ROSCOE UTILITY PROCESSES

by
Ron Tischler
Raphael Finkel
Marvin Solomon

Computer Sciences Technical Report #338

February 1979

ROSCOE UTILITY PROCESSES®
February 1979
Ron Tischler

Raphael Finkel
Marvin Solomon

Technical Report 338

Abstract

Roscoe is a multi-computer operating system running on a
network of LSI-11 computers at the University of Wisconsin. Ros-
coe consists of a kernel program resident on each computer and
several utility processes. This document describes the implemen-
tation of the Roscoe utility processes at the level of detail
necessary for a programmer who intends to add a module or modify
the existing code. Companion reports describe the purposes and
concepts underlying the Roscoe project, present the implementa-
tion details of the kernel, and display Roscoe from the point of

view of the user program.

*This research was supported in part by the United States Army

under contract #}DAAG29-75-C-0024.

1.

N
°

[OF]
0

R e

NN

W ww W

S

Ul Ut o Ut Ut

e o o 8 @ &
QO ~JOAO UL WN -

°

e o e o & 8 e o
WO UldWw

s @

W N

N =

°

Ut b W N

THE RESOURCE MANAGER. ¢ e vvveeosnnccennens

THE

THE

THE

THE

TABLE OF CONTENTS

General..e.eee oo ieeneeoeoensoennsnas

Protocols between resource managers.
Resource manager initialization.....
Wall clock synchronization.
Process initiation.......

Process termination..
Terminal links.......
FOREGROUND processes,

TERMINAL DRIVER......
General....eeeeeeeens

Overview of input....
Overview of output..

o

Requesting and changlng
Output buffer manipulation...
Input buffers.....cco.c..
Pause control...........
Control-C actions......
Pausing and continuing.

COMMAND INTERPRETER. .

General...ieveeeeeennn
Initialization.......
Command line parsing.
Command execution....

FILE MANAGER....000..

General.....ovevoonen.
Execution of requests

DEMON. . oot enneenens

General.oeeeeeeenenes
DALIAS command.......
DCLOSE command.......
DCREAT command...a....
DOPEN command.e.ceeo..

.

.

-

°

conso

.

-

[y

~N I NN

10

11

16

16
17
18
13
19
20
23
24
25

27

27
28
28
29

32

32
33

35

35
37
37
37
37

5.6 DREAD COMMANA 4 ot et e voeenseeocecocecansssasnsssnonnces 37
5.7 DREADLINE CcoOmMMAanNd...eeooecossoonscocesscscososssasecsss 38
5.8 DSEEK COMMANT . e s e e oosessncnssosssssessecosonsesnesos 38
5.9 DSTAT COMMANG 4 4ot oo vocessesecensnsooesoesnseonasesons 38
5.10 DTIME command. cueeeeeeceoocoveneos s et s e s e aeneero e 38
5.11 DUNLINK COMMABNA . e e o eosecessossssnncsccoesnossonssesscos 39
5.12 DWRITE COMMANA . e 0o vanoesencocoecscsnerocsnonossnssnses 39

LIBRARY ROUTINE S . i oo evosceocsunoesossocscoenesconcsesesos 39
5.1 File manager roUCineS...ceieeeeneeecaneeaosnononeanas 39
6.2 Resource manager request routineS...ceeeecenceescscsass 41
5.3 Roscoe service callS.e.eeeeoeenn s o s acasesenssaenaes e 42
6.4 MisCcellaneoUS.eeeeceeeeeeanonseoncsss st e e s as s e e e 42

ROSCOE UTILITY PROCESSES

This paper documents the source code for the following Roscoe
utilities:

resource manager

terminal driver

command interpreter

file manager

the "demon" (a PDP-11/40 process with which the file manager
communicates)

user-callable library routines

copyfile (a program used implicitly by the command inter-
preter)

The reader is assumed to be familiar with the Roscoe User
Guide [Tischler, Solomon, and Finkel 78], which describes the
purposes and use of these utilities. The present paper consists
of a detailed explanation of the programs and data structures for
those who intend to help maintaln these wutilities. The Roscoe
kernel code is similarly documented [Finkel and Solomon 78}.

The documentation given here is accurate as of January 20,
1979. However, recent developments will soon cause some modifi-
cations to the processes discussed here. 1In particular, a new
utility process called a "pipe" has been introduced to attach the
output of one process to the input of a second one. The command
interpreter and the resource manager will cooperate to establish
piped processes.

Unless otherwise stated, all files mentioned are in the

directory "/usr/network/roscoe/user".

1. THE RESOURCE MANAGER

1.1 General

The code lies in "resource.u". Programs that communicate
with the resource manager should include "resource.h" unless all
such communication is handled by library routines.

The resource manager may use the service calls "load", "re-
move", "startup", and "kill". These calls are meant to be
privileged, although that restriction is not yet enforced. The
"startup" call gives the new process a link to its resource
manager. This link should be of a special kind, although the
resource manager currently refers to it as a "REQUEST" link. Ei-
ther a REQUEST or REPLY link may be enclosed over this 1link.
Currently, the kernel does not enforce the restrictions on en-
closed links. PFurthermore, the new process may not destroy this

parent link except by dying. This restriction is enforced.

1.2 Protocols between resource managers

When resource managers talk to each other, they send requests
whose "rmreq" fields hold special values. These values are de-
fined by macros that begin with the letters "RR". We will follow
the convention of <calling the originator of such a message the
"first" resource manager and the recipient the "second". Togeth-
er, they are called "colleagues". When client processes talk to

resource managers, they send requests whose "rmreq" fields are

defined by macros that begin with the letters "RM". Following
sections describe how these codes are employed to carry out the
various resource manager functions.

The routine "sendrm" is used to send messages between
resource managers. The array "rmtab", of size 5, keeps track of
which other resource managers exist. Entries in "rmtab" are link
numbers; -1 indicates that there 1s no corresponding resource
manager. Links used between resource managers use channel 2, and
the code is always the machine number of the holder.

Resource managers may make RMFSREQ or RMTTREQ requests of
each other, in which case the request is treated the same as any
other user's request, except that for RMTTREQ, the local terminal
link 1is assumed to be the one desired. In addition, there are
five other requests peculiar to resource managers, as listed
below. Whenever these requests are made, the first resource
manager does not wait for a reply; any reply that eventually
comes will be self-explanatory.

RRSTART: This request continues an RMSTART request that the
first resource manager could not complete. Everything in the
original request is passed along; no response 1is needed. The
resource managers pass the request around in order of increasing
machine id. The originator recognizes it should it return. This
circular method is an ad-hoc approach that will be changed in the
future to a more reasonable polling order.

RRRILL: This request continues an RMKILL request 1if the
process targeted for the kill is not local to the first resource

manager. The request is forwarded to the resource manager on the

proper machine; no response 1s needed.

RRLINK: This message asks the second resource manager for a
link owned by that second resource manager. The first resource
manager intends to give this link to a third resource manager.

RRINFORM: This message accompanies an enclosed 1link owned
or held by the first resource manager. (See Section 1.3.)

RRPASS: Used to "pass the bhall" when a FOREGROUND process
"with the ball"™ for a certain terminal has died, and the process

that should next "get the ball" is on another machine. (See Sec-

tion 1.8).

1.3 Resource manager initialization

When a resource manager is loaded by the kernel Job of the
Roscoe kernel, it receives the machine number as the argument to
"main". In particular, if the bit "“NOTPAPA" 1is off, this
resource manager knows that it is the first one. We will call
such a resource manager "original”. A resource manager that the
kernel job starts in an attempt to recover from failure at some
node or as a subsidiary resource manager has the bit NOTPAPA set.

