first 15 RPs produced by
the ADVANCED MUL version for the bottle-filling environment.
In 70 environment steps, a total of 243 RPs were created,
enabling the program to anticipate most events in its
environment. It did not, however, learn to correctly
default kernels for motor RPs in order to gain control of
its valve.

The - episodic experience of MUL 1is provided for the
first 20 time units. For convenience, sensory/motor RPs are
described by function rather than by number. (note: the
default coefficients shown are those initially given the

components.)

Time Unit 1. experience: "“no bottle", "valve closed”
Time Unit 2. experience: "no bottle", “valve closed"
Time Unit 3. experience: '"no bottle", "“valve closed"
Time Unit 4. experience: 'no bottle", “valve closed"

Comment: MUL now has enough experience to learn
| new RPs.
RP #1000: <'no bottle¥,1.0,previous>
<no bottle",1.0>
RP #1001: <"valve closed",1.0,previous>
<"valve closed",1.0>
Time Unit 5. experience: "empty", "valve closed"
Comment: the teacher has placed a bottle on the

platform.

RP #1002:

Time Unit 6.
Time Unit 7.

Time Unit 8.

RP #1003:

Time Unit 9.

RP #1004:

Time Unit 10.

Comment:

Time Unit 11.

Comment:

Time Unit 12.

Time Unit 13.

Time Unit 14.

Comment:

RP #1005:

208
<#1001,1.0,previous> <#1001,1.0>
experience: "empty", '"valve closed"
experience: "empty', "valve closed"
experience: "empty", "valve closed"
<iempty",0.75,previous> <"empty"”,1.0>
experience: "empty", '"valve closed"
<#1003,0.80,previous> <#1003,1.0>
experience: 'open valve", "empty",

"valve closed"

the teacher, tired of waiting for MUL to
open the valve, is forcing the valve open.
experience: "good", "valve opened",

"one third full®

the teacher tries to reinforce the valve
opening by "praise' (that is, stimulating
MUL's pleasure RP "good"). With the valve
now open, the bottle has begun filling.
experience: "“two thirds full",

"valve opened"

experience: “bottle full", "valve opened"
experience: "spilling', 'bad!",

“valve opened"

the teacher, upset with the spillage, is
punishing MUL by stimulating the pain RP.
<'valve opened",0.75,previous>

{'"valve opened",1.0>

Time

Time

Time

Time

Time

Time

Unit

RP
Unit
Unit

RP

Unit
RP

Unit

Comment:

Unit

Comment:

RP

RP

RP

RP

RP

15.

#1006:

16.
17.

#1007 :

18.

#1008:

19.

20.

#1009:

#1010:

#1011:

#1012:

#1013:

209
experience: "spilling", "valve opened"
<#1005,0.75,previous> <#1005,1.0>
experience: "spilling", "valve opened"
experience: "spilling", '"valve opened"
{"spilling",0.75,previous>
<vspilling",1.0>
experience: “spilling', “valve opened”
<#1007,0.75,previous> <#1007,1.0>
experience: "close valve", "spilling",
"valve opened"
the teacher, tired of spillage, is forcing
MUL's valve to close.
experience: "good", "no bottle',
"valve closed"
the whole cycle now begins again.
Accordingly, experience will no longer
be listed.
<Wvalve closed",0.0,previous>
{"valve opened",0.0>
{"valve opened",0.0,previous>
{"valve closed",0.0>
<"one third full",1.0,previous>
{"two thirds full",1.0>
<#1006,0.81,previous> <#1006,1.0>
<"spilling",0.0,previous>

<"'no bottle",0.0>

RP #1014:

RP #1015:

Meaningful 1
bottle-filling en
timing requirement
into the data base
improper default
several mechanisms

meet.

210

<#1000,0.0,previous> <#1000,0.0>

<#1002,0.0,previous> <#1002,0.0>

nhibitions were not learned in the
vironment. No inhibitions could meet the
(that the inhibitory RP must be defaulted
in advance of the appearance of the
in the data base). Section 6.3 discusses

for making this requirement easier to

211

References

[Altman 671 Altman, J. "Postnatal Growth and
Differentiation of the Mammalian Brain, with
Implications for a Morphological Theory of Memory", in
[Quarton 67].

[Becker 70] Becker, J.D., An Information Processing Model
of Intermediate Level Cognition, Unpbl. Ph.D. Diss.,
Stanford, 1970.

[Becker 69] Becker, J.D., "The Modeling of 3Simple Analogic
and Inductive Processes in a Semantic Memory System”,
Proc. First International Joint Conf. on AI, 1969.

[Becker 73] Becker, J. "4 Model tor the Encoding of
Experiential Information®, in Computer Models of
Thought and Language, R. Shank and K. Colby (Eds.),
Freeman, 1973.

