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STATISTICS OF TREES
by
John H. Halton
1. INTRODUCTION

We consider the storage of a sequence of unpredetermined length, of data
which are susceptible to a linear ordering, the storage procedure being designed
to facilitate the efficient retrieval of arbitrary, specified data. We may
think of the data as real numbers, ordered by <; say, @< ey +ee < We shall
limit ourselves to storage procedures which depend only on the ordering, not on
the spacing, of the keys e - When considering the statisties of such data, it
is then most reasonable to assume that every permutation of the m values is
equally probable as an input to our storage algorithm. As a consequence, we note
that, if (m - 1) data have already been stored and we consider the statisties of
the position of an m-th datum, this will have equal probability of being in any
of the m intervals into which the previous data divide the real line.

The most straightforward algorithm simply stores the data sequentially as
they are received; so that the work of storing the data will be proportional to
their number, m; while the work of retrieving a specified datum (e. g., to find
a key ¢ or the datum whose key is closest to a given value d) will also be pro-
portional to m, since every datum must be examined, in general (depending on the
search-criterion, it may be sufficient to find one suitable datum: then the
average length of search will be proportional to m/r, where r is the number of

suitable data stored, randomly distributed, by our hypothesis.)

At the other extreme, we may fully order the data. This requires work of

the order of m log m (As Knuth[l]

points out, if m becomes really large, the keys
used must be specified by more digits --- multiple precision --- and the work of
storage is really of order m (log m)g.) The work of retrieval is of order log m

(or of order (log m)2, if key-length is taken into account.)
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We shall be concerned with an intermediate and frequently-occurring
situation, when the data are stored in a structure taking the form of a
binary tree. Such a tree is a directed graph, in which every node but one
(the root of the tree) has exactly one entering line( from its predecessor
node): the root has no predecessor; and each node has 0, 1, or 2 leaving
lines (to its successor node(s)); there being no closed circuits. If a
node has less than two successors, we may call the potential or latent
successors open nodes ( as opposed to actual or occupied nodes.) It is clear
that each node is connected to the root by an unique path (traced backwards);
so that it may be assigned an unique Zevel (a positive integer) equal to the
number of nodes in this path. Only the root has level 1, and there are at
most 2% nodes in level k.

Ordered data may be formed into a tree as follows. The first datum is
placed at the rooct of the tree. The two open nodes attached to the root are
labelled the left and right successors of the root. If the second datum is
less than the first (more precisely, if the second key is less than the first),
it is placed at the left successor of the root; if the second datum is greater
than the first, it is placed at the right successor of the root. Thereafter,
all nodes are identified as left or right successors, and when (m - 1) data
have already been inserted into the tree structure, the m-th is placed at an
open node as follows: beginning at the root, the new datum is compared with
that occupying the node being considered, and consideration moves to the left

successor if the new datum is less, and to the right successor if the new datum
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is greater. As soon as an open node is encountered, it is filled by the new datum.

It is clear that the number of comparisons required to store & given datum
is equal to the level of the open node at which the datum is stored. This is also
the number of comparisons required to retrieve a datum. Thus the work required
to construct an m-node tree is proportional to the internagl swm of the tree ——-
the sum of the levels of all occupied nodes --- and the work required to retrieve
a given datum, chosen at random in the tree, will be the average level of the
nodes occupied --- the internal sum divided by m. Finally, the work required to
store a new datum in a given m-node tree will be proportional to the externagl
average --- 1/n times the extermal sum, defined as the sum of the levels of all
open nodes; when n is the number of external nodes.

More complicated storage schemes sometimes involve the concept of a higher-
order tree structure. We may define a tree of order s, or more briefly, an s-
ary tree, as one in which each node has up to s successors. The level k may
then have up to sk occupied or open nodes. In what follows, since the theory
generalizes readily, we shall deal with s-ary trees, pointing out along the way
the specific results for binary trees. As explained above, all estimates of
work required for operations on m-node trees (of any order) should be multiplied
by log m if the trees are large enough to require multiple-precision keys to be
used and compared.

Finally, we note that, trees being trees, questions of interest to

quantitative dendrologists may be answered by the results obtained here.



2. THE STRUCTURE OF AN s-ARY TREE

At level k, let m respectively denote the number of nodes

x0° mkl, ss ey mks

having 0, 1, ..., 8 successors occupied. Then the number of nodes occupied at

level k is

8
Uk= I mkr; (l)
r=0
and in the tree there are
m = I U (2)
k=1 K

nodes in all. We note that, since an m-node tree cannct reach beyond level m,

By = 1 if m> 0, and My = 0 if k> m. (3)

Counting successors, if k > 1, we see that

s s
Uy = I rm = L P My, oy e ()
k =0 (k-1)r pel (k-1)r

Thus, if k > 1, (1) and (4) yield
S

"o T I 2 m et )p = M (5)

If k > 1, the number of open nodes at level k is

8 s-1
v = rio.(s - 7r) Mk1)p = rio (s - ») M(ko1)p (6)

so that (1) and (4) give us that
\)k =8 Uk_l - Hk- (T)

We note that, by (3), v, =0 if m>0, end v, =0 if k> m. (8)

The total number of open nodes is thus, for m > 0, by (2), (3), and (7),

©
b)

n=1 v,= I (s -u,) =s
k k-1~ Yk o

u, =sm-(m-un,);
k=2 k=2 k k *

Z oy, -
=lk

that is, n=(s-1m+ 1. (9)



The result (9) may also be obtained by counting lines: the total number
of successors (occupied or open) of the nodes of an m-node s-ary tree is clearly
§ m; while every occupied node, except the root, has an (occupied) predecessor;
(m - 1) in all: (9) follows. We note the rather curious fact, that the number
of open nodes depends only on the number of occupied nodes, not on the configu-
ration of the tree.

When, in the course of our discussion, the value of m, the number of nodes
in the tree, can vary; we shall write méz) for My uim) for My > vim) for Vg

and n(m) for n.

The internal sum of a given tree is defined as

(<]

Fm = ¥ u7(<m)7<, (10)

k=1
following Knuth[l], and we may generalize this to the intemnal swum of degree p:
FP) = g uim) [ =o0ifm=o]. (11)

m k=1

The corresponding average p-th power of the levels of internal (i. e., occupied)

nodes is then Y;p) = EéP) / m. (12)

Similarly, the external sum,
E = I vém)k [= =z vém)k if m > 0], (13)
k=1, k=2
generalizes to the external sum of degree p
Eép) = I vém) N B vim) K ifm>0], (14)
k=1 k=2

with the corresponding average,

o) = ple) ,, ) (15)
m m



By (7) and (9), we see that

(-]

5P 2 3 o™ oM - s REONCRES SRR

-1
k=_2 k-1 k k=1 k=2
whence p-1.
EP a6 - Pl s s @)y rl9) 4o 1, (16)
m m q m
q=1
since Féo) =m, 4, =1, by (2) and (3), respectively, and by (11). Note, too,

that E;O) = n(m), by (9) and (14), consistently with (16); and similarly, Eép) = 1.

3. STORING DATA IN BINARY TREES
We begin by formalizing the situation deseribed in §1. Let.wlf Ups vees
Uy 10 Upy denote the real keys of m data, in the order in which they are received

and allocated storage in a binary tree. Let the linear ordering of the keys be

“o(1) “Hp(2) < vt S Ep(me1) “¥p(m) (am
where p denotes a permutation of the indices 1, 2, ..., m - 1, m.
Assumption 1. Given m, every permutation p of the m indices is equally
probable, in the ordering (17) of m data received for storage.
Lemma 1. If the ordering of the first (m - 1) data is fixed:

uil < uig < .. < Mim—l’ (18)
where [il, Tps eoes im—l] is a permutation of [1, 2, ..., m - 1]1; then the only
possible permutations p compatible with (18) are:

7

[m, <

IEIRTTTIL S P A N e N A T

cees {il, cees im;e’ m, im—l]’ [il, oo im—l’ ml.  (19)



Proof. The permutations listed in (19) are obtained by merging the index m
with the permutation (18) in every possible way. Since the permutations (19) are
all distinct, Assumption 1 and Lemma 1 yield:

Corollary 1. Given the ordering (18) of the first (m - 1) data, the m-th
has equal probability of falling into any of the m intervals into which the
previous data divide the real line.

