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ABSTRACT

This thesis investigates the mechanisms a program may
use to learn conceptual structures that represent natural
language meaning. A computer program named Moran is
described that infers conceptual structures from simulated
pictorial input data. Moran is presentéd "snapshots” of an
environment and an English sentence describing the action
that takes place between the snapshots. The learning task
is to associate each root verb with a concepfual structure'
that represents the types of objects that participate in
the action and the changes the objects undergo during the
action. Four learning mechanisms are shown to be adequate
to accomplish this learning task. The learning mechanisms
are described along with the conditibns under which each is
invoked and the effect each has on existing memory struc-
tures. The conceptual structures that Moran infers for

seventeen senses of four root verbs are shown.
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CHAPTER 1

INTRODUCTION

This thesis addresses the question of how complex
memory organizations that can be used to represent natural

language meaning may be inferred from environmental data.

A. History

1. Representation of Knowledge in Memory

Much research has been devoted to the design of mean-
ing structures that represent knowledge in memory.
[Bartlett 32] laid the groundwork some years ago for many
of the representations currently being used when he pro-
posed a representation called schemata, which are develop-
ing patterns that guide the interpretation of a person's
experience. Schemata are changing organizations of past
experiences that serve as a frame of reference for process-
ing incoming information. There is a constant interaction
between the schemata ana incoming information. The schema-
ta are simultaneously related and adapted to the new infor-

mation.

[Minsky 75] has proposed frames as a unifying general-




jzation of several representations. Frames represent
stereotyped situations and contain several types of infor-
mation including how to wuse the frame and expectations
about the situation. Minsky gives an example of a frame
for a room. A room frame contains information about what
we expect to see such as walls, a floor and a door plus in-

formation about what different types of rooms might con-

tain. In addition to information about objects in the
room, the frame indicates relationships between the ob-
jects. Frames may also be used to represent stereotyped
events such as a birthday party or shopping in a supermark-

et.

[Norman and Rumelhart 75] have defined Active

Structural Networks that contain both data and procedures;

Nodes in Active Structural Networks can represent facts or
procedures that guide the interpretation of and search for

new information.

The predicate calculus [McCarthy and Hayes 69], pro-
duction systems [Newell and Simon 72, Davis and King 75]
and procedural representation [Winograd 72] have also been
used to represent knowledge for theorem proving, question
answering and language understanding. 1In general, however,

the frame-like knowledge representations have been more



successful in representing general knowledge that can be

expressed in natural language.

Other theories of representation deal specifically
with how to represent natural language meaning. fQuillian

68 and Quillian 69] proposad semantic networks as a way to

represent entities tied togethér by relationships. For ex-

ample, the sentence "John hit Mary" might be represented

as:
hit
John ---> Mary
Each node in the net represents an entity. Labelled arcs

connecting the nodes represent relationships between enti-
ties. Additional arcs from the "John" and "Mary" nodes may

represent more information about John and Mary.

[Fillmore 68] suggested case grammar to represent the

semantic relationship between verbs and noun phrases by de-
fining constraints on how verbs and noun groups form sen-
tences. Every action has associated with it a set of cases
that define the function and type of noun groups that may
be combined with the verb to form sentences. For example,
the verb "hit" requires an agent, an object and an instru-
ment. Case grammars do not indicate what happens during

the action, only the objects that participate in it.




[Schank 72] defines a theory of conceptual dependency

as an organization of primitive agtions with rules defining
the things that participate in an action as well as what
happens during the action. The conceptual dependency for
"John hit Mary" shows John propelling some object in Mary's
direction with the result that the object and Mary become

in physical contact. Like case grammar, conceptual depen-

an action, like hitters, hittees and instruments. However,
they also indicate what happens to the entities during the
action. [Schank 73] describes the MARGIE system that can
map natural language into conceptual de?endency structures,
make inferences and generate natural language from the con-

ceptual dependencies.

2. Learning

Because of the immensity of data bases needed for
language comprehension in all Sut trivial domains, many
computer scientists have begun to look to programs that
learn as a way to construct these data. Although computer
learning has been an active research area for many years
[Samuel 59, Samuel 67, Uhr and Vossler 63, Badler 75, Wins-
ton 75, Soloway and Riseman 77, Soloway 77], most of the

resulting programs are designed to acquire structures



specific to particular applications and have not addressed
the problem of 1learning generalized knowledge structures
that may also be used to represent natural language mean-

ing.

Samuel's program learns tpe coefficients of an evalua-
tion polynomial used in evaluating checkerboards. Uhr and
Vossler's program dgenerates bit patterns used to 1identify
hand-printed Eharacters. Winston's program learns unary
and binary predicates that describe geometric construc-
tions. Badler is primarily concerned with learning
descriptions of object movement. Soloway and Riseman's
program learns different levels of descriptions of action-
oriented games by forming a hierarchy of generalized

classes that describe the similarities of the descriptions.

None of these programs seems extendible to learning
generalized knowledge structures. The structures used to
represent natural language meaning must be general since

language can be used to discuss anything.

[Anderson 77]'s Language Acgusition System (LAS) is a

purely syntactic characterization of 1language learning.
LAS incorporates a model of how grammar is acquired that
relates strings of words to network representations of

their meaning. The input to LAS is a series of pairs of




sentences and semantic networks that represent the meaning
of the sentences. From this input LAS acquires an

augmented transition network (ATN) that maps between the

sentences and their meaning structures. LAS must be given
the concepts referred to in the sentences. LAS constructs
an ATN for every constituent ;n the input sentence. When-
ever a phrase can be parsed by two ATNs, the ATNs are

. The _resulting ATN is a grammar of the sentences

seen so far. Unfortunately, LAS has no concept induction
capability and 1is given the semantic meaning structures
that correspond to the sentences rather than inferring

them.

[Reeker 74] has also developed a theory of syntax ac-

quisition. His mental grammar is an attempt to connect the

surface structures of sentences the program hears to sen-
tences that can be produced by an earlier mental grammar.
Reeker's program assumes an initial finite state grammar.
The meaning derived from an input situation and a portion
of an adult sentence is used in consultation with the gram-
mar to produce a child version of the adult sentence. Com-
parison of the child sentence and adult sentence vyields a
difference indicated by a table of connections. The table
of connections and changes is used to modify the child sen-

tence to bring it more closely in line with the adult sen-



tence. The table provides the grammatical modification
that must be made to the child grammar. Like LAS, Reeker's
program relates sentences to semantiq structures but does

not infer the semantic structures themselves.

[Hayes-Roth 76] has investigated general learning pro-

cedures. His theory of interference matching (IM) states

that the knowledge underlying given examples is identified
by producing a representation or abstraction that em-
phasizes commonalities and attenuates differences. M
identifies the common properties of two exemplars and ex-
tracts a third representation that is a template matched by
the two exemplars. IM works by selecting a relation from
one exemplar and putting it into correspondence with a re-
lation from the other exemplar. Parameters thatbhave
identical properties are identified as equivalent and the
resultipg relation becomes the abstraction associated with
a set of parameter bindings. The process continues with’
pairs of relations from each exemplar. As long as parame-
ter bindings remain consistant, the relation is added to
the abstraction. A heuristic hill-climbing technique is
used to select the best maximal abstraction. Although the
IM procedure compares event descriptions to identify com-

monalities, it does not infer event descriptions. IM has

been most successful with events that may be described with




bit vectors and less successful with relational descrip-
tions. The major problems are increasing the world
knowledge that can be brought to bear and finding general-

ized binding functions to allow many-to-one mappings.

[Harris 72] has designed a comprehensive language ac-
quisition system that divides the linguistic environment

into three parts. The program 1is divided into three

corresponding phases. In Phase 1 the program is given a
sequence of word-list and concept-list pairs and estab-
lishes correlations between the word groups and concepts.
The purpose of Phase 2 is to infer a grammar. The input is
again a set of ordered pairs. The first component in a
pair is an English sentence, the second a 1list of the
"parts of speech" of the corresponding words in the first
component. The "parts of speech" are categories of con-
cepts built into the program. The result of Phase 2 is a
set of context-free phrase structure rules and a small
number of transformations. Phase 3 uses the grammar pro-
duced in Phase 2 to generate responses to input sentences.
Like LAS, Harris' program is given semantic representations
of utterances along with the utterances. Additionally, the
teacher must also know the structure of the language in

terms of the program's "parts of speech".



[Rumelhart and Norman 76] have recently begun to ad-
dress the question of how Active Structural Netwoks might
be learned, but they have not yet ‘incorporated learniné
into their implementation. However, the three modes of
learning they postulate, Accretion, Tuning-: and

Restructuring, are compatible with the learning processes

described in this dissertation. Accretion increments the
knowledge base with a new set of facts. Tuning changes the
categories used for interpreting new information. Restruc-
turing devises'new structures to interpret nzw information
and imposes a different organization on the information al-

ready stored.

B. Goals

Learning involves a modification of organizational'
structures in memory as well as the accumulation of facts,
since knowing includes the recognition of relationships
among facts as well as the facts themselves. The research
described here investigates how a program might learn con-
ceptual structures that represent verb meaning from simu-
lated perceptual and linguistic input. A computer program
named Moran has been implemented that learns the meanings
of verbs by distilling the changes it observes in the en-

vironment and associating those changes with root verb
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words. This program shows that a small set of fairly sim-
ple and straightforward mechanisms is adequate to infer
structural descriptions from environment information and a

small body of set containment information.

Secondary goals are the design of a data structure for
the representation of natural language meaning, the

abstraction of descriptions from perceptual data, investi-

gation of the notion of semantic similarity of graph struc-
tures, discovery of meaning units that may be viewed as
primitives and the implementation of a modular program that

can be used as a vehicle for experimentation.

C. Overview of Moran

Moran infers semantic graphs from perceptual input.
The input to Moran is a series of two-snapshot sequences
that depict an action taking place and a natural language
sentence that describes what happens in each snapshot se-
quence. The input is provided by a human trainer. The
output of Moran is a set of semantic graphs that represent
the various discovered meanings of each root verb and the

relations amoung them.

For each snapshot sequence, Moran first creates a

reresentation for what happened by linking states in the
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first snapshot with states in the second snapshot. Second,
it locates the existing representation that it considers to
be semantically closest to the cu%rent input. Finally, it
modifies the graph structure so that the current input is
represented and similarities to and differences from previ-
ous inputs are reflected. Occasionally, Moran attempts to

discover global similarities in the graph structure.

D. Organization of the Dissertation

Chapter 2 describes the Conceptual Meaning Structure

that Moran uses to represent the inferred verb meanings.
Chapter 3 describes the information with which Moran is in-

jtialized and and the form of its input.

Chapter 4 discusses the procedures Moran uses to infer
the graphs from the input. The procedures generate a se-
mantic description from the input data, find a semantically
close existing graph and modifg the graph structures.
Chapter 5 documents the implementation and gives extensive
examples of results. Chapter 6 discusses both implementa-
tion and theoretical 1iﬁitations of Moran, analyzes its

contributions and gives suggestions for further research.
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CHAPTER 2

THE CONCEPTUAL MEANING STRUCTURE

A. General Structure

In order to learn any new information, it is necessary
to have a means of representing what is learned. Moran

learns frame structures called Conceptual Meaning Struc-

tures (CMSs) that represent verb meaning. One CMS is asso-
ciated with each root verb word the program learns. This
root verb word is the natural 1anguage word representing a
verb concept. For example, one CMS is associated with all

senses of the root verb "move". The sentences:

Ristin moved the book.
John was moved by the movie.
Figaro is moving today.