When the original resource manager starts, initialization 1is
done by "initrm0". A file manager and terminal driver are loaded
and started as DETACHED processes; the file manager 1is loaded
manually, and does not occupy a spot in "imagetab". Input and
output terminal links are opened, a "configuration" is read from
the terminal by "readline", and the input link is closed. The
"configuration" is a character string that the resource manager

scans to determine what other resource managers to load and with

what arguments. For example, the configuration

1T24FT
indicates that resource managers should be loaded on machines 1,
2, and 4; machine 1 will have its own terminal, machine 4 will
have its own terminal and file system, and machine 2 will have
neither.

The argument given to a remote resource manager has the
machine number as its lowest three bits and contains flags
RMTTFLAG and RMFSFLAG to indicate respectively whether a terminal
driver (and attendant command interpreter) and file manager
should be loaded locally. Also, the bit "NOTPAPA" is set to in-
dicate that the child resource manager 1is not the first one
started. The high order byte of the argument gives the machine
number of the parent (papa).

When a resource manager other than the original one starts,
it wuses the initialization routine "initrms". An entry is made
in "rmtab" for the first resource manager (the owner of this
resource manader's link 0), and an RRINFORM message is sent to
that resource manager with an enclosed 1link having channel 2.
The code for this 1link 1s the number of the first resource
manager. The "rmarg" field of this initial message is -1. (The
discussion of RRINFORM messages continues below.) If the
RMFSFLAG is on, a local file manager is loaded by the routine
"loadfs", which asks the first resource manager for a file system
link, uses it to perform the load, and then destroys this unneed-
ed link. TIf the RMTTFLAG is on, a local terminal driver and com-

mand interpreter are loaded. If these flags are off, the ap-

(@)}

propriate links are obtained from the first resource manager by

the same RMTTREQ and RMFSREQ protocols followed by any other pro-

cess.,

The routines "loadtt" and "loadci" are wused to 1load local
copies of the terminal driver and command interpreter, respec-
tively. WNo matter how a terminal is obtained, a terminal output
link 1s automatically opened. The variable "owntt" tells which
terminal (0-4) the resource manager is using. The command inter-
preter is vaccinated against control-C's by setting its "lifeno"
field in "proctab" to -1.

The routine "rrinform" handles RRINFORM requests. If the
"rmarg" field 1is -1, the receiver knows that a new resource
manager just came to life,. The number of this new resource
manager can be found in inmess.urcode. The receiver then acts as
the "papa" and sends out RRLINK messages to begin the process of
hooking together all the other resource managers. Otherwise, the
high order byte of the "rmarg" field tells the number of the
resource manager that owns the link, and the low order byte tells
for which resource manager the link is intended. 1If this intend-
ed holder 1is not the present resource manager, the RRINFORM re-
quest 1s forwarded to the correct one, Whenever a resource
manager receives a link which it will continue to hold, it up-
dates its "rmtab" accordingly.

The routine "rrlink" handles RRLINK requests which, as men-
tioned above, are only sent by the original resource manager to
other resource managers. A link is created on channel 2; the

code 1is specified by "rmarg", which 1indicates the resource

manager that will eventually hold the link. The link is sent to
the first resource manager in an RRINFORM message; it will then

forward it to the intended holder, as described above,

1.4 Wall clock synchronization

When the original resource manager starts, a special request
is sent to the demon on the PDP-11/40 for the Unix date. The
variable "timewarp" is used to convert between Roscoe time and
Unix time (the former begins Jan 1 1973 CST; the latter Jan 1
1970 GMT). Other resource managers initialize their dates to
zero, but this value is soon corrected.

Whenever "sendrm” is used (to send an RRSTART, RRKILL, RRIN-
FORM, RRLINK, or RRPASS message to a colleague), the current date
is placed in the "update" field of the message. Whenever such a
request 1is received, the local date is set to the-value in the
"update" field if it is later. This algorithm keeps the wall
clocks in the various Roscoe kernels from losing time relative to

each other.

1.5 Process initiation

The resource manager knows which client sent each RMSTART request
because the «code of the link containing the request is also the
index for that process in the resource manager's process table.
The resource manager can also determine the client's associated
terminal from this table. If the request cannot be processed lo-
cally (either the "load" or "startup" service call fails due to

lack of room), then an RRSTART request is sent +to the resource

manager with the next higher machine number (modulo 5), as deter-
mined from "rmtab". The RRSTART request has all the information
of the RMSTART request (including the same enclosed 1link, 1if
any), plus the client's process identifier and terminal number,
which would not otherwise be known to the second resource
manager., The second resource manager tries likewise to initiate
the child process, and if it also fails, sends the request on
further. The identifier of the child includes its machine number
as its lowest three bits; if the RRSTART returns to the <client's
resource manager, it is recognized as a failed request. It may
be sent around once more (if the original method involved the
GENTLY mode) but, in any case, the buck stops somewhere, either
with success or failure. A reply (if required) is sent to the
client from the resource manager where the algorithm stops.

The routines "rmstart" and "rrstart" are invoked for RMSTART
and RRSTART requests, respectively. Each of these routines com-
putes the client's process identifier and terminal number in 1its
own way and then calls "rawstart". Another argument to "raws-
tart" tells whether the load should have GENTLY or ROUGHLY mode.
An RRSTART message received at the client's machine is recognized
by "rrstart"; if the mode was GENTLY, "rawstart" is now <called
with ROUGHLY mode; if the mode was ROUGHLY, a negative reply is
sent to the client. TIf the load doesn't succeed locally and
there are no other machines, "rawstart" similarly calls itself
with mode ROUGHLY (if the mode was GENTLY), or sends the user a
negative reply (if the mode was ROUGHLY).

The routine "getimage" loads a program. A "stat" checks that

the file is a publicly executable load-format file and computes
its date of last modification. If no acceptable copy already re-
sides locally, a new one is loaded. 1If "imagetab" is full, an
unused image is removed (in ROUGHLY mode). The procedure "make-
room" is used to remove unused images. Unused images are also
removed (in ROUGHLY mode) until there is room for the new image
to be loaded. Images are removed in ascending order of their in-
dex 1in "imagetab". When a new image is loaded, "imagetab" is up-
dated accordingly. Future developments should prevent loading if
a colleague has a useable copy, and removal of images should
perhaps use some other algorithm.

The routine "newproc" starts a process. The new process is
given a link to the resource manager on channel 1; this link has
type REQUEST and TELLDEST, and its code is the new child's index
in "proctab”. If the start succeeds, the corresponding "count"
field in "imagetab" is incremented, and an entry 1is made 1in
"proctab". If the start fails because there was no room for the
process's stack, then "makeroom" is called, as in the case of
"getimage" described above. The lowest three bits of the child's
process identifier tell the machine number; the wvariable "uni-
quecode" generates unique process identifiers. If the child is

to be "DETACHED", its lifeline is destroyed.

10

1.6 Process termination

The "rmarg" field of an RMKILL request tells the process
identifier of the victim. The resource manager figures out which
colleage hosts the victim by looking at the lowest three bits,
and then either completes the request 1itself or forwards an
RRKILL request to the appropriate colleague. The RRKILL request
contains the process identifier of the client, which otherwise
wouldn't be known to the colleague and which is needed to check
that the client has permission to kill the victim. The routine
"rawkill" checks this permission and then performs the kill; the
victim's 1lifeline 1isn't destroyed (yet). There's nothing to
prevent the parent of a FOREGROUND process from performing a kill
if it correctly guesses the child's process identifier.

When a client terminates, naturally or otherwise, the
resource manager receives a DESTROYED message on its link and
calls "procdie". The client's entry in "proctab" is deleted by
setting the ‘"proctype" field to UNUSED, except for FOREGROUND
processes (see further discussion below). The corresponding
"count" field in "imagetab" is decremented. The process's parent
link and/or lifeline are destroyed if the resource manager still
holds them.

The termination of a colleague is similarly detected. The

routine "rmdie" updates "rmtab" accordingly.

