IMMEDIATE ERROR DETECTION IN-STRONG LL(1) PARSERS
by
C. N. Fischer
K. C. Tai
D. R. Milton

Computer Sciences Technical Report #332

August 1978

Immediate Error Detection
In Strong LL(1) Parsers

C. N. Fischer
University of Wisconsin - Madison
Madison, Wisconsin 53706

K. C. TaiT
Department of Computer Science
North Carolina State University
: P.0. Box 5972

Raleigh, N.C. 27650

D. R. Milton
Bell Laboratories
Naperville, IL 60540

Keywords: Compilers, Parsing, LL(1), Syntactic Errors,
Error Correction

[

fThis research has been supported in part by the National Science
Foundation Grant MCS 77-24582

Abstract
An algorithm is presented which guarantees that no erroneous
actions are performed by a Strong LL(1) parser while parsing an
"incorrect input. The class of Strong LL(1) grammars for which
this algorithm is usable appears to closely coincide with grammars
actually used in practice. Further any Strong LL(1) grammar can
be algorithmically transformed into a form_suitab]e for use with

this algorithm.

1. Introduction

One of the best known and most popular tabular parsing tech-
niques is LL{k) [1 J. LL(k) is very closely related to another
barsing technique, Strong LL(k). 1In fact;.the two techniques
differ only in details of how parsing tables are created.

The difference between LL(k) and Strong LL(k) parsing is
often blurred, in large measure because in the case of one
symbol look-ahead the classes of context—frée grammars parsable

by the two techniques are identical [1]. Strong LL(1) parsers
'require smaller parsing tables and thus LL(1} parsers are almost
never used in practice.

However LL(1) and Strong LL(1) parsers are not entirely
equivalent: they differ slightly in how (and when} syntax errors

are detected. Both have the correct prefix property; that is,

symbols accepted by them can be guaranteed to form a prefix of
some sentence in the language. LL(1) has the even stronger
property that an error is detected as soon as an erroneous input
symbhol is first encountered. We shall call this property the

immediate "error detection property. As a result of this property,

LL(1} parsers nevér perform any parsing action on an erroneous
input symbol. On the other hand, Strong LL(1] parsers do not have
the immediate error detection property [1, 5 J. As a result,
incorrect input symbols can sometimes induce a Strong LL(1)
parser to perform incorrect parsing actions.

Such incorrect parsing actions can seriously interfere with

syntactic error recovery or correction. Consider the following Strong

LL(1) grammar+ presented in [4]:
Gl: S -+ E$

E->TE'

E' >+ TE' | X

T+a]| (E)

This grammar generates simpTe infix expressions in +; it is very
similar in form to LL(1) grammars used in préctice to specify arithmetic

expressions. It also happens to be insert-correctable [4 1; that is,

all syntax errors in Gl can be corrected via suitable insertions to the
immediate left of error symbols.
Now consider a Strong LL(1) parser for G1 processing an input of

a)...$. The parsing stack sequence is S I E$ FTE'$ FaE'$ FE'SES.

At this point the parser announces "error", but it i; too late — there
is no useful information left on the parsing stack to guide a correction
(or vecovery) algorithm. In fact, the only possibility left is to deYete.
all remaining input — which is equivalent to simply terminating parsing.
The problem above occurred because '}' induced the incorrect parse
move E'$ k $ (because ')'GEF011ow](E')). Had we the immediate érror de-
tection property, parsing would have stopped with a parse stack of E'$
and a simple insertion of '+(a' would have'ef%ected a correction.
Naturally LL-based error-recovery and correction schemes de-
mand the immediate error detection property. A number of ways of ob-

taining it have been suggested:

T 2 is used to denote the empty or null string.

(1) In [4] an LL(1) rather than a Strong LL(1) parser fs
suggested. However, for one typical grammar this tripled
the number of non-error entries in the parsing table.

