ROSCOE USER GUIDE
Version 1.0
by
Ron Tischler
Marvin Solomon
Raphael Finkel

Computer Sciences Technical Report #336

September 1978

ROSCOE USER GUIDE
Version 1.0

September 1978

Ron Tischler
Marvin Solomon
Raphael Finkel

Technical Report 336

Abstract

Roscoe is a multi-computer operating system running on a
network of LSI-11 computers at the University of Wisconsin. This
document describes Roscoe from the viewpoint of a user or a writ-
er of user-level programs. All system service calls and library
routines are described in detail. 1In addition, the command-line
interpreter and terminal input conventions are discussed. Com-
panion reports describe the purposes and concepts underlying the
Roscoe project and give detailed accounts of the Roscoe utility

kernel and utility processes.

w N —

DN NN
IOV EWw N -

OO OUEWN -

.10

TABLE OF CONTENTS

INTRODUCTION . v v v v vttt v e sasansonessnssnaassssasssossess 1
Purpose of this Document.........coiiiiiviiiinnnn 2
CAVEAL s e vttt e v eoeonsssnnesssssnsesosnssssonsssessss 3
Format of this Guide.... ittt eeronennsosns 3
ROSCOE CONCEPTS AND FACILITIES. .t iinieitceenns 3
Links and MeSSageS.u.eeeeeesoseenoessnsnsnsancnsseas 7
P O C S S S vt e vt s s v eeennoaesssssssssssasssossosenassas 1
T 1+ 1= 8
Interrupt Level Programming............cceeeueennnens 8
Input/OULpPUL .t ettt i i i i it s 9
Miscellaneous ROULINES ...ttt tnnensnasensonsonns 10
Preparing User ProgramsS.......coeeeeieienncnnanacnes 10
ROSCOE PROGRAMMER'™S MANUAL .. v v it ittt et en oo eson 10
Awaken (Service Call) ..o ioerttennenenansanaasens 10
Call (Library Routine)cciuieiiiniiieinnenerennns 11
Close (Library Routine)uviiiiiiiinoenennnenannenns 12
Copy (Library Routine)......uuiieriininnriinnennnnn 12
Create (Library Routine)ceiiiiiinneennreennnn 12
Date (Service Call) iuue e eeeeeenonessesansasesss 13
Datetol (Library Routine)......ceoviueiniiiinrnnnns 13
Destroy (Service Call) ...t nininiennnenrncncnanns 13
Die (Service Call) iueeeeeeerseenreneennnnnennesanans 14
Fork (Library Routine)uviiiie it einnenenonnnnsos 14
Fsline (Library Routine)oiiiiiiinenenenneeanens 15
Handler (Service Call) ..eeeiieeeoeneeanonssnesennsos 15
Inline (Library Routine)o 16
Kill (Service Call) ei v e inenionestonnnscanennenans 16
Killoff (Library Routine) ...t ineneaenns 16
Link (Service Call) cu vttt toennenononsosnoesons 17
Load (Service €all) e eree e rennaeennonsenaannons 18
Ltodate (Library Routine)iuiiiiiiiiinnrnenennnn 19
Nice (Service Call) v ettt ennneoooseoessssennenns 19
Open (Library Routine)uiiiiniininninnineeneanann 19
Outline (Library Routine)......oiiiiiiiieineenenannes 20
Parline (Library Routine)oeiiiiiineiniennnns 20
Print (Library Routine)ceuiiiiiiiiiiniennnnnren 20
Read (Library Routine)eceeeviininennencanrasens 21

Readline (Library Routine)ieee e eennrnncnns 21

wwwwwiwwwwiww

EEEEEEEREEEREF
WO~ OUTEWN) —

Oy

.10

—

Recall (Library Rouftine)eeevuieinienieneinnennnns 22
Receive (Service Call) cuee ettt treenennnennoasassas 22
Remove (Service Call) ..ot innenooeeasannnens 23
Seek (Library Routine)eieevininininneninenenennn 24
Send (service call) ieee e iineeieneesanenseanoossnns 24
Setdate (Service Call) .iueir e ienestreneanseananonnns 25
Startup (Service Call) ..t irenn i innennnennnns 25
Stat (Library Routine)eeiiiii e rneenosnnn 26
Time (Service Call) ieeeeeeeeeeertttressnoosanannnssses 27
Unlink (Library Routine)ieiieniiiiioneenennnnn 27
Write (Library Routine)....eieiiiiieinininninnnnn 27
CONSOLE COMMANDS . i v it vttt e veanosssnsosansossnsasassss 28
alias <filenamel1> <filename2>.o teeneesnnosses 28
background <filename> <argd>.....c..ceeseecvroncoosens 28
copy <filenamel> <filename2>.......ccctetuurnnnnnnn. 29
delete <Ffi1lenamed . v.ue. e eeesssssasssonessssnonossnoss 29
directory <filenamed......ueeruenenenncenscnnroannns 29
< Y3 o YA R R 29
T T = o - T 29
Make CFilenameD ..o e eeeeseeeaorossssosnnsssanassnssses 29
run <filename> <argl> <arga2> ... ittt renorsonssenns 30
set <modelist> or SET <modelist>......cciiviirnne.. 30
time <formald i v e e e e eeeesrosconnesonesassssssassons 31
type <filenamedeeiiiereenetentasnanasanonasans 31
CONSOLE INPUT PROTOCOLS ..ttt e tv vt enrevonsssaaanssos 31
UTILITY PROCESS PROTOCOLS . .ttt i ittt ennenscnsnsonns 32
Input/Output Profocols........ciiiiiiiviinnnnnnnns 32

Resource Manager Protocols......ciiiiiirieeniienaans 35

ROSCOE USER GUIDE

1. INTRODUCTION

Roscoe is an experimental operating system for controlling a
network of microcomputers. It is currently implemented on a net-
work of five Digital Equipment Corporation LSI-11 computers con-
nected by medium-speed lines.¥ The essential features of Roscoe
are:

1. All processors are identical. However, they may differ
in the peripheral units connected to them. Similarly, all pro-
cessors run the same operating system kernel.

2. No memory is shared between processors. Al1l communica-
tion 1is done by explicit passing of messages between physically
connected processors.