Mother moved her nose.
all map to the same root verb "move".

The meaning of one sense of a root verb is composed of
arguments that describe the entities that participate in
the action and effects that describe the changes the argu-
ments undergo during the action. One CMS is associated

with all the senses of a root verb and consists of two
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parts, arguments and effects, each of which is represented
by a labeled directed acyclic graph. A complete path

through a graph defines a set of nodes. One sense of a
root verb is the set of arguments defined by a complete la-
beled path through the arguments graph plus the set of ef-
fects defined by the corresponding complete labeled path
through the effects graph. Foé example, sense number four
of a root verb is the set of arguments defined by the com-
plete path of arcs labeled four in the arguments graph plus
the set of effectshdefined by the complete path of arcs la-
beled four in the effects graph. The entire collection of

CMSs is called the verb world.

B. Arguments

Each argument specifies the type of entity that may'

participate in an action. Each argument consists of:
1) an argument name

2) a set of restrictions that limit the type of ob-
ject that may instantiate the argument. Each res-
triction is augmented by a frequency count that in-
dicates how often the restriction has been met in

the program's experience.
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A simple example of a set of arguments associated with

one sense of a root verb is:

AGENT Human (8): Figaro(3), Ristin(5)
OBJECT Furniture(8): Table(4), Chair(2), Lamp(2)
Cl Location(8): Loca(4), Locb(4)

c2 Location(8): Lo¢a(2), Locb(4), Locc(2)

This sense of the verb requires four arguments: an

Agent, an Object and two other arguments, Cl and C2. Ac-
cording to this CMS, the agent must be human. A human
Agent has been seen eight times: Figaro three times and
Ristin five times. The Object must be furniture. A table
has been seen four times, the chair and lamp each two
times. The third argument, Cl, must be a 1location. Loca
and Locb have each been seen four times. Argument C2 must’
also be a location: Loca has been seen two times, Lochb

four times and Locc two times.

Meaningful argument names like AGENT and OBJECT are
used to increase output readibility. Although Moran treats
input argument names somewhat differently from internally
generated argument names, unlike most case systems
(Fillmore 68, Bruce 75], no a priori semantic information

is embodied in individual argument names.
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C. Effects

A set of effects is a description of the visual ef-
fécts of a sense of a verb. The effects indicate what hap-
pens to the entities described in the argument part during
the action. ‘An effect is an ordered pair of triples. The
first triple is a state derived from the first snapshot of
the environment, the second a state derived from the second
snapshot of the environment. The pair indicates that dur-
ing the action Fhe state in the first snapshot changed into

the state in the second snapshot.

An example of a set of effects associated with the ar-

guments described above is:

AGENT AT Cl ---> AGENT AT C2
OBJECT AT Cl1l ---> OBJECT AT C2
AGENT PHYSCONT OBJECT ---> AGENT PHYSCONT OBJECT

The AGENT and OBJECT moved from Cl to C2 and the AGENT and
OBJECT remained in physical contact (PHYSCONT). This last
entry shows that an effect may describe a constant state as

well as a change in the environment.

D. Graph Structure

The CMS structure reflects similarities among dif-
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ferent senses of a root verb by allowing different senses
to share nodes. Both the arguments and the effects
comprising all the senses of a root verb are organized into
labeled directed acyclic graphs. Each node in an argument

or effect graph is a set of one or more arguments or ef-
fects. This organization allows groups of arguments or

groups of effects to participate in several senses of a

\ 5

toot verb as well as in differentroot—verbss—These—sint
larities are explicitly represented in the CMS structure.

A complete CMS for a root verb with four senses might

look like:
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arguments effects
1,2,3 | 4
v -

Nodes A through G are sets of one or more arguments
and nodes T through Y are sets of one or more effects. One
complete sense of this root verb is a set of arguments
described by one labeled path through the arguments graph
plus the set of effects described by the correspondingly
labeled path through the effects graph. For example, sense
three is defined as the combination of arguments found in
nodes A, E and F plus the combination of effects found in
nodes U and X. How the program diécovers arguments and ef-
fects from the input and how the graph structure is built

are described in Chaptér 4.

Some kinds of similarity relationships between dif-
ferent senses of the same root verb are explicitly

represented in the graph. The structure of the graph makes
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it clear that senses one and two are semantically closer to
each other than senses one and four because they share more
common parts. Similarly, senses one, two and three aré
semantically closer to each other than they are to sense

four.

Nodes may also be shared across CMS boundaries. Such

nodes are called global building blocks and are discussed

in Section 4.D.

E. An Example

A simplified example of a possible CMS for three

senses of the verb "throw" is shown below.
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arguments
| 1,2,3
v .
AGENT Human
OBJECT Physobj
Cl Location
C2 Location
2,3
PREP Preposition
INDOBJ Human
3
C3 Location
effects
1,2,3
v .
AGENT AT Cl -~--> AGENT AT C1
OBJECT AT Cl ---> OBJECT AT C2
Vl,iz/
AGENT PHYSCONT OBJECT —--> null | - 2
3 INDOBJ AT C2 ---> INDOBJ AT C2
AGENT PHYSCONT OBJECT ---> AGENT PHYSCONT OBJECT
/

INDOBJ AT C3 ---> INDOBJ AT C3
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Sense 1 can represent "Mary throws the ball" where
Mary stays at the same location,.Cl, the ball changes from
location Cl to location C2 and Mary changes from being in
physical contact (PHYS) with the ball to not being in phy-
sical contact with the ball. Sense 2 might represent
"pigaro throws the ball to Ristin". Aas in sense 1, Figaro

stays in the same location, Cl, and the ball changes 1loca-

tion from CI to C2Z. In addition, the indirect object (IN=
DOBJ), Ristin, stays at the same location C2 and the ball
changes from being in physical contact with Figaro to being
in physical contact with Ristin. Sense‘3 could represent
"gharon threw the terminal at Raphael". It is identical to
sense 1 except that the INDOBJ, Raphael, stays at the same
location. Unlike sense 2, the location of the INDOBJ is

not the same as the resulting location of the OBJECT.

Like Schank's Conceptual Dependencies, CMSs indicate
what types of objects participate in a given action and and
what happens to those entities during the action. However,
unlike Conceptual Dependencies, CMSs are not composed of
pre-defined primitive ﬁeaning units that specify the argu-
ments, argument restrictions and argument behavior. Moran
infers what arguments are required of an action, the res-
trictions on the arguments and the behavior of the‘argu—

ments during the action. Since nodes may be shared across



21

CMS boundaries, the commonly used nodes that Moran infers
may be compared with Schank's primitives to see how they

correlate,

Further comparison of the expressive power of CMSs and

other representations can be found in Chapter 6.




22

CHAPTER 3

PROGRAM INPUT AND INITIAL STATE

Moran learns the meaning of a verb (the CMS to associ-
ate with a root verb) by observing an environment, hearing
a parsed surface sentence, distilling the changes it ob-

serves in the environment and then incorporating them into

the CMS structure.
A. The Environment

The environment is a simulated room containing ob-
jects, people and reference locatiqné. It may be made as
detailed in information as desired. The environment is
presented to the program as a list structure. This input
is feasible output of a good scene recognition program

[Yakimovsky 73].

An environment description list is an unordered col-
lection of ordered triples of the form (object relation
value). Each environment description 1list, called a
snapshot, describes the state of the environment at one in-
stant in time. A fairly sparse environment description

list might look like:
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(FIGARO AT LOCA)

(RISTIN AT LOCB)

(TABLE AT LOCD)

(BALL ON TABLE)

(PICTURE ON WALL)

(CHAIR AT LOCC)

(FIGARO PHYSCONT NEWSPAPER)
(CLOCK ON WALL)

(RISTIN PHYSCONT BOOK)

Although Moran only processes unnested triples, an inade-
quate general representation, it could be extended to han-
dle triples nested to an arbitrary depth since an inference
procedure operating on unnested triples can simulate nested

triple representation.

The program is always presented with two successive
environment description 1lists, The first represents a
snapshot of the environment before an action begins and the
second a snapshot of the environment after the action has
taken place. The program assumes that the first snapshot
immediately precedes the start of the action and the second

immediately follows the conclusion of the action.
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B. The Natural Language Sentence

In addition to the two environment snapshots, the pro-
gram is given a parsed natural language sentence that
describes the action that took place in the ’snapshpt se-
quence. The sentence 1is preparsed to indicate argument

names and values. The sentence

"pistin-—moved—the-bookto-the table—1————

is given to the program as:

AGENT Ristin
ACTION Move
OBJECT Book
PREP To

INDOBJ Table

The program can process more complicated sentences as 1long
as they do not contain adverbs, conjunctions, relative
clauses and anaphoric references. The preparsed input
could be the result of almost solely syntactic parsing of

the sentence [Woods 70].

Argument names of the form AGENT and OBJECT that are
given to the program as input are generally treated as more

important than any internally generated name such as Cl1 or
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C2. The words associated with input argument names in the
sentence are given particular attention when looking for
changes in the environment. Input arguments are also given
priority over non-input arguments in the matching pro-
cedure. The input argument names could be labeled Xi, X2,
... without significantly altering the performance of the
program since what is important is that the word was men-
tioned in the input sentence, not the argument name as-

signed to it.

C. World Knowledge

Moran is initialized with information about objects
in its world. It needs this information to learn compli-
cated interrelationships among these objecﬁs. This infor-.
mation is in a separate, self-contained body of knowledge

called world knowledge. World knowledge is 1limited to a

tree of nodes expressing set membership with 1ISa and
SUPERSET/SUBSET links. The generalization process to be
described later is based on the set information provided in
world knowledge. Although a much richer body of knowledge
may theoretically be stored in world knowledge, the program
only uses set containment information in the generalization

process.
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A small world knowledge base is shown in below.

OBJECT
sS 88
ABSTRACTOBJ PHYSOBJ
SS ss ;/ii///:;;gg\\\fs
PLACE  RELATION ANIMAL ~TOY  FURNITURE

26

FAN [
ss/ ¥s ss ISA sS IS[/ \?SA ISA ISA

LOCATION ROOM PREP DOG HUMAN DOLL BALL CHAIR TABLE

T e T

LOCA LOCB TO ON FROM MALE FEMALE

ISA ISA

FIGARO RISTIN

PREP - preposition
ABSOBJ - abstract object
PHYSOBJ - physical object

§S - superset/subset

D. An Example

An example of an input - sequence given to Moran

is
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shown below. The human trainer designs the snapshot tri-
ples by looking at pictures in [Richards 61] and encoding
the visual information as triples. The following input

corresponds to "Figaro threw the doll to Ristin”".

Senténce:
AGENT Figaro‘
ACTION Throw
OBJECT Doll
PREP To

INDOBJ Ristin

Snapshotl Snapshot2
(FIGARO AT LOCB) (FIGARO AT LOCB)
(RISTIN AT LOCA) (RISTIN AT LOCA)

(FIGARO PHYSCONT DOLL) (RISTIN PHYSCONT BALL)

(DOLL AT LOCB) (DOLL AT LOCA)
(CLOCK ON WALL) (CLOCK ON WALL)
(BOOK ON TABLE) (BOOK ON TABLE)
(TABLE AT LOCC) (TABLE AT LOCC)

Extensive input examples are given in Chapter 5.
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CHAPTER 4

INFERRING CONCEPTUAL MEANING STRUCTURES

Moran infers labeled directed acyclic graphs that
represent different senses of root verbs from input com-
posed of a snapshot of the environment before the action, a

snapshot of the environment after the action and a parsed

natural language sentenée describing the action that took
place. This chapter describes the processes Moran uses to

learn graphs from snapshots.