[Brazier and Petsche 78] Brazier, M. and H. Petsche
(Eds.). Architectonics of the Cerebral Cortex, Raven
Press, New York, 1978.

(Buchanan 721 Buchanan, B.G., Feigenbaum, E.A., and
Sridharan, N.S3. "Heuristic Theory Formation: Data
Interpretation and Rule Formation", Machine
Intelligence 7, Edinburgh: Edinburgh University Press,
1972.

[Cohen and Nagel 34] Cohen,M. and E. Nagel. An
Introduction to Logic and Scientific Method, Harcourt
Brace, New York, 1934,

[Coltheart 761 Coltheart, M. "Iconic Storage and Visual
Masking", in [Hamilton and Vernon 76].

[Cotrell 771 Cotrell, G. and P. Underwood. (Eds.)
Synapses, Academic Press, New York, 1977.

[Crain 761 Crain, S. "Development of Specific
Sensory-Evoked Synaptic Networks in CNS Tissue
Cultures“, in Electrobiology of Nerve, Synapse, and
Muscle, J. Ruebin, D. Purpura, M. Bennett, and E.
Kandel (Eds.), Raven Press, New York, 1976.

[Creutzfeldt 78] Creutzfeldt,O. “"The Neocortical Link:

Thoughts on the Generality of Structure and Function of
the Neocortex", in [Brazier and Petsche 78].

212

[Davis 77] Davis, R. “Interactive Transfer of Expertise:
Acquisition of New Inference Rules", in [IJCAI T771.

[Davis and King 75] Davis, R., and J. King, An Overview of
Production Systems, Stanford University Memo AIM-271,
October 1975.

[Davison 77] Davison, A. (Ed.) Biochemical Correlates of
Brain Structure and Function, Academic Press, London,

1977.

[Feigenbaum 77] Ffeigenbaum, E. The Art 0Of Artificial
Intelligence: I. Themes and Case Studies of Knowledge
Engineering, Computer Science Dept., Stanford
University, Report STAN-C3-77-621, August 1977.

[Goldstein and Grimson 77] Goldstein, I. and E. Grimson.
"Annotated Production Systems. A Model for Skill
Acquisition", in [IJCAI T7T71].

[(Granit 771 Granit, R. The Purposive Brain, MIT Press,
Cambridge MA, 1977.

[Hamilton and Vernon 761 Hamilton, V. and M. Vernon.
(Eds.) The Development of Cognitive Processes, Academic
Press, London, 1976.

[Hayes=Roth 771 Hayes-Roth, F. and J. McDermott.
“Knowledge Acquisition from Structural Descriptions®,
in [IJCAI T771.

[Hayes-Roth 78] Hayes=-Roth, F. and J. McDermott. ‘“An
Interference Matching Technique for Inducing
Abstractions", Comm. of the ACM, Vol 21, #5, May 1978.

[Hebb 49] Hebb, D. The Organization of Behavior: A
Neuropsychological Theory, Wiley, New York, 1949.

[Honda 77] Honda, M., R. LeBlanc, L. Travis and S.
Zeigler. An Improved Data Context Mechanism, MACC
Technical Report #47, University Of Wisconsin -
Madison, October 1977.

[Hyden 67] Hyden, H. “RNA in Brain Cells", in [Quarton
671.

[IJCAI 771 Advance Papers of the Fifth International Joint
Conference on Artificial Intelligence, Boston, Mass.
1977.

213

[Kuipers 751 Kuipers, B. nA Frame for Frames:
Representing Knowledge for Recognition', in
Representation and Understanding: Studies in Cognitive
Science, D. Bobrow and A. Collins (Eds.), Academic

Press, New York, 1975.

[Langley 78al Langley, P. BACON: A Production System that
Discovers Empirical Laws, Carnegie-Mellon Department of
Psychology, CLP Working Paper #360, January 1978.

[Langley 78b] Langley, P. BACON.1: A General Discovery
System, Carnegie-Mellon Department of Psychology,
unpbl. report, January 1978.

[LeBlanc 77] LeBlanc, Richard. "The Design and Rationale
for TELOS, a PASCAL-based AI Language", PhD Diss.
UW-Madison Academic Computing Center Tech Rpt 50,
December 1977.

[LeBlanc 78] LeBlanc, R. “Extensions to PASCAL for
Separate Compilation", Sigplan Notices, Vol. 13, #9,
September 1978.

[Lenat 761 Lenat, D. AM: An AI Approach to Discovery in
Mathematics as Heuristic Search, Memo HPP-76-8,
Stanford University Computer Science Dept., 1976.