Let us now define a canonical representation of binary trees: the root is
represented by the origin [0, 0] of the Euclidean real plane. For k > 0, the 2k
possible nodes at level (k + 1) are represented by the points with ordinate
y = k and abscissae

B S N A A I N L R P L B AP

N A C L VRV LN AN S BV A (20)

all odd multiples of 2‘k. The points [(kj + 1) / ek, k] and [(4F + 3) / 2k, k]

represent, respectively, the left and right successors of the point [(25 + 1) / 2k

k - 1]; that is to say, the successors of the node represented by [z, k - 1] are
[x & Q_k, k]. See Appendix B for illustrations of this and the proofs below.
When left and right successors are identified for all nodes, the algorithm
described in §1 uniguely generates a binary tree from any given sequence of data.
The configuration of this tree will depend only on the ordering of the data keys;
that is, on the permutation p defined by (17).
Lemms 2. The successors at all levels of the node represented canonically

by the point [(24 + 1) / Qk, k] lie in the open interval defined by

i/ okl o4 < (7 + 1) / 2k'l, (21)

Proof. By the canonical representation above, the level (I + 1) successors
of the given point take the form

[(2F + 1) / 2k + 2'k’l + 2"k'2 o, % 2’2, 11; (22)

-1

9
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and, for all I, the 'f' increments all lie between % (Q—k - 2—1): the Lemma

follows. By (20), we obtain:
Corollary 2. There is no overlap between the abscissae of the sets of

successors at all levels of any two points at one given level. In other words:

All the successors of the node represented by [x, k] lie strictly between x - E_k

and [x - Zl-k

[x + Ql_k, k] and all its successors, on the right.

, k] and all its successors, on the left, and x + o7k and

Lemma 3. Given a set of m data, the linear ordering of their keys is the
same as the order of the abscissae of the corresponding points in the canonical
representation of the binary tree generated by the data.

Proof. Let u and v be the keys of two data, and let u < v. OSuppose that
u is inserted into the tree before v. In the path, in the tree generated by the
given data, from the root to each of the nodes corresponding to the keys u and v;
there will be a branch-point, with key w, say, (w could be u or the key of the
root of the tree), and u <w < v, from the way branches are chosen in the algorithm.
Since u and v are, by definition, successors of w (possibly u = w), Corollary 2
tells us that u, which is w or the immediate left successor of w or a successor
of the immediate left successor of w, corresponds to a point of the canonical tree
whose abscissa is less than the abscissa of the point of the tree corresponding
to v, which has to be the immediate right successor of w or a successor of the
immediate right successor of w. If, instead, v is inserted into the tree before
u, the only change in the above argument is that, now, the branch-point w could
be v, rather than u: this has no appreciable effect on the logic. Therefore

the Lemma is proved.



Lemma 4. There is a one-to-one correspondence between the intervals into
which the keys of given data divide the real line and the open nodes of the
eorresponding canonical tree representation.

Proof. By Lemma 3, there is a one-to-one correspondence between the intervals
into which the keys of given data divide the real line and the intervals into which
the abscissae of corresponding nodes in a canonical tree representing these dats
divide the x-axis: in fact, the order of the keys and the corresponding abscissae
is the same. Thus, to prove the Lemma, it suffices to show a oneé-to-one corres-
pondence between open nodes of a canonical tree and the intervals into which the
abscissae of occupied nodes divide the x-axis. To begin with, if the tree has
m occupied nodes, then the number of intervals generated is clearly (m + 1),
and, by (9) with s = 2, this equals the number of open nodes of this tree.

By following the unique path from the root to a given node [x, k], we see
that we can always find * signs such that

x=i2—li2-2i...i2-k itk>0; x=0 if k = 0. (23)

Now, either all the * signs in (23) are the same, or we can find an unique

1 < k, such that

-L 1-1

x=+2 4 .., %2 + (2'Z - 2-1-1

T (2k)

-1 -2 -k

Without loss of generality, we may assume that eitherax =2 +2 7 + ... + 2

2
orx =g + 2~k: if the signs are all '-' instead, the logic of the argument is
virtually identical.

In the first case, if [x, k] is an open node of the canonical tree, it is

-1 2l—k

the right successor of the rightmost node, [2 + ...+ , k = 1] of the tree.

(It is easy to verify that no occupied node can lie to the right of this one.)
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The negative of this case yields the open node which is the left successor of the
leftmost node of the tree. Thus, each of the extreme, semi-infinite intervals
generated by the abscissae contains exactly one open node.

In the second case, when (24) holds,

a<wz<b=a+ 2 (25)

and, by the form of the tree-storage algorithm and the definition of an open node,
if [x, k] is an open node, then the points [a, I - 1] and [b, ¥k - 1] are two
occupied nodes of the tree (the latter node being a successor of the former, and
the immediate predecessor of the open node [x, k].)

By Lemma 2, [b, k - 1] is succeeded by points having abscissae strictly
between a¢ and g + 22_k, and any node between g and b must be a successor of [b,
k - 11. wa, the immediate successors of this node are [x, k] itself (which,

being open, has no successors, occupied or open) and [b + 2_k

, k] (which, together
with all its successors, by Lemma 2, lies to the right of [b, k - 1].) This proves
that the only node of the tree with abscissa between those of the nodes [a, 7 - 1]
and [b, k - 1] is the single open node [x, k]. If we have the negative of the
present case, the argument is identical. Thus, to each open node of our tree,
there corresponds a distinct one of the intervals into which the abscissae of the
nodes divide the x-axis (namely, that interval which contains that open node):
since the number of open nodes equals the number of such intervals, the Lemma holds.

From Corollary 1 and Lemma 4, we obtain:

Corollary 3. Given a binary tree generated by a sequence of data in the man-
ner described in §l, the next datum has equal probability of being placed at any of

the open nodes of the tree.
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Generalizing to the s-ary tree, we may now adopt:

Assumption 2. Given an s-ary tree, generated by a sequence of data, we

assume that the generating algorithm is such that the next datum has equal proba-

bility of being placed at any of the open nodes of the tree.

L. STATISTICAL RELATIONSHIPS
By Assumption 2, in an m-node s-ary tree, each of the open nodes has

probability

wm=l/n(m)=l/[(s-l)m+l], (26)

by (9), of being the next node filled. We note that the probability associated

with level k is then

p7(<m) = \)Z(Cm) 0 = [s u](CTJ)_ - ul(cm)] / n(m), (27)

by (7); so that, by (2) and (9), as well as directly from the definition of n(m),

o« <]

(m) = I

I p
k=2 K M k=2

vém) = 1. (28)

it is of incidental interest (though not directly relevant to our present
discussion) to observe that, if we associate with each open node at level k a
probability
(K)o gk (29)

independent of m; so that the total probability associated with level k becomes

I’§<M) - V}Em) K(k) = 62_7( ug{:’z _sl-—k U§<m)5 (30)
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then we get, as required, that

o

I

(m) _ 3 g2k (m) _ o 1k (m) _ (m)
k=2 * G 1

r z - L 8
k k=2 k=1 " pep

=1, (31)

by (3). We shall not pursue this possibility here.
Returning to (26) and (27), we shall denote the mathematical expectations of

the warious parameters defined in §2 as follows:

(P) - 55P)y, P - E[x‘l’)] (32)
where, in each case, E[...] denotes the expected value over all trees generated
by random data inserted in accordance with Assumption 2. From (3), (7), (8), (11),
(12), (14), and (15), we obtain that, for k > 1 and m > 0,

(m) oy (m) (m) _ o m) (33)

Ml =1, Hl =0, and Qk Mk-l Mk 3

o p-
%;p) kE N(m) kP = (8 - 1) E)ﬁzp) + g8 qzl (p) E + s m+ 1

na P =g/ (e -1 me1ls (39)

m
where the last results use (9) and (16) also. In addition, we note, from (3) and
(8), that

gém) =0, plm) 0, if k> m. (36)

mk+l
Consider now an {m - l)-node tree to which an m-th node is added at level Z.