In response to each input, the program first associ-
ates states described in the first snapshot with states
described in the second snapshot and creates a one-sense
dummy CMS that represents what happened in the snapshot se--
auence. Second, it locates the CMS in the verb world that
is semantically closest to the input situation. Finally,
it modifies the verb world to incorporate the new knowledge
into the existing knowledge. Occasionally, Moran inspects
the entire verb world to look for similarities across CMS

boundaries.

A. Comparing Snapshots

Moran first compares the two input snapshots and
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creates a one-sense dummy CMS that represents the action
that took place in the input sequence. Several mechanisms
are required:

1) Filtering information not relevant to the action

from the snapshots.

2) Generating effects "from the triples in each

snapshot.

3) Creating a dummy CMS that describes the input.

1. Filtering Data

The snapshot data are complete éescriptions of the
room and its contents. The procedure DIRECTATTENTION
reduces the amount of information to a more m;nageable size
by filtering from each snapshot those triples not con-

sidered to be relevant to a description of the action.

There are many possible ways to filter the data. If
Moran had an "eye", only the information within"its field
of view might be considered [Zeigler 78]. If its world
knowledge base were richer in general semantic information,
it might use this information to try to make a decision
about the significance or importance of each data item.

The program currently filters the snapshot information by
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directing its attention to those entities mentioned in the
input sentence. Thus, the trainer prescribes what entities
will be noticed by mentioning those entities in the sen-

tence.

Each snapshot is filtered by removing any triple that
does not contain at least one word mentioned in the input

sentence. The resulting modified snapshots, consisting

only of triples that contain input words, are compared by

component COMPARISON.

This procedure is not adequate in all cases since ob-
jects are sometimes not mentioned in the input sentence
even though they are critical to the meaning of the verb.
For example, Moran was given the sentence "Figaro threw a
party" with two snapshots showing many people in the room-
and food and drink on the table. Moran removed all but one
triple from each snapshot: the triple showing Figaro at a
location in the room. It is not realistic to expect Moran
to require a surface sentence like "Figaro threw a party
with vegetables, dip, potato chips, beer and wine for Joe,
Marv, Sue, Kathy, Hanna, Eric, Dave, ...". However, the
current filtering process works fairly well for sentences

that mention concrete objects (like Raphael).
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2. Discovering Effects

Moran determines what has taken place during the
snapshot sequence by comparing snapshotl with snapshot2.
Component COMPARISON discovers the effects that describe
the event by 1linking a triple from snapshotl (possibly a
null triple) with a triple fro& snapshot2 (possibly null).
Bach triple in snapshotl is compared with each triple in
snapshot2 and £he linkup is assigned a value that indicates

the goodness of the association.

Associations of triples can be ambiguous. Change can
be seen as occuring in the first positién, the "object" po-
sition, the third position, the "value" position or the
second position, the relation position, of a pair of tri-
ples. The program considers differences in the relation or
value positions of a pair of triples to be more valuable in
explainina the event than differences in the object posi-

tion. If the program has as environment information:

snapshotl snapshot2
(BOOK AT LOCA) (BOOK AT LOCB)
(CupP AT LOCB) (CUP AT LOCA)

then the associations chosen as effects will be:
(BOOK AT LOCA) ---> (BOOK AT LOCB)

(CUP AT LOCB) =---> (CUP AT LOCA)
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rather than:
(BOOK AT LOCA) ---> (CUP AT LOCA)

(Cup AT LOCB) ~---> (BOOK AT LOCB)

In other words, it is considered to be more important that
objects have changed values than that values have changed

objects.

The result of COMPARISON is a 1list of associations
that 1link each triple in snapshotl with at most one triple
in snapshot2, and vice versa. The mapping is one-to-one; a
triple in one snapshot cannot be linked with more than one
triple in the other snapshot. The mapping is optimal in
the sense that any other mapping would have a lower sum of

individual match worths.

3. Creating a CMS that Describes the Input Situation

In the final stage of the snapshot comparison process,
component NEWCMS creates a one-sense dummy CMS that
describes the input situation. The arguments graph con-
sists of all argument names and values given in the input
sentence and internally generated argument‘names that are
assigned to words in the triples but not in the input sen-
tence. The effects graph is composed of the associations

of triples discovered in COMPARISON.
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4. BAn example
An example will illustrate the procedures DIRECTATTEN-
TION, COMPARISON and NEWCMS. Suppose Moran is initially

given the following environment description lists and input

sentence:
snapshotl snapshot?
(RISTIN AT LOCA) (RISTIN AT LOCB)
(TABLE AT LOCA) (TABLE AT LOCA)
(BOOK ON TABLE) (BOOK ON CHAIR)
(PICTURE ON WALL) (PICTURE ON WALL)
(CLOCK ON MANTLE) (CLOCK ON MANTLE)
(CHAIR AT LOCB) (CHAIR AT LOCB)
(LAMP AT LOCC) (LAMP AT LOCC)
Sentence:
AGENT Ristin
ACTION Move
OBJECT Book
PREP1 From
INDOBJ1 Table
PREP2 To
INDOBJ2 Chair

those

triples

Process DIRECTATTENTION

that

removes

from each

do not contain at least one word from

snapshot



the input sentence. The
snapshotl
(RISTIN AT LOCA)
(TABLE AT LOCA)
(BOOK ON TABLE)

(CHAIR AT LOCB)

filtered snapshots look like:

snapshot2
(RISTIN AT LOCB)

(TABLE AT LOCB)
(BOOK ON CHAIR)

(CHAIR AT LOCB)

34

Process COMPARISON compares the two filtered snapshots

and makes the following triple associations:

(RISTIN AT LOCA)
(TABLE AT LOCA)
(BOOK ON TABLE)

(CHAIR AT LOCB)

A one-sense dummy CMS is then created

the event:

_—

_—

_—

-

(RISTIN AT LOCB)
(TABLE AT LOCA)
(BOOK ON CHAIR)

(CHAIR AT LOCB)

that describes
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arguments
v
AGENT Ristin
OBJECT Book
PREP1 From
INDOBJ1' Table
PREP2 To
INDOBJ2 Chair
. Cl Loca
c2 Locb
effects
;

(AGENT AT Cl) ~---> (AGENT AT C2)
(INDOBJ1 AT Cl) ---> (INDOBJ1 AT Cl)
(OBJECT ON INDOBJ1) --=> (OBJECT ON INDOBJ2)
(INDOBJ2 AT C2) ---> (INDOBJ2 AT C2)

B. Finding the Semantically Closest Sense in the Verb

World

The process COMPARE2CMS finds the semantically closest
existing sense of the input root verb by comparing the dum-

my CMS created by NEWCMS with each sense currently
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represented in the CMS for that root verb word. If there
is no CMS associated with that root verb, no sense is
closest. Otherwise, the semantically closest existing
sense is that sense of the root verb whose arguments and
effects are most nearly satisfied by the input situation.
The program attempts to instantiate the arguments of each

candidate sense with values from compatible arguments in

h Y

the dummy CMS and checks 1f the sffectsin the candidate
sense are satisfied by the effects in the dummy CMS. a
value is assigned that reflects the overall goodness of the
match. The highest valued match is chosen as the sense

closest to the input situation.

1. Instantiating Arguments

The arqguments of a candidate sense are instantiated
with values of compatible arguments from the dummy CMS.
Identical argument names given as input are compatible, as
are the internally generated argumént names that are of the
form Cn, n=1,2,... For example, the AGENT and OBJECT argu-
ments of a candidate sense may only be instantiated by,
respectively, the AGENT and OBJECT arguments of the dummy
CMS. Argument names of the form Cn in the candidate CMS
may be instantiated by any argument with the name Cn in the

dummy CMS. Therefore, the program must iterate through all
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such combinations to find the best one. The best set of
instantiations cannot be determined until the instantiated
candidate sense effects are compared against the dummy ef-

fects that describe the input situation.

2. Comparing Effects

A recursive co-routine, MATCH, compares effects in the
candidaté sense with effects in the dummy CMS and returns a
value that indicates how well the instantiated candidate
effects match the dummy CMS effects. This process is re-
peated for each possible instantiation of candidate argu-
ments with dummy CMS argument values. The instantiation

with the highest value is returned as the best one.

Each candidate effect is compared with each dummy CMS
effect. The goodness value of an instantiation ranges
between 0 and 1 and is the product of the goodness values
of each 1linkup between one candidate effect and one dummy
CMS effect. Each effect is an ordered pair of ordered tri-
ples. The goodness of the linkup is computed by position-
ally comparing the six wvalues in the two six-tuples. Input
argument names, those not of the form Cn, and the relation
names in positions two and five must match exactly, other-

wise an amount is subtracted from the goodness value of the
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the

value of the argument in the dummy CMS must be identical or

a subset of the argument value iﬂ the dummy CMS.
For example, suppose a candidate effect is:
(AGENT AT Cl) ---> (AGENT AT C2)

where the argument restrictions are:

AGENT Human
Cl Location

c2 Location.
Then the dummy CMS effect:
(AGENT AT C42) ---> (OBJECT AT C24)
where

AGENT Human
OBJECT Physobj
C42 Loca

C24 Locb

is a better match to the candidate effect than the

CMS effect:

(AGENT AT C16) ---> (AGENT PHYSCONT OBJECT)

dummy
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where

AGENT Human
Cl6 Locc

OBJECT Physobj

since the first effect matches 'in all but one position, the
first position of the second triple, and the second effect
matches in only four positions. 1In the case of ties, the

first matched effect is arbitrarily chosen.

Since no semantic information is used to give extra
weight to a match of input argument names oOr relation names
over internally generated names, MATCH may not always find
the best semantic match. For example, for the same candi-

date effect shown above, the dummy CMS effect:
(AGENT AT C18) ---> (AGENT PHYSCONT OBJECT)

where
AGENT Human
cl8 Locc

OBJECT Physob]j
is not considered a better linkup than:

(OBJECT AT C20) ---> (OBJECT AT C19)
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where

OBJECT Physobj
c20 Loca

Cl9 Locd

because they both have two non-matches, even though the

first effect seems to have more related to the candidate

because they both concern an AGENT, whereas the second ef-
fect is dealing with OBJECTs. In actual practice, the
linkups that MA&CH makes usually agree very well with in-
tuition; when considered in combination with other effect
linkups rather than individually, the best overall match

filters out most spurious individual linkups.

The result of COMPARE2CMS is a pointer to that sensé
of the input root verb that the program considers to be
semantically closest to the input situation, plus argument
jnstantiation information and flags. that indicate which ef-
fects in the candidate and dummy CMS were matched and which

were not matched.

Moran does not solve the general problem of finding
the semantically closest sense. However, the current pro-
gram employs modules that implement one way of determining

environmental differences and one way to select the struc-
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ture that is the semantically closest to the input.
Although these are very important problems, they are not
the crux of this research. Future research will address

the problem of making these processes more sophisticated.