11

1.7 Terminal links

When a request for a terminal link is received over channel
1, the corresponding "ttypeno" field in "proctab" is compared to
"owntt" to see if the local terminal link is desired. If not,
the routine "gettt" is used to ask the appropriate colleague for
a copy of its terminal 1link. RMTTREQ requests received over
channel 2 (i.e., from a colleague) are always given a copy of the

local terminal link.

1.8 FOREGROUND processes

One linked list of FOREGROUND processes 1is associated with
each terminal; at most one terminal is owned by each resource
manager. The process that "has the ball" (will be killed by the
next Control-C) is at the head of this list, and it points to the
next process to "get the ball". Segments of this 1list reside
physically on each machine; each list logically threads its way
among several machines.

Two fields in a process table entry are relevant to this dis-
cussion. The field "parentno" is the process identifier of the
process's parent; the last three bits of this number tell the
parent's machine number. The field "parentp" is the index in
"proctab" of the next local item in the FOREGROUND list. When a
process's successor is on the same machine, "parentp" points to
it, and the last three bits of "parentno" are the machine 1id;
when a process's successor is on another machine, the last three

bits of "parentno" tell which machine to go to next, and

12

"parentp" tells which local process comes next when the chain re-
turns to this machine. Each terminal chain in each resource
manager has a special header node containing two fields: "fore-
top" gives the index of the first item in the process table
(i.e., it corresponds to a "parentp"), and "theball" is a Boolean
that tells whether this machine (i.e., the process indicated by
"foretop") "has the ball"™. A null pointer value for "parentp" or
"foretop" is indicated by -1.

When a resource manager receives an RMSTART request with
FOREGROUND mode, "rmstart" checks that the client "has the ball"
and turns off its "theball” flag. If the 1load doesn't succeed
locally, "rawstart" sends an RRSTART message as usual. Wherever
the load succeeds, the routine "newproc" will turn on the "the-
ball" flag, and insert the new process at the head of the ap-
propriate list. The routine "telltt" is used by “"rawstart" to
send a TOKILL message to a terminal driver (local or not), so the
terminal driver will know which process now "has the ball". I1f
the start fails, the resource manager that initiated it notices
the request returning (perhaps for the second time); 1its “the-
ball"™ flag 1is turned back on by "rrstart", so the process that
previously "had the ball" still does.

When a FOREGROUND process dies, "procdie” marks the
corresponding "proctype" entry in "proctab" as DEFUNCT, rather
than UNUSED. The "parentno" and "parentp" fields are still
relevant, so the item is still linked up. These DEFUNCT items
are cleaned off as FOREGROUND processes die in the "proper" se-

guence. Specifically, when the process "with the ball" dies,

13

"procdie" turns off the "theball" flag and calls "rrpass" to
clean off DEFUNCT processes at the head of the FOREGROUND list so
long as they point to other processes on the same machine. If a
non-DEFUNCT process is reached in this manner, it then "has the
ball"; the "theball" flag is turned on, and "telltt" is wused to
send an appropriate TOKILL message to a terminal driver. On the
other hand, if the list points to another machine, an RRPASS mes-
sage 1is sent to the appropriate colleague. When a resource
manager receives an RRPASS message, it also uses "rrpass" to
clean off DEFUNCT processes and/or "pass the ball".

Files
resource.u, resource.h

Data Structures

struct rmmesg { /* messages to resource managers */
int rmreq; /* type of request */
int rmarg; /* various miscellaneous arguments */

int rmmode; /* the mode for STARTs or KILLs */

long update; /* time field used between R.M.'s */

int parno; /* parent's proc. id., used by R.M.'s */

int ttno; /* a terminal number, used by R.M.'s */

} rmmess; /* contents of outmess, used implicitly */
struct { /* image table entry */

char fname[RMFNAMESZ]; /* file name */

long loadtime; /* time it was loaded */

int count; /* number of active processes */

int procmode; /* SHARE, REUSE, or VIRGIN */

int imageno; /* image, used for "start" or "remove" */

} imagetab[NBRIMAGES]; /* image table */
struct procnode { /* process table entry */

int proctype; /* FOREGROUND, BACKGROUND, DETACHED,
UNUSED, or DEFUNCT */

int parentp; /* an index in this table */

int parentno; /* process identifier of the parent */
int plink; /* link supplied by parent during start */
int location; /* index into the image table */

int lifeno; /* lifeline, used for "kill" */
int procid; /* its process identifier */

int ttypeno; /* its terminal number */

} proctab[NBRPROCS]; /* known process table */

Procedures
main(arg)
Initializes the resource manager for machine given in "arg",

14

executes a loop that receives and dispatches requests. The
argument also contains the bit NOTPAPA.

respond{n)
Sends a one-word response to the client. If it is a nega-
tive error indicator, destroys the link that client submit-

ted.
giveaway(elink, how)
Returns the "elink™ to the current client. "How" is either

"DUP" or "NODUP" to govern the disposition of that link.

int sendrm(n,elink,how)
Sends a message to another resource manager. "n" is the in-
dex of the resource manager to send it to, "elink", "how"
describe the 1link to enclose; "elink™ = ©NOLINK means to
really not send a 1link. Returns 0 on success, -1 on
failure; sometimes the caller cares.

cryout (message) char *message;
General-purpose error indication routine.

gettt(n)
Asks the resource manager on machine n for 1its terminal
link. Returns either the link or -1 for error.

telltt(tt,elink)
Tells terminal on link "tt" that its new killlink 1is "el-
ink".

loadfs()
Gets a file manager link from the original resource manager
and uses it to load a file manager on this machine.

loadtt ()
Loads a terminal driver on this machine and gets an output
link to it.

loadcil()
Loads a command interpreter on this machine; assumes there
is already a terminal driver.

initrm0 ()
Initialization specific to the original resource manager.
Finds the local time from Unix, loads the first f£ile manager
via a manual load, loads a terminal driver, gets an input
line to ask for the configuration, then decodes the confi-
guration and loads the other machines.

initrms(arg)
Initialization specific to non-original resource managers.
Informs the original resource manager; either loads a local
file manager and terminal or wuses 1links to the original
resource manager's copies.

rmstart()
Handles client request to start a new process. If FORE-
GROUND, insures the <client currently has the ball. Calls
"rawstart".

rrstart()
Handles request from another resource manager to do a start.
If the request has come full circle, either gives up or
tries roughly. Calls "rawstart".

rawstart(parent,ttype,how)
Tries to start a process on this machine. "parent" gives
the procid of the client who initiated it all, "ttype" gives

15

its teletype number, "how" is GENTLY or ROUGHLY, but matters
only inside "getimage". Calls "newproc".

rmkill ()
Handles client request to kill a process. Either directs
the request to the appropriate resource manager or calls
"rawkill",

rawkill (parent)
Checks if the parent has the right to submit this kill re-
quest; if so, submits a "kill" service call.

rrlink()
The papa resource manager has requested a link for a third
party. The third party's number is in "contents->rmarg";

the papa's number is "inmess.urcode". Prepares a 1link and
sends it.

rrinform()
Handles a new 1link given by a colleague. Establishes
knowledge of that colleague in the proper tables. During
recovery actions, the new information may disagree with the
old.

rrpass()
This resource manager has just been given the ball. Cleans
off the defunct part of the foreground stack, and if it be-
comes empty, sends the ball elsewhere.

rmdie()
Just found out that a colleague has died. Clears out en-
tries in "rmtab".

int getimage(name,mode,how) char *name;
Loads a new core image, and returns an index into imagetab.
If "how" = ROUGHLY, will also try to make room; otherwise
just hopes there is room, or a usable copy exists. The mode
is SHARE, REUSE, or VIRGIN. Returns -1 if the load fails.
Checks that the image is executable, and will not use an ex-
isting image with obsolete date. Discovers if the image is
an Elmer program.

int newproc{imagno,arg,parent,type,ttype)
Makes a new process by using the service call "startup".
Returns an index 1in the updated proctab or -1 for error.
"Imagno" is the index in imagetab for the ©process's Iimage,
"arg" is the argument to give the new process, "parent" is
the parent's procid, "type" is BACKGROUND, FOREGROUND, or
DETACHED, "ttype" tells which terminal to use. TIf the pro-
cess is in Elmer, opens its object file in order to give the
link to "startup".

procdie()
Cleans up after the termination of a client. If it was in
the foreground and had the ball, the ball is passed, possi-
bly to a colleague.

int getindex (i)
Returns the index in proctab for the process whose procid is
i.

int makeroom()
Makes room in the image table if possible, and returns the
index of an available slot. 1If necessary, core images of
terminated processes are removed. Returns -1 on failure.

