DIRECT - A Multiprocessor Organization for

Supporting Relational Database Management Systems
by

David J. DeWitt

Computer Sciences Technical Report #325

June 1978

DIRECT - A Multiprocessor Organization for

Supporting Relational Database Management Systems

David J. DeWitt
Computer Sciences Department
University of Wisconsin

ABSTRACT

The design of DIRECT, a multiprocessor organization for sup-
porting relational database management systems 1s presented.
DIRECT has a MIMD (multiple instruction stream, multiple data
stream) architecture. It can simultaneously support both intra-
query and inter-query concurrency. The number of processors as-
signed to a query is dynamically determined by the priority of
the query, the type and number of relational algebra operations
'it contains, and the size of the relations referenced. Since
DIRECT is a virtual memory machine, the maximum relation size 1is
'not limited to that of the associative memory as in some other
database machines. Concurrent updates are controlled through the
use of locks on relations which are maintained by a controlling
processor.

DIRECT is being implemented using LSi-11/03 microprocessors
and CCD memories which are searched in an associative manner. A
novel cross-point switch is used to connect the LSI-11 processors
to the CCD memories. While cross—-point switches have proven too
expensive for use in general purpose parallel processors, their
application in DIRECT demonstrates that these switches can be

successfully used in specialized applications.

1.0 INTRODUCTION

Because databases are increasing in size at a rate which is
faster than corresponding increases in processor performance, al-
ternative computer architectures for non-numeric applications
must be investigated. One of the first alternative architectures
was Bell Labs' XDMS implementation of the CODASYL DBTG network
data model [1]. By isolating the function of the database
management system on a separate microprogrammed processor with an
"instruction set tuned to perform database management system prim-
itives efficiently, significant performance improvements were
achieved. While XDMS demonstrated the feasibility and desirabil-
ity of the back-end design, its potential for future performance
improvements is very limited since it is basibally a SISD (single
instruction stream, single data stream) architecture.

Since the nature of database processing 1lends itself to
parallel processing of user queries, several new architectures
have been recently proposed which are capable of parallel and/or
associative searches of the database. Each of these efforts is
based on the idea of a logic per track device which was first
proposed by Slotnick[2] as an alternative to the high cost of
fully associative memories. These pseudo-associative devices
have been examined as attached processors for associative file
management by Parker[3], Healy, Lipovski, and Doty[4],
Parhami[5], Minskyl[6], Lin, Smith, and Smith[7], and Jino and
Liu[8].

Currently being implementated are three back-end database

processors which exploit the logic per track idea. They differ
from the research efforts mentioned above in that they deal with
all aspects of a DBMS. CASSM, which was first proposed by Su,
Copeland, and Lipovski[10,11,12] in 1973, is a cellular processor
which is capable of directly supporting all three data models
(relational, network, and hierarchical). The second back-end da-
tabase processor is the Database Computer which has been propose-d
by Hsiao, Kannan, and Kerr[9]. The Database Computer uses moving
head disk technology and is also intended to support the three
data models.

RAP, an associative processor for database management, which
efficiently supports the relational data model, has been
described by Ozkarahan, Schuster, and Smith in [13,14,15]. While
analytical modeling of a conventional system and the RAP system
clearly demonstrated the superiority of RAP (except for the im-
portant relational algebra Jjoin operator which performed only
marginally better), the performance of large implementations of
RAP and CASSM may be restricted because they are SIMD (single in-
struction stream, multiple data stream) architectures. Consider,
for example, a RAP processor with 100 cells, when it is executing
a query on a relation which occupies only 10 cells. Since RAP is
a SIMD processor only 10% of the processing potential will be
used. The other 90 cells, whose cellular memories do not contain
the relation being referenced in the query, will effectively be
idle throughout the duration of the current instruction.

As the logical extension of the SIMD associative processor,

we have designed and are implementing a MIMD (multiple instruc-
tion stream, multiple data stream) architecture for supporting a
relational database management system. Our original goal was to
design a parallel processor system which does not waste a large
percentage of its processing potential by permitting processors
to be idle, particularly in a multi-user environment. Further
reflection on the nature of interactive database management sys-—
tems provided an equally important motivation for a MIMD back-end
architecture instead of a SIMD one. Since an important objective
of an online DBMS 1is to permit a large number of users to in-
teract with a database simultaneously, any new architecture pro-
‘posed should enhance the performance of a many user system.
Thus, like a timesharing system, an important objective of a
DBMS 1is to permit a large number of users to share a common
resource. A MIMD architecture is a’ much more appropriate ap-
proach for achieving this goal since it permits users to simul-
taneously share the processing power of the back-end.

In this paper we describe DIRECT, a multiprocessor organiza-
tion for supporting relational database management systems.
Among the features of DIRECT are:

l. Simultaneous execution of relational queries from different
users in addition to parallel processing of a single query.

2. Dynamic determination of the number of processors assigned to
a query based on the priority of the query, the size of the
relations it references, and the type and number of relation-

al algebra operations included in the query.

3. Relation size is not limited by the size of the associative
memory.

4., Control of concurrent updates through the use of locks on re-
lations.

5. Complete compatibility with INGRES [16,17,18], an existing

relational database system.

2.0 DIRECT SYSTEMS ARCHITECTURE

2.1 Introduction

When operational, the complete DIRECT system will consist of
six main components: a host processor, the back-end controller, a
set of query processors, a set of CCD memory modules which are
used as pseudo-associative memories, an interconnection matrix
between the set of query processors and the set of CCD memory
modules, and a mass storage device. A diagram of these com-
ponents and their interconnections can be found in Figure 2.1.