C. Modifying the Verb World in Response to Input

Now that Moran has a sense it considers to be semanti-
cally close to.the input situation, procedure GENERALIZECMS
decides how to alter the verb world to incorporate the new
knowledge into the existing knowledge of verb senses. The
primary concern of this research is the investigation of
the set of mechanisms the program needs in order to modify
a given graph structure to represent the similarities and
differences of meaning under a larger set of input situa-

tions.

In response to individual input situations, GENERAL-
IZECMS operates on a single sense of a root verb, the one
chosen as closest to the input situation. The‘ learning
mechanisms embodied in GENERALIZECMS are called Accretion,

Minor Adjustment and Splitting. They respectively build

initial graphs for root verbs, generalize argument values
and build up the graph structure for many senses of a root

verb. The following sections discuss when each type of
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learning is invoked and the effects it has on the verb
world.

1. Accretion

Accretion has the least drastic effect on existing
verb world knowledge. It adds knowledge to the verb world

without refining existing information. GENERALIZECMS in-

vokes Accretion when the root verb has not been seen before
or when the semantically closest sense of the root verb is
not considered sufficiently close in meaning to the input

situation.

Accretion is like rote learning in that it adds the
dummy CMS that A6 represents the input situation as a com-
pletely new sense of the root verb without moéifying othef
senses of the verb, if they exist. If Moran has never ex-
perienced this root verb before, the CMS is added to the
verb world as the only sense of that root verb. The graphs
of the root verb will each consist of one node that con-
tains all the arguments or all the effects. 1If the root
verb has been seen before but no sense is sufficiently
close, then the dummy CMS is added as a separate sense to
the existing CMS for that root verb. The closest exisiting

sense 1is not considered to be sufficiently close unless it
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shares at least a ten percent overlap with the input situa-
tion. The new sense has a single argument and effect node
and does not share any nodes of the graphs with other

senses.

The two Accretion situations are schematically

represented below.

If the input situation is represented by:

arguments effects
|
v v
X Y

where X is a set of arguments and Y is a set of effects,
then if there 1is no CMS in the verb world for the input

root verb, the addition to the verb world will look like:

arguments effects
|1 I 1
v . v
X Y

If there does exist a CMS for the root verb that looks
like:
arguments effects
1 1 11

v v

A B
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where A and B are acyclic directed graphs of arguments and

effects, then the resulting state of the verb world will

be:

arguments effects arguments effects
| 1 | 1 . | 2 | 2
\' v v \
A B X Y

Accretion learning becomes increasingly infrequent as
the verb world:increases in knowledge, since radically new
situations become rarer and rarer. More frequently, modif-
ication of the sense closest to the ihéut situation is the

proper course of action.

2. Minor Adjustment

Minor Adjustment learning uses world knowledge to gen-
eralize the restrictions on argument slots so that a larger’
class of objects may £ill a slot. It allows only semantic,
not structural, changes to a CMS. Minor Adjustment occurs
when the input situation is identical to an existing sense
or when there 1is a partial match of the arguments in the

dummy CMS and the closest sense of the root verb.

The information for broadening the argument slot res-
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trictions comes from the set containment information ex-
pressed as 1sa and SUPERSET/SUBSET 1links in world
knowledge. Each matched argument restriction in the dummy
CMS and the closest sense is processed to find the least

common superset of the two restrictions.

In order to limit overgeneralization of all argument
restrictions to OBJECT, the root node of the world
knowledge, procedure GENERALIZECMS always asks procedure
ALLOWGEN for permission to generalize an argument restric-
tion. How to limit generalization is a difficult problem.
Rosch [Rosch 76a, 76b] suggests levels of abstraction for
categories that yield the most information for the least

cognitive effort. It might be interesting to use these ca-

tegories as generalization limits.

The current implementation uses a simpler method. AL-
LOWGEN will allow generalization of two argument restric-

tions to their least common superset if:

1) no more than two ISA or SUPERSET/SUBSET 1links
had to be traversed to find the least common super-

set or

2) the least common superset is not OBJECT, PHYSOBJ

(physical object) or ABSTRACTOBJ (abstract object).
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Thus, generalization to the highest level categories in the
world knowledge tree is allowed only if both restrictions
are already "close" to these categories: no more than two
links away. Any number of links may be traversed to get
the least common superset if tpe least common superset 1is

not OBJECT, PHYSOBJ or ABSOBJ.

Suppose the verb world contains the following CMS for
the verb "move" after having experienced one example of
"Ristin moved the chair".

arguments
I 1
v
AGENT Ristin
OBJECT Chair
Cl Loca
c2 Locb
effects
I 1
v
(AGENT AT Cl) =---> (AGENT AT C2)
(OBJECT AT Cl) ---> (OBJECT AT C2)

(AGENT PHYSCONT OBJECT) ---> (AGENT PHYSCONT OBJECT)

The next input situation is:
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SnaEshotl SnaEshotZ

(FIGARO AT LOCA) (FIGARO AT LOCD)

(TABLE AT LOCD) (TABLE AT LOCD)

(FIGARO PHYSCONT TABLE) (FIGARO PHYSCONT TABLE)
Sentence:

AGENT Figaro
ACTION Move

OBJECT Table
The dummy CMS created to describe the input is:

arguments
|
v
AGENT Figaro

OBJECT Table

Cc3 Loca
C4 Locd
effects
v
(AGENT AT C3) ---> (AGENT AT C4)
(OBJECT AT C3) ---> (OBJECT AT C4)
(AGENT PHYSCONT OBJECT) ---> (AGENT PHYSCONT OBJECT)

The closest sense of the root verb "move" is the one

sense currently associated with "move". It is an excellent
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match except for the restrictions on the argument slots.
Using the world knowledge base shown in Section 3.C, Minor
Adjustment generalizes the closest sense in the CMS for

"move"™ to:
arguments
.

v

AGENT Human(2): Figaro(l), Ristin(1l)

OBJECT Furniture(2): Table(l), Chair (1)

Fl Loca(2)
c2 Location(2): Locd(l), Locb(l)
effects
;
(AGENT AT Cl) ---> (AGENT AT C2)
(OBJECT AT Cl) ---> (OBJECT AT C2)
(AGENT PHYSCONT OBJECT) ---> (AGENT PHYSCONT OBJECT)

There is still only one sense of "move" and it accounts for '

both inputs the program has experienced of "moving”. -

The closest sense and the current input most commonly
match very well. In the example above, if some of the ar-
guments and effects had not matched and/or ALLOWGEN had
disallowed the generalization of at 1least one argument

slot, Splitting as well as Minor Adjustment would need to
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be invoked.
3. Splitting

Splitting makes structural changes in the CMS graph
structure. It reorganizes the arguments and effects graphs
so that matched arguments and effects become parent nodes
to offspring nodes that are the arguments and effects not
matched in the closest sense and the dummy CMS. Splitting
may operate on both the arguments or effects graphs or only

on the arguments graph or only on the effects graph.

GENERALIZECMS traverses the closest sense of the root
verb CMS and the dummy CMS, marking each argument and each
effect as to whether or not it is to be split off. Argu-
ments are marked to be split off if eiﬁher they are not
matched or ALLOWGEN will not authorize the generalization.
Effects are marked to be split off if they are not matched
perfectly. If any argument or effect is marked to be split
off, procedure SPLITCMS is invoked. SPLITCMS modifies the
graphs so that existing difference and similarity relation-
ships are maintained and the new information is incorporat-
ed to reflect similarities to and differences from the ex-

isting knowledge.

Suppose the verb world contains the generalized one-
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sense CMS for "move" derived in the previous section. The

program then experiences:

Snapshotl

(TIM AT LOCB)

Snagshotz
(TIM AT LOCA)

(PICTURE AT LOCB) (PICTURE AT LOCD)

(TIM PHYSCONT PICTURE)

SentenceT

AGENT Tim - . - *

ACTION Move

OBJECT Picture

This input is described

by the dummy CMS:

arguments
;
AGENT Tim
OBJECT Picture
C5 Locb
Cc6 Loca

Cc7 Locd
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effects
;
(AGENT AT C5) ---> (AGENT AT Cé6)
(OBJECT AT C5) ---> (OBJECT AT C7)
(AGENT PHYSCONT OBJECT) ---> null

The closest sense is the only existing sense of
"nmove". However, there is only a partial match of both ar-
guments and effects. A combination of Minor Adjustment and

Splitting results in the following two-sense CMS for

"move".
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arguments
| 1,2
v

AGENT Human(3): Tim(l), Figaro(l), Ristin(1l)
OBJECT Physobj(3): Picture(l), Table(l), Chair(1l)

Cl Location(3): Loca(2), Locb(l)

Cc2 Location(3): Loca(l), Locd(l), Locb(1l)

)

C7 Locd
effects
| 1,2
v
(AGENT AT Cl) ---> (AGENT AT C2)
- l )
(OBJECT AT Cl) ---> (OBJECT AT C2)
{AGENT PHYSCONT OBJECT) ---> (AGENT PHYSCONT OBJECT)
(OBJECT AT Cl) ---> (OBJECT AT C7)
(AGENT PHYSCONT OBJECT) =---> null

Minor Adjustment generalizes argument Cl to Location
from the specific 1location Loca. Splitting puts C7, the
argument required by sense two but not sense one, in an
offspring node of the node required by both senses. The
effects are also split into a parent node shared by both

senses and offspring nodes for each sense.
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A more complex example of splitting CMSs is schemati-
cally depicted below. Capital letters represent sets of

arguments or effects.

Suppose the verb world contains the following labelled

directed acyclic graph for some root verb.

arguments effects
| 1-3 | 4 | 1-4
v

°<

The dummy CMS:

arguments effects

v
describes the input situation. Sense four of the root verb

is determined to be the semantically closest sense. Sense
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four and the dummy CMS share sets of arguments E and F, and

sets of effects R and S. The CMS produced by GENERALIZECMS

for the root verb will have five senses:

arguments

1-3 | 4 | 5
v v
1,3/ :; 4;;
NO)
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effects
| 1-4 5

Accretion, Minor Adjustment and Splitting are all in-
voked in response to individual input situations. The
changes they are allowed to make to the CMS structures are
limited unless there is a very close match between the
current input and an existing sense of the input root verb.
Similarities between different root verbs are not recog-
nized since the three learning mechanisms may only operate

on the CMS associated with the input root verb.

D. Modifying the Verb World Across CMS Boundaries

The fourth learning mechanism, Global Building Block
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Extraction, operates across CMS boundaries and identifies
those effects that are regularly used in describing the
meaning of many verb senses. Each such effect and its res-

trictions is called a Global Building Block (GBB).
The purpose of a GBB is to:

1) Allow the verb world representation to recognize

similiar components used in different verb senses

within a CMS as well as across CMS boundaries.

2) Facilitate a more compact memory representation
since each GBB is stored only once, rather than in

each sense where it is used.

3) Be the basis for future recognition of larger
chunks of effects used in representing many verb

senses.

4) Aid in the identification of primitive verb mean-
ing components. Those configurations of GBBs that
are repeatedly used to describe many verb senses may
help shed some 1light on the question of the exis-

tance of primitive meaning components.

The GBB Extraction process EXTRACTGBB identifies

semantically egquivalent effects wused in different verb
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senses and decides which, if any, are to be used as GBBs.

Two effects are semantically equivalent if:

1) each input argument name is identical and the

restrictions on their arguments are the same

2) relation names are identical and

3) the restrictions on internally generated argument

names are identical.