16

drwrite(word)
Busy-waits until the DR-11 1line to Unix is ready, then
writes one word.

int drread()
Busy-waits until the DR-11 line from Unix is ready, then re-
turns one word read.

2. THE TERMINAL DRIVER

2.1 generQL

The code lies in "ttdriver.u". Processes using the terminal
driver should include "ttdriver.h" and "filesys.h". (The latter
contains macros used by both the terminal driver and file
manager.) It isn't necessary to include these if all communica-
tion is done by library routines.

The terminal driver gives its parent (usually a resource
manager) a REQUEST link on channel 1. All requests to open the
terminal for input or output come over this 1link or copies
thereof; also, the resource manager sends "TOKILL" messages over
this link. (See Section 2.8.) An "input 1ink" is used for
"read" and "readline" requests from the client; an "output 1link"
is used for "write" requests. Thus, the terminal driver accepts
data on its output links and supplies data on its input link. At
most one input 1link and NUMCODES (currently 5) output links may
be open. (Channel 2 is used for output, channel 3 for input.)
These links are of type GIVEALL but not DUPALL. Destruction of
such a link is interpreted as a "close" command. The holder of

the input link may also use it to request or change terminal

modes. (See Section 2.4.)

Input and output are interrupt-driven; the routines "ttin-
driv" and "ttoutdriv" are 1invoked at interrupt level when the
corresponding devices become ready. Initially, 1interrupts are
enabled and "handler"™ «calls set up the interrupt vectors. The
interrupt-level routines send "awaken" messages to the terminal
driver on channel 10. 1Interrupts are disabled at crucial times
by turning off the appropriate interrupt-enable bits in the dev-
ice registers. (since interrupt-level routines run at high
priority, this interrupt disabling is not strictly necessary.)
These interrupt-driven routines share data with the rest of the

terminal driver.

2.2 Overview of input

The Boolean variable "inuse" tells whether an input 1link is
open, The routine "readmsg" executes a "read" or "readline" re-
quest by calling "getchar" for one character at a time. A Boole-
an value 1is returned by "getchar"™ to tell if the character ter-
minates the current line; if so, the character returned is either
a newline, control-D, control-W, or null. The first three of
these are appropriately interpreted (depending on whether the
command is "read" or "readline"); the meaning of a null is ex-
plained in Section 2.8. At most MSLEN characters may be read at

a time; thus the reply will fit in one message.

18

2.3 Overview of output

The integer arrays "codes" and "bytesleft", each of size NUM-
CODES, keep track of output links. A zero entry in "codes" indi-
cates an unused link; otherwise links are given unique codes.
When a link is opened, the corresponding entry in "bytesleft" is
set to zero; when a write message 1is received, the indicated
length of the write is placed in "bytesleft"™. Subsequent mes-
sages over this link are interpreted as data to be written until
the write is completed. The routine "writemsg" is used to write
each portion; characters are written with the routine "sayfull”
(Section 2.5), except for carriage returns and newlines, which

are written directly by calling "sayit".

2.4 Requesting and changing console modes

The variable "modes" stores the current modes. When modes
are requested or changed, the routine "showstate" prints out the
"current" or "new" modes, respectively. The modes that can be
turned on and off are ECHO, HARD, UPPER, and TABS. A HARD termi-
nal cannot backspace its cursor legibly; and UPPER terminal can-

not enter lower case directly, and a TABS terminal has hardware

tabs.

19

2.5 Output buffer manipulation

The terminal driver uses a circular output buffer, "ttout-
buf", of size TTOUTBUFSIZE (150). Two variables are used as in-—
dices into "ttoutbuf®: "nxtoutch", which points to the next
available place to put a character into the buffer, and "out-
bufp", which points to the next character to take out. When
these indices are equal, the buffer is empty.

The routine "ttoutdriv" is called at interrupt level to write
a character. This routine returns without any action is "paused"
is true (Section 2.7). If "ttoutbuf" is nonempty, the next char-
acter is written to the terminal, with a delay specified in abso-
lute location 157702 (for debugging and connection to a slow Unix
port). After 1t 1is displayed, =sach newline is replaced in the
buffer by a carriage return rather than being removed; by this
device, <carriage returns are effectively appended to newlines.
Input interrupts are disabled while messing with the buffer (in
case ECHO mode is on).

The routine "sayit" puts one character into "ttoutbuf". If
doing so would £ill the buffer, "sayit" waits a second and tries
again. The variables "outpos" and "tabplptr" are significant for
echoing input; "sayit" sets them both to zero after a carriage
return or newline. 1In other cases "outpos" is incremented, ex-
cept that after a backspace it is decremented. While the buffer
is being changed, input and output interrupts are disabled (we
might be in ECHO mode).

The routine "sayfull” converts a character into a readable

(or audible) form and calls "sayit". If UPPER mode is on, a "!"
is placed before appropriate characters. Except for control-G
(bell), control characters are converted to the notation ""A",
etc. A rubout is converted to ""#". The array "tabplace" is
used to store the cursor position just before each tab, to allow
backspacing over tabs; "tabplptr" is an index in "tabplace". At
most TABNUM (10) tabs are stored. If TABS mode is off, a tab is
converted into several blanks, until "outpos" becomes a multiple
of 8 ("sayit" increments "outpos"). If TABS mode is on, the tab
character is sent directly to "sayit", and "outpos" is adjusted
accordingly.

The routine "sayback” is used when the console is in ECHO but
not HARD mode. Tt converts a given character into several back-
spaces, to undo the effect of "sayfull", and calls "sayit". Two
backspaces are required for control characters, (escaped) rubout,
and the UPPER mode escape sequences, except that none are needed
for bells. Other characters take one backspace, except for tabs,
which require a sequence of backspaces until "outpos" has been
decremented (by "sayit") to the appropriate value found in "tab-

place". Also, "tabplptr" is decremented.

2.6 Input buffers

The terminal driver uses a circular input buffer, "ttinbuf",
of size TTINBUFSIZE (100), and a circular buffer, "lineptr", of
size TTLINES (20). The entries in "lineptr" are indices in
"ttinbuf" that tell where lines begin; thus TTLINES is the max-

imum number of lookahead lines. There are two other variables

21

used as "ttinbuf" indices: “inbufp", which tells the next avail-
able spot to put a character into "ttinbuf", and "nxtchar", which
tells the next character to take from the buffer. When "nxtchar"
is one buffer location ahead of "inbufp", the buffer is full. To
permit intra-line editing, lines can only be removed from the
buffer when they have been "terminated". There are two variables
usaed as "lineptr" indices: "lastline", which tells the current
line being put into the buffer, and "nxtline", which tells the
line being removed. The buffer 1is empty when "lastline" and
"nxtline" are equal.