Then, clearly, if m > 0,

u]({YH) = uzim_l) + 6](2, (37)

vhere Skl is the Kronecker symbol (= 1, if k = L; = 0, otherwise); and so, if k¥ > 0,
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Mém Mim -1) + I El 5 P gm l)] _ Mkm l) B[ ém-l)],

that is, by (26) and (27),

(m) (m 1)

N ™ = o N + 8 (m l)’ (38)

m mk-l
where

y = (s-1) (m-1) 8

m (6-1) m-1)+1° 'm_ (8 -1) (; -1)+1° (39)

Also, inserting the m-th node in level 7 reduces the number of open nodes at this

level by one, but adds s new open nodes at level (I + 1), so that if m > 0,

“zim) = vi(cm—l) = Sz * 8 Sx(141)3 (ko)
whence, by (26) and (27), if k > 1,
y‘]({m) = N]im—l) - E[ (m l)] + g E[ (77'1 l)] = m ,\‘7(<m l) + B m](cmll)' ()-l-l)
We note, too, by (2) and (9), that
L Mém) = and % N£M) =(s-1)m+ 1. (42)

k=1 k=2

Applying (38) to (34), with (33) and (k2), we see that

oo

SRR L EEETNE sl TN
=140 [FP) 1) g kgl L) (4 1)P
=0+t géﬁi + 8 :Ei ® g;fi, (43)
where o,=1l-0o +g (m-1), T, = o, * B . (kk)

Similarly, applying (41) to (35), with (33) and (42), we get that
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(p) _ > (m-1) ,p ® (m-1) p
K = kiz Ve AL kEQ w er 1)
-1
_ (p) P=~ by (q)
=8+ Tm %m—l *+ Bm qﬁl (q) %m—l' (45)

Finally, by (34) and (35), we see that

p-1

) _ °m ,m-1 (p) ,m -1 Py +(q)
m S Tm T TH maAmat Tw B qu (q) Yney (46)
and ;
(0) . (p) Pt by ¢(@)
Xn = P Y&y Y B () Xty (v7)

q=1
(The last result follows from (39) and (L4k), when we observe that T, =0 +tB =

), (me1) (m-1) )

,bwhence B / 1. =8

and Bm =8 /n m _—

5. SOLVING THE RECURRENCES

We observe that the recurrence-relations (38) and (41) are the same; and
that (43), (45), (46), and (47) are essentially of the same form: the former,
homogeneous linear recurrences, and the latter, inhomogeneous linear recurrences.

The recurrence (38), with (36), yields

(m) _ 7 (h-1)
Ne = hik % o1 vt %nay By Mg o (48)
for any m + 1 > k > 1. Similarly, the recurrence (L1), with (36), yields
(m) _ 7 (h-1)
Ve T O Oy ey B R (49)

forany m+ 2> k>2., Ifm<kin (48) orm <k - 1 in (49), the sums on the
right are empty and ere interpreted as zero, consistently with (36). In particular,

for m = 1, we get that
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NE

(1) _ .
N, =8, LT =0 if k>2, (50)

(1) _ (1) _ . -
M =1, M’ =0 ifk>1, and

by (36), and because a single node is placed at the root of the tree (level 1) and
so has s (open) successors in level 2. Whenm + 2 > k = 2 (i. e., m > 0), (k1) yields

plm)

v % %mel

RN Bl’ (51)
by (33) and (50), since B, = 8. Actually, (51) may be interpreted as a case of

(49), if we remember that, by (33) N(h_l)

. . 0 .
> Ny =0 if h > 1, vhile Qi ) = 1, being

the number of open nodes at level 1 in a O-node (i. e., empty) tree.

Applying (48) and (49) repeatedly, with (33) and (51), we obtain

+
(m)
M = p O ... O . B O 4 eee O 8 O 4 veo
K {,m} m hl+l hl hl 1. h2+l h2 h2 1
. e ahk_l+l Bhk_l 3 (52)
.fq
vhere X denotes the sum over all wvalues of hlg h2, voes hk , such that
{k ,m} o
m+l >k >hy> >y o> 1 (53)
and
gém) = ; Oy eee O 4q Bh Op 3 cee O 4 Bh oy IIERE
{k-1,m} 1 1 1T 2 2 27
e o a8 ahkwe""l Bh7<—2 ahk—e—l . 00 aa Bl ° (5’4‘)

If we write 8 =1 / (s - 1), then (39) and (44) become

_ m-=-1 - 1+ 8 -m=1+md - _m* 6
“m T m-1+8° Bm “m-1+0 m m-1+6° m m-1+o0" (55)
Hence (52) and (54) become
R A T
{k,m} ™~ ot M1 T r=1 "p

and
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f k-2
(m) I (m -1) ... 2 1L+ 0
= 3 n( ). (57)
Yo T A moLre) (e e o k-1
Now, if we define
m-1
plz) = T (z+h), (58)
h=1
e (m) . .. k-2 .
it is clear that Hk will equal the coefficient of z in
(1 + e) -
o1 F0) . L re) e tnte)s (59)
when m + 2 > k > 2; while if
(%) me-k+2 1 m-1 ( \ :
Q"' (z) = X n (z+ h), (60)
m jep m=1+8) ... (L -1+8),
then, vhenm + 1 > k > 1L, ¥£m) ‘will equal the coefficient of zk~2 in
(1 + 0¥ oMz, (61)

if, when 7 = m (only possible when k = 2), the term in (60) is 1/(m - 1L + 8). If,
m-1 m-1
further, R, (z)= 1 (z+h) and S(q)(z) = 1 (z+h)79, (62)
tm h=1 tm -

with R (z) = 1 and S(q)(z) = 0, then
Mot By () = By () S () ama (a/88) 8D() = - q S92y, (e3)
Since (58) and (60) are constant linear combinations of the polynomials RZm(z)5 we

see from (59) and (61) that, when m + 2 > k > 1 (extended to k = 2 via (50) and (51)),

k-1
glm) o (1 +9) / (k - 2)! ¢ k=2 _
M “mo1ve) ... @ +0)8 [(3/2z) le(Z)]z=o= (64)
and, when m + 1 > k > 1,
k-1 m-k+2 :
ulm) _ (1 + 6) 1 k-2
Nk k-217 2, m-1+6) ... (L-1+0) [(a/32)""" By (2)]
(65)
and that these expressions are finitely computable; in terms of
R, (0) =1 (2 +1) ... m - 1)
(66)

and the sums S%%)(o) =1 4 1 ves S .
19 (2 +1)9 (m - 1)
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For example,

[(3/02)%2 Ry (2)] o= for k=2, R (67)
for k=3, R Sl
for k=k, R (Sl2 - 32)

for k=5, R (sl =38 5, +25,)

for k=6, R (sl -6 sl S, + 85 55+ 3 s -65,),
(q)

and so on, where we write R for Rzm(o) and Sq for 5, (0). The corresponding

expressions for Qém) and Mﬁm) follow immediately from (64) and (65).