(2) Ghezzi, in [5], suggests transforming Strong LL(1)
grammars into structurally equivalent Strong LL(1) gram-
mars which have the immediate error detection property.
However, his construction is equivélent to that preseﬁt—
ed in [1] in building LL(1) pa;sers. Thus an increase
in parsing table size comparable to that noted in M
can occur. ﬂ

(3) In[3] a method is presented of saving parser moves in
a queue until they a}e known to be correct. This approach
is unattractive in that it can significantly increase the
time and space requirements of a parser. In the worst
case this queuing technique can require 0(n) extra space
and O(nz) extra time to process an input of size nt

None of the above proposals is very attractive in that each incuré

a rather substantial overhead in extra space and/or time requirements.
We present a simple and efficient method for immediate error detection
in a subset of Strong LL(1) grammars termed nonnullable. This subset is
of interest in that it appears to closely coincide with those Strong
LL(1) grammars actually used in practice. Further, it will be shown

that any Strong LL(1) grammar can be algorithmically transformed into

+The O(nz) increase in time is especially onerous in that linear-time
LL(1) error correctors are known [4] .

an equivalent nonnullable Strong LL(1) grammar.

2. Immediate Error Detection

Following Aho & Ullman [2], we term a context-free grammar non-
nullable® if and only if each production is of the form A - A or

A - X]...Xk (k 2 1) where X]...Xk 2% X . In nonnullable grammars

A can only be derived directly (in one step). For our purposes, such
grammars are of interest in that the range of possible moves that an
error symbol can induce in a nonnullable S%rong LL(1) parser is severe-
1y limited.
Lemma 2.1

In a Strong LL(1) parsernfor a nonnullable grammar, the only
parser moves an error symbol can induce are predictions of productions
of the form A~ A.
Proof

Clearly, the only parser moves an error symbol can induce in any
Strong LL(1) parser are predictions. By construction of Strong LL(1)
parsers and the definition of nonnullable grammars, a nonuk-production‘
A~ X]...Xk will be predicted for an input symbol a if and only if
aEEFirst](X]...Xk); that is X]...Xk=** a.... But such a prediction
is obviously correct. o O

Since only predictions of A-productions can possibly be erroneous,
we modify the standard Strong LL(1) parsing algorithm (Algorithm 2.2) to

give A-productions special scrutiny. In particular, function

TActually Aho & Ullman require that X]ﬂv*’x . Our definition
simplifies Algorithm 3,1,

CHECK_LAMBDA PROD determines whether or not the prediction of the
A-production is correct. It does this by noting that the net effect

of predicting a lambda production is to pop the parse stack. It there-
‘fore considers the parsing action which would be induced by the new
stack top and the current input symbol. If this action is pop, accept ,
or the prediction of a non-x—production,then the A-production must be
correct. If the action induced is error then the A-production is ob-
viously incorrect. If the parsing action is the prediction of another
A-production, then we iterate the above by considering the next symbol
down in the parse stack (obviously this process must halt). We thus
obtain:

Algorithm 2.2 - A parser for nonnullable Strong LL(1) grammars.

{ Assume Xm...XO

(m =z 0, X0 = $§) is the parse stack with X the
top element. Let a be the’current.input symbol. |
T is the parser action table }
LOOP {FOREVER} |
CASE T [X ., al OF
POP: Pop Xm from parse stack;
read next input symbol;
ACCEPT: Terminate parse successfully;
ERROR: Invoke Error Corrector;
PREDICT: {Assume prediction is Xp = o }
IF (@ #2) OR
(o = A) AND CHECK_LAMBDA_ PROD
THEN Pop X, from parse stack;

Push o onto the parse stack

Algorithm 2.2 continued .

ELSE Invoke Error Corrector Ei

END {CASE} .
END {LOOP} D

Note that in the above algorithm we assume that CHECK_LAMBDA_PROD
is only invoked if a=2A; that is,0R is evaluated in an optimized,

“short-circuit" mode.

Algorithm 2.3 - Check whether a predicted A-production is correct.

., FUNCTION CHECK LAMBDA_PROD : BOOLEAN ;
{ Xm...X0 (m 2 0, X0 = $) is the current parse stack; a is the
current input symbol }
FOR i:= m-1 DOWNTO O DO
CASE T [X;, al OF _
POP, ACCEPT : RETURN (TRUE) ;
ERROR : RETURN (FALSE) 3
PREDICT : {Assume X; + g 1is predicted}
IF B %A THEN RETURN (TRUE) FI
END {CASE}
END {FOR}
END {CHECK_LAMBDA_PROD} - » O

Theorem 2.4

Any nonnullable Strong LL(1) grammar parsed with A1gorit?m 2.2
will have the immediate error detection property.
broof