The host processor, a PDP 11/45 running the UNIX operating
system, will handle all communications with the users. A user
who wishes to use the database system will log onto a modified
version of INGRES, a relational data base system[16,17,18], and
proceed in the normal manner. However, when the user wishes to
execute a query INGRES will first compile the user query into a
sequence of relational algebra operations which we call a "query

packet". After compilation, the query packet is sent by INGRES

L'z @4nbiy
JYNLOILIHONY WILSAS L2I¥Ia

u

d40SS3204d
Ad3ND

[/
40SS3004d

XTYLYW AY¥IND

NOTLIINNOJYIINI

L
40SS3204d

Ad3and

39VYH0LS

SSYW

9ly3sn
¥ITT0YLINOI .
EB T 1SO0H -
—Cy3sn
, —lyasn

to the DIRECT back-end controller over a DMA link.

In addition to simplifying the implementation of DIRECT,
INGRES will also be wuseful for evaluating the performance of
DIRECT. By running benchmark scripts on both standard INGRES
and INGRES with gquery execution on DIRECT, we will be able to
determine the cost effectiveness of the DIRECT architecture com-
pared to a relational DBMS on a conventional processor. Further-
more, by instructing the controller to assign each query packet
to every query processor, we can transform DIRECT into a SIMD
machine. This will permit us to compare DIRECT's performance to
that of a RAP-like architecture.

The back-end controller is a microprogrammable PDP 11/40. It
is responsible for interacting with the host processor and con-
trolling the query processors. After the back-end controller re-
ceives a query packet from the host, it will determine the number
of query processors that should be assigned to execute the pack-
et. If the relations which are referenced by the query packet
are not currently in the associative memory, the back-end con-
troller will page portions of them in before distributing the
query packet to each query processor selected for its execution.
A detailed discussion of the operations performed by the back-end
controller is found in Section 4.0.

Each query processor is a PDP 11/03 with 28K words memory.
The function of each query processor is to execute query packets
assigned by the back-end controller and transmitted from the con-

troller over a DMA interface to the query processor. The in-

struction set of a query processor is described in Section 5.0.

Since DIRECT has a MIMD architecture, it is capable of sup-
porting both intra and inter-query concurrency. To facilitate
the support of intra-query concurrency, relations are divided
into fixed size pages. Each query processor, assigned by the con-
troller to execute a query packet, will associatively search a
subset of each relation referenced in the packet. When a query
processor finishes examining one page of a relation, it will make
a request to the back-end controller for the address of the next
page it should examine. Since several query processors, each ex-
ecuting the same query, can request the "next page" of the same
relation simultaneously, the controller operations must be indi-
visible. This will insure that each of the query processors will
be given a different page to examine. After receiving the ad-
dress of the page from the controller, the query processor must
be able to rapidly switch to that page. The interconnection ma-
trix, as described in Section 2.3, will permit this.

To facilitate support of inter-query concurrency, the asso-
ciative memory and interconnection matrix must permit two query
processors, each executing different queries, to search the same
page of a common relation simultaneously. By eliminating dupli-
cate copies of a relation, we not only reduce memory requirements
but, more importantly, the problem of updating multiple copies of

a relation is eliminated without sacrificing performance.

2.2 A Shared Associative Memory

After consideration of the requirements of both intra and
inter-query concurrency, we divided each relation and the associ-
ative memory into fixed size pages of 16K bytes.

Each page frame of the associative memory contains 16K bytes
and 1is constructed from eight charge coupled device (CCD) chips.
Bytes are stored across chips which are kept synchronized with a
common clock. Furthermore, one address register is used to indi-
cate the address of the current byte which is available from all
CCD page frames.

This page size, which may seem small (compared to that of
RAP) to the reader, was chosen for several reasons. One impor-
tant reason is financial. By choosing a small page size we can
construct more page frames for a fixed amount of money. Our ini-
tial configuration will have thirty-two page frames. Also, more
page frames will have a higher potential for concurrency and the
smaller page size will enable us to test the design of DIRECT by
mimicking a large database with small relations. If the page
size was too large then each relation might fit on just one page.
This would 1limit the potential concurrency to just inter-query
concurrency instead of a mix of intra and inter-query concurren-
CYy.

Another important reason for choosing a small page size is
to minimize the amount of internal fragmentation which occurs
when a relation does not fill all of the pages it occupies.

While a small page size does minimize this wasted space, it does

so at the expense of a larger page table in the back-end con-

troller.

2.3 The Interconnection Matrix

To support inter and intra-query concurrency, the intercon-
nection matrix must permit:

- a query processor to rapidly switch between page frames con-
taining pages of the same or different relations.

- two or more query processors to simultaneously search the
same page of a relation.

- all query processors to simultaneously access some page
frame.

The bandwidth of the interconnection scheme which is select-
ed must also be very high. Consider for example a DIRECT confi-
guration of 100 query processors and 100 page frames. If each
page frame produces one byte every 750 ns and bytes are consumed
by the query processors at the same rate, then the data rate
between memory and query processors would be 10**9 bits/second.

Some possible interconnection schemes are the time-shared
bus, pipelined 1loop, multiport memory, and cross-point switch.
The high bandwidth requirement eliminates the time-shared bus and
pipelined 1loop as potential contenders. A multiport memory with
a RAM buffer for each query processor might be suitable for a
small implementation of DIRECT since a suitably designed mul-
tiport CCD memory can have a bandwidth of 6 megabytes/second

while the bandwidth of an LSI-11 DMA interface is .5

megabytes/second.

For large DIRECT configurations, the cross-point switch
seems to be the only feasible interconnection scheme. Tradition-
ally, the use of cross-point switches has been limited because of
their high cost and complexity due to the following requirements:
1. High bandwidth between processors and memories for addresses

and data.