(p)

To solve for %m and E;p) (from which ¥ép) and Xép) follow immediately, by
(34) and (35)), we may use (59) and (61), first noting that, by (34) and (35), with
(33) and (36),

(p) _ ™ (m) (p) _ o (m)
ng = kig Nkm ¥  ana gmp 1+ kf T kP, (68)

We then obtain that

BP) s [m-1v0) 2+ e) o1 (578 (20/02)P P B ()] .
m
and g;p) =1+ I [(m-1+0906) ... (1 -1+ e)]'l
1=p
-1 2
x [27 (23/02)F 2% By ()] _,.00  (70)
by matching powers of z. If, using (62), we define
(q)(z) = g9 S( )(z), (71)
we see that, by (63),
(s3/3) 5° Ry (2) = 22 By (2) 232 (2) + 2)
and (72)

(20/32) 1.9 () = q {0 (z) - 7@ (a)y,

Writing R* for (1 + 9)2 Rzm(l~+ 8) and T; for ng)(l + 0), as in (67), we obtain

(69)
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[(z0/02)F 2° Ry, (2)] for p=0, R* (73)

z=1+6 -
for p=1, R¥ (Ti + 2)
2
= % (% %~ %
for p=2, R (Tl + 5 Tl T2 + k)

3 2 .
= g % % — % % %
for p=3, R (Tl + 9 Tl 3 Tl T2 + 19 Tl

-9 T8+ 2 T§ + 8)

b 2

for p=h, R* (T3’ + 1h T§3 -6 Tig T% + 55 T%
2
— * % ¥* % %
b2 T T% + 8 TF T% + 3 T3

+ 65 Ti - 55 Tg + 28 T§

-6 Tﬁ + 16),
and so on Agai the correspondi expressions for (p) (p) (p) and Y(p)
- Again, sponding exp Bn o En o Ky o X

follow immediately from (69), (70), (34), and (35).

Although these expressions (derived from (67) and (73)) are finitely comput-
able, they are not in a form which we shall find useful here. Thus, we take another
approach, to solve the inhomogeneous recurrences for successive values of p.

Consider first (L43), for p = 1:

B = ot B (74)
- By (50), §§l) = 13 so it is readily seen that, since o, =1 (by (55)),
w_ 7 .
km  © Zil Tm Tmel v Tran 973 (75)
and by (55), this becomes

(1) _ T m+e) (L -1+18) 6 0 1+20 1 +20

En = Zil(l -1+90) (L +0) ~ (m +6) {e “T+e F1+6 " 2+8
L2+ 30 m-2+(m-1)8 m-1+m6 m=1*mby,

2+8 vt m-1+86 m-21+0 m+ 0



The sum telescopes, yielding

(1)

m

by the notation of (62) and (T1).

(m+8) (1 +9) [l i
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(m + 8) Téi)(l +98) -m®9

>

(76)

By a somewhat lsborious calculation, it is

possible to verify that (70), with (73),

agrees with (76).

Taking (43) with p = 2, we get an equation similar to (T4), except that

#(1) (2) . (2) _ = _
om is replaced by o, + 2 Bm En1l = Op > SOV Therefore, since o, = oy = 1
and (actually, for all p > 0)
E(p) (17)
we see that (75) holds for p = 2, when GZ is replaced by 0%2). Again applying
(55), we obtain, first, that
(2) _1=-1+168 1 1 2 (L -1)(1+0)s
o =7To-ise t2@r ) i ey B 7-1+6
and then, that
(2) . " m+o (2)_ 1 1 2 2 3
b = L T¥0 % =m+0) A+ ) G-TF5* T35 -2+ 5+0 "
m - 1 m m 1 1 1
Mo T e tmoive T mesl -G -t -
1 L 1 2 1 1
AT T T T AT e cmrel t2mre) (Lre) [y () 4
1 1 1 1 1 oL
3+0 T3 or e F e tar e TEet e taTIv el -2 mre) (1
e)e[l 1 2 _ m - 2 m - 1 _m—-l]
1+6 2+ 0 2+ 6 m-1+28 m-21+ 6 m+ 8
- 1 1 " - - L
=(m+e) (L+e) [5+ 55+ ol - m+ 1) (1 +0) - (m+oe) [5-
1 1 2 1 1
—=—] + (m + 8) (1 + 9) {[~ .+ 1= -1 + ...+ "—*—***”4}
+ ¥
m 5] 1 +0 m 6 (1 + 6)2 (m + 9)
2 (m+8) (L+6)6 [+ L _Jiom(1+0)o0
1+ 6 m+ 0 i

k]
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which simplifies to

I G ] P SO M
o m e el e [Q+eF+ +<m+e)]
+ m+08) (L-26)(1L+0) [11 +..,+mie]+me+2m62

(m + 8) {[T )(1+e)] )

(L+6)+ (m+8) (1L -208) T(l)(l + 8)

p(2
T om

+me +2m 62. (78)

By a very laborious calculation, it is again possible to verify that (70), with (73),

agrees with (78). From this point on, the computations take on increasingly heroic

(p)

proportions; but it is clear that successive formulae for F may be cobtained for

p=3,U4, ..., from (43), and that these computations are simpler than those we
would need to obtain these formulae from (70) with the aid of (72). Fortunately,

for our purposes, (T76) and (78) will suffice!

To get %;p), we simply use (34). Thus the expected internal sum is E;l)

given in (76); and the expected average level of internal (occupied) nodes is given
by

xél) = @~%_9.Téi)(1 +08) - 0. (719)

Similarly, the expected internal sum of degree 2, that is, the expected sum of

(2)

squares of levels of internal nodes, is F °°, given in (78); so that the expected

average square of levels of internal nodes is given by

,%,7(72) = Q’—%ﬁ {[r (l)(1+ 0)1° - T(2)(1 +68) + (1L -208) T((),}?)(l + 6)}

o+ 206°. (80)
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To obtain Q;p) and §;p), it is best to use (35), with (76) and (78); thus,

wvhen p = 1, we have

and, when p = 2, we similarly get

(2) (2 (1) 1+ 9
%m = E ) 6 g m+ 1

CD

3

+ 0 (1) 2 _(2) (1)
—-—-é——-{[TOm (1 +96)] “Tom (1 +0) + 3T (L +8) + 1}, (82)

Thus, we have explicit forms for the expected external sums of degrees 1 and 2.
Finally, the explicit forms for the expected averages of the first and second

powers of levels of external (open) nodes are, respectively,

%;l) ( )(1 +6) +1 (83)
and (
2) o p(1) 7(2) (1)
Xom [To (1 # 0)1° - 72 (1 +8) + 375 (1 +6) + 1. (84)
6.  THE VARTANCES

We now turn to the second moments of the parameters, defined by

(m) E(v (m) (m)] (m)

Rk = Bk = E[“(m) “z(cril)]’

g;’;) = B2 ,ﬁf) ;p 7, M = E[F,ip) Py, (85)
m(m? = E[X(p) X(p')], H(m? - E[Y(p) y(p')].

pp m m \pp mm

First, by (40), we obtain that, if m > O,

(m) E[ {v (m 1)

ékkl } {\’(m l) -8

=832 8 Sx(141) w1 Y8 Syt
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and, by first taking expectations for the last inserted node, and then for all

preceding ones, as in obtaining (38) and (1), we get that

- - - - -1 -1) (m-1
&](JZ? - ](Cm 1) \)§<'?—l) _ v}({m 1) p7(<r:7 1), s vZ({m 1) pl(;?—l) _ p]im ) \)k'? )
-1) (m-1) (m-1) (m-1)
* Pém Spxr = 8 Py Sp(rr-1) T 8 Pr1 Vi

(m-1) (m-1)
-8 Dy Skt * O Pror Syl

and so, by (27),

(m) _m-1 - (m-1) , 1 +9 r,(m1) (m-1)
b = mo T e b T M) Ak
1+9 i) (m—l) 1+ g . (m-1)
Yo -1+ Okt [3'"' nk 5 k-l ]
1+6 (m-1) (m 1)
Tm- 1+ € [N Sp(r-1) * Vg d(k—l)k']' (86)

