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Abstract

The objective function of any solvable linear pro-
gram can be perturbed by a differentiable, convex or
Lipschitz continuous function in such a way that (a)

a solution of the original linear program is also a

Karush-Kuhn-Tucker point, local or global solution of
the perturbed program, or (b) each global solution of
the perturbed problem is also a solution of the linear

program.
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We are concerned here with the linear program

Minimize px
(1)
subject to Ax>Db
where p and b are given vectors in R" and RT
respectively and A is a given mxn real matrix. We
shall assume throughout this work that this problem has
a nonempty optimal solution set Sc§S = {X}Ax;b} . We
shall be interested in the perturbed problem P(e) de-
fined as follows
Minimize px + ef(x)
(2)
subject to Ax > Db
where f:R">R and ¢ is a nonnegative real number.
For convenience we define the optimal solution set of
(2) as 8(e) . Note that §8S(0) = S . Perturbed problems
such as (2) are considered in [3,4]. In [3] it was shown
that if (1) has a unique solution x and f is a dif-
ferentiable function at x , then there exists a positive
e such that for all ¢ in [0,e]l , ¥ satisfies the
Karush-Kuhn-Tucker conditions [1,2] for the perturbed
problem (2). By considering a specific perturbation

T

f(x) = x"x in [4] an iterative technique is proposed

N

for solving linear programming problems. In this work

we show that, under suitable conditions, given any f



there exists a positive number ¢ such that some solu-
tion of the linear program is a Karush-Kuhn-Tucker point
or a local or global solution of the perturbed problem (2)
for ¢ in the interval [0,e] . In Theorem 1 we show
that if f is differentiable and has a bounded level

set on S then there exists a Karush-Kuhn-Tucker point
of the perturbed problem (2) which also solves the orig-
inal 1linear program (1). In Theorem 2 we indicate

how the same type of perturbation applies to a nonlinear
programming problem. The rest of the paper is again de-
voted to the perturbed linear program. In Theorem 3

we show that if f satisfies a local Lipschitz or local
convexity property then there exists a solution of the
linear program (1) which is a local solution of the per-
turbed problem (2). Among other things Theorem 4 global-
izes the result of Theorem 3 and shows that for sufficiently
small € >0 the set of optimal solutions of the perturbed
problem is actually a subset of the solutions of (1).
Corollary 1 deals with the case when the linear program
(1) has a unique solution, while Corollary 2 treats the
case when the perturbation function f 1is strictly con-

vex on R" . We begin with the first result.

Theorem 1. Let f be a function from RM into R

which is differentiable on the nonempty solution set



S of (1). Let either the level set L = {x|xe5,f(x)<B}
be nonempty and bounded for some real number B , or let
8 be the minimum value of (1) and let the nonlinear

program

Minimize f(x)
(3) subject to Ax>b

px <8

have a Karush-Kuhn-Tucker point. Then there exists an

— . n
x 1in R

and an € >0 such that for each ¢ in [0,c]
there exists a U(e) in R™ such that (x,ule)) 1is
a Karush-Kuhn-Tucker point of the perturbed problem (2),
and x is also a solution of the linear program (1).

If in addition f 1is convex or pseudoconvex at x ,

then X solves the perturbed problem(2) for ¢ in [0,2]

Proof. By explicit assumption or by the boundedness of
L. , problem (3) has a Karush-Kuhn-Tucker point (%,v,vy)

. +m+ . . .
in Rn m1 which satisfies

VE(R) - ATy + Jp =

0

Ax > Db

(w) pPX = §
v(Ax-b) = 0



Since x 1is also a solution of the linear program (1),

there exists a w in R™ such that

(5) AT +p = 0, AX>b, wW(AR-B) = 0, W20

Case 1 y=0 From (4) and (5) we have that for any

E;C

EVE(R) - AT (+ev) + p

=0
Ax > b
(w+ev) (Ax-b) = 0

wtev > 0

Hence (x,w+ev) 1is a Karush-Kuhn-Tucker point of (2)

for any €2>0

Case 2 y>0 When y>0 , it follows from (4) that

(x,u=%) 1is a Karush-Kuhn-Tucker point of (2) with

>
E=¢ =%— From (4) and (5) we have for vy >0 and
Y
Ael0,11 that
Age) -atcaa-na ) vp = 0
Y Y

Ax > D
((1-2)% + 1) (Ax-b) = 0

Yoo
(1-M)w +A=>0

v
,'\?