Follows from the above discussion. | ‘ O

Algorithm 2.2 is a very attractive way of providing for immediate
error detection in Strong LL(1) parsers. CHECK LAMBDA_PROD is a very
compact routine requiring essentially no additional run-time data
structures. It is only called in those cases when an erroneous parser
'move might actually occur. Execution speed of the routine should be no
problem. Normally only a very few parse stack entries will need to be
examined. In the case of a bounded depth parse stack (which is in-
variably used in practice), the entire parse stack can be examined,
if necessary, in constant time. Even if an unbounded depth parse stack
is used, a linear time parser can be guaranteed. For each stack symbol
visited by CHECK LAMBDA PROD with a current input symbol of a , we
table whether or not a leads to an error move. If suéh a stack
symbol is subsequently considered by CHECK LAMBDA_PROD with an input
of a , the information tabled tells us whether or not an error move
will be found. Since each stack symbol needs to bé processed only once
(at worst) for each terminal, linearity can readily be established.

Algorithm 2.2 also interfaces well with syntax-directed compilers.
Since no incorrect parser moves can ever occur, we need not worry about
“updoing“ semantic actions initiated by such moves. This is especially
fmportant for even if incorrect parse moves could somehow be reversed,

semantic actions (such as code generation or symbol table manipulation)

must often be considered irrevocable.

Some error recovery schemes, for simplicity's sake, disgontinue
semantic checking and code generation after a syntax error is dis-
covered. They merely seek to continue syntax checking. For these
schemes we can improve overall efficiency.by no longer checking in
advance (in Algorithm 2.2) whether or not a prediction of a A-pro-
duction is valid. Rather, we wait until an error is detected by
the parser and then use the results of Lemma 2.1 to “undo" any il-
legal predictions of A-productions.

For nonnullable Strong LL{1) grammars, the sequence of parser
moves preceding detection of an error is quite constrained: a terﬁ-
inal symbol is poppedf and then 0 or more (incorrect) A-productions
are predicted. Since parse stacks are invariably implemented in
arrays, symbols "popped" are not lost until they are overwritten by
subsequent pushes. Thus, in the above case it is trivial to "undo"
any illegal predictions of A-productions: we simply "mqve up" the
top of stack pointer to a position just below the first terminal sym-
bol encountered. At this point, the stack is restored to the state
is was in just after the last {(correct) input symbol was popped. This
approach is attractive in that correct programs need bear no extra over-
head - stack recovery is performed only after error detection. Unfortu-
nately this is too late for correction purposes - illegal semantic

actions may already have occurred.

Twe assume initially that S 1is predicted and then the left $
is immediately popped.

10

3. Creating Nonnullable Strong LL(1) Grammars

We now show that any Strong LL{1) grammar can be algorithmically
transformed into an eguivalent nonnullable Strong LL(1) graméar. This
'of course means Algorithm 2.2 can be considered usable with any Strong
LL(1) grammar. ‘

Because we are interested in using Algorithm 2.2 with actual compilers
which are driven by Strong LL(1) parsers, we must consider how a Strong

LL(1) parser interfaces with the rest of a compiler. Typically this is

by use of action symbols [7 1. Action symbols represent a fixed (and

. finite) set of grammar symbols disjoint from the terminal and non-terminal
vocabulary. They are allowed to appear anywhere in the right-hand side of
a production. In context-free derivations and in parsing they are com-
pletely ignored* except that when a production is predicted they are

pushed onto the parse stack as part of the righénhand side. When an action
symbol reaches the top of the'parse stack, i£ is immediately popped and a

subroutine (usually termed a semantic routine] is invoked.

Action symbols thus serve to synchronize the parse} with the rest of
a compiler. Thus given a production E' -+ + TE', we might add an action
symbol {Plus} to the right hand side to obtain E' - +T {Plus}E' . This
would specify that after predicting and recognizing '+ T' we are to in-
voke a semantic routine (presumably to generate a plus operation) and then
resume parsing by recognizing an E'.

In transforming a Strong LL(1) grammar to a nonnullable Strong LL(1)

tThus no explicit provision for action symbols is needed in Algorithms
2.2 and 2.3

1

grammar we will need to ensure that, for a given input string, the
sequence of action symbols encountered using both grammars will be
identical. This will guarantee that the same translation will be

'obtained using either the transformed grammar or the original.