The routine "ttindriv" is called at interrupt level to read a
character. If "paused" 1is true, then only control-Q and
control-S will have any effect; all other characters are ignored
(Section 2.7). The Boolean variable "escaping" is true when the
next character is to have no special meaning; it becomes true
when the escape character 1is read and becomes false after the
following character. A character with no special meaning is
placed in the buffer by calling "putinbuf"; if the buffer is
full, the character is discarded and a bell is written by calling
"sayit". If there is room and ECHO mode is on, the character is
written by calling "sayfull"; for example, an escaped newline
will echo as ""J", which allows backspacing over it later. TIf
UPPER mode is on, appropriate translation takes place.

Various characters cause intra-line editing. A control-C is

echoed as the sequence

22

"C<bell><newline>
and isn't placed in the input buffer; see Section 2.8. An ERASE
character (rubout) causes the last character of the present line
to be removed from the buffer, using the routine "tkoutbuf". IE
the 1line wasn't empty and ECHO mode is on, the character removed
from the buffer is echoed, using "sayfull" in HARD mode and "say-
back" otherwise. In HARD mode, backslashes ('\') are placed
around a sequence of erased characters; when erasing begins, a
backslash 1s echoed and the Boolean variable "erasing" becomes
true; when erasing ends, a backslash is echoed and "erasing" be-
comes false. A KILL character (control-X) removes the entire
present line from the buffer. 1In ECHO mode, "??" is printed. 1In
HARD mode, a newline is also printed. 1If we are in ECHO but not
HARD mode, the KILL is treated as a sequence of ERASEs, until the
current line 1is empty; ¢thus the screen cursor returns to the
point where the line began.

A line is "terminated" by an (unescaped) control-D, control-
W, carriage vreturn, or newline, In the first two cases, the
character is put in the buffer but not echoed. In the last two
cases, a newline 1is put in the buffer and echoed. The routine
"termline" updates "lineptr"; if this buffer is £full, the 1line
termination is ignored. Whenever a line is terminated, the vari-
able "linecount" is reset to 0. This variable keeps track of how
many lines have been output to the terminal since the last time
the user entered a line. An "awaken" call is made in case
"getchar" (described next) was waiting for the buffer to become

nonempty. If this awaken is received in the terminal driver's

main loop, it is properly ignored.

The routine "getchar" takes a character out of "ttinbuf" and
also returns a Boolean value to tell if a line has just been com~-
pleted. (Thus, for example, escaped and unescaped newlines are
distinguished.) When a 1line 1is completed, "lineptr" is ap-
propriately updated. 1If the buffer was empty, "getchar" waits
for a message on channel 10 to indicate that the interrupt level
routine "ttindriv" has put a line into the buffer. (This message
might also indicate a control-C; see Section 2.8.) Input inter-

rupts are disabled when the buffer is in an awkward state.

2.7 Pause control

Pause control uses the commands control-S and control-9. In-—
itially, "scroll" is false. If a control-S is typed in this
state, "scroll" is set to true and "pause" is also set to true.
The effect is that output pauses until released, and it will con-
tinue to periodically pause every SCROLLLEN (18) lines. When the
terminal is paused, a control-S will cause it to be released for
the next 18 lines, but a control-Q will release it and turn off
scroll mode, so it will not stop again. Control-Q can also be

used to turn off scroll mode even if the terminal is not current-

ly paused.

2.8 Control-C actions

The variable "killlink" contains the lifeline along which a
kill should be performed upon receipt of a control-C. 1Initially,
"killlink" is set to -1 to indicate the absence of such a life-
line. The resource manager encloses such a lifeline in a "TO-
KILL" message to the terminal driver, received on channel 1.
When a lifeline is received, the Boolean variable "ctrlC" is set
to false.

The interrupt level routine "ttindriv" notices when a
control-C 1is typed. If "ctrlC" was false and "killlink" was
non-~negative, "ctrlC" is set to true and a message is sent to the
terminal driver on <channel 10 with an "awaken"™ call. While
"ctrlC" is true, all messages received on channels 2 and 3 are
ignored and any links enclosed in such messages are destroyed.

The message on channel 10 is received either in the terminal
driver's main loop or in the routine "getchar", which was waiting
for a non-empty input buffer. In either <case, the routine
"chkctrlC" performs the kill if "ctrlC" is true, flushes all out-
standing messages on channel 10, and reinitializes "killlink" and
the input and output buffers. Any lame-duck messages on channels
2 and 3 will be ignored because "ctrlC" is still true. A Boolean
value 1is returned by "chkctrlC" so that "getchar” knows that the
message was a control-C indicator rather than a non-empty buffer
indicator.

After a kill is performed, control must return to the main

loop. If the message had been recelved inside "getchar", the

value returned is the null character as a line terminator. This
special case is recognized by "readmsg” which then returns to the
main loop without completing its read request; the link enclosed

with that request is destroyed.

2.9 Pausing and continuing

When an unescaped control-S is read, the variable "paused" is
set to true. When an unescaped control-Q is read, that variable
is reset to false and the output interrupt enabling is toggled to
restart the output-interrupt driven routine "ttoutdriv". That
routine returns without any action if "paused" is true.

Files
ttdriver.u, ttdriver.h, filesys.h

Data Structures
char ttinbuf[TTINBUFSIZE]
Circular input buffer filled by ttindriv, emptied by
readmsg.
int lineptr[TTLINES]
Circular buffer of ttinbuf indices that point to beginnings
of lines.
char escaping
Boolean; set by ESCAPE, reset by next character.
char erasing
Boolean; true during a sequence of ERASES; only used in hard
copy mode.
char modes
Bits used: ECHO, TABS, HARD, UPPER.
int tabplace[TABNUM],tabplptr
Remembers where tabs were.
char ttoutbuf[TTOUTBUFSIZE]
Circular output buffer. Filled by sayit, emptied by ttout-
driv,.
int codes[NUMCODES]
Currently active output lines.
int bytesleft[NUMCODES]
Used to keep track of pieces of different write messages.
int killlink
Tells the ttdriver whom to kill on "C.

Procedures
main(dev)
Initializes tables, provides parent with a request 1link,

prepares to use terminal whose device register is at "dev".
Executes a loop that receives and dispatches client re-
quests.,
readmsg (len,how)
Reads "len" characters, using routine "getchar". At most
MSLEN characters are read. Reading terminates 1if a

control-D is read. 1In the case that "how" is READLINE, any
line terminator (control-W or <cr> or <1f>) terminates read-
ing.

char getchar(ch) char *ch;
Gets a character from the input buffer and returns it 1in

"ch'. The returned value is Boolean: TRUE means the char-
acter returned ends a line.
ttindriv()

Called by "ttinint" when a character is ready; runs at in-
terrupt level. Reading a control-C causes an "awaken" ser-

vice call, ERASE or KILL cause intra-line editing. Line
termination 1is caused by control-D, control-W, <cr> (con-
verted into <1£>) and <lf>. Termination causes an "awaken"

service call. The input buffer is updated, and the input is
properly echoed.

char putinbuf(ch) char ch;
Puts the given character into the input buffer. It returns
TRUE only if there was room in the buffer.

char tkoutbuf(ch) char *ch;
Removes last character of current line from buffer. Returns
TRUE only if something was there. The character is returned
in "ch".

termline()
Called at interrupt level to cause an "awaken" and to reset
buffer pointers.

resetbuf ()
Removes the current line by resetting an 1input buffer
pointer.

writemsg ()
Decodes a write message from a client. If it is the header
of several packets with data, variables are initialized to
receive the data. 1If data have arrived, they are placed in
the output buffer by "sayit" and "sayfull".

char chkctrlC()
If a control-C has been received, all awaken messages are
flushed, a service <call "kill" 1is performed along the
killlink, and the routine returns "TRUE".

closeinput()
Reduces the count of input lines in use.

closeoutput ()
Resets the appropriate output line information.

openline(how)
Handles a client request for a new input or output line, as
described by "how". Appropriate variables are initialized.

reply(retcode,size) char retcode;
Reports "retcode" to the current client. The "size" parame-
ter tells how much of the standard message buffer has been
filled with other useful information that the <client must

27

also receive. The reply code is put in the first byte.
showstate(when) char *when;
Prints the current modes on the terminal with an introducto-
ry message determined by "when".
sayit(ch) char ch;
Puts one character in the output buffer and adjusts position
variable "outpos" accoringly. This routine is used both for
input and output echoing.
sayfull(ch) char ch;
Uses "sayit" to provide a readable form for any character
according to the current modes.
sayback(ch) char ch;
Prints as many backspaces as necessary to obliterate the
full printing of character "ch" under current modes.
ttoutdriv ()
Called at interrupt level. Walits a standard delay to slow
down the terminal and then sends one character from the out-
put buffer to the terminal. Line feeds are followed by car-
riage returns. Returns with no action if "paused" is true.
ttyflush()
Removes any character waiting in the terminal input buffer.
inflush()
Clears out the entire input buffer.
outflush()
Clears out the entire output buffer.