Hence (§,(l—k)ﬁﬁrk%) is a Karush-Kuhn-Tucker point for
Y

A and rel0,1]

Y

The last statement of the theorem follows from the

(2) for £ = A€ =

standard sufficiency theory of nonlinear programming

[2, Theorem 10.1.2]1. [

We can apply the same proof technique above to a
considerably more general problem than (1), namely to

the nonlinear programming problem

Minimize 8(x)
(6) subject to g(x) <0

h(x) =0

where 6, g and h are functions from R" into R 5

R™  and Rk respectively. However because of a constraint
qualification restriction the results apply to a narrow
class outside linear programs. Hence we shall merely

state the result and omit the proof which is quite similar
to the proof of Theorem 1. We shall again associate with

(6) a perturbed problem, namely for some ¢ >0

Minimize ©6(x) + ef(x)

(7) subject to g(x) 0

A

h{x) 0



where f is from R" into R . We shall assume that
(6) has a local solution at X with minimum value of

f = 6(X) and that B is the open ball with center %
such that 6(X) < 6(x) for all x in B satisfying the
constraints g(x) < 0 and h(x) = 0 . We further admit
the possibility of the nonuniqueness of X% and define

S = {x]6(x) = 8, g(x) < 0, h(x) = 0, xeB}

Theorem 2. Let (6) have a nonempty set S of local
optimal solutions satisfying a constraint qualification.
Let 6, g, h and f be differentiable on S and let

the nonlinear program

Minimize f(x)

subject to g(x) < 0

(8) h(x) = 0
6(x) < @

X ¢ B

. - - - = . +m+
have a Karush-Kuhn-Tucker point (x,v,s,y) in R Jekd

Then there exists an € >0 such that for each ¢ in
[0,e] there exists a (u,r) :[0,e] = R™K  Such that
(x,u(e),r(e)) 1is a Karush-Kuhn-Tucker point for the
perturbed problem (7), and x is also a local solution
of the nonlinear program (6). In fact it is possible

to take € = when y>0 and € as any positive number

TR

when vy = 0



The main cause of the restrictive nature of this
theorem outside linear programming is that in order for
(8) to have a Karush-Kuhn-Tucker point its constraints
must in general satisfy a constraint qualification.

This is difficult when g, h and 6 are nonlinear be-
cause of the constraint 6(x) < 6 . However when h

is linear and 6 and g are pseudoconcave or concave
at x then a constraint qualification is automatically
satisfied [2, Theorem 11.3.6]. This is a somewhat re-
strictive extension which does however include the case
when (6) is a linear program.

The rest of the paper is devoted exclusively to
the perturbation (2) of the linear program (1). We will
first show that, under appropriate assumptions, some
element x of the solution set § of (1) will be a
local (global) solution of P(e) for all sufficiently
small €>0 . We will then show that under slightly
stronger assumptions, each global solution of P(eg) for
sufficiently small €2>0 is also a solution of (1).

We begin by assuming that min f(x) has a local (global)
XeS

solution x , so that there exists an open ball B with
center x such that xXxeSnB is optimal for the problem
Minimize f(x)

(9)

subject to xeSnB



The proof of the subsequent results depends crucially
on establishing a minimum rate of increase of px in
certain directions that lead "away" from S . These

directions are related to projections of points in S

on S . The projection of a point x on S is denoted
by u(x) with p(x)eS and

luGd-x|| = min [Ju-x[|
HeS

where . denotes the w=-norm throughout this paper unless

otherwise subscripted. We state now the key result which
gives the desired lower bound on p(x-u(x)) and give the

proof in the Appendix.