For example, the two effects:

where

(AGENT AT C7) ---> (AGENT AT C8)

(AGENT AT C18) ---> (AGENT AT C19)

AGENT Human

c7 Location
C8 Location
C18 Location
Cl9 Location

are semantically equivalent. But the two effects:

(AGENT AT C7) ---> (AGENT AT C8)

(AGENT AT Cl18) ---> (AGENT AT C18)

violate rule three and are not equivalent since the first
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effect assumes two different locations, C7 and C8, and the
second effect assumes only one location, Cl8. The two ef-

fects:

(OBJECT AT C20) ---> (OBJECT ON INDOBJ)

(OBJECT AT C3) ---> (OBJECT ON INDOBJ)

where the first effect requires:

OBJECT Physobj
INDOBJ Furniture

C20 Location
and the second effect requires:

OBJECT Physobj
INDOBJ Physobj

C3 Location

are not equivalent because because the restrictions on the

INDOBJ argument do not match and violate rule one.

It is too time-consuming to completely traverse each
sense of each CMS looking for semantically equivalent ef-
fects since graphs tend to be both deep ahd bushy. Pro-
cedure TRAVERSECHANGES instead traverses the effects graph
of eash sense only to a depth of three levels. It computes

how many times each triple and its semantic equivalents are
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seen. Procedure PICKCANDIDATE decides which of these tri-
ples are to be used as triples in potential GBB effects.
The current criterion is that a triple must occur in at
least one third of the total number of triples traversed.
If TRAVERSECHANGES traverses one hundred triples in the
first three 1levels of the verb world, then a triple must
occur at least 34 times in order to be chosen. The result
of PICKCANDIDATE is a list of those triples, not effects,

that are frequently used in many verb senses.

Procedure CANDIDATEFREQ then completely traverses the
graph of each sense of each CMS, counting the occurrence of
each possible combination of candidate triples. Even
though two passes must be made through the verb world, one
by TRAVERSECHANGES and one by CANDIDATEFREQ, the first pass
is only to a depth of three levels. The second pass com-
pletely traverses each graph, but the amount of computation
is drastically reduced since most triples will not match in
the first few positions and further matching within that
effect may be abandoned. The result of CANDIDATEFREQ is a
list of candidate effects composed of all possible pairs of
triples chosen by PICKCANDIDATE, a count of how often each
candidate effect was used in all senses in the verbworld

and a list of pointers to each matched effect.
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Procedure PICKGBB uses the information produced by
CANDIDATEFREQ'to select those candidate effects that are to
be designated GBBs. The current criterion is that a candi-
date effect must participate in at least one third of the

verb senses represented in the verb world.

Suppose, for example, that PICKCANDIDATE selects tri-

ples a, b and c¢c. Each of these triples comprises at least

one third of ail triples in the first three levels of the
verb world effects graphs. CANDIDATEFREQ traverses each
complete path through each effects graph and compiles fre-
quency and occurrence information on the following candi-

date effects:

a ---> a
a--->b>b
a --=>c¢
b ---> a
b --->b
b --->c
c ~~=> a
c --->0Db
c --->c

Each candidate effect used in at least one third of the

senses in the verb world is designated a GBB. Examples of
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the actual GBBs selected by the program from a rich verb

world are shown in Chapter 6.

The current implementation only identifies the effects
to be used as GBBs and lists those verb senses that use
each GBB. A future version of Moran will reorganize the
verb world with respect to these GBBs and filter all furth~
er input through them: each input description will be in-
spected to see if any GBBs are used in the description. If
so, the incorpogation of the input knowledge into the verb
world will be done with respect to the GBBs so its similar-

jties to all other verb senses are reflected.

GBB Extraction is currently invoked by the trainer at
any arbitrary time. A more interesting approach is to have
Moran decide when GBB Extraction should be done. Possible

stimuli are:

1) Memory is getting full; GBB Extraction may result
in memory consolidation since each GBB is stored

only once.

2) A sufficient amount of information is now avail-
able; more global generalization and organizational

decisions may be made more safely.

A discussion of the implementation and extensive exam-
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ples of Accretion, Minor Adjustment, Splitting and GBB Ex-

traction are given in Chapter 5.
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CHAPTER 5

IMPLEMENTATION AND RESULTS

This chapter describes the implementation of Moran and

gives examples of the results to date.

A. Implementation

Moran is implemented in SIMULA 67 on a UNIVAC 1110.
It is approximétely 3700 lines long. Each major component
is implemented as a class object that contains both data
and the procedures that may operate on the data. The major

classes and procedures are listed below.

1) Class SEMANTICNET creates a semantic net that
describes both the world knowledge base and input descrip-

tions of the environment snapshots.

2) Class SENTENCEPARSE inputs the parsed natural

language sentence.

3) Procedures DIRECTATTENTION, COMPARISON and
DIFFERENCES operate on the input to filter the environment
snapshots and form effects by linking a triple in the first

snapshot with a triple in the second snapshot.

4) Class NEWCMS creates a CMS structure that
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represents a new input verb and contains all procedures

that modify a CMS structure.

5) Procedure COMPARE2CMS compares an existing CMS
associated with a root verb with a dummy CMS that describes
another instance of that root verb and returns the sense
that it considers to be semaﬂtically closest to the input

situation.

6) Procedure ADDSENSE adds a completely new sense
to an existing CMS when the closest sense is not close

enough to be modified.

7) Procedure GENERALIZECMS invokes Accretion, Minor
Adjustment, and/or Splitting as required to modify the
closest sense of the input root verb to account for previ-

ous as well as current input.

8) Procedure EXTRACTGBB inspects the entire verb
world and selects commonly used effects that are to be used

as GBBs in the verb world.

Moran invokes the above classes and procedures approx-
imately in the order they are listed. SEMANTICNET is first
invoked to read in and build a semantic net that represents
the world knowledge. The first seven classes and‘pro—

cedures are then invoked for each learning cycle. A learn-
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ing cycle consists of inputting a two-snapshot sequence and
a parsed natural language sentence and then incorporating

the information embodied in the input into the verb world.

1. Processing the Input

During each learning cyclé the input is £first pro-
cessed. SEMANTICNET is invoked twice to build semantic
nets that represent each snapshot. SENTENCEPARSE inputs
the parsed na;ural language sentence. DIRECTATTENTION
filters each snapshot by keeping for further consideration
only those triples that contain at least one word contained
in SENTENCEPARSE. COMPARISON computes goodness values for
potential linkups of triples 1in the first snapshot with
triples in the second snapshot. DIFFERENCES  selects the
best 1linkup and computes additional information needed to
create effects from triples. Finally, NEWCMS creates a
dummy CMS that represents the action that took place in the

input sequence.

2. Finding the Closest Existing Sense

Once the input is describwed as a sense of a CMS, it
may be compared with other information in the verb world.

Procedure COMPARE2CMS compares the input described in the
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dummy CMS with each sense associated with the CMS for the
input root verb word. The selection of the existing sense
that is closest to the input situation is done both struc-
turally and semantically. The structurally closest sense
is the one whose graphs may be modified in the least dras-
tic way to account for the input situation. This sense is

found by choosing the existing graph that maximally covers

the input graph. The semantic selection is done by using
the set containment information in world knowledge to
select the maximally covering graph that describes objects
that are the most semantically similiar to those seen in
the input. COMPARE2CMS returns the Sense it considers to
be the best description of the input situation along with
information about how well each linkup of arguments and ef-

fects in the dummy CMS and the closest sense matched.

3. Modifying Individual CMSs

If no CMS exists for the input verb word, ADDSENSE
will create an entry in the verb world for the input verb
word that points to the dummy CMS. If the closest sense
returned by COMPARE2CMS is a very poor match, then ADDSENSE
adds a pointer to the dummy CMS at the root node level of

the CMS for the input root verb.



67

When Moran considers the closest sense chosen by
COMPARE2CMS to be close enough to warrant modification,
procedure GENERALIZECMS modifies that sense in the 1least
drastic way so that it describes the new as well as the old
input. First it tries Minor Adjustment to loosen the res-
trictions on the arguments to-the least common superset of
two arguments. This generalization is allowed only if the
least common superset is semantically close to the two in-
stances, as defined by world knowledge. If Minor Adjust-
ment is not sufficient to make the closest sense account
for the input, then Splitting will alter the CMS graph
strucures so that matched effects or érguments generalized
by Minor Adjustment in each node are shared by both senses
and the unmatched information resides in offspring nodes

that are local to the individual senses.

These procedures are repeated for each learning cycle.
The learning cycles terminate whenever no more input situa-
tions are provided or when the trainer invokes GBB Extrac-

tion to look for similarities across CMS boundaries.

4. Finding Commonalities in the Verb World

The purpose of EXTRACTGBB is to identify information

shared by many verb senses across CMS boundaries. If Moran
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is ever to be able to recognize synonyms and/or classes of
semantically similar verbs, it must be able to recognize-
how the meanings of different verb words are similar and
different as well as how different senses of the same verb
word are similar and different. The problem of recoénizing
similarities across.CMS boundaries is combinatorially large

since each effect must be compared with each other effect.

Moran 1limits this combinatorial explosion by limiting the

depth of initial searches for equivalent effects.

The first pass through the verb world searches for
equivalent triples rather than equivalent effects and is
only allowed to look to a depth of three levels in each ef-
fects graph. The most freéuently used triples are then
linked in all possible combinations to form candidate GBBs. -
Oonly the final pass through the verb world that looks for
matches to these candidate GBBs traverses each path through
each effects graph to its maximum depth. The frequency and
jocation of matches to the candidate GBBs are recorded.
Then the most frequently used candidate GBBs are chosen as

GBBs.

B. Results to Date

This section presents examples of CMS graphs that
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Moran has learned. The test data Moran has been given con-
sists of seventeen senses of four different root verbs.
The environment snapshots and corresponding natural
language sentences are shown below. Moran was presented
with four senses of the root verb "throw", six of “carry",

eight of "move" and three of "buy".

The abbreviation PHYSCONT stands for ' “"physical con-

tact" and HAP for "has as part".