3. No assumptions are made about the topology of intercon-
nection except that the network is connected (that is, there is a
path between each pair of processors). The lines are assumed to
be sufficiently fast that fairly tight interaction is possible
between processes on different machines.

4. The network should appear to the wuser to be a single
machine. A process runs on one machine, but communicating
processes have no need to know and no way of finding out if they
are on the same processor.

¥This equipment was purchased with funds from National Sci-
ence Foundation Research Grant #MCST77-08968.

1.1 Purpose of this Document

This document describes Roscoe from the point of view of a
user or user-programmer. It is both a tutorial and a reference
guide to the facilities provided to the user. A1l information
necessary to the programmer of applications programs should be
found here.

Further discussion of the concepts and goals of Roscoe are
discussed in [Solomon and Finkel 78]. That document also lists
some research problems that the Roscoe project intends to inves-
tigate. The operating system kernel that provides the facilities
1isted below is described in considerable detail in [Finkel and
Solomon 7817. Similar detailed documentation about utility
processes (such as the File System Process, the Teletype Driver,
the Command Interpreter, and the Resource Manager) is contained
in [Tischler, Finkel, and Solomon 78].

Roscoe has been developed with extensive wuse of the UNIX
operating system [Ritchie and Thompson 747. All code (with the
exception of a small amount of assembly language) is written in
the C programming language [Ritchie 73]. The reader of this do-
cument is assumed to be familiar with both UNIX and C.

A new programming language i1s being designed for applications
programs under Roscoe; it will be described in a future report.
However, this version of the Roscoe User Guide assumes that all

Roscoe software 1s written in C.

1.2 Caveat

Roscoe is in a state of rapid flux. Therefore, many of the de-
tails described 1in this Guide are likely to change. The reader
who intends to write Roscoe programs should check with one of the

authors of this report for updates.

1.3 Format of this Guide

Section 2 provides an overview of the concepts and facilities
of Roscoe. It is organized according to general subject areas.
Specific functions are mentioned but not described in full de-
tail. Section 3 is a programmer's reference manual. Each func-
tion 1is 1listed alphabetically, 1its syntax and purpose are
described, and it is classified as a Service Call (an invocation
of an operating system kernel routine) or a Library Routine (a
procedure linked into the user program). Section 4 describes the
command line interpreter and lists the commands that may be en-
tered from the terminal. Section 5 describes the conventions
governing terminal input/output. Section 6 presents protocols

for communicating with the various utility processes.

2. ROSCOE CONCEPTS AND FACILITIES

The fundamental entities in Roscoe are: files, programs,

core 1images, processes, links, and messages. The first four of

these are roughly equivalent to similar concepts in other operat-
ing systems; the concepts of links and messages are idiomatic to

Roscoe. A file i1s a sequence of characters on disk. Each file

has directory information giving the time of last mwmodification
and restrictions on reading, writing, and execution. The con-
tents of a file may contain header information that further iden-
tifies it as an executable program. Version 1 of Roscoe uses the
UNIX file system; therefore, the reader familiar with UNIX should
have no problem understanding Roscoe files.

Program files contain text (machine instructions),

initialized data, and a specification of the size of the unini-

tialized global data space (bss) required by the program. Pro-
gram files also contain relocation information and an optional
symbol table.

A process is a locus of activity executing a program. Each
process is associated with a local data area called its stack. A
program that never modifies its global initialized or bss data
but only its local (stack) data is re-entrant, and may be shared
by several processes without conflict. A main-storage area con-
taining the text of a program, its initialized data, and a bss

data area, but not including a stack, is called a core 1image.

The initiation of a process entails locating or creating (by
loading) a core image, allocating a stack, and initializing the
necessary tables to record its state of execution. Similarly,
when a process dies, its tables are finalized and its stack space
is reclaimed. If no other processes are executing in its core
image, then the space occupied by the core image is available for
re-use.

Some processes, called utility processes, provide facilities

to other processes, such as device or file management. Utility

processes may invoke service calls not intended to be used by the
casual user, but otherwise they behave exactly 1like user
processes.

A link combines the concepts of a communications path and a
"capability.™ A 1link represents a 1logical one-way connection
between two processes, and should not be confused with a line,
which is a physical connection between two processors. The link
concept is central to Roscoe. It is inspired and heavily influ-
enced by the concept of the same name in the Demos operating sys-
tem for the Cray-1 computer [Baskett 77]. Each link connects two
processes: the holder, which may send messages over the link,
and the owner, which receives them. The holder may duplicate the
link or give it to another process, subject to restrictions asso-
ciated with the link itself. The owner of a link, on the other
hand, never changes.

Links are created by their owners. When a link 1is created,
the creator specifies a code and a channel. The kernel automati-
cally tags each incoming message Qith the code and channel of the
link over which it was sent. Channels are used by a process to
partition the links it owns into subsets: When a process wants
to receive a message, it specifies a set of channels. Only a
message coming over a link corresponding to one of the specified
channels is eligible for reception. A link is named by its hold-

er by a small positive integer called a link number, which is an

index into a table of currently-held links maintained by the ker-
nel for the holder. All information about a link 1s stored in

this table. (No information about a link is stored in the tables

of the owner.)

A message may be sent by the holder to the owner of a link.
In addition, certain messages are manufactured by the kernel to
inform the owner of a link of changes in its status. For exam-
ple, the creator of a link may specify that when the link is des-
troyed, a DESTROYED notification be sent along it. Such messages
are identified to the recipient by an unforgeable field.

A message may contain, in addition to MSLEN (currently 40)

characters of text, an enclosed link. The sender of the message

specifies the link number of a link it currently holds. The ker-
nel adds an entry to the link table of the destination process
and gives its link number to the recipient of the message. In
this way, the recipient becomes the holder of the enclosed link.
If the original link is not destroyed, the sender and the reci-
pient hold identical copies of the link.

There are two kinds of links: request and reply. A reply
link 1is distinguished by the fact that it can only be used once;
it is destroyed when a message is sent over it. A reply link may
not be the enclosed 1link in a message sent over another reply
link. Similarly, a request link cannot be sent over a request
link. These restrictions enforce a communication protocol in
which one process does most of the talking, over a REQUEST 1link,
and can be answered once for each enclosed REPLY link.

The remainder of this section lists service calls and library

routines by subject area.