2. Contention detection and resolution hardware to handle
simultaneous access of two or more processors to the same
memory bank.

3. Extremely fast switches to minimize the delay time intro-
duced by the switch in each memory access. In C.MMP [20]
the switch introduced an additional delay of 250 ns to the

memory cycle time of 250 ns.

In a traditional cross-point switch, the processors are the
active components and the memories are the passive components.
In DIRECT, the roles of the processsors and memories have been
interchanged. 1Instead of responding to a request for a word from
a processor, each memory element acts as a producer and each pro-
cessor acts as a consumer. Each CCD memory element continuously
"broadcasts" its contents. Whenever a processor wishes to exam-
ine the page of a relation which is resident in some CCD memory
module, it simply "listens" to what that memory is broadcasting.
Hence, wunless a processor is updating a page of a relation, any
number of processors can "listen" to the same memory element

simultaneously.

-10-

Using this approach we have designed a cross-point switch
which can be used as the interconnection matrix in DIRECT and yet
can be constructed without incurring the high cost of the tradi-
tional cross-point switch. A diagram of this switch for a DIRECT
configuration with two query processors and four page frames can
be found in Figure 2.2. The notable features of this switch are:
1. NO address lines.

2. 1 bit wide data paths.

3.‘ Elimination of conflict resolution hardware.

4, Minimization of the effect of the switch delay on memory
performance.

While this cross-point switch is not suitable for a general pur-

pose multiprocessor it is well suited for an associative proces-

sor such as DIRECT.

Address lines were eliminated by stepping the CCD page
frames with a common clock and using one address register for all
page frames. Since a query processor will always search an en-
tire page of a relation it does not need to wait until the begin-
ning of the page before starting to examine it. The processor
can simply start on a tuple boundary and continue until the
starting point is reached again. (The starting point can be
detected by comparing the Memory Address Register with the ad-
dress of the first tuple read). Thus, a latency time of essen-
tially zero can be achieved. The performance of the switches is
also not very important when one considers that each query pro-

cessor will generally examine an entire page before switching to

1+~

uotjedanbriuoy 123¥10 ¥XZ ¥

4315193y

SS3yaay

22 d®4nbL4

1

A91L
AYOW3N

A9l
AYOHIN
{(SN]

31TuM

Y 93y
HS 4115

‘ﬁ

J1THM

P

L

L
-~

&
L4THS T

)
1/

BN
i/

s

40123138

NS pead

q A3nd

EEJRLES
2
H0SSIJ0Udrg

308|38slt 2

Al

4012313

w 53y
14THS
8
129195 _

AN
¢ | ¥0SS320Yd

A4Ind)

-2

399195]
peaa

-

-11-

another page frame. Since the time to examine a complete page is
.012 seconds (16K bytes x 750ns/byte), the effect of a switching
time on the order of one microsecond 1is insignificant.

The data paths through the cross-point switch have been re-
duced to one bit wide paths by wusing a pair of serial-
in/parallel-out and parallel-in/serial-out shift registers at
each query processor and page frame interface. (See Figure 2.2).
Because shift registers (such as the AM25LS164 and 299) <can be
shifted at the rate of 1 bit/20 ns, the memory rate of 750
ns/byte can be maintained by using (for reading) a 1 bit data
’path with parallel to serial conversion at the memory interface
and serial to parallel conversion at the query processor inter-
face.

Finally, conflict resolution hardware was eliminated by not
permitting query processors to address individual bytes on a
page. Instead, each page frame produces bytes without a request
from any query processor (except for the page request from the
query processor to the DIRECT controller which caused the page to
be loaded into a frame). A query processor which wishes to exam-
ine a page of a relation simply switches to the data line of the
proper page frame. This approach permits several query proces-
sors, executing the same or different queries, to simultaneously
examine the same page of a relation.

Conflicts which arise when two or more query processors at-
tempt to write onto the same page simultaneously are handled in

software by the back-end controller. A discussion of the tech-

-12-

nique used can be found in Section 4.5.

2.4 Conclusions

In conclusion, the architecture of DIRECT appears to solve
the problems associated with the need to support inter- and
intra-query concurrency. The original configuration, whose im-
plementation 1is supported by NSF equipment grant #MCS77-08968,
will have eight LSI-11/03 query processors and thirty-two 16K

byte CCD page frames.

3.0 GENERAL SOFTWARE CONSIDERATIONS

3.1 Relational Data Model

The data model chosen for DIRECT 1is the relational model
which was introduced by Codd [19]. 1In a relational database both
entities and relationships between different entities are
described in terms of normalized relations. For example, a data-
base containing information about suppliers and parts might con-
tain one relation describing all the suppliers (e.g. name,
address,status), one describing all the parts (e.g. part#, part
name, weight, color), and a third relation describing which sup-
pliers supply which parts. One can view a normalized relation as
a table. Each row in the table is called a tuple and describes
an entity (e.g. one part, one association).

In addition to the high degree of data independence afforded

-13-

by the relational data model, its regularity makes it very suit-
able for hardware implementation using associative memories and
parallel processors. In INGRES, for example, relations are used
to describe the data model, integrity constraints, and views, in

addition to entities and relationships between entities.
3.2 Page Format

Each relation in the database is divided into a number of
fixed size pages. Each page contains tuples in sequential order
from only one relation. When each relation is created, the max-
imum length of each attribute is specified by the user. Each tu-
ple in a relation is allocated a fixed number of bytes (ie. the
sum of the maximum length of each attribute in the relation). By
choosing a fixed length format, we can eliminate the need for
special characters to delimit tuples within the page and attri-
butes within the tuple.