—— - — 4o - ——— " - —— " - — A " - " o — - - ] — - ————— -

"Figaro bought the picture from Ristin"

Snapshotl Snapshot?2

(FIGARO PHYSCONT MONEY) (FIGARO PHYSCONT PICTURE)
(FIGARO AT LOCB) (FIGARO AT LOCB)

(RISTIN AT LOCA) (RISTIN AT LOCA)

(RISTIN PHYSCONT PICTURE) (RISTIN PHYSCONT MONEY)

Sentence:
AGENT Figaro
ACTION Buy
OBJECT Picture
PREP From

INDOBJ Ristin

- — W Y - — . GRS Sua W S W VS G G o8 S W G UBW T YSRGS A WU S G A . G W S A S O S -
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"rRistin bought the table from Figaro"

Snapshotl

(RISTIN PHYSCONT MONEY)
(RISTIN AT LOCA)
(FIGARO AT LOCB)

(TABLE AT LOCC)

Snapshot?
(FIGARO PHYSCONT MONEY)

(RISTIN AT LOCA)
(FIGARO AT LOCB)

(TABLE AT LOCC)

Sentence:
AGENT
ACTION
OBJECT
PREP

INDOBJ

Ristin
Buy
Table
From

Figaro

- ———— —— - —— ——_ Y — - " - - - A = —

"Ristin bought the book"

Snapshotl
(RISTIN PHYSCONT MONEY)
(RISTIN AT LOCB)

(BOOK AT LOCC)

Snapshot?2 “
(RISTIN AT LOCD)
(RISTIN AT LOCD)

(BOOK AT LOCC)
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Sentence: ’
AGENT Ristin
ACTION Buy

OBJECT Book

..—.——-.——-——-—-——.—.—...—-.——-—.———.—-.—.—_——..——_.———.—.——-——.—---——_.-——.—.—

"Figaro carried the book"

Snapshotl Snapshot?2
(FIGARO AT LOCA) (FIGARO AT LOCB)
(BOOK AT LOCA) (BOOK AT LOCB)
(FIGARO PHYSCONT BOOK) (FIGARO PHYSCONT BOOK)
Sentence:
AGENT Figaro
ACTION Carry
OBJECT Book
“Figaro carried the book to the table"
Snapshotl Snapshot?2
(FIGARO AT LOCC) (FIGARO AT LOCD)
(BOOK AT LOCC) (BOOK AT LOCD)
(FIGARD PHYSCONT BOOK) (FIGARO PHYSCONT BOOK)

(FIGARO HAP MOUSTACHE) (FIGARO HAP MOUSTACHE)
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Sentence:
AGENT Figaro
ACTION Carry
OBJECT Book
PREP To

INDOBJ Table

- " - " - ——— " . Y " W —— - W - —— W - - - - — -~ -

"Figaro carried the pin with the tweezers"

Snapshotl Snapshot?2

(FIGARO AT LOCA) (FIGARO AT LOCB)

(PIN AT LOCA) (PIN AT LOCB)

(TWEEZERS AT LOCA) (TWEEZERS AT LOCB)

(TWEEZERS PHYSCONT PIN) (TWEEZERS PHYSCONT PIN)

(FIGARD PHYSCONT TWEEZERS) (FIGARO PHYSCONT TWEEZERS)
Sentence:

AGENT Figaro
ACTION Carry
OBJECT Pin
PREP With

INDOBJ Tweezers

O - - Y Y- P T —— - S Y - ——— - . YN NS S L o SO S Y W S — T W



i,m“Ristin carries a wallet”

Snapshotl Snapshot?2

(RISTIN AT LOCA) (RISTIN AT LOCA)

(WALLET AT LOCA) (WALLET AT LOCA)

(RISTIN PHYSCONT WALLET) (RISTIN PHYSCONT WALLET)

Sentence:
AGENT Ristin
ACTION Carry

OBJECT Wallet

o ——— Y —— T —— " " Y D T o D S Y T " V> S~ " o " " " " 2 o o " o 7

"Ristin carried on a conversation"

Snapshotl Snapshot2

(RISTIN AT LOCA) ‘ (RISTIN AT LOCA)

(FIGARO AT LOCB) (FIGARO AT LOCB)

(RISTIN TALKTO FIGARO) (RISTIN TALKTO FIGARO)
Sentence:

AGENT Ristin
ACTION Carry
PREP On

OBJECT Conversation
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"Figaro carries a torch"

Snapshotl Snapshot?2
(FIGARO AT LOCB) (FIGARO AT LOCB)
(FiGARO LOVE RISTIN) . (FIGARO LOVE RISTIN)

o "
LCIITLCHIUCTS,
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AGENT Figaro
.ACTION Carry

OBJECT Torch

o —— " > . " " " " U " o " o R T T S T A [ T G T W T U Sl S T i S S S S S

"Figaro threw the ball"

Snapshotl Snapshot?2
(FIGARO AT LOCA) (FIGARO AT LOCA)
(BALL AT LOCA) (BALL AT LOCB)

(FIGARD PHYSCONT BALL)

Sentence:
AGENT Figaro
ACTION Throw

OBJECT Ball

—.——-———--—.——..-——-—_—-—-.--——..-———-—_-—»—--——--——.-.———-_————--—_-_——

"pigaro threw the ball to Ristin"



Snapshotl Snapshot?2

(FIGARO AT LOCB) (FIGARO AT LOCB)
(RISTIN AT LOCA) (RISTIN AT LOCA)
(FIGARD PHYSCONT BALL) (RISTIN PHYSCONT BALL)
(DOLL AT LOCB) (DOLL AT LOCA)

Sentence:
. AGENT Figaro
ACTION Throw
OBJECT Doll
PREP To

INDOBJ Ristin

—-—4-..—-—-.—————--._-—_———--_—-———-—_——.—.-_.—-—.—___.......—--.--———-

"Ristin threw the book at Figaro"

Snapshotl Snapshot?2
(RISTIN AT LOCA) (RISTIN AT LOCA)
(FIGARO AT LOCB) (FIGARO AT LOCB)
(RISTIN PHYSCONT BOOK) (BOOK AT LOCC)

(BOOK AT LOCA)




Sentence:
AGENT Ristin
ACTION Throw
OBJECT Book
PREP At

INDOBJ Figaro-

—————-—-—-———-.——_——-—_—-—-—.-—-.-—-—.—.—_.——..-————-———-—_.—.—.——-——

"Ristin threw a tantrum"

Snapshotl Snapshot?2
(RISTIN AT LOCA) (RISTIN AT LOCA)
(RISTIN HAVE CALM) (RISTIN HAVE ANGER)

(RISTIN HAVE TEARS)

Sentence:
AGENT Ristin
ACTION Throw

OBJECT Tantrum

———————-—————.—.——-—-——-——-———.——-—.——-—_-————.———.—-———-——.—-—

"Ristin moved the book"
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Snapshotl Snapshot?2

(RISTIN AT LOCA) (RISTIN AT LOCB)

(BOOK AT LOCA) (BOOK AT LOCB)

(RISTIN PHYSCONT BOOK) (RISTIN PHYSCONT BOOK)

Sentence:
AGENT Ristin
ACTION Move

OBJECT Book

- o - oo " - S — " U O S L W " o - —— o — V" — - W — T - - 7] o2 o

"Figaro moved the pencil”

Snapshotl Snapshot?

(FIGARO AT LOCB) (FIGARO AT LOCC)

(PENCIL AT LOCB) (PENCIL AT LOCC)

(FIGARO PHYSCONT PENCIL) (FIGARO PHYSCONT PENCIL)
Sentence:

AGENT Figaro
ACTION Move

OBJECT Pencil

- — - - — . S U Y S S AT S G G W R S S G S S G G S el R W Gt S S GO D S S WS WS L TS G U 208 S S

®"Figaro moved the table"




Snapshotl
(FIGARO AT LOCA)
' (TABLE AT LOCA)

(FIGARO PHYSCONT TABLE)

Sentence:

AGENT Figaro

78

Snapshot2
(FIGARO AT LOCB)

(TABLE AT LOCC)

ACTION Move

OBJECT Table

- ———— — — " - - W T G — — " -

———— 1 —— " — . -~ - —— W — o

"Ristin moved the pencil"”

Snapshotl

(RISTIN AT LOCA)

(PENCIL AT LOCA)

(RISTIN PHYSCONT PENCIL)

(RISTIN HAP PONYTAIL)

Sentence:
AGENT Ristin
ACTION Move

OBJECT Pencil

> D S o T > G W W P W . A . S W G W S Gt W -

Snagshogg
(RISTIN AT LOCB)

(PENCIL AT LOCB)
(RISTIN PHYSCONT PENCIL)

(RISTIN HAP PONYTAIL)

- ——— S W U T . B ——

*Ristin moved the pencil"”



Snapshotl

. (RISTIN AT LOCB)

(RISTIN PHYSCONT PENCIL)

/

Sentence:

AGENT

Ristin’

ACTION Move

OBJECT Pencil

Snapshot2
(RISTIN AT LOCC)

(RISTIN PHYSCONT PENCIL)

"Ristin moved the book to the table"

Snapshotl

(RISTIN AT LOCA)

(BOOK AT LOCA)
i(RISTIN.PHYSCONT BOOK)

(TABLE AT LOCB)

Sentence:
AGENT

ACTION

OBJECT

PREP

INDOBJ

Ristin
Move
Book
To

Table

Snapshot?2

(RISTIN AT LOCC)
(BOOK AT LOCB)
(BOOK PHYSCONT TABLE)

(TABLE AT LOCB)

79
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®"Ristin moved to adjourn”

Snapshotl Snapshot2
(RISTIN AT LOCA) (RISTIN AT LOCA)

(PEOPLE IN ROOM) (RISTIN HOLD GAVEL)
(RISTIN HOLD GAVEL) "
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Sentence:
AGENT Ristin
ACTION Move

OBJECT Adjourn

——— " Y —_— - - - o WAk W " W W W G W — S G W . A W W " . o oo o e

"Figaro moved Ristin"

Snapshotl Snapshot?2

(FIGARO AT LOCA) (FIGARO AT LOCA)

(RISTIN AT LOCB) (RISTIN AT LOCB)

(RISTIN MENTAL NEUTRAL) (RISTIN MENTAL HAPPY)
Sentence:

AGENT Figaro
ACTION Move

OBJECT Ristin
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From the input above Moran inferred a verb world that
consists of eight non-connected directed acyclic graphs,
two for each root verb, and selected a set of GBBs. ' These
results are shown below. The surface sentences that
resulted in each sense are listed before each graph. Thé
program required 32K and 28.5 seconds for execution. Gar-

bage collection was performed 36 times.

Moran inferred the following three-sense CMS from

three instances of the verb "buy":

Sensel: "Figaro bought the picture from Ristin"
Sense2: "Ristin bought the table from Figaro"

Sense3: "Ristin bought the book"
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I 1-3
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N

C
3|
v

effects
3

0
®

where the arguments are:

ot

r 2

< —

Az Agent Human
Object Physobj
Cl Money

C2 Location"
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B: Prep From

Indobj Human

C3 Location
C: C5 Location
D: Cc10 Locb

and the effects are:
1: Indobj at C3 ---> Indobj at C3

2: Agent physcont Cl ---> Agent physcont Object
Agent at C2 ---> Agent at C2”

Indobj physcont Object ---> Indobj physcont C1l

3: Agent physcont Cl ---> Agent at C5
Agent at C5 ---> null

Object at C2 ---> Object at C2

4: null ---> Indobj physcont Cl

Sense one describes a human Indobj remaining at a 1lo-
cation during the action. A human Agent changes from being
in physical contact with money to being in physical contact
with an Object that is a physical object. The Agent

remains at a location that is different from the 1location
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of the Indobj. The Indobj changes from being in physical
contact with the Object to being in physical contact with

money.

Moran viewed six instances of "carrying" and inferred

the following six sense CMS:

Sensel: "Figaro carried the book"

Sense2: "Figaro carried the book to the table”
Sense3: "Figaro carried the pin with the tweezers”
Sensed: "Ristin carries a wallet"

Sense5: "Ristin carried on a conversation"

Sense6: "Figaro carries a torch"
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l 1-6

v
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i 5 6

where the arguments and effects are:

A:

Agent
Cl

Object

c2

Prep
Indobj

C5

Cl0

Prep

Human

Location

Physobj

Location

Preposition

- Physobj

Moustache

Human

On
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Object Conversation
H: Object Torch
l1: Agent at Cl1 ---> Agent at C2
Object at C1 ---> Object at C2
2: Agent physcont Object ---> Agent physcont Object

3: Indobj at C2 ---> Indobj at C2

Agent hap C5 ---> Agent hap C5

4: Indobj at Cl ---> Indobj at C2
Agent physcont Indobj ---> Agent physcont Indobj

Indobj physcont Object ---> Indobj physcont Object
5: Agent at Cl ---> Agent at Cl
6: Object at Cl ---> Object at Cl
7: Agent talkto Cl0 ---> Agent talkto Cl10
8: Agent love Cl0 ---> Agent love C1l0
The first three senses describe variations on the
sense of "carrying" where the Agent moves the Object from

one location to another. Sense four describes a sense of

carrying where the Agent has a physical object on his or
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her person. Senses five and six are 1idiomatic and were
given to Moran to demonstrate- how radically different
senses of the same root verb are incorporated 1into the

graph structure.