Let K be the set of action symbo]s'used. For a € K define
ACTION SEQ(a) = a. For AE Vn define ACTION SEQ(A) = the sequence
of action symbols which would Be obtained as A derives X . For
unambiguous grammars (including all Strong LL(1) grammars) this sequence
will be unique. Finally for Xl“'xm € (Vn UK)+ define ACTION_§EQ(X1...Xm)=.
| ACTION_SEQ(XI)...ACTION"SEQ(Xm). Except for the provision for action
symbols, the following algorithm is essentially that given by Aho & Ul-
Iman in [2 1. "

Algorithm 3.1

Input: G, a Strong LL(1) grammar“
Output: G', an equivalent nonnullable Strong LL(1) grammar
[1] Initially set G' =G
[2] FOR EACH production p = B > X;...X,
SUCH THAT m =1 AND X;...X, =t X DO
FOR EACH nonterminal A IN p DO

(a) Let all the productions in G with A as a left-hand
side be A+ o, |o;]...]a, (n =2 0)
0'1 n
where oy =%)
(b) Let A be a new non-terminal added to G'
(c) AddA - all...lan to G

(d) Mrite ag as 2,...2. (m=20)

1 m
(e) Add the following productions to G':
LR = ACTION SEQ(Zy- .25 1) Ty Zyyee Ty |

First1 (Zi) N Vt ¢+ P and 1 <1 sm}

~ .

12

(f) Replace all A-productions in G' with
A+ R | ACTION_SEQ(Z;...Z)A

END {FOR EACH} '
.END {FOR EACH}

{31 Remove all useless non-terminals aﬁd productions from G' O
The operation of Algorithm 3.1 is quite straightforward. Whenever
a production A - o is found which can derive A indirectly (i.e.,
o =*1), we create an alternate set of productions which cover derivations
through aq - In particular, A is allowed to derive A directly or to
derive A . A can derive all of L(ao) less A . It does this by
noting that some non-terminal in g (call it Zi) must derive the
first symbol of some z € L(a0)4{k}. This derivation is provided for
by adding a production A - 7} Zigypor+Ip e Z, can be replaced by 7}
because, by construction, L(T}) = L(Zi)~{l}. We can formalize the
properties of Algorithm 3.1 in the following.
Theorem 3.2 |
Assume G' 1is created from G, a Strong LL(1) grammar, by Algorithm

3.1. Then

(1) L(e') = L(G)

(2) G' is nonnullable and Strong LL(1)

(3) The action symbol sequence obtained while parsing
.any string x € L(G) via G' will be identical to
that obtained while parsing x via G

Proof

(1), (2). The proof of these two parts parallels exactly. the
proof of Theorem 8.3 in [2].

(3) This follows from the fact that derivations in G' parallel

derivations in G . In fact, they can only differ when a non-terminal
A whose productions were changed is expanded. If in G, A was expanded

S

13

(3) continued

to an a which can't derive X , then in G' A =N =a. Otherwise,
o can derive A . If in the derivation in G it does derive X we
use A - ACTION SEQ(a) A in G' . By construction, this production
,yields the same sequence of action symbols as the derivation of A from
A in G does. If a=1 ...Zm derives some non-A string in G by

allowing Zl...Z,i__1 (i = 1% to derive A and Zi to derive some non-A 'h
string then again G' has an analogous derivation sequence. In particular
the sequence A =>ﬂ'='ACTION_SEQ(Zl...Zi_l) 7}Zi+1'°‘zm is used.
ACTION_§EQ(21...21_1) yields the same action symbols as the derivation
Zl"‘zi-l =*) does in G . MWe then can iterate the above argument

to show that the expansion of Zi to some non-A string parallels the

expansion of Z in G as does the subsequent expansion of Zi+1"'zm O
It is useful to note that Algorithm 3.1 has the property that

only non-terminals and productions involved in the indirect derivation

of A are modified. This means that if a grammar is "very close" to

nonnullable form, then it will be perturbed only slightly. This is in

sharp contrast to the algorithm presented by Ghezzi [5] which in all

cases changes (and expands) the entire'grammar.