While the fixed format will indeed waste space it reduces
the need for garbage collection and simplifies modification and
insertion of tuples. The need for garbage collection is reduced
by markiﬁg a deleted tuple in an appropriate fashion. Later,
when a tuple is to be inserted the query processor can search the
relation until it finds a vacant tuple location. Alternatively,
it can place the tuple on the last page of the relation if it
does not find a spot after examining a predetermined number of
pages. Modification of a tuple will never require that the tuple

be moved since it was allocated the maximum number of bytes al-

-14-

lowed in the first place.

The need for garbage collection has not been completely el-
iminated however. If, over time, many tuples are deleted from a
relation it may be desirable to compactify the relation. The
COMPRESS operation of the query processor performs this func-
tion.

Finally, we assume the existence of two special characters
which are used to mark the beginning of the page (BOP) and the

end of the tuples on the page (EOP).
3.3 Mark Bits versus Temporary Relations

Unlike RAP, DIRECT does not use mark bits to indicate which
tuples in a relation have satisfied the search criterion of a
query. Rather, as the query is executed, tuples which satisfy
the search «criterion are written into a temporary relation in a
page frame of the associative memory. This approach was chosen
for several reasons. First, mark bits reduce the potential per-
formance of the processor by forcing a query processor to lock
each relation it 1is evaluating. This is not a problem for RAP
which is a SIMD processor. It would, however, introduce problems
in DIRECT where two or more gquery processors, each executing a
different query, can potentially access the same page of the same
relation simultaneously. An alternative approach would be to
provide duplicate sets of mark bits. However, unless one set was
provided for each query processor, then conflicts could arise

over sharing the mark bits.

-15-

Furthermore, the result of every relational query is a tem-
porary relation which the user might wish to either add to the
database or use in subsequent queries. If this is the case, the
back-end controller can simply make the temporary relation per-
manent.

Output performance is also enhanced by this approach. The
result of a query which is not to be saved as a new relation will
reside in a temporary relation. When the channel between the
host and the back-end controller is free, the back-end controller
will transfer tuples from the temporary relation to a waiting
process in the host which was spawned when the query was sent
from the host to the back-end. The temporary relation acts as a
buffer and should permit maximum utilization of the data path
between the processors. If mark bits were used, the relation(s)
which was (were) used in the gquery could not be freed until all
the qualifying tuples were transferred to the host. This clearly
is not the case in our approach.

Finally, consider the performance of the two approaches in
terms of the number of "revolutions" required to perform a res-
trict operation (see Example 3.1). (A revolution is the time re-
quired to read or write one page of a relation.) In RAP, one re-
volution is required to mark tuples which satisfy the search cri-
terion and a second revolution is required to read the marked tu-
ples. 1In DIRECT one "revolution" is required to extract the tu-
ples which satisfy the search criterion. Only when the query

processor has filled its output buffer (perhaps after examining

-16-

many source pages) will a second revolution be necessary. When
the result relation is read and returned to the host, a final ac-
cess will be required. Hence, the worst case will require three
revolutions. In practice, however, the actual number of revolu-
tions required will be two plus a small fraction. While more CCD
memory space is used during query evaluation than in the RAP ap-
proach, the increase in potential performance of the entire sys-
tem is significant and appears to justify the increased page
traffic which will result. However, since relations will be
referenced in a predictable fashion, page faults should be avoid-

able by doing anticipatory paging (see Section 4.4.3).

3.4 Query Packet Format

The types of query packets which are received by the back-
end controller can be divided into two classes based on informa-
tion contained in the packet header. Class I <contains those
INGRES commands which will be executed by back-end controller
utility routines (see Section 4.2). Class II contains those
queries which will be executed by a collection of query proces-
sors. In this section, we will discuss the structure of the
second class of query packets.

Each Class II query packet is structured as a tree (see Fig-
ure 4.8). The leaf nodes of this tree correspond to relations
referenced in the query. Each of the non-leaf nodes contains a
relational algebra operator which is to be applied to its chil-

dren. The set of operators supported include the traditional

-17-

operators such as JOIN, PROJECT, RESTRICT, UNION, INTERSECTION,
and CROSS-PRODUCT as well as aggregrate operators such as MAX,
MIN, COUNT, etc. DIRECT does not need to support the relational
algebra operation DIVIDE since the syntax of the INGRES query
language does not include the universal quantifier.

While the logical structure of a query packet is a tree, the
query packet can be directly executed by one or more query pro-
cessors without interpretation or further compilation of the
packet.

One of the unique features of DIRECT is the general struc-
ture which is common to all the relational algebra operators sup-
ported. This structure, as we will demonstrate in Section 4.4,
permits a query packet to be assigned to any number of query pro-
cessors without modifying the packet. Furthermore, this operator
structure permits additional query processors to be dynamically
assigned to execute a packet during execution of the packet by
other query processors. We will conclude this section with an
example of a simple INGRES query and the corresponding query
packet. This example will be used in Section 4.4 to illustrate
how our flexible query processor assignment scheme is implement-
ed.

Given the SUPPLIER relation shown in Figure 3.4 and the
INGRES query to find the names of all suppliers who do business
in N.Y.: RETRIEVE (SUPPLIER.NAME) WHERE SUPPLIER.CITY = "N.Y."
Then, the compiled query packet for this query has the structure

shown in Example 3.1. Note that the packet never asks for an ex-

plicit page of a relation.

tion 1is always requested.