Similarly, by (3), (27), and (37), if m > 0 and k, k' > 1,

g{m) (m) _ o(m) _ (m)

Ry =1 R T Rw . (87)
and
B = B v sy i 4 s )
- Rt s W) * Bl ]
o e B (88)

Using the initial values given in (3), (8), (50), (51), and Appendix A,
as well as known values of M(m) and N(m) from (52), (54), (64), and (65); we can
proceed to solve the recurrences (86) and (88), much as we solved (38) and (k1)
in §5, successively, for increasing values of k and k', and of m. Of course, the

labor required grows very fast. In the simplest cases, we get
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A(m) _ (m) (m)

and
(m) _m=21-19 (m1) ;] (m-1)
Roo "m-Tvofee *rToive e
m~-21-06 (m1) (m - 2)!

mo1+teRe tTmoiwe ... (zre f m>1, (%)

by (64); which is solved for m > 1 by

(m) _(m-21-8) ... (2-29) L)
Roo” = (m-1+906) ... (2+06) ‘s
m-1
(m-1-96) ... (L+21-0)(7-1)
+z§2m (m-1+0) ... (2+0) 3 (91)
and
( ) (m) (m) m (m=-1) ... 1
mlg = Qeg = Mem =(1+9) I (m -1 +me) .. (2 -1+ 9) (92)

I=2

if m > 0, by (65); and, by (64) and (92), if m > 1,

glm) _m-1 -0 ;(m1) _1+6 o(m1), @ (m-1)
Rop' = M= 1% 6 Apo B %12 P TT Ve A
_m-1-6(ml) (m - 2)! ’
m-1+ 8 %22 (m-1+098) ... (2 +8)
2 ”Pl (m - 2)
+2(l+e) Z— (m-—l""e) . (Z_l+e)a (93)
which is solved for m > 1 by
plm) _ (m-1-0)...(2-0) " (m-1-0) .. (2+1-8) (L-1):
22 (m-14+098) ... (2+9) = (m-212+0) ... (2 +9)
m-1 . ,
2 (m-21-08) ...(h+1-0)(h-1)...1
+2 (1 +6)° z m-1+6) (=179 boo (9k)

=1
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Now, by (9), (11), (12), (14), (15), and (85), we see that

olm) _ > % m) ,p,.p olm _ (8 o(m)
“op' T ok N K T = G 5 %op'
(95)
(m) _ © 7 om) .p ' gl (m)
Rpp" kﬁl k.z Rt ©° K Rpp! pfpp

Also, as was mentioned at the end of §2,

g0 o 3 Jm _m (0 o) T e L (0) g

m kil Yoo T > m > m kf M > m T T
whence
olm) _ (mtey2 (m) _ o(m) _ () glm) _ olm) o o(m) _ . (p)
mOg - (‘Bﬁo Qog = mpg ( ) E 3 i mOg =1 NOZ - %pg émp ?
(97)
plm) _ 2 (m) _ p(m) _ (p) (m) _ (m) _ z(m) _ 4(p)
Roo =7 '\,O’; ’\:pg "’”g,mp’ leorg =1 ;\{,og "mpgz me

Thus, by (86) and (88), with (3k), (35), (87), and (89), we obtain that, if m > 1,

(m) o 2 - - (m ,p,.p
mpp (m + 9) kEE k'E2 Akk' K k!

p-1 Py gln=1)

Rap'

= - R g e 22t e ) (n-1 4 o) [

m+ 8 “p m =1 q
p'-1 p-1
s @) emya o) v 1 @) gla)
q'=l q '\’pq =1 q’ nm-1
p'-1 p-1p'-1
+or BB e g e? s p (B) (B glaret)
q'=1 q - =1 q'=1 q -

' p"l
+ @0 meo) KP4+ xP1s v 0? (s (B gld)

1 7
p'-1

1 (1) o )
"t F) a1+ W+ 0%} (98)



-25-

and
(m) -2 P .0 _ =2 > > m) o ..p
= m ) E ke k! =m {3z ) k= k!
Yp! k=1 k'=1 §kk' k=2 k'=2 B
> olm) p - (m) p' (m)
+ I B kK + z k'Y o+ B}
k=2 vkl % vl
_ (m) (p")
= %pp +m X +m Y (99)
where
(m) _ % (m) ,p ,.p' _ 2 .(m) (p) (p")
%PP' B kze k'Eg Rugr & k' = m Qpp' S R * (100)
whence %ég) = (m - 1)°, gég) %;g) - D)m g;p) - 1]; (101)
and if we define the operators
p p p p-1
Tz = 3t PYz anda 22z =1 (P) 2z, (102)
79 o 4 9 g q
so that
p P 14 14
T1=2P, Tl =(n+1)P, 21=02P _2, =znl=(n+2)P WP -1,
q q q G
(103)
we get, using also (33) and (87), that
Jm o om=1-8 O O o(ml) ,p .0 1+0 T % (m1) p p
'\‘pp = m"“""“"“"“""_ 1+ 8 kzg k'Z kk' k 7(' -+ m“""""‘"‘“““— 1+ 8 kig Z'il ;%kZ' k (Z' + l)
1+6 - m-1) P ,.p' 0 (m-1) ,p+p
+ - —— T, E (7 + 1) k + I k
N Elk' m-1+0 s
m=-1-6_(m1) 1+0 P (m-1) , p (p)
T m-1+ GV%pp' Ta -1+ {2' %pq' + 2 [m-1) Aol = 1]
P (m-1) p (p") ) 1+02P
YTk 2 [(m-1) ¥ 7 - 1]} 1T s T o (m - 1)
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or
1
(m) _m+21+806 _(m1) 1+ 6 P o(m1) [P (m-1)
fop' Tw L0 kpp' tw-T1w ghept TG Rpgr ]
1
pli=) Gre) 1 ) Folapt) 2 (peg)
m-1+86 1+ 6 wm-1 g "“m-1 g' ~vm-1
pp' ( U ' '
== ylarq') p _ (P) | (oP - (')
HER-AR S A Y S R O
P ), B (g, e-(+06) (m=3+2F + 2P
= v(@) . 5 v(a m =3+ 2" +2" )
MR ST T S M- 1% 0 ’ (10%)
whence, finally, using also (46) and (55), we obtain that
1
(m) _ m=12 m+21+86 _ (ml) 1+6 2 (ma) g (m-1)
ﬁpp‘_( m ) {m—l+6§pp' +m-—l+9[§¥qp' +Z‘{' g ' 1}
La+e) m-1) a1 x(pa»pw“Lgx(cm,v)Jrg: y (")
m2 (m-1+6) 1+ 6 wm-1 g um-1 q' “m-1
PP' ( v ¢ P
=z ylarq') _ 2 p) , +(p*) = y(q)
* g g' m-1 *(m+ 1 1+ 9) [Xm—l * M 1+ g %m~l
p' -
+ S' ;Zi)} 4 8 +2(l +6) m-1) (105)

m- (m -1+ 6)

We have now finally arrived at recurrences, (98) and (105), whose solutions

will yield the covariances and variances which are the goals of this section:

corlt,”, 171 = i) - ) ) varlxPy < gln) - le)2,

(P) 4(p")q o gm) _ (&) L") )y _ m) ()2 (206)
cov[Yﬁp , yﬁp ] = gpp' - mp mp i var[Yﬁp ] = By - [me 12.

While the recurrences above are, in principle, soluble for all values of the
indices, the herculean task this presents dwarfs even the laborious and highly
accident-prone computations of the previous section. We shall therefore limit

ourselves to the case (most interesting in practice) of p=p'=1.
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For brevity, following (62), let us write

St =% = SéC(IrZz—l)(l +0) = —=2 Pa— oo+ 1 . (107)

q9 ™M (1+0) (24+0)14 (m -1+ 8)7

Then, by (T1), (79), (80), (83), and (84),

(1) (1) X(1) 1+6

,i_

K/m-l (1 + ) Sl +1, zm Am-1  m+ 6°

( ) (1.08)

2 2 _ ot +
mm 1= (1 + e) (sl - 52) + 3 (1 +09) sl + 1,

and

na - -—-————-———<>

(l) — 6 ( ) -l- l + 8

= 1+86) 87 +=——-0%9, . (109)

v(2) _m - 1+0 (14 6)2(3;2

- st - T
N Sp) + (1 -20) (1 +8) ST] + 06 (1+26).