Lemma 1. There exists an o > 0 such that
p(x-u(x)) > a ||x-u(x)|| for all =xeS

We shall also need the following Lipschitz property
on the perturbation function f . There exist positive

numbers § and K such that

F(u(x)) - £(x) < K ||x-u(x)||
(10)
for xeS and ||x-u(x)| < 8

Note that it follows from the definition of p(x) that
|| x-u(x) || <8 whenever |[|x-%|| <6 . With the above

concepts we establish our next principal result.
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Theorem 3. Let X be a local solution of min f(x)
XeS
Then, for sufficiently small e€>0 , x 1s both a global
solution of the linear program (1) and a local solution
of the perturbed problem (2) provided that either of the
two following conditions holds:
(a) The Lipschitz property (10) holds.

(b) f 1is convex on some open set containing x

Proof. (a) Let (10) hold and let B=B(%,8) = {x]]|
where & is chosen such that 0<8<6 and X
is an optimal solution of (8). Note that if

x ¢ B(%,8) , ‘then
oG <] -5 | <56

Hence by part (b) of Lemma 3 of the Appendix we

have upon noting the equality px =pu(x) that

S n B(%,—?})

m

ef(x) +px <ef(x) +px for x

and € E[O,%]

Hence x solves (2) for e€ce [O,%] with the

added constraint that =xce¢ B(i,%)

(b) Let £ be convex on B(x,r) for some v >0 .,
By Theorem 10.4 of [5] f is Lipschitzian on
any open ball B(%,8) with & <r , and again

we have that
| x-u(x)|]<|]%-%||<8 for =x=eB(%,6)

Hence because f is Lipschitzian on B(x,8) ,
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the first inequality of (10) holds for =xeB(x,8) ,

and because f is convex on B(%x,8) , X is an

optimal solution of (9) with B =B(x%X,8) . Again

by part (b) of Lemma 3 of the Appendix we have that

$

5)

ef(x) +px<ef(x) +px for xe SnB(x,

and € ¢ [O,%]

Hence x solves (2) for € e [0,%] with the added

constraint that x<sB(§,%) . 0

Example 1. To illustrate the need for the Lipschitz prop-
erty (10), let XeSRl » let S = {x>0}, p=1, £(x) = -x
Note that f is continuous on S , but does not have the
Lipschitz property in a neighborhood of S = {0} . (Note
also that f 1s convex on S , but cannot be extended
to a finite convex function on Rl .) In this case it

is easily verified that S(e) = e’/ for e>0 and

thus S(e) never includes {0} for any positive ¢

Note that in Theorem 3, the Lipschitz property (10)
is needed only for those xe¢S that lie in some open
neighborhood of % , since only such points are involved
in the statement of the theorem and its proof. On the
other hand by using the full strength of (10) and under
slightly stronger assumptions than those of Theorem 3
we can show that each global solution of the perturbed
problem (2) for sufficiently small €>0 1is also a so-

lution of the linear program (1). In particular we have

1/2
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the following.

Theorem 4. Let xe¢5 be a solution of min f(x) and

let px +e*f(x) be bounded from below onxeg for some

€*>0 . Then XeS(e)cl for sufficiently small € >0

provided that any of the following conditions holds:
(a) The Lipschitz property (10) holds.

(b) f 1s convex on some open convex set containing
S

(c¢) f Thas continuous first partial derivatives

on some open set containing S and S is
compact.