[MacGregor 771 MacGregor, R. Neural Modeling: Electrical
Signal Processing in the Nervous System, Plenum Press,
New York, 1977.

[Michalski 771 Larson, J. and R. Michalski. “Inductive
Inference of VL Decision Rules', Sigart Newsletter #63,
June 1977.

[Milner 571 Milner, P. "The Cell Assembly: Mark II*,

Psychological Review 64.

[(Minsky 751 Minsky, M. "gp Framework for Representing
Knowledge", in [Winston 75].

[Nathanson 77] Nathanson, J. and P. Greengard. wt1Second
Messengers' in the Brain", Scientific American, Vol.
237, #2, August 1977.

[Newell and Simon 72] Newell, A. and H. Simon. Human
Problem Solving, Prentice-Hall, Englewood Cliffs NJ,
1972.

[Piaget 541 Piaget, J. The Construction of Reality in the
Child, New York : Basic Books, 195%4.

214

[Piaget and Inhelder 69] Piaget, J., and B. Inhelder. The
Psychology of the Child, New York : Basic Books, 1969.

[(Quarton 67] Quarton,G., T. Melnechuk, and F. Schmitt
(Eds.) The Neurosciences, Rockefeller University Press,
New York, 1967.

[Reese 76] Reese, H. and S. Porges. '"Development of
Learning Processes", in [Hamilton and Vernon T761].

[Rose 77] Rose, S. and J. Haywood. “Experience, Learning
and Brain Metabolism", in [Davison 77].

[Rumelhart and Norman 73] Rumelhart, D.E. and Norman,
D.A., Active Semantic Networks as a Model of Human
Memory", Proc. Third International Joint Conf. on Al,
1973.

[Rumelhart and Norman 76] Rumelhart, D., and Norman, D.
Accretion, Tuning, and Restructuring: Three Modes of
Learning, Tech Rep 63, Center for Human Information
Processing, University of California, San Diego, Aug.
1976.

[Sagan 78] Sagan, C. The Dragons of Eden,‘Speculations on
the Evolution of Human Intelligence, Random House, New
York, 1977T.

[Scott 771 Scott, A. Neurophysics, John Wiley and Sons,
New York, 1977.

[Shank 771 Shank, R. "How to Learn / What to Learn", 1in
[IJCAI T71].

[(Travis 77] Travis, L. E., R. LeBlanc, M. Honda and S.
Zeigler. "Design Rationale for TELOS, a PASCAL-based
AI Language', Proc. of the Symposium on AT and
Programming Languages, New York : ACM, 1977.

[Uhr 74] Uhr, L. "“A Wholistic Cognitive System (SEER-2)
for Integerated Perception, Action and Thought",
University of Wisconsin Computer Sciences Dept.
Technical Report #234, December 1974,

[Uhr 75] Uhr, L. "'Recognition Cones' that Perceive and
Describe Scenes that Move and Change Over Time",
University of Wisconsin Computer Sciences Dept.
Technical Report #235, January 1975.

[(Uhr 77] Uhr, L. wp Parallel-Serial Recognition Cone
System For Perception: Some Test Results”, UW-Madison
Computer Science Tech Rpt 292, March 1977.

215

[Unr 78] Uhr, L. “Parallel-Serial Production Systems with

Many Working Memories", University of Wisconsin
Computer Sciences Dept. Technical Report #313, January
1978.

[Uhr and Jordan 691 Uhr, L., and Jordan, S. "The Learning
of Parameters for Generating Compound Characterizers
for Pattern Recognition®, Proc. First Joint Conference
on AI, 1969. ‘

[Uhr and Vossler 61] Uhr., L. and Vossler, C. "A Pattern
Recognition Program that Generates, Evaluates, and
Adjusts Its Own Operators", Proc. West. Joint
Computing Conf., 1961.

[Waterman 75] Waterman, D. "Adaptive Production 3ystems",
Prcc. of the Fourth International Joint Conference on
AI, 1975.

[Whitehead 77] Whitehead, B. A Neural Model of Human
Pattern Recognition, PhD Dissertation, University of
Michigan Dept. of Computer and Communication Sciences,

1977.

[Winston 751 Winston, Patrick. The Psychology of Computer
Vision, New York : MecGraw-Hill, 1975.

[Wirth 71] Jensen, K. and N. Wirth. PASCAL User Manual
and Report, 2nd Edition, Springer-Verlag, New York,
1975. :

[Witte 73] Witte, L. A Computer System to Model the
Cerebral Cortex and Other Brain Centers, Unpbl. PhD
Dissertation, University Of Wisconsin Computer Sciences
Dept., 1973.

[Zeigler 781 Zeigler, S. Learning by Pattern Induction,
University of Wisconsin Computer Sciences Dept.
Technical Report #319, April, 1978.