The eight instances of "moving" resulted in the fol-

lowing seven sense CMS since the first two snapshot se-

—_—guences-—mapped-to-the same-structure

Sensel: "Ristin/Figaro moved the book/pencil"”
Sense2: "Figaro moved the table"

Sense3: "Ristin moved the pencil"

Sensed4: "Ristin moved the pencil”

Sense5: "Ristin moved the book"

Sense6: "Ristin moved to adjourn"

Sense7: "Figaro moved Ristin"



arguments
I 1-7

The arguments and effects are:

89
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Agent Human

Cl Location

Object Physobj

c2 Location
C: Cc7 Location
D: clo0 Ponytail
E: Prep Preposition
‘Indobj Table
F: Object Adjourn
C17 Gavel
G: Cc20 Neutral
c21 Happy
l: Agent at Cl ---> Agent at C2

Agent physcont Object ---> Agent Physcont Object
Object at Cl ---> Object at C2

Object at Cl ---> Object at C7

Agent physcont Object ---> null

Agent hap Cl0 ---> Agent hap C1l0
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6: Indobj at C7 ---> Indobj at C7

null ---> Object physcont Indobj

Senses one through five are very similar and represent
the sense of "move" where the Agent changes location with
the Object. Senses six and seven are idiomatic and were
given to Moran to show how radically different senses are

incorporated into the graph structure.

The following four sense CMS was inferred from the

four instances of "throwing".

arguments
l 1-4




effects
l 1-4
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A:

5 7,
ANV,

The arguments and effects are:

Agent
Cl

Object
Cc2

Prep

Indobj

ceé

Object
Cc9

Clo0
Cll

Human

Location

Physobj

Location

Preposition

Human

Locb

Tantrum
Calm
Anger

Tears
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l1: Agent at Cl ---> Agent at Cl
2: Object at Cl ---> Object at C2
3: Agent physcont Object ---> null

4: Indobj at C2 ---> Indob]j at C2

Agent physcont Object ---> Indobj physcont Object

5: Indobj at Cé ---> Indobj at C6

Agent physcont Object ---> null

6: Agent have C9 ---> Agent have C1l0

null ---> Agent have Cl1

Senses one through three represent variations on the
sense of ™throw" where the Agent causes the Object to -
change location. Sense four represents a change in the

mental state of the Agent.

The graphs that Moran inferred for the twenty one
senses of four root verbs are bushy as well as deep rela-
tive to the amount of data presented. This 1is because
snapshots of the same action may vary in some details and
Moran always represents all the information in the filtered
snapshots. For example, the only difference between sense

two and sense three of "carry" is that in the second sense
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the Agent is shown as having a moustache. This problem
will be compounded as Moran 1is ©presented with more
snapshots of actions since the”chances of snapshots of the
same action being exactly the same is very small. A future
version of Moran will have to include mechanisms for decid-
ing when groups of senses that‘sharevenough "important" in-
formation are actually representations of the same general

sense _of a root verb.

The following four effects were chosen as GBBs.

1. AGENT PHYSCONT OBJECT ---> AGENT PHYSCONT OBJECT
AGENT Human

OBJECT Physobj

2. AGENT AT CASEA ---> AGENT AT CASEA
AGENT Human

CASEA Location

3. AGENT AT CASEA ---> AGENT AT CASEB
AGENT Human
CASEA Location

CASEB Location

4. OBJECT AT CASEA ---> OBJECT AT CASEB

OBJECT Physobj
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CASEA Location

CASEB Location

The first GBB describes a human agent remaining 1in
contact with an object that is a physical object. It was
used in seven of the twenty one senses. The secoﬁd GBB
describes a human agent staying in the same location, while
the third GBB describes a human agent changing 1location.
The second GBB was used ten times, the third nine times.
The final GBB describes an object that is a physical object
changing location. It was used eleven times. The next

most frequently used effect was seen only four times.
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CHAPTER 6

LIMITATIONS, EXTENSIONS AND CONCLUSIONS

This research limits its scope to investigating learn-
ing overt physical actions that occur in the environment
when a verb "takes place"”. The current implementation and
the theory are both limited in certain important ways.

Most of the 1limitations are highly interrelated. This

chapter identifies the major limitations and suggests how
they might be ‘remedied, discusses the significance of
Moran's results, and suggests directions for future

research.

A. Implementation Limitations
1. Two-Snapshot Sequence

Restricting program input to a two-snapshot sequence
severely 1limits what the program can learn about action
verbs, since it is not rich enough in information to allow
the program an opportunity to extract subtle detail. all
changes in the environment are perceived to be discrete,
instantaneous and of equal magnitude. The intermediate

subactions that make up an action are invisible.

Take, for example, one simple sense of the verb "move"
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as in
"Figaro moved the book".

For this overt physical action the program may be presented
with a first snapshot showing Figaro and the book in physi-
cal contact at some location, and a second snapshot showing
Figaro and the book in physical contact at a second loca-
tion. A more realistic illustration of one sense of the
verb "move" might show a person gradually approaching an
object, coming into contact with the object by grasping it,
changing 1location with it, releasing it and perhaps moving
away from it. The series of snapshots might look something

like:

t0) Figaro and the book at different 1location, say.

Locl and Loc?2

tl) The book at the same location, Loc2, and Figaro

having moved closer to it
t2) Figaro in physical contact with the book at Loc2

t3) Figaro and the book in physical contact at some

new location, Loc3.

t4) The book at Loc3 and Figaro at some other 1loca-

tion, Loc4.
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This sequence is richer in detail and begins to provide the
program with sufficient information for inferring the

events that occur in "moving”.

While an longer snapshot sequence provides additional
information, it also results-in a combinatorial explosion

of processing complexity. 1In order to segment the action

into subactions, each snapshot in the sequence must be
analyzed with respect to others in the sequence [Soloway
77, Badler 75]. It is also extreme}y difficult to compare
one N-snapshot sequence with another N-snapshot sequence
since the time slice viewed during the two actions may not
be the same and the intervals between snapshots in the se-
guence may also be different. Additionally, the CMS would

need to be able to represent time.

2. An Interactive Component

In order to acquire the information necessary to re-
fine the CMSs as accurately as inherently possible for the
representation, it would be useful for Moran to ask ques-
tions of a human trainer. Since the program has no access
to an episodic memory, a record of actual snapshots seen,
it may be unable to discover necessary distinctions between

different verb senses. Environmental information that was
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determined to be unimportant for learning a particular verb
sense may prove vital in distinguishing that sense from

another sense that occurs later in its experience.

The component DIRECTATTENTION discussed in Section
4 ,A.1 filters the incoming perceptional data. Once infor-
mation is filtered out, it can’'never be recovered. It is
therefore necessary for the program to ask discriminating
questions. For example, if Moran has identical or very
similiar representations for some senses of different root
verbs, it might ask if these senses are synonyms. If so,
they could be marked as such. 1If not, Moran could ask how

they are different and appropriately modify each CMS.

An interactive component would also aid in 1learning
non-action verbs and inferring causality. A discussion of
causality appears below. Both problems require information
that is not directly expressed as environmental changes.
With the addition of an interactive component, the program
would be able to be told information that it may be unable
to extract from visual analysis of the environment. For
example, it might inquire how "owning" differs from "hold-
ing". It might also ask for confirming information for its
hypotheses. If, for example, it notices that Agents are

always or almost always human, it could ask if indeed

ERCENT 4




100

Agents are always human and perhaps why that is so, possi-
bly 1illiciting information about causality if the answer
indicates that Agents cause actions and Causers must be hu-

man.

B. Theoretical Limitations

A CMS cannot express all types of verbs. A verb whose

meaning involves repetitive changes or continuous time can-
not be fully represented. Argument co-occurrence restric-
tions are not represented and the concept of causality is

not addressed.
1. Argument Restrictions

The program currently learns the arguments to associ-
ate with a verb sense and the restriction placed on each
argument. There can be only one restriction on each argu-
ment. It is the least common superset of all the instances-
of the argument. Although instances of the arguments are
recorded, they do not function as argument restrictions;
they are maintained for future use in forgetting operations

where such statistical information is required.

To reduce overgeneralization, it is desireable to al-

low a restriction to be a logical combination of other res-
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trictions. For example, perhaps the Object argument must
always be a green physical object or a C82 argument must be
a non-bald man with one pierced ear. Logical expressions
are necessary if argument restrictions are to be other than

broad general classes.

The semantic constraints on the argument slots are too
local with respect to past experience. The frequency of
occurrence of .each argument 1is recorded, but not co-
occurrence between arguments. Suppose, for example, the

program experiences \

Cat says meow
and

Dog says bark.
The arguments of the CMS for the verb SAY might be:

AGENT Animal (2): cat(l), dog(l)

OBJECT Sound(2) : meow(l), bark(l)

The CMS correctly represents the fact that animals
"say" sounds. It also implies that cats may say "bark" and
dogs may say "meow". Storing an episodic memory could help
solve this problem. Another approach is to store semantic
constraint information that limits what may fill an -argu-

ment given that other arguments are already instantiated.
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It may be argued, however, that the purpose of the argument
part of a CMS 1is not to ind}cate semantic constraints
between argument slots, but only to describe legitimate
fillers of individual argument slots. The semantic con-
straint information would be contained in world knowledge
(and possibly learned concurrently). If the program should
ever experience a cat saying "bark", it would still

correctly find the appropriate sense of "say". Other se-

mantic constraint information would be needed to register

surprise at what the cat said [Oden 78].

2. Causality

Moran is unable to determine, incorporate or represent
the cause of an action, as opposed to the visible content
of an action. What caused a verb to happen is part of the
overall meaning of the verb [Schank 72, Norman and
Rumelhart 75] and should be part of the representation of
the meaning of the verb. When asked what a particular verb
“méans", people are able to indicate what or who causes the
event to happen or at least to make a good guess as to the
most likely cause as well as likely effects. For example,

in the sentence

*John moved the book"®



it is clear
move. Thi
what can be

moving also

Causal
meaning of
verb can be
result of
meaning of
caused the

tence

means that

comforted.

means that

cident not

It is
needed to e
be represen

types of ca

103

that John did something that caused the book to
s program will learn who can do the moving and
moved, but not that the person who can do the

causes the object to be moved.

ity appears to be especially important to the

non-action verbs Qhere the "occurrence" of the
viewed as a change of 1internal state as the
some visible action. An essential part of the
such verbs is knowledge about the action that

change of state to occur. For example, the sen-

"Ristin comforted John"

Ristin did something that caused John to feel

Similarly,
"Ristin prevented the accident”

Ristin performed some action that caused the ac-

to happen.

not clear exactly what type of information is
nable learning causality or how causality should
ted. We first need an understanding of the

usality and classes of actions.
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Two types of knowledge that would be helpful for

inferring causality are:

1) Knowledge about physical forces and how they

operate in the world.