Proof. Wewill first establish that x e S(e)<cS for suf-
ficiently small € >0 wunder hypothesis (a) by showing

that for sufficiently small €20

(11) px + ef(X) < px+ef(x) for xeS\S
and
(12) px + ef(x) < px+ef(x) for xeS

Inequality (12) holds because x minimizes f on 3§

To establish (11), let =xeS\S , thus x#u(x) , and

consider the two following cases.
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Case 1 0< [Ju(x)-x|| < &
The strict inequality (11) follows from part (a)
of Lemma 3 of the Appendix for e 5[0,%0 upon noting

that px = pu(x)

Case 2 Hu(x)-x|| > ¢
Let Vv be such that px + e*f(x) > v for xeS ,

so that f(x) > v/e* - px/e* . By defining

q = -p/e* and p = -v/e* + £(X) + px/e*

we have that

f(x) - £(x) < qu(x)=-x) + p for xe€S
Because ||u(x)-x]|| > § it follows that
e(£(x)-£(x))/ ||x-uxN || < s]]qu4-ep/6 for x €8S

and consequently for € small enough, that is
ee[0,a/( quh+p/5)) , the right hand side of the last

inequality is less than o . Thus, for such ¢

e(f(x) - f(x)) < a ||x-u(x)||

A

pPX - pX (By Lemma 1)

This establishes (11) for this second case also.
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Now note that hypothesis (c) implies (a) and that
hypothesis (b) also implies (a) in the case that §
is compact, [5, Theorem 10.4], so that the proof will
be completed by showing that the result holds under hy-

pothesis (b) even when S 1is not compact. Let
T = x| |lx-i]] £ 6

where k 1is some positive number, let S' = SnT ,

and let S' = SnT . Note that S' is a compact poly-
hedral set and that S' is the set of optimal solutions
of g%g'px » so that the preceding arguments imply that
there exists an e'>0 such that XeS'(e)c8' for
eel0,e'] where S'(e) denotes the solution set of
X@%RTpx-fef(x) . Now suppose that for some e€¢[0,e'] ,
S(e) contains a point % ¢35 . By the convexity of

px + ef(x) we have that X e S'(e) implies that =X e S(e)

and consequently by the convexity of S(eg) it follows

that

x(A) = (1-A)x + A% ¢ 5(&) for all xel0,1]

However, for A e (0,11 we have that x(A) ¢S and hence
x(1) ¢ S' . But for sufficiently small A>0 ,

x(A) € 8'(e) cS'" , which is a contradiction. Thus 3(e)c3
for €el0,e'] , and since X e S(g) the theorem is

established under hypothesis (b). [
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In the terminology of point-to-set mappings the result
S(e)c S of Theorem 4 for €>0 sufficiently small implies

that the mapping S(e) 1is upper semi-continuous at 0

in a strong sense. (Note that if px + ef(x) is not
bounded from below for any € >0 , then the inclusion
S(e)c 5 holds trivially, since S(eg) = ¢ for all
e>0 )

To see that the compactness of 5 is necessary in
hypothesis (c) of Theorem 4 we give below an example
in which the conclusion of Theorem Y4 fails when the com-

pactness assumption of part (c¢) is dropped.

2

0
Example 2. Let xeR° , p = (l S = {(xl,xz) ]1;;xl R

)
0<x,<1} and f(x) = -x.x -+x3x2 Note that
=2 = 172 172

px * ef(x);-ﬁ- on S ,

§ = {(xl,x2)|>ﬁﬁ;l, x, = 0}

and f(x) =0 on S , so that px+ef(x)=0 on § for all
2

-2 - £
€ >0 . However for 0<eg<?2, X TS 5 Xg THE , We have that

g2

(xl,xz)e S , px + ef(x) = -35 < 0 , and hence no solution

of min f(x) can be in S(e) , the solution set of
XeS

min px + ef(x) . It can also be shown that 3S(g) is
Xe S

nonempty for all € >0 so that S(e) is not contained

in S .

Note that in the case that the linear program (1)
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has a unique solution, many of the results above may be
simplified. In particular, Theorems 1 and 4 yield the

following. (See also Remark 4 in [3].).