~-18-

Instead,

This structure,

the next page of

the rela-

when combined with a

monitor for every relation referenced by a packet, permits us to

dynamically assign

(see Section 4.4).

query processors to executing query packets

SUPPLIER Relation

NUMBER NAME CITY
10 JONES N.Y.
20 SMITH CHICAGO
15 LeBLANC ATLANTA
74 WHITE DALLAS
101 RICE N.Y.
102 JONES BOSTON
Figure 3.4
CITYQPKT

LOCK (SUPPLIER, READ)
CREATE NYSUPPLIERS
DO FOREVER
BEGIN
- ASK BACK~-END CONTROLLER (BEC) FOR THE NEXT PAGE OF
TION SUPPLIER -
- WAIT FOR THE BEC TO RETURN THE PAGE FRAME NUMBER
- IF THE BEC RETURNS "END OF RELATION" QUIT AND SIGNAL DONE
OTHERWISE
- READ NEXT PAGE OF RELATION SUPPLIER INTO LOCAL MEMORY
FROM THE PAGE FRAME
- EXAMINE ALL TUPLES READ IN
- COPY EACH TUPLE THAT SATISFIES THE RESTRICTION
SUPPLIER.CITY = "N.Y." INTO A LOCAL PAGE BUFFER
- WHEN THE BUFFER IS FULL
- ASK (BEC) FOR THE NEXT PAGE OF RELATION
NYSUPPLIERS -
- WAIT FOR BEC TO RETURN A PF#
- WRITE BUFFER INTO PF#

/* create result relation */

RELA~-

END
UNLOCK (SUPPLIER)

Example 3.1

~19-

4.0 FUNCTIONS OF THE BACK-END CONTROLLER

4.1 Introduction

The Back-End Controller (BEC) is responsible for receiving
queries from the host, distributing the queries to the query pro-
cessors for execution, and returning the results to the host.
Communication with the host to receive queries and return results
is straightforward and will not be discussed further. In this
section, we will describe those functions of the BEC which deal

with query execution in DIRECT.
4.2 Database Utilities

The class (Class I) of legal INGRES commands including
CREATDB, DESTROYDB, CREATE, DESTROY, PRINT, and COPY is executed
in the BEC by the appropriate database utility routines.

A CREATDB/DESTROYDB command to create/déstroy a database
causes a new entry to be added/deleted from the database catalo-
gue shown in Figure 4.1.

DATABASE CATALOGUE
[One Entry per Database]

DATABASE UNIXID
NAME OF OWNER

Figure 4.1

-20-

After a user on the host executes a CREATDB command, the
next step in the database creation process is for the user to in-
voke INGRES with the name of the database and create the rela-
tions desired. Whenever a user invokes INGRES with the UNIX com-
mand "ingres dbname", the query packet "open dbname userid" is
sent by the host to the back-end controller. The BEC responds by
adding an entry to the OPENDB table (Figure 4.2). Each subse-
quent query packet sent to the BEC is identified only by the UNIX
id of the user. Hence, the proper database can be determined by
using the UNIX id to search the OPENDB table. When the user ex-
its INGRES, a "close dbname userid" query packet i; sent by the

host to the BEC. When the BEC receives such a packet, it will

remove the appropriate entry from the OPENDB table.

OPENDB TABLE
[One Entry For Each Active User]

UNIXID DATABASE
OF USER NAME

Figure 4.2

The INGRES command "CREATE relation-name", when executed by
the BEC, adds entries to three tables. First a general descrip-
tor of the new relation is added to the RELATION DESCRIPTOR table

(Figure 4.3).

-21-~

RELATION DESCRIPTOR TABLE
[One Table Per Database]
[One Entry Per Relation]

RELATIONJATTRIBUTE]| PAGE RELATION | TUPLE NUMBER
NAME TABLE TABLE LOCK WIDTH OF
POINTER POINTER ATTRIBUTES
Figure 4.3

Next a page table (Figure 4.4) is created for this new rela-
tion (a relation is essentially equivalent to a segment) and the
Page Table Pointer in the Descriptor Table entry for the relation
is set to the address of the Page Table for the new relation. The
page table for the new relation is initially empty.

Finally, an Attribute Catalogue Table, as shown in Figure
4.5 1is created for the new relation. This table describes the
format of every attribute in the relation.

When a "DESTROY relation-name" command is executed, the BEC
deletes the appropriate tables and table entries after all
queries which are currently accessing those tables have terminat-
ed (see Section 4.5).

The BEC executes the PRINT and COPY (to the host) commands
in an 1identical fashion. 1In both cases, a utility program ex-
tracts the tuples from the database, places them in a packet with

the appropriate header, and then sends the packet to the host.

-22-

According to the contents of the header, when the host receives
the packet it will either copy the tuples to the user's terminal
or to a UNIX file. COPY commands to move tuples from the host to

the back-end are handled in an analogous fashion.

PAGE TABLE FOR RELATION J
[One Per Relation]

PAGE PRESENCE | DIRTY FRAME DISK
BIT BIT NUMBER ADDRESS

Presence bit:
0 if page i is on disk
1 if page is in some CCD page frame

Dirty bit:
0 if page i is clean
1 if page i has been updated and thus
must be paged out

Frame number:

If presence bit=1 frame contains the CCD frame

number in which page i of the relation can
resides

Disk address:

Disk address where page i of relation j can
be found

Figure 4.4

-23-

ATTRIBUTE CATALOGUE
[One Per Relation]

ATTRIBUTE| OFFSET TYPE LENGTH
NAME IN BYTES
Figure 4.5

4.3 Query Processor Allocation

4.3.1 Current Approach

When the BEC receives a query packet which contains a Class
ITI query, the packet is added to the query packet gqueue (QPKTQ)
which is ordered by priority. The function of the query proces-
sor allocation (QPA) process 1is to control the allocation of
query processors to query packets.