2) Knowledge and understanding of internal motiva-

tions of potential actors.

- ¥nowledge of physical—forces provides—information-such————

as the fact tha? inanimate objects cannot move of their own
volition but animate objects can. We can include in this
category "animate forces" like wind, rain and waves. This
type of knowledge is necessary to avoid deductions 1like
*7he book caused Figaro to move". It is true that this
type of knowledge may be implicitly embedded in the program
by assuming the agent of the sentence is aiways (or most
likely to be) theﬂcause of the action. However, such in-
formation should either be learned or explicitly represent-
ed within the world knowledge so that it can be used when-

ever necessary.

Knowledge of the internal motivations of potential ac-
tors 1is also necessary in order to determine causation.
Often the only way of knowing (or inferring) what caused an

action is to know that an actor desired some final state to
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be reached and therefore set in motion a sequence of events

to cause that state to come about. For example, in
"Figaro hurt Ristin"

some knowledge about Figaro's internal state, such as the
fact that he felt angry at Ristin, can give credence to the
deduction that Figaro did something that caused Ristin to
become hurt as well as help predict Figaro's next action,
like apologizing. Aalso, from knowledge about what Figaro

did, it may be possible to infer that he must have been an-

gry.

Since infernal states cannot be directly observed, it
is necessary to understand that one event may place an ac-
tor in an emotional state that will later express itself by
an action. The complex event of purchasing a book can bé
understood as a causal chain that starts with availability
of book and money and desire for the book and concludes
with actions of tendering by one pérty causing tendering by

the other.

As further discussed in Section 4 of this chapter,
internal states and motivations of others are hard to
represent and to infer from experience with one's own

internal drives. We want a way to determine that Figaro
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caused the book to move and not vice versa from knowledge
that Figaro desired the book to be in a different place

from its present one.

Internal motivations are especially important for
determining "reverse causation", where the surface language
treats the cause as temporzlly following the result. An

example of reverse causation is

"The coffee was bad, so Figaro must have made it".

Although Figaro made the coffee before it was discovered
that the coffee was bad, the fact that the coffee was bad
causes one to believe that Figaro must have made it.
Inferring this type of causality requires understanding
thought processes of the speaker. Whenever the reason for
doing something is emotional, the deductive processes mus£

deal with what is happening inside a person's head.

Moran does not deal with causality because the neces-
sary incorporation and utilization of mental states, drives
and emotions is an extremely complicated and unexplored
area. Basic and powerful learning processes can still be

explored aside from most aspects of causality.
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3. Integration of the Verb World and World Knowledge

Moran maintains two separate bodies of knowledge.
Ohe, the verb world, is a set of directed acyclic labeled
graphs that represent the set of CMSs the program infers as
a result of its experience with the environment. The oth-
er, world knowledge, is a tree of concept nodes given to
the program. It currently represents only set membership
with ISA and SUPERSET/SUBSET links, although the implemen-

tation is capable of representing general semantic nets.

World knowledge and the verb world are separate for
practical rather than theoretical reasons. Although in
this program they have different formats, most theorists
agree that they should be connected [Norman & Rumelhart
751]. However, since this program needs  some giveh
knowledge in order to learn other knowledge, the two

knowledge bodies are maintained separately so that:

1) It will be clear what the program has itself

learned as opposed to what it is given.

2) It is easy to determine and record the world
knowledge wused while the verb world knowledge is

learned.

Integration of the two knowledge bases would require
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redesign of the basic data element constituting a node in
the net so that it may represent any knowledge rather than
a CMS, noun concept or set concept. Additionally, the pro-
gram would need procedures to access the more complex
knowledge and decide what information should be stored as
restrictions in the CMS. 1In the current implementation, if
Raphael and Sharon are encountered as agents, then the res-
triction—on—the-Agent—argument-becomes—theleast-common—su-
perset of Raphael and Sharon. If a great deal of informa-
tion 1is stored in world knowledge about both Raphael and
Sharon, then the program must decide if the intersection of
all their attributes, such as the factskthat they both have
curly hair, ride bicycles and are computer scientists, are

relevant restrictions on the Agent argument.

4. Non-Action Verbs

Moran does not learn CMSs that represent non-action
verbs, for which there may be no errt physical or directly
observable manifestation and whose causality is nebulous.
Examples of non-action verbs are love, hate, threaten, be-
lieve, describe, desire, expect, feel, fear, forget, ima-
gine, know, learn, please, predict, remember, suspect,
understand, want, be and stand. Many of these verbs nshare

some factors:
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1) An internal state or motivation is necessary to

describe what the verb means.

2) There may be no directly observable manifestation

of the verb.

3) It is not possible to determine the cause of the

verb directly.

Although beople obviously are able to extract such in-
formation from the environment, they undoubtedly apply a
great deal of processing and inference on the raw perceptu-
al data and internally generated data. A great deal of in-
formation also comes from hearing rather than seeing. The

sentence,
John said the toast was burned so Joe must have made it.

provides a wealth of information. It is not clear exactly

what information should or can be extracted.

Several types of information might be needed to solve
this problem. First, it is necessary to determine what in-
formation is embodied in an "internal state". There may be
hundreds of factors that contribute to a person's internal
state: stability, security, happiness, fear, anger and

desire are some,




110

Even if an internal state can be decomposed into fac-
tors, there remains the problem of describing the relative
"quantity" of each factor. Assigning such quantities seems

inadequate for several reasons.

1) The value associated with each factor may spon-

taneously shift very frequently.

2) The physics of the values is unknown. That 1is,
they cannot always be increasing. When do they go
up? How do they come down? Are there certain
things that cause relatively permanent increases or

decreases in the values?

3) It is not clear which verbs are reflections of

changes in what factors.

Assigning one overall numerical value to an internal
state also seems inadequate because there are probably a
great many such factors. To combine all values to get a
resultant "internal state value" would very likely discard

any meaning embodied in the individual states.

Perhaps the only way descriptions of non-action verbs
can be obtained is by induction from the observer's inter-
nal state to another's internal state. That 1is, a child

doesn't have to move a book to learn the basic meaning of



111

what it means for someone else to move a book. But a child
does have to experience fear to understand what it means

for someone else to fear.

The source of the problem is that these verbs are not
actions one performs on an object. They are the result of
an action rather than an action itself. Some, possibly

unknown, action causes a given internal state.

In any case, given the appropriate information either
in the environment or as a result of extensive inference on
the information in the environment, Moran should be able to
learn the meanings of non-action verbs by the same

processes it uses for learning action verbs.

Consider, for example, the verb "“threaten", in the
sense to threaten bodily harm with a physical object, as an
example of a non-action verb. A simplified CMS we would

like the program to learn might look something like:
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AGENT Human
OBJECT Human

INSTR Physobj
AGENT CAUSE *

OBJECT IMAGINE *'

* OBJECT HAPPINESS valuel --> OBJECT HAPPINESS (valuel-4dl)

\OBJECT FEAR value2 --> OBJECT FEAR (value2+d2)

*' INSTR MAY.HARM OBJECT if OBJECT DO *''

*#'! yndefined action

The vast majority of this information in the CMS 1is
not explicitly observable in the environment: CAUSE, BE-
LIEVE, HAPPINESS and FEAR are functions of many factors.
‘All this information must be inferred from the overt physi-
cal action taking place in a two snapshot sequence which

may look something like:
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Snapshotl Snapshot?2

RISTIN AT LOCA RISTIN AT LOCA
FIGARO AT LOCB FIGARO AT LOCB

RISTIN PHYSCONT BRICK RISTIN YELL-AT FIGARD

BRICK CLOSE-TO FIGARO

RISTIN PHYSCONT BRICK
"Ristin threatened Figaro"

Nothing about causing, fearing, happiness or fear is
present in theéese snapshots. It must all be deduced from
expressions on Ristin's and Figaro's faces and a dictionary
of societal formalities about "threatening behavior"

[Searle 69].

Although a solution to the problem of 1learning non-
‘action verbs would certainly be valuable; the insighté
gained are not necessary for a solution to the problem ad-
dressed here: the processes needed to infer semantic’
graphs. How mental states are inferred from subtle clues
and how to represent these mental states are topics for

further research.

C. Conclusions

The implementation of Moran has shown that a small set
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of well-defined processes are adequate, to a certain point,
to infer semantic graph structures from pictorial input da-
ta. The semantic graphs represent both the meaning of in-
dividual input situations and the similarities and differ-

ences between different input situations.

Two types of similarities and differences are in-

ferred. The first type is within the categories that seg-

ment the colleétion of graphs, 1in this case root verb
words. Moran infers graphs where shared nodes that contain
groups of arguments and effects reflect similarities
between different senses of the same root verb. The second
type reflects similarities across graph boundaries by iden-
tifying Global Building Blocks that are effects used in the
meaning of many senses of different root verbs. A GBB may
be viewed as a type of primitive that will strongly influ-
ence subsequent incorporation of information into the graph
structure. It is significant that the GBBs are discovered

by the program rather than given to it.

Moran shows that learning éan be viewed as a formaliz-
able set of mechanisms and interactions between these
mechanisms that can learn general structural descriptions,
rather than an ad hoc method that is limited to learning

structures and relations specific to one application. The
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fact that Moran is implemented and has generated semantic
graphs from pictorial data demonstrates that the learning

mechanisms discussed work.

D. Future Directions

Further research is required to refine the 1learning
mechanisms discussed here and to define other learning
processes needed for further refinement of the CMS struc-

tures.

The fourth learning mechanism, GBB Extraction, should
be part of a more general non-input directed process, Glo-
bal Reorganization. The function of Global Reorganization
will be to modify the verb world in order to produce a

"better" organization.

Global Reorganization needs to operate within indivi-
dual CMSs as well as across CMS boundaries. CMS graphs
tend to become both deep and bushy because information in-
corporated into the graphs is never discarded. A procedure
is needed that will forget information that is not required
for verb sense discrimination. Another procedure that
would operate within an individual CMS would reorganize the
arguments and effects graphs so that the most commonly

shared nodes in each graph are at the top 1levels of the
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graphs for as many senses as possible. Such an ‘organiza-
tion would facilitate heuristic search pruning since two
graphs that did not match at the higher 1levels would not

need to be matched further.

Like GBB Extraction, other Global Reorganization
processes need to operate across CMS boundaries. The verb

world must be reorganized with respect to the GBBs Moran

discovers. Additionally, higher level GB8Bs that consist of
groups of effec?s and their restrictions should be found as
well as the single-effect GBBs. These higher level GBBs
may be viewed as primitive meaning units and compared with
primitive meaning units that have previously been suggested

[schank 72].

Two further problems to be investigated are the condi-
tions under which Global Reorganization should be invoked
and how the results of the Global Reorganization process
should affect the processing of input in subsequent learn-

ing cycles.

Finally, research must be pursued regarding the seman-
tic similarity of graph structures. At least two problems
are to be initially addressed: what does it mean for two
graphs to be semantically similiar and what types of infor-

mation are necessary to determine semantic similarity?
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Although Moran is a large, complex program with in-
teractions between many procedures, it has been modularly

designed to facilitate experimentation and further research

on these issues.
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