Corollary 1. Let S consist of a single point x

If f is differentiable at x , then x is a Karush-
Kuhn-Tucker pointof (2) for all sufficiently small € >0
If, in addition, S(e*)# ¢ for some e%*>(0 , then

S(e) = {x} for all sufficiently small € >0

Proof. The first conclusion follows directly from Theorem
1. The second follows fromthe fact that S ={x} implies
that u(x) =x forall xeS , sothatthe Lipschitz property
(10) holds as a consequence of differentiability of f at

X . This part of the corollary then follows from Theorem 4. [J

A similar result also holds without assuming uniqueness

in (1) if a strict convexity property is assumed instead.

Corollary 2. If f 1is strictly convex on some open set

containing S and if x is the solution of min f(x) ,
XeS

then S(e) ={x} for all sufficiently small € >0

Proof. The proof follows from Theorem 3 and the fact
that, for €>0 , px + €f(x) is strictly convex and there-

fore assumes its minimum at not more than one pointin S . [J
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Appendix

exists an o >0 such that

p(x-u(x)) > o ||x-u(x)|| for all xeS .

Proof. Obviously the lemma holds trivially when =x e S

or equivalently when x = u(x) . Suppose now that

x ¢ S\S and let

i

0 < ||x-u(x)]]

(13)

A

n

e be a vector of ones in R Then

Minimum{§|-8e <u-x < Se, Au>b, pu<0}
S,u

Maximum{x(y-v)-§§+bw|y—v~p§+ATw = 0,
VsVl oW

eytev = 1, y,v,5,w>0}

(By linear programming duality)

Maximum{g(px—§)+w(b—Ax)}y—v—pc+ATw = 0,
Y’V’C’w
eytev = 1, y,v,0,w > 0}

r(x) (px-pu(x)) + w(x) (b-Ax)
(Since & = pu(x) and (y(x),v(x),

r(x),w(x)) is a solution to the
maximum problem)

c(x)p(x-u(x))

(Since w(x) >0, and b-Ax < 0)
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Thus ¢(x) >0 for xeS\3, and in addition

(14) 1< z(x) Cx-u(x¥))  £on g e S\3

N I x=-u(x) ||
But since ¢(x) may be chosen as a component of a solu-
tion vertex of the linear program (13) and since the
feasible region of (13) is independent of x and has
a fiﬁite number of vertices, r(x) for xeS\S may be

bounded as follows

r(x) < %-:= maximum{z| (y,v,z,w) is a vertex of

y—v—pg+ATw::O, eytev = 1,y,v,z,w>0}
This bound on r(x) together with (14) establishes the
lemma. 0O

n

Lemma 2. If %Xe¢S and xeR then

lnGo=x]] < 2 |[x-x]|

Proof.  |luGo-2]| < [[nGo-xll+][x-%]l

A

- (Since u(x) is the_pro-
x=x|| jection of x on 8)

A

|[%-x ]+

2[|x-x[| O

1
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Lemma 3. Let the Lipschitz condition (10) hold, let

e SnB be a solution of min f(x) with the ball
xeSnB

B =B(x,8) for some &3>0 . Then for ]]x—u(x)]]; § and

X € Sr)B(%,g)
(a) e(fG)-£(x)) <pGx-u(x)) for x # u(x) and eecl0,%
and
(b)  e(F(X)-F(x)) <plx-u(x)) for ecl0,7]
Proof. Let x eSr\B(Q,%) and ||x-u(x)|| <8 , then
e(£(x)-f(x)) < e(f(u(x))-£(x)) (Since by Lemma 2
n(x) e SnB(x,8))
< ek Hu(x)—x!] (By (10) and HX~U(X)H§:5)
<o |ju(x)-x]|| (For € [0,%) and x # u(x))

< p(x-u(x)) (By Lemma 1)

This establishes part (a) of the lemma. Part (b) follows

by changing the strict inequality in the above string

of inequalities to an inequality for the case of €« [O,%].
U
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