3. THE COMMAND INTERPRETER

3.1 General

The command interpreter is a FOREGROUND process that executes
commands typed at its console. The command interpreter may start
another FOREGROUND process, which communicates with the command
interpreter to get command-line arguments.

The command interpreter is compiled by executing "makecom-
int", which compiles and links together three files to produce
"comint". The three source files are: "comint.u", which handles
command line parsing, "comutil.u", which contains routines to ex-
ecute most commands, and "comrun.u", which executes the "run"

command.

3.2 Initialization

The command interpreter acquires a file manager link, a ter-
minal driver 1link, and terminal input and output links from the
resource manager. The terminal driver link is only used to re-

gquest or change console modes; initially, the command interpreter

sets these to "ECHO",.

3.3 Command line parsing

A line is input with a "readline" call and converted into a
null-terminated string. The line is truncated to LINEMAX-1 char-
acters (LINEMAX is 200).

The routine "findargs" scans the input 1line, separating it
into arguments. Sequences of characters enclosed in quotes are
left alone, with the quotes deleted. The Boolean variable "quot-
ed" is true during this process. Two consecutive quotes encoun-
tered while "quoted" is true are converted into one quote and do
not turn off "quoted". When "quoted" is false, a blank or tab is
converted into a null to terminate an argument. Any immediately
following blanks or tabs are ignored; the Boolean variable "spac-
ing™ is true during this process. At the beginning of the 1line,
"quoted" is false and "spacing” is true. The array "argvec" re-
turns pointers to the argument locations; an entry 1is made in
"argvec" when "spacing" changes from true to false. The variable
"argcount"” tells the number of arguments; it is incremented when

"spacing" changes from false to true or at the end of the line if

"spacing" is false.

If there are no arguments, no action 1is taken. Only the
first MAXARGS (10) arguments are used; the rest are ignored.

The routine "lookup" searches a list of character strings to
find those whose initial segments match a given string argument.
The list format is an alphabetically sorted array of character
strings alternating with corresponding codes (integers), and with
pseudodata sentinels at each end. Two pointers into the table,
"low" and "high", start at opposite ends and move toward each
other as the argument is scanned. As each character in the argu-
ment is examined, "low" moves up the table so long as this char-
acter 1s larger than the corresponding ones in the table at which
"low" points; "high" does the reverse. The process stops if the
argument is exhausted or if "high"™ and "low" pass each other. 1In
the latter case, there is no match. 1In the former, there are one
or more matches; "low" and "high" are equal or not accordingly.

The first argument on the command line is deciphered as a
command by calling "lookup" with the table "commands". If there

is a unique match, the appropriate action is taken.

3.4 Command execution

The "background" command starts a process with modes "BACK-
GROUND"™ and "REUSE" and passes the given argument as an integer.
An answer 1s received from the resource manager and the new
process's process identifier is printed. The new process is not
given a link to the command interpreter.

The "copy" and "type" commands are translated into "run copy-

file" commands. The program "copyfile" is an independent program

30

that copies one file to another, with the terminal as the default
for the second file.

The "directory" command executes a "stat" on the 1indicated
file and prints selected portions of the information returned.

The "make" command "creates" the indicated file and performs
"read" commands for IOBUFSIZE (100) bytes at a time from the ter-
minal. After each "read", a "write" is done to the file; final-
ly, the file is closed. The end is indicated by a "read" return-
ing less than 512 bytes; thus, if the input has exactly 512 bytes
(or a multiple thereof), it must be terminated by an extra
control-D.

The "run" command starts a process with modes "FOREGROUND"
and "REUSE" and passes as an argument the number of command line
arguments. The resource manager is given a REQUEST link for the
child and the terminal input link is closed so that the child may
open it. Command line arguments are sent to the child when re-
quested. The command interpreter assumes that the child has ter-
minated when the REQUEST link is destroyed; it then reads the
next console command. Tf the start fails, the command inter-

preter waits for the REQUEST link to be destroyed before continu-

ing.

The "set" or "SET" command first requests the current modes,
which causes the terminal driver to print them. The command line
arguments are then deciphered individually; a "-" prefix Iis
remembered with the Boolean variable "notflag" and the command
itself is decoded by calling "lookup" (Section 3.3) with the

table "modetab". When a mode is recognized, the current mode

31

specification is altered accordingly. Finally, the modes are
changed, and the terminal driver prints the new modes.

The "time" command, if given an argument, sets the time by
calling "datetol” and "setdate". The argument is only checked to
see that it has ten characters, and =zeroes are added for the
number of seconds. With or without an argument, "time" finally
prints the current time, which is done by calling "date" and
"ltodate".

Files
comint.u, comutil.u, comrun.u, comint.h

Data Structures
char *commands|]
Holds the known commands paired with an internal distin-
guishing code. The array must be in alphabetical order.
char *argvec[MAXARGS]
The arguments to started processes are stored here.
char *modetabl]
A table of terminal mode names to be used with the routine
"lookup".

Procedures

main()
Initializes tables, acquires file manager and terminal
driver 1links, then executes a loop that accepts commands
from the terminal and dispatches them.

int findargs(line) char *line;

"Line" 1s null-terminated (without final newline) and
doesn't contain any embedded nulls. Puts pointers to the
beginnings of arguments into the array "argvec" and the

count of how many were found into the global "argcount".
Terminates the arguments with nulls. Spaces and tabs are
considered delimeters unless they appear in quotes ("). Two
consecutive quotes inside quotes are considered one quote.
Other quotes are stripped.

lookup(str,table,tablesize,result) char *str, **table; int
*result;
Looks up character string "str" in "table". Sets result[0]
and resultl] such that table[result[0]],
tablel[result[0]+1], ... , tablelresult[1]] all have "str" as
an initial segment. If result[0]>result[l], there was no
match. Assumes that table[0], table[2], ... are strings
kept sorted in alphabetical order, and table[l], table[3],
... are other data to be ignored in lookup. Assumes further
that tablel[0] is guaranteed to compare low and
table[tablesize-2] is guaranteed to compare high with "str".

32

int intype(fname) char *fname;
Handles a "make" command. Accepts input from the terminal,
creates a new file with name "fname" and puts all input on
that f£ile. Returns 0 on success, -1 on failure.

dir(fname) char *fname;
Handles a "dir" command. Uses the file manager to read the
directory information from a file, and prints it on the ter-
minal.

setmodes()
Handles a "set" command. Uses "lookup" to find what modes
are requested, and communicates with the terminal driver to
establish those modes.

printtime()
Handles a "time" command. Finds the current time with the
service call "date" and the library routine "ltodate", then
prints the result.

settime(s) char *s;
Handles a "time" command with an argument. Uses the library
routine "datetol" and the service call "setdate" to change
the kernel's date.

int runback(fname,arg) char *fname;
Attempts to run the file "fname" as a background process,
handling the "back" command. It returns the process id of
the new process or -1 on failure.

killback(procid)
Sends a note to the resource manager to kill the process
whose identifier is "procid". Handles the "kill" command.

int run(fname,argc,arg0) char *fname;
Handles the "run" command. Attempts to load and run the ex-
ecutable file named by "file". Returns 0 on success. If
"argc" > 0 then wuses "arg0" and following arguments to
satisfy requests for arguments instead of arguments from the
command line. Executes a loop that waits for requests from
the child for arguments until the child terminates.