2.1 Links and Messages

A new link is created by a process through the "1link" service
call. Initially, +the creator 1is both holder and owner of the
link. Messages are sent with the "send" service <call, which
specifies a 1link over which the message is to be sent, the mes-
sage text and an optional enclosed link. Messages are accepted
by "receive," which specifies a set of channels, a place to put
the message, and a maximum time the recipient is willing to wait.
"Receive" can also be used to sleep a specified period of time by
waiting for a message that will never arrive. A simple send-
receive protocol is embodied in the library functions "call" and
"recall," which are simpler to use than send and receive, and

should be adequate for most routine communication.
2.2 Processes

A process may spawn others by communicating with the Resource
Manager; typical cases are handled by "fork"™. When calling
"fork", the parent may indicate a link that it wishes to give to
the child; the child obtains this link with "parline". 1In cer-
tain cases the parent can kill the child with "killoff"; in other
cases a control-C entered at the terminal can have this effect.

Every user process is born holding link number 0, whose des-
tination 1is the Resource Manager on that process's machine. A
process can terminate itself by calling "die"; and can sleep by
using either "nice" or "receive".

The service calls "load", "startup", "kill", and "remove"

control core images and processes. They are used by the Resource

Manager and are not intended for the typical user.

2.3 Timing

Roscoe has two notions of time. One is the wall clock, which
keeps track of seconds 1in real time. Messages sent between
Resource Managers are routinely used to keep the various machines
synchronized. There is also an interval timer, which may be used
to monitor elapsed time 1in increments of ten-thousandths of
seconds. No process may change the interval timer.

The wall clock is referenced, changed, enciphered, and deci-
phered by "date", "setdate", "datetol", and "ltodate", respec-

tively. The interval timer is referenced by "time".

2.4 Interrupt Level Programming

User programs may handle their own interrrupts. A process
may establish an interrupt-level routine with the "handler" call.
The interrupt-level routine should, of course, be thoroughly de-
bugged and fast. Interrupt-level routines may notify the process
that established them by calling "awaken"; the process to be no-
tified uses "receive" to obtain this notification.

Only the Teletype Driver uses this feature.

2.5 Input/Output

To use files, a process first obtains a link to the File Sys-
tem Process by calling "fsline". This link is used in subsequent
"create", "open", "stat", "alias", and "unlink" calls, which
behave much like the UNIX calls with similar names. "Open" and
"oreate" calls return links to be wused for performing "stat",
"close", and all input/output operations on the open file.

To use the terminal, a process obtains input and output 1links
by calling "inline" and "outline", respectively. An input link
can be used to discover or change terminal modes (only the Com-
mand Interpreter uses this feature) and to perform terminal in-
put. An output link can be wused for ‘terminal output. These
links may also be "closed"; they are closed automatically when a
process dies. The Teletype Driver allows at most one input link
to be open albt a time.

Reading is performed by the routines "read" and "readline".
Writing is performed by "write" and, if formatting is desired, by
"print". The service call "printf" is identical to "print" ex-
cept that it does direct terminal output; it is a debugging tool
not intended for the typical user.

Reads and writes are not more efficient with buffers of size
512, because Roscoe splits up I/0 into packets of size MSLEN

bytes anyway.

10

2.6 Miscellaneous Routines

The following routines from the C library also exist in the
Roscoe library: atoi, long arithmetic routines, reset, setexit,
strcopy, streq, strge, strgt, strle, strlen, strlt, strne, and
substr.

An additional routine supplied by Roscoe is "copy".

2.7 Preparing User Programs

User programs for Roscoe are written in the C programming
language. They are compiled under UNIX on the PDP-11/40 in the
directory "/usr/network/roscoe/user" and should include the files
"user.h"™ and "util.h". Source programs should have filenames
ending with ".u". To prepare a file named "foo.u", execute
"makeuser foo", which creates an executable file for Roscoe named

"foo.

3. ROSCOE PROGRAMMER'S MANUAL

The following is an alphabetized list of all the Roscoe ser-

vice calls and library routines.

3.1 Awaken (Service Call)

awaken()

Only an interrupt—level routine may use this call. It sends
a message to the process that performed the corresponding
"handler" call along the channel specified by that "handler"

call.

11

Returned values: Success returns a value of 0. -2 1is re-
turned 1if the message cannot be sent because no buffers are

available; an "awaken" may succeed later.

3.2 Call (Library Routine)

int call(ulink,outmess,inmess) char ¥outmess,¥inmess;

This routine sends a message to another process and receives
a reply. The 1link over which the message is sent is "ulink",
which should be a REQUEST link. The argument "outmess" points to

the message body to be sent, of size MSLEN. Similarly, "inmess"

points to where the reply body, of size MSLEN, will be put. If
"inmess" is 0, any reply will be discarded. An error is reported
if the reply does not arrive in five seconds (see "recall"). In

normal cases, the return value is the link enclosed in the return
message; it is -1 if there isn't any enclosure. Ignoring errors,
the user may consider this routine an abbreviation for:

struct urmesg urmess;

struct usmesg usmess;

usmess.usbody = outmess;
send(ulink,link(0,CHAN16,REPLY) ,&usmess,NODUP);
urmess.urbody = inmess;
receive(CHAN16,&urmess,5);
return(urmess.urlnenc);

Returned values: Under normal circumstances, £the return
value is either -1 or a link number. -2 means an error occurred
while sending, -3 means the waiting time expired, -4 means that

the return 1link was destroyed, -5 means that something was re-
ceived with the wrong code, -6 means that a return link couldn't
be created in the first place.

NOTE: CHAN16 is implicitly used; for this reason, the user is

12

advised to avoid this channel entirely. Several other 1library
routines also invoke "call", and thus use CHAN16.
NOTE: "Call" is not re-entrant, and so programs that wuse it

cannot be "SHARED" (see "fork").

3.3 Close (Library Routine)

int close(file)

The argument "file" 1s either a link to an open file, or a
terminal input or output link. The returned value is 0 on suc-
cess, negative on failure (specifically, "close" 1is synonymous
with "destroy"). These 1links are automatically closed when a
process dies; however, execution of this command gives the pro-
cess more room in its link table. Also, closing the teletype in-

put makes it possible for another process to open it.