When the QPA process decides to remove a packet from the
QPKTQ for execution it ©places the identifier of the packet in
QPKTX (Figure 4.6), the list of all executing query packets.
Next the QPA process examines the packet and attempts to estimate
an "optimal" query processbr allocation for this packet. By op-
timal we mean that assignment of more than the optimal number of
query processors to the packet will not decrease the execution
time for the packet. For example, assume that the query packet
joins (a join is a limited cross product) relation A and relation

B and that relation A is N pages long and relation B is M pages

-24-

long. Then, the optimal query processor allocation for this
packet is MAX(M,N). This allocation will require MIN(M,N) time
units where a time unit is the time required to join one page of
A with one page of B. 1In this example, the optimal allocation is
truly optimal. However, consider the packet which first joins A
and B and then joins the resulting relation with C. Since it is
impossible to predict the size of A join B, it is impossible to
determine exactly how many query processors should be assigned.
We plan to investigate several heuristics for determining the
"optimal" Gquery processor allocation. The inputs to these
heuristic functions might include:

- The size of each relation referenced by the query

- The type and number of relational algebra operations used

in the query

- Estimates of intermediate relation sizes
The final entry in the QPKTX table indicates how many query pro-

cessors are currently assigned to each executing query packet.

QPKTX
[One Entry for Each Executing Query Packet]
QPKT# OPTIMAL QP CURRENT QP
ALLOCATION ALLOCATION
Figure 4.6

While there are many viable QPA algorithms, the one we have

-25-

chosen attempts to give each query packet its “"optimal" alloca-
tion of query processors. As shown in Figure 4.7, whenever query
processors are available, the algorithm first scans QPKTX for a
packet which has less than its optimal allocation. Only if all
the packets are at their optimal level 1is the multiprogramming
level increased by removing a packet from the QPKTQ. Therefore,
at any instance in time, at most one entry in QPKTX will have

less than its optimal allocation.

QUERY PROCESSOR ALLOCATION ALGORITHM

WHEN QUERY PROCESSORS ARE AVAILABLE
- ATTEMPT TO ADD PROCESSORS TO THE QPKT IN QPKTX WHICH HAS
LESS THAN ITS OPTIMAL NUMBER OF PROCESSORS
- IF PROCESSORS ARE STILL AVAILABLE
- REMOVE NEXT QPKT FROM QPKTQ
- ADD QPKT TO QPKTX
- ATTEMPT TO GIVE IT ITS OPTIMAL ALLOCATION OF QUERY

PROCESSORS

Figure 4.7

Other query processor allocation schemes might attempt to
give service to more packets by including in the calculation of
the "optimal" QPA, a term for the priority of the query and the

length of the QPKTQ when the packet is removed from the Jueue.,

-26-

We plan to investigate these alternatives.
4.3.2 Query Processor Allocation using Data Flow Techniques

Under the current approach, during the execution of a query,
query processors will be executing nodes in the query packet tree
from at most two adjacent levels at any one time. For example,
consider the query tree in Figure 4.8. 1Initially all the query
processors assigned to this packet will execute the RESTRICTION
on relation A. When a query processor receives a "End of Rela-
tion" message from the controller on a NEXT PAGE of relation A,
that query processor will automatically (without intervention of
the BEC) begin the join of A' with B. When the join of A' and B

is finished, then the join of A'B' with C will begin.

RELATTION B

RELATION A

Figure 4.8

-27-

While this approach minimizes the requirements placed on the
BEC, it potentially wastes query processors if the optimal allo-
cation turns out to be a bad quess. We are currently investigat-
ing an alternative approach for query processor allocation in
which only simple operations (JOINS, RESTRICTIONS, PROJECTIONS,
etc.) are given to the query processors and not complete query
packets. Then, instead of estimating the optimal requirements of
an entire query, an exact value can be determined for each step
in the query. Furthermore, we can now control exactly what step
of a packet each query processor is executing. For example, each
time the join of A' and B produces a new page of A'B', then an
additional query processor can be assigned to join that page with
relation C.

While the data flow approach will certainly require a
stronger controller, it should increase query processor utiliza-
tion. 1In addition, it should also decrease the page traffic in
DIRECT. This will occur because as soon as a page of A'B' is
produced, another query processor can begin joining it with C.
Hence, the likelihood that the page will be paged out is reduced.
We are currently comparing this data flow machine approach with
the standard QPA scheme to determine the effect of each on system

throughput in DIRECT.

-28-

4.4 CCD Memory Management

The function of the CCD memory management process 1is three
fold:

- Respond to a NEXT PAGE request from a query processor

- Respond to a GET PAGE request from a query processor

- Schedule the movement of pages from relations between CCD

memory page frames and mass storage as the result of

NEXT PAGE and GET_PAGE operations.
4.4.1 The NEXT_ PAGE Operation

The form of a NEXT PAGE request is
NEXTwPAGE(QPKTi,RELj,QPk)
This is a request from query processor k which is executing query
packet 1 for the next page of relation j. The resulting action
is for the BEC to send the page frame number which contains the
next page of relation j to query proceséor k. A page fault can
occur if the required page is not in some CCD page frame. Han-
dling of page faults 1is the same for both the NEXT_PAGE and
GET PAGE operation and is discussed in Section 4.4.3.

Since a query packet can be assigned to any number of query
processors, there must be a way to prevent two simultaneous
NEXT_PAGE requests from different query processors executing the
same packet to be resolved correctly. This is handled by the use
of the Query Packet Task Table which is shown in Figure 4.9. The
Query Packet Task Table has one entry for each relation refer-

enced by each executing query (i.e. each query in QPKTX). Asso-

-29-

ciated with each entry is a monitor[21] which controls access to
the table entry. 1Initially, the currency pointer for the rela-

tion is set to zero.