2
Now, by (98),

Q1 = 1= Gl &) Xy +2 (L +0) (m+ o) %;Ei + (1 +8)%]; (110)

so that, by (106), with (108),

var(xV] = [0 - (20?) varlx 1))+ [1 - (2% 12 )2
+ 202 152 w2 v e) (me o) g s s 0)?,
or, upon simplification,
varlx™] = [1 - (=20)2] var[x')] 4 —(-i—'—}«‘j—)-é- (5§ - (x+0)sfl. (1)
Since var[X(l)] mii) - %il)z = 0, we can solve (111), observing that
Z;l (1 - (- i 127 = bn+1d0 ) n=1+0) (m+6) (m-2+0) ... (Z+2+0)(1+6)
h=m h *o (m+0)° (m-1+6)° (1+1+6)°



telescopes to

I+l
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1,2 ( 1+8) (Z+09)
hn [l"'(h_'_"e’)]:(gie) (Z+l+6)’ (112)
=m
yielding
(1) m (m+ 1 +6) (1+8)
var[Xﬁ ]= 222 (m + Z) (7 +6) (Z+1+09) [ S%l - (1 +9) S%E (113)

m 5% m
11 _ 1 1 1 1
I 1 y= I ( ) (== o+ )
o (L+6) (L+1+86) 2, T+6 1+1+e '1+e 1-1+6
3% % %
" S ™ S T 1 __5m
g L*¥ 0 . T+ve L, (T+e) (1 -1+08) m+1+0
I 1y m
—p L-1+6 1+6 m+ 1+ 8
__1 1 1 +
TTY¥0 m+e mrilEe il (11h)
and
% *
5 572 . 1 __ mw
=2 (PFOLEHLTO) g (1) (1-140)2 MFIFO
m g%
= T [l 1 + 1 _ me
Jep L+ 0 1T -1+8 (1 -1+g)2 MmM+1+0
-1 1 1 +
“m+ 0 1+6."[l m+l+9]Sg' (115)
Thus, finally, (113) yields that
(1), _ 0 1+ 0 2 o+ 146
var[X “'] = (2 +6) [1 - —— - 51 - (1 +0)° 55 - 0 5,. (116)
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From the last result, we obtain at once that

(m)

_ 2 2 1+260y o 2 o
gzll-(1+e) Sl+(l+e)(2+———-—-~—m+e),5'l (1 +9) 52
2 62 1+60
+[3+ 0+ el 5. (117)
(m + 9)

To complete our computations, we could proceed to solve (105), much as

we solved (98), from the recurrence

(m) - (m= 1)2 (I + 1 + e) H(m—l) . m -1 {Y(

)
'\'ll m m- 1+ 8" 1l m2(m_l+e) Am-1

+ 2[m (1 + o)

(l)

4+ 8] Y + 1+ 08} +

e : (118)
m (m-1+6)
However, very fortunately, a considerable shortcut presents itself in equation

(16), which yields

F + Em ot 1 (119)
whence, by (9), (12), and (15),
- 1] - 83 (120)

and this, in turn, yields, by (79) and (83), that

(1) (1) _m+58

Thus we see mmediately that
var[y(l)] (~7;~90 aer(l)] (122)
or, finally, by (116),
varlyV] = (24 0) [(n + ©)% =6 (m + 8) = (1 + 8]
- (1 + e)2 (m + e)2 sg -1 +0) (m+59) s:’{}. (123)

From this, by (106), we can readily derive the expression for @( ).
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In Sections 2, 4, 5, and 6, we have obtained exact formulae for some of

l+6
0

the fundamental statistical parameters of s-ary [one might say ( )-ary!] trees.
It is perhaps useful to formalize the more important results at this point.
Lemma 5. Under Assumption 2, the mathematical expectations of the number
of internal (occupied) and external (open) nodes in level k of an s-ary tree with
m (oceupied) nodes are, respectively, Mém) and Qim), as given in equations (65) and
(64), with (62), (33), and (36). Alternative formulae are given by (52) and (54),

with (53) and (55).

Lemma 6. The internal sum of degree p is defined in (11): its expecta-
tion 18 given in (T0). The external sum of degree p is defined in (14): its
expectation is given in (69). From these, the expectations of the corresponding
average p-th powers of levels, as defined in (12) and (15), respectively, are

trivial to derive.

Lemma 7. The second moments of the six quantities whose first moments
(mathematical expectations) are given in Lemmas 5 and 6 satisfy recurrences given
by (85), (86), (88), (95), (98), and (105), from which (in principle) they can

be obtained.

Theorem 1. The mathematical expectations of the average levels of
internal (ocecupied) and external (open) nodes of an m-node s-ary tree, under
Assumption 2, are given, respectively by equations (79) and (83), with (T1) and
(62). Corresponding sums are given by (76) and (8l). The corresponding statis-

ties for degree 2 are given by (80), (84), (78), and (82), respectively.

Theorem 2. The variances of the average levels of internal and external
nodes of an m-node s-ary tree are given respectively by equations (123) and
(116). The variances of the corresponding sums are immediately derivable, and
(in prineiple) the corresponding variances for degree 2 (or more) can similarly

be explicitly obtained.
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Turning to the particular case of binary trees, when s = 2 and 6 = 1,

let us adopt the abbreviated notations

7t =1 + st
q [ q]

R S S S
i

o=1 o4 9
and (124)

xt = [Xél)]e=1 end 7y = [z

Then Theorems 1 and 2 readily yield:

Corollary 4. The mathematical expectations of the average levels of

internal and external nodes of an m-node binary tree are, respectively,

7 = 1 4 2y ot
E[Ym] =2 (1 + m) Tl -3
and (125)

t t_om=1
E[Xﬁ] 2 Tl m+1°

Corollary 5. The variances of the average levels of intermal and

external nodes of an m-node binary tree are, respectively,

var[f%l = iE- {m (Tm + 13) = & (m + 1)2 Tg -2 (m+ 1) TI}
and (126)
1 2 ;
var[xt] = — {m (Tm + 13) =4 (m+ 1) 7T =2 (m+ 1) TI}.
i (m + 1)2 2 1
T. ANALYTIC AND ASYMPTOTIC RESULTS

We proceed to use the results of Theorems 1 and 2 to estimate the

behavior of Xél)

the properties of the sums (107).

and Yél) when m grows in size. To this end, we first examine



-32~

We note that s 2 2, so that
0<6 <l (127)
By (107) and (124), we see that

rto 1= (5T sst < [st]._ =rf i, 128
q [q6=l q [q]6=0 9 9 (128)

Now we observe (see, e. g., Copson[e] or Whittaker and Watson[3]) that these sums

are related to the Riemann zeta function ——-
T; + tlqg) as m=w (129)
--— and to the Hurwitz generalization thereof ——-

S; +¢lg, 1 +08) as m=> o, (130)

[4]

or Mitrinovié

(51,

We also obtain at once that (see, e. g., Abramowitz and Stegun

TI ~logm=y >y as m>w, (131)
where y is Euler's (or Mascheroni's) constant, 0.57721566L49...3 and
* 2
Té + g(2) =a/6 as m o, (132)
When s = 3, 8 = % and it is known that
[s1] + n2/2 -4 as mo e (133)
2 0=% ’
Higher values of s give more difficulty. However, we see that
o<l 1__ 1)=:_L_”’§l(1 1 )zmz’ll 2 &
21 +86 m+29o 2Z=J.Z+e 7 +6 +1 Z=10(Z+6)(Z+9+1)
m-1l 1 m-1 1
1 1
<A (8)=z | g 0 =3 [ - ) dz
m =170 B +e) (L +o+z) T +e L +6 4z
m=-1 m=-1
1 L+0 + 1y _ o m_+ 9
Zil s Zil log ( TS ) 5] - log (1 - e). (134)
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Similarly, by (128) and (132),

m=1 1 m-1
(0) s« 1z [ 2 %z .