3.4 Copy (Library Routine)

copy(to,from) char *¥to,*from;
A string of length MSLEN is copied from "from"™ to "to". If

"from" is 0, then MSLEN nulls are copied instead.

3.5 Create (Library Routine)

int create(fslink,fname,mode) char ¥*fname;

If the file named "fname" exists, it is opened for writing
and truncated to zero length. If it doesn't exist, it is created
and opened for writing. The argument "fslink" is the process's
link to the File System. The protection bits for the new file

are specified by "mode"; these bits have the same meaning as for

13

UNIX files, but all files on Roscoe have the same owner. The re-

turned values are as in "open".

3.6 Date (Service Call)

long date();
This service call returns the value of the wall clock, which
is a 1long integer representing the number of seconds since mid-

night, Jan 1, 1973, CDT.

3.7 Datetol (Library Routine)

long datetol(s) char sl[12];

This library routine converts a character array with format
"yymmddhhmmss™ into a long integer, representing the number of
seconds since midnight (00:00:00) Jan 1, 1973. It accepts dates

up to 991231235959 (end of 1999); -1 is returned on error.

3.8 Destroy (Service Call)

int destroy(ulink)
Link number "ulink" is removed from the caller's link table.
Returned values: 0 is returned on success. -1 means that
the link number is out of range, -2 means that it has an invalid

destination.

14

3.9 Die (Service Call)

die()
This call terminates the calling process. All links held by

the calling process are destroyed.

3.10 Fork (Library Routine)

int fork(fname,arg,mode) char ¥fname;

The Resource Manager starts a new process running the program
found in the file named "fname", which must be in executable load
format. The function named "main" is called with the integer ar-
gument "arg". "Mode" is a combination (logical "or") of the fol-
lowing flags, defined in "user.h":

one of these: FOREGROUND, BACKGROUND, or DETACHED

and one of these: SHARE, REUSE, or VIRGIN
If FOREGROUND is specified, then the new process can be killed by
entering a control-C on the console. FOREGROUND is mainly used
by the Command Interpreter. If BACKGROUND is specified, then a
"process identifier" is returned that may be used to subsequently
"killoff" the child. DETACHED (i.e., neither FOREGROUND nor
BACKGROUND) is the default. If SHARE is specified, then the
Resource Manager will be willing to start this new process in the
same code space as another process executing the same file, if
that process was also spawned in SHARE mode. If REUSE is speci-
fied, the code space of an earlier process can be reused. VIRGIN
means that a new copy must be loaded, and is the default. If the

call succeeds, a link of type REQUEST and TELLDEST is given to

15

the Resource Manager; the child may obtain this link by invoking
"parline", The <caller may receive messages from the child over
this link, which has code 0 and channel CHAN14.

A returned value of ~1 indicates an error. Success is indi-
cated by a vreturn value of 0, except in the case of BACKGROUND

mode, when the return value is a "process identifier",.

3.11 Fsline (Library Routine)

int fsline();
This routine returns the number of a REQUEST link to be used
for communication with the File System Process. An error gives a

returned value of -1.

3.12 Handler (Service Call)

handler(vector,func,chan) (¥func)();

The address of a device vector in low core 1is specified by
"vector". The interrupt vector is initialized so that when an
interrupt occurs, the specified routine "func" is called at in-
terrupt level. If the interrupt level routine performs an "awak-
en" call, a message will arrive on channel "chan" with urcode 0
and urnote "INTERRUPT" (see "receive").

Returned values: Success returns a value of 0. -1 means
that there have been too many handler calls on that machine. =2
means that the channel is invalid. -3 means that the vector ad-
dress 1is unreasonable. -4 means that the vector is already in

use.

16

3.13 Inline (Library Routine)

int inline();

This routine returns the number of a REQUEST link to be wused
for subsequent terminal input. The Teletype Driver only allows
one input link to be open at any time. An error returns a value

of -1.

3.14 Kill (Service Call)

kill(lifeline);

The process indicated by "lifeline" (the return value of a

successful "startup" call) is terminated. The lifeline is not
destroyed.
Returned values: Success returns a value of O, -1 indi-

cates that the link iS invalid or not a "lifeline".
Only the Resource Manager and Teletype Driver should use this

call.

3.15 Killoff (Library Routine)

int killoff(procid);
This routine asks the Resource Manager to kill a process that

the calling process previously created as a BACKGROUND process

with a "fork" request. The value returned from that "fork" 1is
"procid". The effect on the dead process is as if it had called
"die" .

0 is returned for success, -1 for failure.

17

3.16 Link (Service Call)

int link(code,chan,restr)

A new link is created. The calling process becomes the new
link's owner (forever) and holder (usually not for very long).
The caller specifies an integer, "code", which is later useful to
the <caller to associate incoming messages with that link. The
caller also specifies "chan" as one of sixteen possibilities,
CHAN1, ..., CHAN16, which are integers containing exactly one
non-zero bit. Channels are used to receive messages selectively.
CHAN16 should be avoided, for reasons explained in "call".

CHAN15 should also be avoided, since the kernel uses it for re-

mote loading. The returned value is the link number that the
calling process should use to refer to the 1link. The argument
"restr" is the sum of various restriction bits that tell what

kind of link it is. The possibilities are:

GIVEALL

DUPALL

TELLGIVE

TELLDUP

TELLDEST

REQUEST

REPLY
"GIVEALL" means that any holder may give the 1link to someone
else. "DUPALL" means that any holder may duplicate it (i.e.,
give it to someone with "dup" = DUP; see '"send"). "TELLGIVE"™,
"TELLDUP", and/or "TELLDEST"™ cause the owner to be notified when-
ever a holder gives away, duplicates, and/or destroys the 1link,

respectively (see "receive"). A process may duplicate, give

away, or destroy a newly created 1link without restriction and

18

without generating notifications; restrictions and notifications
only apply to links received in messages. A link must be either
of type "REQUEST" or "REPLY". A REPLY link cannot be duplicated
and disappears after one use; a REQUEST link can be used repeat-
edly unless it is destroyed by its holder. An enclosed 1link must

always be of the opposite type from the link over which it is be-

ing sent.
Returned values: The normal return value is a non-negative
link number. -1 means that the link was specified as either both

or neither of REPLY and REQUEST; -2 means that the channel is in-

valid.