4. THE FILE MANAGER

4.1 General

The file manager forwards requests from other processes to
the demon running on the PDP-11/40 where they are implemented
under Unix. (See Section 5 for details on the demon.)

The code lies in "filesys.u"; all processes using the file

manager should 1include "filesys.h". (It isn't necessary to in-

33

clude "filesys.h" if all communication 1is done by 1library
routines.,)

The word-parallel line used to communicate with the PDP-11/40
uses three registers at 1location DR11.40 (octal 167770). Aall
reading and writing use busy waits. More details are found in
the file "io.h".

The file manager initially gives a REQUEST link to its parent
(usually the resource manager) with channel 1. Aall "open",
"create", "alias", "unlink", and "stat" requests come over this
link or copies thereof. When a file is "opened" or "created", a
new link with channel 2 is enclosed with the reply. This 1link
will be wused for "read", "readline”, "write", and "seek" re-

quests; its destruction indicates a "close" request.

4.2 Execution of requests

The file manager executes most requests by receiving a mes-
sage from the «client, writing a request over the word—-parallel
line to the PDP-11/40, reading the reply from the word-parallel

line, and sending it to the client.
Requests on channel 1 contain file names. These are communi-

cated over the word-parallel line by first writing the length and

then the name. The routine "rawopcr" 1is used by "open",
"create", Malias", and "unlink" to send a request to the demon
and receive a one-word reply to be forwarded to the client. In

the cases of successful "open" or "create" calls, a new link with
channel 2 is enclosed with the reply; the code for this 1link is

the same as the value returned to the client (a Unix file

34

descriptor). This new link is of type GIVEALL but not DUPALL.
The routine "rawstat" is used by "stat"; it reads 38 bytes fron
the demon. The first word tells whether the stat was successful;
either 0 or 36 bytes are forwarded to the client accordingly.

A request on channel 2 refers to an open file; the file
descriptor for this file is the code of the link. The routine
"rawread" forwards a "read" or "readline" request to the demon
and reads the reply. An integer telling how many bytes were ac-
tually read comes first, followed by the bytes themselves. The
bytes read are then forwarded to the client. No more than MSLEN
bytes should be read at a time, so that one message suffices for
the reply. The routine "rawseek" similarly treats "seek" re-
guests, except that only one word is read from the demon, and
then forwarded to the client.

When a file is opened for writing, the corresponding entry in
the array "bytesleft" is set to zero. ("Bytesleft" is indexed by
file descriptors.) When a "write" request is received on channel
2, the indicated length for the write is inserted in "bytesleft".
Further messages on the same link are taken as data to be written
(MSLEN bytes at a time) until the write is completed. As each
portion is received, the routine "rawwrite" sends it to the demon
and waits for an acknowledgment before proceeding. No reply is
given to the client.

When a link on channel 2 1s destroyed, a "close" message 1is
sent to the demon. No response is read from the demon, and no
reply is made to the client.

Files
filesys.h, filesys.u, io.h

35

Procedures

main{)
Initializes tables, then executes a loop awaiting client re-
quests and dispatching them.

rawstat(name,replylink) char *name;
Handles a "stat" request. The file "name" is sent to the
demon. Its answer is returned to the client; failure is
marked by an empty message.

int rawopcr(file,mode,how) char *file;
The argument "how" is OPEN, ALIAS, UNLINK, or CREAT. A mes-
sage 1is sent to the demon to do the appropriate action to
"file". The "mode" is the same as Unix mode for files. The
file descriptor given by the demon is returned.

rawread (rwfd ,buf ,bytes) char *buf;
Reads "bytes" bytes from the file whose descriptor is "rwfd"
into "buf", which must be on a word boundary (even).

readdr (buf,rwlen) int *buf;
Reads ceiling(rwlen/2) words from the DR line to Unix into
"buf", which must be word-aligned (even).

writedr(buf,rwlen) int *buf;
Writes ceiling(rwlen/2) words to the DR line to Unix from
"buf", which must be word-aligned (even).

rawclose(usrcode)
Handles a client "close" request. Sends a note to the demon
to close the file whose descriptor is "usercode”.

rawwrite(rwfd,buf,bytes) char *buf;

Handles a "write" request from a client. Gives the demon
data from "buf" of 1length "bytes" to be placed in file
"rwfd".

int rawseek(skfd,offset,mode)
Handles a "seek" request from a client. Sends a note to the
demon to do the given seek ("offset" and "mode" mean the

same as in Unix) to file identified as "skfd". Success re-
turns 0; failure ~1.

5. THE DEMON

5.1 General

The "demon" is a program that runs on the PDP-11/40 under

Unix. Its code is in "demon.c". Roscoe processes that communi-

cate with it must include "demon.h".
For each LSI there is an associated demon. This demon reads

from a word-parallel line connected to that LSI; the Unix names

36

for these lines are "/dev/drx", where ¥ = 0,...,4. Commands are
translated 1into —corresponding Unix system calls and appropriate
responses are written to the word-parallel line. All user pro-
cess communication at the LSI side of the fence is done by the
file manager (Section 4).

Each message sent in either direction on the word-parallel
line is preceded by at least one header word of "NONSENSE" (octal
125252). After the header word(s), the next three words of a

message to the demon have the following structure:

struct {
int command,code,length;
}
The number of bytes remaining in the message is "length". These

remaining bytes are usually a file name, in which case they will
subsequently be read into the character array "fname", of size
MAXNAME ~ (40) . The value returned oyer the word-parallel line is
usually a single word (after a word of "NONSENSE").

The demon sits in an infinite loop awaiting messages. When a
message is received, the appropriate action 1is taken, as
described in further subsections. The routine "getstr" 1is wused
to read from the word-parallel 1line; it rounds the number of
bytes up to an even integer and watches out for errors due to
terminal interrupts. The routine "signal" is called to catch
terminal interrupts, which otherwise plague all Unix processes

started at a given terminal.

37

5.2 DALIAS command

The string "fname" is split into two pieces to become the two
arguments for the Unix call "1link". The length of the first sub-
string is "code". The effect of "1link" is to make its second ar-
gument an alias for the first one. The value returned by "link"

is passed on.

5.3 DCLOSE command

file descriptor "code" is closed (Unix call "close"). No

message is returned.

5.4 DCREAT command

The file "fname" is created (Unix «call "creat") with mode

"code". The value returned by "creat" is passed on.

5.5 DOPEN command

The file "fname" is opened (Unix call "open") with mode

"code". The value returned by "open" is passed on.

5.6 DREAD command

For this command, "length" tells the number of bytes to read
from file descriptor "code", using the Unix call "read". This
length is truncated to "BUFLEN" (512). The first word of the re-—
turn message is "code". The second word is the value returned by
"read", which tells the number of bytes actually read. The bytes

read are written next; if "read" returns -1 (error), nothing else

38

is written. A garbage byte will exist at the end if the number

of bytes actually read was odd.

5.7 DREADLINE command

This command is identical to "DREAD", except that the Unix
call "read" is used for one byte at a time. If a "newline" char-
acter is encountered, it is considered part of the returned text,

and reading stops.

5.8 DSEEK command

A Unix call "seek" is performed on file descriptor "code".
The offset for the "seek"™ call is "length"; the mode for the
"seek" call is the next word read from the word-parallel line.