m =1 "0 (1 + 0)° =1 (1 + 8)

=
i\)i!—-‘

é <7 /6 (135)

U
N -+

Another result which is of interest, though it will not be too useful here, is

m=-1 m=-1
st= 35 —2—= 3 —L (1. %—i—%&'q
9 1=1 (1 +6)? 1=2 (1 + 1)
m-1 o
h -1 N
= 3 r (47 ) (o
=1 (1 + 1)9 n=0 & T
= @ oo (et -1
h=0 h “qt
P (q + Z - l) (1 - e)h [g(q + h) - 1] as m- o (136)
h=0

Applying these results to (108), (109), (116), and (123), we obtain that

21 = @+ 0) [20s B 4 (6)] + 2L g, (137)
¥$>=&%9u+e)u%<§1$+aﬁm]+1;e—m (138)
var[X(l)] = (2 +9) [1 - I ] - (1 + 9)2
g A

- e 1o (D) + 0 (0)], (139)
varly¥M] = w2 (2 + 6) [im+ 8)% = 0 (m+ 0) = (1+ 0)]

-+ 0)? (m+ 0)° 55 - (14 0) (m+0) [1og (-0) + 2 ()12

(1k0)

Now Am(e) is an increasing function of m (a sum of (m - 1) positive terms,

by (13%)), bounded abowe, by (135); so it converges to a limit

Am(e) +A(8) as m> = (1k1)
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with A (0) =y - %-+ y=x(0) as m=~> «, (1k2)

Going to asymptotic forms, as m - =, we see that

X, v (1 +8)logm+ (1+6)[A(6) -log (1+0)] +1, (1k43)

T 0 (14 0) Jogma (1+0) [A(6) - Tog (14 6)] - 6, (1k)
var[Xél)] no(2+8) - (1+8)° sy s (1k5)
var[r ] 2+ 0) - (14 002 57 (146)

We note in passing, that

%;l) - %;l) +>1+86 as m->oo , (147)

By (128) and (132), with (130), we observe that

var[Xél)] N var[Y;l)] v (2+0) - (1 0+ 6)2 z(2, 1 +0) =@

2 2
where T -1¢ z(2, 1 + 8) < 27— . Thus the variances are asymptotically
6 6

5° (148)

constant, for large m; that is, they are bounded for all m. Thus, we have

Theorem 3. The expectations of the average levels of both internal and
external nodes of an s-ary tree are asymptotic to (1 + 6) log m, as m, the number

of (oceupied) nodes, tende to infinity.

Theorem 4. The variances of the average levels of both internal and
external nodes of an s-ary tree tend to the limit @y defined in (148), as m,
the number of nodes, tends to infinity; thus, these variances are bounded over

all values of m.

Corollary 6. The expectation of average levels of both internal and
external nodes in a binary tree is asymptotic to 2 log m, as the number of nodes,

m, tends to infinity.

This Corollary is simply the case 6 = 1, for which also
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2 =3 - 2? g(2,2) =3 -k fg(2) -1]1=7-14 w2/6 = 0.42026373... (149)
For s = 3 and 6 = %, we similarly get, by (133), that
5 9 .m0
sz%=§-h—(§-~h) = 0.396695... (150)

[6] [7]),

Now, by the Chebyshev inequality (see, e. g., Feller or Tucker

for any € > 0,

1K) _ @) (1) var(x ! 9
Prob[ | X - > € ] < "
m Xm Km 5 %(1)2 2 (14 9) (108 m)?
m
>0 as m-> o, (151)
Similarly,
(1) (1) (1)
Prob[ |y = - T 2e x>0 a8 mo . (152)

Theorem 5. The average levels of both internal (occupied) and external
(open) nodes in s-ary trees distributed statistically according to Assumption 2,
are asymptotie in probability to (1 + 6) log m, as m, the number of occupied nodes,
tends to infinity.

Note, once again, that the averages referred-to in all our results are
averages over the nodes (internal or external, as the case may be) of a single
tree: the statistical averages over all trees are always referred-to as (mathema-

tical) expectations.

Corollary T. The internal and external sums of an s-ary tree ave

d(l+9)

asymptotic in probability to (1 + 8) m log m an 5

m log m, respectively,
as m tends to infinity.
We may write these results as

(1) (1 +0)

1
~ (1 + 8) log m, E 5 )

m log m, F;

X;l) e Yél) v (L +60)mlogm

in probability, as m - . (153)
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The asymptotic inequality (151) (and the similar result for Yél))

is,
in fact, stronger than the assertion of Theorem 5. Indeed, the zero limits
found in (151) and (152) will prevail even if ¢ depends on m, so long as

1)

e X w, or elogm-=e®o, as m->®, (15k)
(1) (1)
Thus , Prob[ |X *7 - X | »n1-0
1 1
and Prdb[lY; ) _ xé )I > nm] + 0, as m= o, (155)
so long as n, » as  m = o,

We may express this state of affairs by

Theorem 6. The average levels of both internal and external nodes in
an s-ary tree remain, in probability, within finite bounds of the asymptotic
forms (143) and (14k), as m + =,

Another way of putting this is to say that the distribution of internal

and of external average levels approaches a constant finite-variance distribution

about the corresponding expectations.

8. CONCLUSTIONS

Qur main conclusions are contained in Lemma 3, Lemma U4, Corollary 3
(based on Assumption 1, and leading us to the generalized Assumption 2),
Lemma 5, Lemma 6, Lemma T, Theorem 1, Theoéem 2, Theorem 5, and Theorem 6.
Essentially, we record the fact that, as the number, m, of internal (occupied)
nodes in a tree increases, the average levels of both internal and external
(open) nodes approaches and remains boundedly close, in probability, to the

corresponding expectations, which are asymptotic to (1 + 8) log m, where 0

is 1 / (s - 1) for s-ary trees.
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These results will affect the decision, whether or not to bother to
adopt the procedure to store data in balanced tree structures, rather than in
simple trees. With the average levels hewing so closely to their expectations,
which we have shown to be asymptotic to 2 log m, in a binary tree (Corollary 6);
the justification of the additional work of balancing becomes harder to find,
unless the assumptions of randomness are sufficiently in question to make
abnormally-unbalanced trees a real (and costly) probsbility. Unfortunately,
precise results for balanced trees are not yet available (to the best of my
knowledge): for an illuminating discussion of this and other matters, the

(1]

reader is referred to Knuth .
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SERRIRES 4

SPECIAL CASES

We list the values of the various statistics for an s-ary tree of m nodes,

(p) 0 .
when m = 0, 1, 2, 3, and 4, We note that y(()p), 1f7, ana ;@ép? are undefined:

we take their values to be zero, by fiat. The figure shows the possible tree-
configurations for the various cases being considered: black circles denote
internal (occupied) nodes and white circles denote external (open) nodes. The
arrows indicate which trees lead to which, as m increases; and "Prob" is the

probability of the particular configuration, given m. These are the probabilities

we use in computing the expectations Mém), ﬁém), ;p)’ %;p), ;p)’ ;p), Qézz,

%;%?, Jazgm?: ’Q'z(?g?’ %Zgg?’ and %;g?, from the values of uzim), vzgm), FYEYP)’ E)gp),

(p) L) (m) (m) _(m) (m)
Yﬁ? i Xﬁp , “km m m m

Bt s Vi o Vs and so on. In these listings, we write

8=+ 00 /0 Ry = Sk Skrge Ry T Sk Syt Sy Sk (B F D
0=1/(s-1), By=FP, p.=F P +FE G4,

for brevity.
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.........