3.17 Load (Service Call)

int load(prog,fd,plink,arg) char ¥prog;

This call loads a program. If "fd" is -1, the console opera-
tor is requested to 1load "prog" manually. If "fd" is a valid
link number (it should be a link to an open file) and "prog" 1is
-1, the file is loaded on the same machine. In either of these
cases, the return value is an "image", to be used for subsequent
"startup" or "remove" calls.

If "fd" is a link and "prog" is a machine number, the file is
loaded remotely on the corresponding machine and started. The

arguments "plink" and "arg" have the same meaning as 1in the

"startup" call. The "plink" is automatically given (not dupli-
cated). The return value is a "lifeline", as for a "startup"
call.

Returned values: O is returned on success. -2 and -3 mean

19

that the link "fd" was out of range or had an invalid destina-

tion, respectively. -5 means that there wasn't room for the new
image. -6 means that there are too many images. -10 means that
the caller had no room for the lifeline. =11 means that the

"plink" was out of range or had an invalid destination.

Only the Resource Manager should use this call.

3.18 Ltodate (Library Routine)

ltodate(n,s) long n; char s{30];

This library routine converts a long integer, representing
the number of seconds since Jan 1, 1973, into a readable charac-
ter string telling the time, day of the week, and date. Dates

later than 1999 are not converted correctly.

3.19 Nice (Service Call)

nice()

This call allows the Roscoe scheduler to run any other run-
nable process. (Roscoe has a round-robin non-pre~emptive
scheduling discipline; "nice" puts the currently running process

at the bottom.) It is used to avoid busy waits.

3.20 Open (Library Routine)

int open(fslink,fname,mode) char ¥*fname;

The file named "fname" is opened for reading if "mode" is O,
for writing if "mode"™ is 1, and for both if "mode" is 2. The ar-
gument "fslink" is the caller's link to the File System. The re-

turned value is a 1link number, used for subsequent "read",

20

"write", and "close" operations. This link may be given to other

processes, but not duplicated. -1 is returned on error.

3.21 OQutline (Library Routine)

int outline();
This routine returns the number of a link to be used for sub-

sequent terminal output. An error returns a value of -1.

3.22 Parline (Library Routine)

parline();

This routine asks the Resource Manager for a 1link to the
parent of the caller. It assumes that the parent gave the
Resource Manager a REQUEST link when it spawned +the child. An
error returns a value of -1.

This call is typically used by a program being run by the
Command Interpreter; the parent link (to the Command Interpreter)

is used to get the command line arguments.

3.23 Print (Library Routine)

int print(file,format,args...) char *format;

This routine implements a simplified version of UNIX's
"printf". The argument "file" is either a link to an open file
or a terminal output link. The input 1is formatted and then
"write"™ is called. The "format™ 1s a character string to be
written, except that two-byte sequences beginning with "%" are
treated specially. "ed", "%o", "%e", "%w", and "%s" stand for

decimal, octal, character, 1long integer, and string format,

respectively. As these codes are encountered in the format, suc-
cessive Margs" are written in the indicated manner. (Unlike
"printf", there are no field widths.) A "%" followed Dby any
character other than the above possibilities disappears, so "%%"

is written out as "%".

3.24 Read (Library Routine)

int read(file,buf,size) char *buf;

The argument "file" is either a link to an open file or a
terminal input 1link. At most "size" bytes are read into the
buffer "buf"; fewer are read if end-of-file occurs. For the ter-
minal, control-D 1is 1interpreted as end-of-file. The returned

value is the number of bytes actually read.

3.25 Readline (Library Routine)

int readline(file,buf,size) char *buf;

This routine is the same as "read", except that it also stops
at the end of a line. For a file a "newline" character is inter-
preted as end-of-line; however, "readline" 1is very inefficient
for files. For the terminal, a "line-feed" or "carriage return"
terminates a line; the last character placed in the buffer will
be "newline" (octal 12). Control-D or control-W will also ter-
minate a line, but they will not be included in the bytes read.

The returned value is the number of bytes read.

22

3.26 Recall (Library Routine)

int recall(inmess) char ¥*inmess;

If a previous "call" (or "recall") returned a value of -3,
meaning that the message did not arrive in 5 seconds, a process
can invoke the library routine "recall" to continue waiting. On-
ly the return message buffer is specified (cf. "call").

Returned values: These are the same as for "call", except

that -2 and -6 don't apply.

3.27 Receive (Service Call)

int receive(chans,urmess,delay)

struct urmesg { /¥ for receiving messages ¥/
int urcode; /% chosen by user, see "link" #*/
int urnote; /¥ filled in by Roscoe, see "receive" ¥/
int urchan; /*¥ chosen by user, see "link" ¥/
char *urbody; /* body of incoming message ¥/
int urlnenc; /* index of enclosed link ¥/

} *urmess;

The calling process waits until a message arrives on one of
several channels, the sum of which is specified by "chans". All
other messages remain queued for later receipt. The code and
channel of the 1link for the incoming message are returned in
"urmess->urcode" and "urmess->urchan", respectively. The value
of "urmess->urnote" is one of five possibilities: DUPPED, DES-
TROYED, GIVEN, INTERRUPT, or DATA. The first three of these mean
that the link's holder has either duplicated, destroyed, or given
away the link (see "send" and "1link"). "INTERRUPT" is discussed
under '"handler". "DATA"™ means that the message was sent by

"send". The newly assigned link number for the 1link enclosed

23

with the message is reported in '"urmess->urlnenc"; the calling
process now holds this 1link). If no 1link was enclosed,
"urmess.urlnenc" is -1. Before calling "receive", the user sets

"urmess->urbody" to point to a buffer of size MSLEN into which
the incoming message, if any, will be put. The caller may dis-
card the message by setting "urmess->urbody" to zero. The argu-
ment "delay" gives the time in seconds that the c¢alling process
is willing to wait for a message on the given channels; a "delay"
of 0 means that the call will return immediately if no message is
already there, and a "delay" of -1 means that there is no limit
on how long the calling process will wait. A process can sleep
for a certain amount of time by waiting for a message that it
knows won't come (e.g., on an unused channel).