QUERY PACKET TASK TABLE

QPKT # RELNAME CURRENCY | POINTER TO
POINTER PAGE TABLE
FOR RELATION

Figure 4.9

As an example, assume that query processor allocation ini-
tially assigns the CITYQPKT query in Example 3.1 to query proces-
sors QP5 and QP8. Assume that the order in which the monitor for
the SUPPLIER relation receives requests is:

NEXT PAGE (CITYQPKT,SUPPLIER,QP5)

NEXT PAGE (CITYQPKT,SUPPLIER,QP8)

NEXT PAGE (CITYQPKT,SUPPLIER,QPS5)

NEXT PAGE (CITYQPKT,SUPPLIER,QP5)

NEXT PAGE (CITYQPKT,SUPPLIER,QP8)

Then, the pages of the SUPPLIER relation examined by QP5 will be
1,3, and 4 and the pages of the SUPPLIER relation examined by QP8
will be 2 and 5. Assume that after the last NEXT PAGE request
above, the QPA algorithm assigns an additional query processor

(QOPl1) to the CITYQPKT. Now there will be three query processors

-30-

requesting pages from relation SUPPLIER. TIf the request stream
is as follows:

NEXT_ PAGE (CITYQPKT,SUPPLIER,QPI1)

NEXT PAGE (CITYQPKT,SUPPLIER,QP5)

NEXT PAGE (CITYQPKT,SUPPLIER,QP1)

NEXT PAGE (CITYQPKT, SUPPLIER,QP8)

NEXT PAGE (CITYQPKT,SUPPLIER,QP5)

NEXT PAGE (CITYQPKT,SUPPLIER,QPI1)

NEXT PAGE (CITYQPKT,SUPPLIER,QP8)
and the SUPPLIER relation consists of nine pages then:

QP1 will examine page 6

QP5 will examine page 7

QPl will examine page 8

QP8 will examine page 9

QPS5 will receive "End of Relation"

QOP1 will receive "End of Relation"

QP8 will receive "End of Relation"

By having a monitor associated with each entry in the query
packet task table and by using the NEXT PAGE concept, we can
dynamically assign additional query processors to a query packet
that 1is already partially executed. In the case of a complex
query such as that in Figure 4.8, it may be the case that the ad-
ditional query processors are added after the other query proces-
sors have finished the restrict of A. Our approach handles this
situation correctly. When the newly assigned query processors at-

tempt to restrict A, they will get "End of Relation" immediately

-31-

and will therefore proceed to begin the join of A' with a page
of B. If that join is also finished, they will proceed to the

final join.
4.4.2 The GET-PAGE OPERATION

The form of the GET_PAGE Operation is
GET PAGE (QPKTi,REL]J,QPk,PAGEm)
It represents a request from a query processor for PAGEm of REL].

Its wuse 1in join operations will be demonstrated in Section 5.1.

No monitor is needed to coordinate GET_PAGE requests.

4.4.3 PAGE FAULTS IN DIRECT

The third task of the CCD memory management process 1is to
handle page faults by scheduling page transfers between CCD
memory page frames and mass memory. A page fault occurs when a
requested page is not in some CCD memory module. In DIRECT these
page faults will be, to a large extent, avoidable by doing anti-
cipatory paging. In the CITYQPKT (Example 3.1), for example, the
controller knows that the entire SUPPLIER relation will be exam-
ined and hence the reference string of the CITYQPKT is known in
advance. By using the currency pointer for the SUPPLIER relation
in the query packet task table, the SUPPLIER relation page table,
and the current query processor allocation from QPKTX, the con-
troller can determine how far ahead it should attempt to be in
order to insure that there will always be a page ready for each

query processor which is executing the packet.

-32-

4.5 DIRECT Concurrency Control

Since DIRECT supports inter-gquery concurrency, it must pro-
vide a mechanism for controlling concurrent updates and re-
trievals so that each user transaction begins and terminates with
a consistent database. The approach we have selected is to lock
whole relations. Although locking pages was considered (because
of the apparent potential for increased concurrency between tran-
sactions), examination of both approaches revealed that they are
equivalent. We will now informally demonstrate this fact.

Consider, for example, two transactions each consisting of
one dquery packet, QPKT1 and QPKT2. Assume, without loss of gen-
erality, that QPKT1l intends to update relation A and QPKT2 in-
tends to read relation A. If locking is performed at the rela--
tion level, and QPKT1l 1locks relation A, then QPKT2 will be
blocked until QPKT1 releases its lock on A. Thus, there is no
overlap in the processing of QPKT1l and QPKT2 (as least with re-
gard to relation A). (If QPKT1l and QPKT2 both wanted to read
relation A they could have proceeded concurrently.)

Next consider locking at the page level. Because of the
sequential manner in which pages are accessed in DIRECT, the
first access to relation A by either QPTK1l or QPTK2 will be to
page 1 of the relation. 1If a NEXT_PAGE (A) operation from QPKTI1
locks page 1 for writing (exclusive access), NEXT PAGE (A) from
QPKT2 will be blocked. Eswaran et.al. [22] have shown that each
transaction must be two phased if database consistency is to be

guaranteed. Thus, a transaction cannot request any new locks

-33~

after it has released a lock. For our example, this requirement
implies that QPKT1 cannot release its lock on page one of A until
it has finished locking all pages of A. Hence, QPKT2 will be
blocked wuntil QPTK1l releases its locks on A. As with locks on
relations, there is no concurrent processing of the two transac-
tions. Therefore, since packets always access relations in a
sequential fashion starting with page 1, the lock field for page
1 of the relation has the same effect as a lock for the entire
relation.