........

Prob =
3s(s-1)

(s-2)(s-1)

Prob = 13 5Y(2s-1)

s(s-1) 2

Prob =

(3s-2)(2s-1) (3s-2)(2s-1) (3s-2)(2s-1)

......
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(m) Prob n(m) v(m)
ly” k
0 1 1 -
11 1 s = ;:5@ %’Q S12
§,. + 8 1 pe-1 = 8| L 10
k1t Ok 5 ket 8 %3
11+ 2§j é%é“ 3s-2 = 326 15657<2+‘13657<3
Sp1*OrotOn3 5o %{% 5(60* ks)”kg*skh
S11*3% (NS = riey| o3t | e s
Sk1*20%2* 013 (3s§§§?§izl) = (3§é%?gle) R T T Y
31+ 8%0*203 ( 3sfé§és)—1 YT T 3+el)j(rg+e ) ”6k2+_§6k3+2;ﬂ§ku
k1 Sro* O k3 Sk (3s-2§fzs-1) - (3i§§?éie) (5k2 k3t 0 g +500 k5
Mlgm) rl\lzim)
0 511
Sr1 5 Sk
k1 ¥ Sko % Spo ¥ %’Q Sk3
6k1+g$%6k2 %£%6k3 [26k2+3(l+9)5k3+(1+9)26ku]/6(2+6)
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(m) qlm)
Mk '\:k
11+66+6° (6+6)(1+6) 65, +11(1+0)6, +6(1+6)°s,, +(1+6)3s
$1a? (3+e)(2+e)5k2 (3+e)(2+6)5k3 k2 e§§+e)(2+e) ki :
(1+6
(3+6522¥"7 kh
(p) (p)
£ B
0 1
1+6 p
1 5 2
P i, 1+6 p
1+ 2 ) 2" + ) 3
3+6,p 1+6.p p+l p+l 2, p
1 5162° 2+e3 [25 "+ (1+6)3F “+(1+0)°U ] /6(2+0)
2
L 11+66+6° _p (6+6)(1+6).p p p 2)p 3.p
1 (3%6)(2+6)2 *(3+0)(2+8)> 6(2) +11(1+92§+;§§é:g;eh +(140)°5
(1+0)° p
NET TN

(p) (p)

m m

(o] 1
1 oP
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(p)
P %
(1 +2P)/2 [2P + (1 +0) 3F1/(2 + o)

1, (3+0)2P+(1+0)3P
3 3(2+0)

Py (146)3P 4 (140) 0P
(3+0) (2+6)

%+[(ll+66+62)2p+(6+6)(l+6)3p

+(1+0)24P 1/ (340) (246)

6(2)P+11(1+0)3P+6(1+6) 1P+ (1+6) 5P

(k+6)(3+0)(2+0)

n(m) Vim) Prob
1 6k1 1
(o) _
ékk' - Qll
1+0 1+6
o | T8 %k 1
(1) _ ,1+8,2
A = (55 800
240 1 146
o | 8%t T Y3 1
(2) _ 1 148 146 ,2
Rurr = o2 Rz * .2 Rog + ()R 33
36 | 1-6 140 1
9 5 Sko * 275 Sis 515
1 1+6 1+6
5 Oro * 83) + T S| 5w
(3) _ 2 - 2
Az = [(2-0+67) Aop * (3—29)(l+6)é23 + (146)74,), *+ (5+he)(1+e);333

+ (l+6)gé3u + (l+6)3éuh]/92(2+9)
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n (m) vz((m ) Prob
h+o 1-26, |, 1+0; 1-6
) o k2 - 8 "k3 (3+6) (2+9)
1-6 240 1+6 3(1+6)
5 ket o k3" 6 kb (3+8) (2+0)
1, A8, ,1+8, 146
o k2 6 k3 6 kk (3+6)(2+8)
2
L 1+6 __(1+8)”
s Ora* 013", 5 ks | 3407 (070)
(%) _ 2 3 2 2 3
harr = [(6-56+60°-07)8,,+(11-120+307) (1+6)4,5+3(2-6) (1+0) 74 ) +(1+6) A
2 2 3 2
+(23+120-56") (1+6)4 55+ (9+0) (148) ") +(1+6) A +(8+70) (140)74) )
3 L 2
+(148)74), +(140) A 1/67(3+0) (2+6)
(m) (m)
uk Prob %kk '
0 1 0
$1a 1 R
1 ¥ So 1 B11 T Rio t Ao
1 (3+6)A, , +(1+6)A. +(5+0)A  +(1+6)A. +(1+6)A
S0 * 2 6y = . Rio R13 Rop Ro3 R33
V1 2+06
1+6
S0 * Suo * Sk | e
8,,,+38 i A+ [(11460+62)4, +(6+6) (146)A +(1+e)gg
k1 ko (3+0)(2+6) | %11 B10 R13 1k
__3(1+8) 2 2
S1*20xo™ 03 (3+6 ) (2+0) +(23+60+0°) 3 +(9+0) (1+0) 4,4+ (140) 4 ),
1+0 o
Skttt ®r3 (3%8) (2+6) +(8+0) (140)455+(1+40) 4
2
(1+g) 2
k1O 3 | s (o) +(1+0)%,), 1/(3+6) (2+0)
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(m) (m)
'gpp ' '%PP !
1 1

1+6,2

(_6“' Roo Koo
%22+(1+9)k23+(1+e)2%33 %22+(1+e)%23+(1+6)2%33

92 (2+e)2
(2-e+92)1 + (3-20)(1+6)L. + (l+6)2L + (5+4o8)(1+0)L. . + (l+6)2L + (1+e)3L
2 23 2k n33 A3h ALl

. a2 (3) ) 2 (3)
:+ 6% (2+0), for gpp, + (3+8)° (2+8), for gpp,

(6-56+662—63)k22 + (11—126+362)(1+9)k23 + 3(2-6)(l+6)2%2h + (1+e)3%25

+ (23+119—562)(l+6)k33 + (9+e)(1+e)2;¢3h + (1+e)3;\,,35 + (8+76)(l+e)2%uu

v (140)7, o + (140) g

: 82 (3+8) (2+8), for 9;;2 + (4+0)° (3+8) (2+8), for ﬁ;;?
(m) (m)

'.Qpp ' pr 1

0 [o]

1 1
L+l 1o (A + Iyp + Lop)/b
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(m) (m)
m ,Qpp ' lépp '

(3+6 )k12+(l+9 )k13+(5+8 )%22+(1+e )%23+(l+e )(I\:33

3 1l + 570

+9, for H(3)

5(3) )
“pp

thus for
\pp'

h (3+e)(2+e)+(11+6e+92)%12+(6+e)(1+e)%13+(1+e)2%1h+(23+66+62)%22+(9+e)(1+a)k23

+(1+e)2;,‘2h+(8+e)(1+e)%33+(1+e)2%3h+(1+e)2%hh

+ (3+08) (2+8), for Qégz +16 (3+6) (2+8), for %(h)

pp'

These particular values could clearly be indefinitely extended, with fast-
increasing labor and complexity, as m increases. The values given here were used

to check the general formulae derived in this paper.
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IREBIH B

CANONICAL BINARY TREE REPRESENTATION
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Canonical representation of typical binary tree, illustrating the arguments

of various Lemmas in §1.

lemmAa 2 % CoroLLary 2
L -  Successors o?% Successors of F
evmMa 3 —_—
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T T 1 r e
xg bel&a ~
Bl R s NN
‘ ’ o100 @ -0-Q-0 o-Q 220 'Fbill ] 4 IH1D
a h=-id-i-hod
Shh-fde—lta = o |
/ o o o O 0 oV & B & @ b -9
/a=—£+z'~é
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