Returned values: 0 is returned on success. -1 means the
calling process has no room for the enclosed link (the message
can be successfully received later), -2 means that the argument

"urmess" was bad, -3 means that the waiting time expired.

3.28 Remove (Service Call)

remove(image)

The code segment indicated by "image", the return value of a
successful M"load" «call, is removed. Only the process that per-
formed a "load" is allowed to subsequently "remove" that image.

Returned values: Success returns a value of O. -1 means
that the 1image either doesn't exist or is in use, or that the
caller didn't originally load the image.

The Resource Manager uses this call to create space for new

24

images; no other program should use this call.

3.29 Seek (Library Routine)

int seek(file,offset,mode)

The argument "file" is a link to an open file. The current
position in the file is changed as specified by the "offset" and
"mode". A value for "mode" of 0, 1, or 2 refers to the begin-
ning, the current position, or the end of the file, respectively.
The "offset" is measured from the position indicated by "mode";
it is unsigned if "mode" = 0, otherwise signed. A returned value

of 0 indicates success, -1 indicates failure.

3.30 Send (service call)

int send(ulink,elink,usmess,dup)

struct usmesg { /* for sending messages ¥/
char #*usbody; /¥ body of message to be sent ¥/

} *usmess;

This call sends a message along link number "ulink". The ad-
dress of the message body, a string of MSLEN bytes, lies in
"ysmess->usbody". If no message is to be sent, "usmess->usbody"
is zero. If the caller wishes to pass another link that it holds
with the message, it specifies that link's number in "elink" (the
"enclosed link"). If there is no enclosure, "elink" should be
-1. The use of elinks is restricted in various ways; see "link".
The argument "dup" is either "DUP" or "NODUP"™; in the first case,
the enclosed link is duplicated so that both the sender and re-

ceiver will hold links to the same owner; in the second case, the

enclosed link is given away so that only the receiver of the mes-

25

sage will hold it.

Returned values: 0 is returned on success. -1 means that
the ulink number is bad, -2 means that the ulink's destination is
not valid (the number is in the right range, but does not
correspond to any active 1link). -3 and -4 have corresponding
meanings for the elink. -5 means that the message was bad, -6
means that the elink can't be duplicated, and -7 means that the
elink can't be given away.

No error is reported if the destination process has terminat-

ed; in this case, the message is discarded.

3.31 Setdate (Service Call)

setdate(n) long n;

This service call sets the wall clock to "n", which is a long
integer representing the number of seconds since midnight, Jan 1,
1973.

Only the Command Interpreter and Resource Manager wuse this

call.

3.32 Startup (Service Call)

int startup(image,arg,plink,dup)

This call starts a process whose code segment is indicated by
"image", the return value of a successful "load" call. The child
is given "arg" as its argument to "main". The child's 1ink
number O is "plink", a link owned by the caller; this link is ei-
ther given to the child or duplicated depending on whether "dup"

is NODUP or DUP, respectively. The child cannot destroy link O.

26

Returned values: Success returns a non-negative lifeline
number, which can be used for a subsequent "kill". -1 means that
the caller had no room for the lifeline. -2 or -3 means that the
"plink" was out of range or had an invalid destination, respec-
tively. -4 means that there was no room for the new process's
stack. -5 means that the "image" was invalid.

Only the Resource Manager should use this call.

3.33 Stat (Library Routine)

int stat(fslink,fname,statbuf) char statbuf[361];

This library routine gives information about the file named
"fname". The argument "fslink™ is the process's link to the File
System. An error returns a value of -1. After a successful
call, the contents of the 36-byte buffer "statbuf" have the fol-

lowing meaning:

struct{
char minor; minor device of i-node
char major; major device
int inumber;
int flags;
char nlinks; number of links to file
char uid; user ID of owner
char gid; group ID of owner
char size0O; high byte of 2U4-bit size
int sizel; low word of 2U4-bit size
int addrl(81; block numbers or device number
long actime; time of last access
long modtime; time of last modification
} *buf;

NOTE: Some of these fields are irrelevant, since all Roscoe files
have the same owner.

27

3.34 Time (Service Call)

long time();

This service call returns a long integer that may be used for
timing studies. The integer is a measure of time in intervals of
ten-thousandths of seconds. NOTE: The time wraps around after a

full double word (32 bits).

3.35 Unlink (Library Routine)

int unlink(fslink,fname) char *fname;

This library routine removes the file named "fname"; it
cleans up after "create" and "alias". The argument "fslink" is
the process's link to the File System. Errors return a value of

-1.

3.36 Write (Library Routine)

write(file,buf,size) char #*buf;
The argument "file" is either a link to an open file or a
terminal output link. Using this link, "size" bytes are written

from the buffer "buf". There are no return values.

28

4. CONSOLE COMMANDS

The Command Interpreter is a utility process that reads the
teletype. When the Command Interpreter is awaiting a command, it
types the prompt ".". A command consists of a sequence of "argu-
ments"™ separated by spaces. Otherwise, spaces and tabs are ig-
nored except when included in quotation marks ("). Within
quotes, two consecuftive quotes denote one quote; otherwise, quo-
tation marks are deleted. The first "argument" is interpreted as
a "command" (see below). Command names may be truncated, provid-
ed the result is unambiguous. It is intended that all commands
will differ in their first three characters.

The following is an alphabetized list of console commands.

4.1 alias <filenamel> <filename2>

The second indicated file becomes another name for the first
indicated file. If either of these is "deleted", the other (log-

ical) copy still exists; however, changes to either affect both.

4.2 background <filename> <arg>

The indicated file must be executable. It is started as a
BACKGROUND process, with the integer argument "arg". The Command
Interpreter prints out the new process's process identifier,
which may be wused for subsequent "killing" and then gives the

next prompt.

4.3 copy <filenamel> <filename2>

The second indicated file is created with a copy of the con-

tents of the first indicated file.

4,4 delete <filename>

The indicated file is deleted.

4.5 directory <filename>

Status information for the indicated file is typed.

4.6 help

A list of available commands is displayed.

4.7 kill <arg>

The indicated argument should be the process identifier re-
turned from a previous '"background" command. The process re-

ferred to by the process identifier is killed.

4.8 make <filename>

The named file is created. Subsequent input is inserted into

the file; the input is terminated by a control-D.