&, Using Nonnullable Grammars In Practice

Finally, we must consider how closely Strong LL(1) grammars used
in practice approximate the nonnullable form required by Algorithm 2.2.
Surely a large deviation would be surprising {n that indirect derivation
of A seems to be of 1ittle use in practice. In fact, examples we have
considered confirm this supposition.

Lewis and Rosenkrantz in [6] describe an Algol compilef using a

Strong LL(1) parser. The grammar they use has the propertyf that every

TIn [7 7 this is termed a gq-grammar s

14

non-) production begins with a terminal. Such a grammar is trivially
nonnullable.
A Strong LL(1) grammar for a variant of Algol W we considered
" contained only a few cases of indirect derivation of A among
180 productions. The most significant of these involved variable
qualification in the following grammar fragment:
<VAR> ~+ ID <IDREM>
<IDREM> - (<ACTUALS>)
| <SUBSCRIPTS><QUALIFIERS>
<SUBSCRIPTS> ~ [<EXPR-LIST>]
| A
<QUALIFIERS> -~ . ID <SUBSCRIPTS><QUALIFIERS>
| A
The offending production is
<IDREM> + <SUBSCRIPTS><QUALIFIERS> .
Using Algorithm 3.1 (and removing A-type non-terminals by substituting
their sole right-hand sides) .this production is fep]aced with: .
<IDREM> - [<EXPR-LIST>] <QUALIFIERS>
| . ID <SUBSCRIPTS><QUALIFIERS>
| A
The resulting grammar is only marginally larger and is just as
readable as the original. Thus in this case it is fair to conclude
that transforming this grammar to nonnullable form would not significantly

affect its practical value.

15

5. Conclusions

LL-parsing techniﬁues are very commonly used in practice: Because
of size considerations, Strong LL(1) is the LL-technique almost invariably
;hosen. However if syntactic error-recovery or correction is to be per-
formed effectively, the immediate error detection property must be guar—.
anteed.

We have suggested a simple, compact and efficient algorithm which
provides immediate error detection for a broad class of Strong LL(1) gram-
mars. This class of grammars appears to include (with at most minor
modifications) those Strong LL(1) grammars used in practice to drive
syntax-directed compilers, Further, we have provided an effective
algorithm which transforms any Strong LL(1) grammar intc the necessary
form, Via this transformation, immediate error detection can be provid-

ed for any Strong LL(1) grammar,

Several bottom-up parsing methods, including LALR(k) and SLR(k) ,

do not have the immediate error detection property. An investigation

of immediate error detection in LALR(k) and SLR(k) parsers is pre-

sented in [8].

16

References

13
[2)

£31]

L 4]

£51

£61]

{71

L8]

Aho, A. V. and J. D. Ullman, The Theory of Parsing, Trans-
lation and Compiling, Vol 1, Prentice-Hall, Sec. 5.1, 334-
361, 1972. :

Aho. A. V. and J. D. Ullman, The Theory of Parsing, Trans-
lation and Compiling, Vol 2, Prentice-Hall, Sec 8.1.2, 6/4-
683, 1973.

Dion, B. A. and C. N. Fischer, An insertion-only error cor-

rector for LR(1), LALR(1), SLR(1) parsers, Technical Report

#315, Computer Sciences Department, University of Wisconsin-
Madison, 1978.

Fischer, C. N., D. R. Milton and S. B. Quiring, An efficient
insertion-only error corrector for LL(1) parsers, Conference
Record of the Fourth ACM Symposium on Principles of Program-
ming Languages, 97-103, 1977.
Submitted to Acta Informatica

Ghezzi, C., LL(1) grammars supporting an efficient error
handling, Information Processing Letters 3, 174-176, 1975.

Lewis, P. M. II, and D. J. Rosenkrantz, An Algol compiler
designed using automata theory, Proc. Symposium on Computers
and Automata, Microwave Research Institute Symposia Series,
Vol 21, Polytechnic Institute of Brooklyn, N. Y., 75-88, 1971.

Lewis, P. M. II, D. J. Rosenkrantz and R. E. Stearns, Com-
piler Design Theory, Addison-Wesley, 1976.

Tai, K. C., The recovery of parsing configurations for LR
parsers, Department of Computer Science, North Carolina
State University, 1978,