The value returned by "seek" is passed on.

5.9 DSTAT command

A Unix call "stat" is performed on file "fname". The first
word of the return message is -1 for failure, 36 for success. In
either case, 36 additional bytes are written; if the "stat" suc-

ceeded, these bytes are the desired information.

5.10 DTIME command

A Unix call "time" is performed to return a double word. The
first word of the return message is 0; the next two words are the
result of the "time" call. This command 1is only wused by the

resource manager during Roscoe initialization.

39

5.11 DUNLINK command

A Unix call "unlink" is performed on the file "fname". The

value returned by "unlink" is passed on.

5.12 DWRITE command

The rest of the incoming message is read into "writebuf"; the

length of this text is "length", truncated to RBUFLEN (512) bytes.

This text is then written to file descriptor "code", wusing the
Unix call "write". The value returned is "code" if "write" re-
turned success; otherwise, the value returned is "code" times

minus one.

6. LIBRARY ROUTINES

All the files 1in this section are in the directory
"/usr/network/roscoe/library". The object code is archived in
"libr.a".

6.1 File manager routines

These routines communicate with the file manager (Section 4) .
The routine "opcreat" is used by "open", "create", "alias",
"unlink", and ‘“stat" (the sources reside in "opcr.u", "open.u",
"create.u", "alias.u", "unlnk.u", and "stat.u", respectively) to
send a command and file name to the file manager over the given
file manager link. Another argument, "mode"

, has wvarious mean-

ings for "open", "create", and "alias" calls. 1In the case of

40

"stat", an additional argument represents a REPLY 1link that is
passed to the file manager. The routine "stat" receives a
response over this link and copies the 1information 1into the
designated buffer. 1In the other four cases, "opcreat" waits for
a response from the file manager and gives a return value accord-
ingly (this wvalue is a link number after a successful "open" or
"create"). The routine "alias" concatenates its two file name
arguments before calling "opcreat"; "mode" is then the length of
the first name, to eventually be decoded by the demon.

The routine "close" (in "close.u") is synonymous with "des-
troy".

The routine "someread" (in "somerd.u") is used by both "read"
and "readline" (in "read.u" and "rdln.u", respectively). The ap-
propriate command is sent over the given link (to either the file
manager or terminal driver). All reads are split up into indivi-
dual requests for MSLEN bytes at a time. The responses for the
portions of the read are copied into the given buffer.

The routine "seek" (in "seek.u") sends an appropriate message
to the file manager over the given link, and waits for a reply.
Success is reported by a zero in the first word of the reply mes-
sage.

The routine "write" (in "write.u") sends the appropriate
header message over the given link (to the file manager or termi-
nal driver) and then sends the data in subsequent messages MSLEN
bytes at a time. ©No reply is awaited, and no value is returned.
The routine "print" (in "print.u") is similar to the Unix printe€

routine. It edits the output string and calls "write". A linear

41

buffer, "prbuf", of size PRINTBUFSIZE (100), is used. The format
string 1is scanned and the routines "printint", "printlong",
"printoct", and "printstr" are called to handle the conversions
for "&d", "sw", "%o", and "%s" format items, respectively. Both
"printint” and "printlong" check for the sign, take absolute
value, and use division by 10 (recursively), although "printlong"
uses long arithmetic. The routine "printoct" always produces six
characters; it first checks the sign bit, and then inspects three
bits at a time with an appropriate shift. 1In all cases "printch"
is used to put characters into "prbuf" and to call "write" when

the buffer is full. The buffer is also flushed at the end.

6.2 Resource manager request routines

The routines "fsline" and ‘"parline" (in "fsline.u" and
"parlin.u") ask the resource manager (Section 1) for the ap-
propriate link and return the enclosure. The routines "inline"
and "outline" (in "inline.u" and "outlin.u") first ask the
resource manager for a terminal 1link, then ask the terminal
driver for the appropriate line, and finally return the enclo-
sure.

The routine "fork" (in "fork.u") sends a start message to the
resource manager, conveying the file name, argument, and mode,
but always specifying ANSWER. A link is given to the <child of
type REQUEST, GIVEALL, and TELLDEST. The first word of the reply
message is returned; in particular, this word 1is the process
identifier for a BACKGROUND child. 1If the start failed, "fork"

waits for the given link to be destroyed.

42

The routine "killoff" (in "killof.u") conveys the kill re-
quest to the resource manager, gets a reply, and returns the

first word of the reply message.

9.3 Roscoe service calls

The Roscoe service call 1interface 1is the assembler file
"lib.s". For each call, an appropriate magic number is placed in
register 1 and a jump is made to the Roscoe entry point "sys"
{(octal location 1002). Arguments are left on the stack; the ker-

nel takes it from there.

6.4 Miscellaneous

The routine "atoi" (in "atoi.u") converts a string 1into an
integer.

The file "call.u" contains "call" and "recall". The routine
"call" sends a message as indicated, encloses a REPLY link, puts
the REPLY link's code into the global variable "unique", and in-
vokes "recall". The latter receives a message with a five second
delay, and checks that the incoming message has the proper code

{("unigque") and note ("DATA").

The assembler file "reset.s" contains "setexit" and "reset".
The routine "setexit" saves register 5 and the old program
counter in global locations "sr5" and ‘"spc". The routine

"reset", by restoring these, effects a return to the environment
which last called "setexit".
The file "user.h" contains various macros freely referred to

in this documentation. For the user's convenience, it also de-

43

fines TRUE (all 1's) and FALSE (all 0's) and the following struc-
tures:

struct {char lowbyte,highbyte;};
struct {int wordl,word2;};

The file "time.u" contains the routines "datetol" and "lto-
date", which convert character strings into 1long integers
(representing seconds since the beginning of 1973) and vice ver-
sa, respectively. The array "calendar" contains the number of
days preceding each month in a leap year, with pseudodata "366"
as a thirteenth entry. Character string arrays store the days of
the week and months of the year. The macro FOURYEARS gives the
number of days in a four-year period. The first step of "da-
tetol" is to convert the given string, with format "yymmddhhmmss"
into an array of six two-digit integers. Arrays "lbound" and
"ubound" are used to check that these integers are reasonable.
Sizes of months are also checked by subtracting the appropriate
consecutive entries in "calendar". The number of days is calcu-
lated by computing the number of four-year intervals beginning
with 1973 (and multiplying by FOURYEARS), then adding on the
proper (0-3) number of (non-leap) years (times 365), then adding
on the month offset as found in "calendar", and finally adding in
the day of the month. For non-leap years, February 29th is
caught as a mistake, and any day occurring later in the year Iis
decreased by one. Finally, hours, minutes, and seconds are added
on. The reverse process is carried out by "ltodate". Seconds,
minutes, and hours are first removed. The day of the week is
computed from the number of days modulo 7. Division by FOURYEARS

determines the four-year period; the remainder determines the ex-

44

act year and day within the year, with a remainder of (4*365) re-
pesenting December 31st of a leap year. 1In a non-leap year,
conversion (to the proper format for "calendar") is performed by

increasing by one any day of the year larger than 58. (February

28th remains 58; March 1st is bumped to 60; etc.) The month is
calculated by dividing the number of days by 30; the answer may
be too large by one and is corrected by inspecting "calendar".

As the result is computed, it is edited into a character string.

REFERENCES

Finkel, R. A., Solomon, M. H., The Roscoe Kernel, University of

Wisconsin -- Madison Computer Sciences Technical Report
#337, September 1978.

Solomon, M. H., Finkel, R. A., ROSCOE -- a multiminicomputer
operating system, University of Wisconsin -- Madison Comput-
er Sciences Technical Report #321, September 1978.

Tischler, R. L., Solomon, M. H., Finkel, R. A., ROSCOE User
Guide, University of Wisconsin -- Madison Computer Sciences
Technical Report #336, September 1978.