30

4.9 run <filename> <argl> <arg2>

The indicated file should be an executable file. It 1is run
as a FOREGROUND process. The Resource Manager is given a REQUEST
link, which the new process may use to ask for the command line
arguments. When the 1loaded program starts up, the argument to
"main" tells the number of command line arguments. To get the
individual arguments, the loaded program sends a message to the
Command Interpreter (its parent). The first word of the message
is ARGREQ, and the second is an integer specifying which argument
is desired. The name of the program is argument number O. The
returned message body is the argument, which is a null-terminated

string of length at most MSLEN.

4.10 set <modelist> or SET <modelist>

This command changes the console input modes. The mode 1list
is a sequence of keywords "x" or "-x", where "x" can be any of

the following:

upper (the terminal is upper case)
echo (the terminal echoes input)

hard (the terminal is hard-copy)

tabs (the terminal has hardware tabs)

Keywords may be abbreviated according to the same rules as com-
mands. The format "x" turns on the corresponding mode, "-x"
turns it off. (UPPER is recognized for upper; "lower" means
"_upper".) For more information, see the section "CONSOLE INPUT

PROTOCOLS".

31

4,11 time <formatbt>

If a format is given (as "yymmddhhmm"), the wall clock is set
to that time, and printed. With no argument, "time" prints the

wall clock time.

4,12 type <filename>

The indicated file is typed.

5. CONSOLE INPUT PROTOCOLS

The Teletype Driver performs interrupt-driven I/0, which al-
lows for typing ahead. Also, the following characters have spe-

cial meanings:

Control-C kill the running program
(but don't kill the command interpreter itself)
Control-D end of file (terminates a "read" or "readline")
Control-W end of line (but no character sent)
line-feed end of line
carriage return end of line
rubout erase last character (unless line empty)
Control-X erase current line
escape next character should be sent as is
In "echo" mode, input is echoed, otherwise not. In "hard"

mode, output is designed to be legible on hard copy devices; oth-

erwise the Teletype Driver assumes that the cursor can move back-

ward, as on a CRT. In "tabs" mode, advantage is taken of
hardware tabs on the terminal. In "upper" mode, the terminal 1is
assumed to only have upper case. Input is converted to lower

case, unless escaped. Upper case characters are printed and
echoed with a preceding "!". Escaped [, 1, @, 7, and \ are con-

verted to {, }, *, 7, and |, respectively, and the latter are

32

similarly indicated by preceding "!"s,

6. UTILITY PROCESS PROTOCOLS

This section describes the protocols that user programs must
follow to communicate with the utility processes when the library
routines described earlier are inadequate. Four utility
processes are the Resource Manager, the File System Process, the
Teletype Driver, and the Command Interpreter. The Resource
Manager keeps track of which programs are loaded and/or running
on the local machine. The kernel and the Resource Manager reside
on each machine. The Teletype Driver governs I1/0 on the console;
the Command Interpreter interprets console input. The File JSys-
tem Process implements a file system by communicating with the
PDP-11/40. It need not exist on every machine.

During Roscoe initialization, one Resource Manager is start-
ed. It loads a full complement of utility processes (the Tele-
type Driver, Command Interpreter, and File System Process) on its
machine and various utility processes on the other machines.
When a particular Resource Manager is not given a local Teletype
Driver or File System Process, it shares the one on the initial

machine.

6.1 Input/Output Protocols

This section describes the message formats used for communi-
cating with the File System and Teletype Driver Processes. A
program that explicitly communicates with the File System Process

or Teletype Driver must include the header files "filesys.h" and

33

"ttdriver.h", which define the necessary structures.

To open an input or output line to the terminal, to change
the modes on the terminal, or to inform the teletype of whom it
should kill when encountering a control-C, a message is sent over
the terminal link of the following form:

struct ttinline{

char tticom;
char ttisubcom;

char ttimodes;

}
"tticom" is either OPEN, STTY, MODES, or TOKILL, In the <case of
OPEN, "ttisubcom" is either READ or WRITE, and the return message
has the new link enclosed In the case of STTY, "ttimodes" tells
what the new modes should be (a bit-wise sum of ECHO, TABS, HARD,
and UPPER). In the case of MODE3S (to find out the current
modes), +the return message has the modes in "ttimodes". 1In the
case of TOKILL (to inform the Teletype Driver which process to
kill on receipt of control-C), the message encloses a lifeline.
To open, create, unlink, alias, or get status information on
a file, a message is sent over the file system link in the fol-
lowing form:
struct ocmesg{
int ocaction;
int oclength;
int ocmode;
}
"ocaction" is either OPEN, CREATE, UNLINK, ALIAS, or STAT.
"oclength" tells the 1length of the file name; in the case of
ALIAS, this field contains the concatenation of two file names.

"ocmode" is the mode for OPEN or CREATE; in the case of ALIAS, it

holds the length of the first file name. The file system sends

34

back a message with an enclosed link, over which the file name is
sent. This message again has an enclosed link for the File Sys-
tem Process's next response. In the cases of OPEN or CREATE, a
successful return contains a valid enclosed link; for UNLINK,
STAT, or ALIAS, there is no enclosed link. In the case of STAT,
the return message has the structure of a "rdmesg" as in the case
of READ below; the first word is 36 for success, -1 for failure,
and the next 36 bytes of the message are the result of the stat.
In all other cases, the first word is 0 on success, =1 on
failure.
For either the terminal or the file system, reading or writ-
ing is done by sending a message of the following form:
struct fsmesg{
int fsaction;
int fslength;
: char fstextIMSLEN-41;
"fsaction" should be either READ, READLINE, or WRITE. "fslength"
tells how many bytes are intended to be read, or are being sent
to be written. In the case of WRITE, the text is sent in subse-
quent messages, and nothing is returned. 1In the cases of READ or
READLINE, the response is of the following form:
struct rdmesg{
int rdlength; /¥* amount actually read ¥/
} char rdtextIMSLEN-2];
The maximum allowable read is size MSLEN-2.

To perform a seek on an open file, send a message to the file

system of the following form:

35

struct skmesg{
int skaction; /¥ should be SEEK ¥/
int skoffset;
int skmode;

}
Any enclosed link in the return message indicates success, and

should be immediately destroyed.

6.2 Resource Manager Protocols

Processes that communicate explicitly with the Resource
Manager must include the header file "resource.h". The following

structure is declared there:

struct rmmesg { /* messages to Resource Managers ¥*/
int rmregq; /* type of request ¥/
int rmarg; /% various miscellaneous arguments ¥/
int rmmode; /* the mode for STARTs or KILLs ¥/

}

The Resource Manager keeps track of which images (code seg-
ments) and processes exist. A separate Resource Manager runs on
each machine in the network; these programs communicate with each
other, but are relatively independent.

Each Resource Manager holds a terminal link and file system
link, which are either for local utility processes or else links
received from the first Resource Manager initialized. Whenever a
Resource Manager has a local terminal it also has a local command
interpreter.

There are three kinds of processes: FOREGROUND, BACKGROUND,
and DETACHED. When a process is started, its link O is owned by
the local Resource Manager, to whom all of this process's re-
quests are directed.

The first FOREGROUND process for any terminal is always the

36

Command Interpreter, which initially "has the ball". Each termi-
nal always has one FOREGROUND process that "has the ball". The
process "with the ball" may create another FOREGROUND process,
which means that the child now "has the ball". The meaning of
"having the ball"™ is that a control-C entered on the correspond-
ing terminal will terminate the process. When the process "with
the ball" terminates, its parent then "recovers the ball", and
will be terminated by the next control-C. If one of the
processes in this FOREGROUND chain terminates, the chain 1is re-
linked appropriately. The command interpreter is an exception in
that control-C's have no effect on it.

A process may also create another process as a BACKGROUND
process. In this case, the child's process identifier is re-
turned to the parent, and later the parent can use this identif-
ier to terminate the child. These identifiers are assigned by
the Resource Manager, and are distinct from the process identif-
iers used in the kernel.

A DETACHED process cannot be terminated by either method.

A user may make five kinds of requests on 1its Resource

Manager:

1. RMTTREQ Request

The Resource Manager 1is requested to give +the requestor a
link to the requestor's terminal. This link will be sent over
the enclosed link in the request, which should therefore be a RE-

PLY link.

2. RMFSREQ Request

37

The Resource Manager duplicates its file system 1link and
sends it back over the enclosed link in the request, which should

therefore be a REPLY link.
3. RM3TART Request

The Resource Manager will start a process, using the link en-
closed with this request for two purposes: 1) to respond to the
request (see conditions for response below), or 2) to save it and
give to the child if the child asks for it (see RMPLINK below) .
The caller must be careful, of course, not to give a REPLY 1link
if both wuses are intended. Also, the caller must make the en-
closed link GIVEALL if the Resource Manager should try to 1load
the process on another machine, rather than giving up if it
doesn't fit on the local one. The RMSTART request also specifies
the file name and an integer argument to be given to the child
when it starts.

The caller also specifies a "mode" for starting the child,
which is a combination of bits with various meanings. The user
should specify either BACKGROUND, FOREGROUND, or DETACHED (the
default is DETACHED). FOREGROUND is only allowed if the reques-
tor currently "has the ball" for its terminal. The wuser should
specify either SHARE, REUSE, or VIRGIN (the default is VIRGIN).
These alternatives are described above (see "fork"). The user
should also specify either GENTLY or ROUGHLY (the default is
GENTLY). 1If GENTLY, the Resource Manager will first try to 1load
it loéally without throwing out any other unused images, and then

will try to do the same on other machines. When this fails, or

38

if ROUGHLY was specified, it tries to make room locally for the
new process, and then tries to do so on other machines. The user
should also specify either ANSWER or NOANSWER (the default 1is
NOANSWER) . If ANSWER is specified, or if BACKGROUND was speci-
fied, then the Resource Manager sends a reply over the enclosed
link. The first word of the reply is the return code; -1 always
means failure; 0 means success except in the case of BACKGROUND,
when the value returned is the process identifier of the child.
An existing code segment is reusable if the filename still
refers 0 an existing publicly executable load format file that
has not been modified since the copy in question was loaded. Any
number of processes may share a code segment. The terminal asso-
ciated with a child process is always the same as the one associ-
ated with 1its parent; the command interpreter is loaded with a

terminal during initialization.

4, RMKILL Request

The Resource Manager kills the process whose process identif-
jer is given as part of the request. The request may enclose a
link that is used to give a one-word acknowledgement of success
or failure 1if the request specifies ANSWER (as in RM3TART,
described above). The process being killed must of course be
BACKGROUND, and only the process that started it is allowed to

kill it.

5. RMPLINK Request

The Resource Manager returns the link that was originally en-

39

closed with the request that started this process. It is re-
turned over the 1ink enclosed with the RMPLINK request, which

must therefore be of the proper type, whichever that may be.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of the
following graduate students who have been involved in the Roscoe
project: Jonathan Dreyer, Jack Fishburn, Michael Horowitz, Will
Leland, Paul Pierce, and Milo Velimiroviec. Their hard work has
helped Roscoe to reach its current level of development and will

be essential in completing its design and implementation.

REFERENCES

Baskett, F., Howard, J. H., Montague J. T.,
"Task Communication in Demos",
Proceedings of the Sixth Symposium on Operating Systems Principles,
pp. 23-31,
November 1977.

Finkel, R. A., Solomon, M. H.,
Processor Interconnection Strategies,
University of Wisconsin -- Madison Computer Sciences
Technical Report #301,
July 1977.

40

Finkel, R. A., Solomon, M. H.,
The Roscoe Kernel,
University of Wisconsin -- Madison Computer Sciences
Technical Report #337,
September 1978.

Ritchie, D. M.,
C Reference Manual,
Unpublished memorandum, Bell Telephone Laboratories,

1973.

Ritchie, D. M., Thompson, K.,
"The UNIX Time-Sharing System",
Communications of the ACM,
Vol. 17, No 7,

pp. 365-375,
July 1974,
Solomon, M. H., Finkel, R. A.,
ROSCOE -- a multiminicomputer operating system,
University of Wisconsin -- Madison Computer Sciences

Technical Report #3271,
September 1978.

Tischler, R. L., Finkel, R. A., Solomon, M. H.,
Roscoe Utility Processes,
University of Wisconsin -- Madison Computer Sciences
Technical Report #338,
September 1978.