In the initial DIRECT implementation each transaction will
begin with all 1its lock requests. If the BEC cannot grant all
lock requests, the controller will release all locks the transac-
tion had obtained. Then, the controller will wait a random
amount of time before again trying to satisfy the transaction's
requests. While this approach reduces the potential concurrency,
it avoids the problems associated with detecting and resolving
deadlock. Later, after rollback of a partially completed tran-
saction is implemented (through the use of before images and du-
plicate page tables), we intend to modify the locking scheme so
that each transaction 1locks relations as needed. Then when
deadlock is detected (through the use of time-outs on locks), one
of the transactions will be rolled back.

One important point about concurrency control in DIRECT is
that two or more query processors which are executing the same
query packet and outputting tuples to a temporary relation will

not interfere with each other since the lock associated with the

-34-

temporary relation is owned by the query packet and not a query
processor executing the packet. Also, when the query processor
uses the NEXT PAGE operator on the temporary relation it is not
asking for the next page of an existing relation, but rather, it
is informing the controller that it has a new page. Thus, the
NEXT PAGE operation for write operations must also modify the

page table in the appropriate fashion.

5.0 QUERY PROCESSOR INSTRUCTION SET

The query processor instruction set includes the basic prim-—
itives needed to support a relational database system. A query
packet, after parsing and decomposition by INGRES on the host
processor, will be composed of query processor instructions.
Thus, query packets can be executed directly without further com-
pilation.

The basic primitives include:

RESTRICT - select tuples from a relation based on a
boolean search condition.

PROJECT - eliminate the specified attributes (columns)
of a relation.

JOIN - combine two relations to form a third rela-
tion based on the equality (for equi-join)
between an attribute in each relation.

UNION - forms the union of two union compatible re-

lations (relations with identical attributes)

-35-

INTERSECTION - forms the intersection of two union compati-
ble relations

CROSS-PRODUCT - performs the cross-product of two relations

MODIFY - modify all tuples of a relation which satis-
fy a specified boolean condition. Can also
be used to delete a tuple.

INSERT - insert a tuple into a relation.

COMPRESS - compactify a relation by removing tuples
marked for deletion.

AGGREGATE - such as MAX, MIN, COUNT, and AVERAGE

OPERATORS
for collecting information about the data in
the relation.

RESTRICT, PROJECT, JOIN, UNION, and CROSS-—PRODUCT produce
temporary relations which are either used by another operation in
the query packet, transmitted to the host as output to be re-
turned to the user, or incorporated as permanent relations in the

database. Section 5.1 contains a description of the algorithm

used to implement the JOIN operation.
5.1 The JOIN Operation

The JOIN of attribute a of relation A with attribute b of
relation B, JOIN(A,a,B,b,C), is the set (relation C) of all tu-
ples such that t is a concatentation of tuple tA from A and tB

from B where tA.a = tB.b.

-36—

CREATE C
DO FOREVER
BEGIN
- ASK BACK-END CONTROLLER (BEC) FOR THE NEXT PAGE OF RELA-
TION A
= WAIT FOR BEC TO RETURN A PAGE FRAME NUMBER (PF#)
- IF BEC RETURNS "END OF RELATION" (EOR) PROCEED TO NEXT
OPERATION IN QUERY PACKET
OTHERWISE

/* JOIN THIS PAGE OF A WITH EVERY PAGE IN B */
- READ NEXT PAGE OF A FROM PF#

- SET I EQUAL TO 1

- SET END OF B TO FALSE

WHILE (END_OF B = FALSE)

BEGIN
- GET PAGE I OF RELATION B FROM BEC
- WAIT FOR BEC TO RETURN PF#
- IF BEC RETURNS "EOR" SET END OF B = TRUE
OTHERWISE -
- READ PAGE I OF B FROM PF#
- JOIN CURRENT PAGE OF A WITH FAGE I OF B
- WRITE RESULTING TUPLES INTO A BUFFER
- WHEN THE BUFFER IS FULL
— ASK BEC FOR NEXT PAGE OF C
- WAIT FOR PF# FROM BEC
- WRITE OUTPUT BUFFER ONTO PF#
~ INCREMENT I
END

END

6.0 CONCLUSIONS

In conclusion, DIRECT appears to be a promising MIMD archi-
tecture for supporting a relational database management system
through parallel processing and the use of associative memories.
It can support both inter and intra-query concurrency and thus
eliminates many of the cost/performance limitations of the previ-
ous SIMD architectures such as RAP.

We are proceeding on three tasks in parallel. The LSI-1lls

have arrived and are being assembled. The CCD memory modules and

-37-

interconnection matrix have been ordered and should arrive in
September 1978. With regard to software development, we have
finished our modified version of INGRES and are beginning work on
the database wutilities of the back-end controller. Finally, we
have developed a simulation model of DIRECT and are using it to
evaluate different query processor allocation algorithms, alter-

native techniques for prepaging relations, and a comparison of

SIMD and MIMD architectures for database machines.

7.0 ACKNOWLEDGEMENTS

I would like to express my appreciation to William Cox for
his assistance 1in designing DIRECT and developing a simulation
model of its structure. I would also like to thank Haran Boral
and Kevin Wilkinson for their suggestions about query processor
allocation and concurrency control and Ken Barry for his work on

our modified version of INGRES.

10.

11.

12.

13.

-38-

REFERENCES

Canaday, R.H., et al. "A back-end computer for database
management*," CACM 17,10,0ctober 1974,pp.575-582.

Slotnick, D.L., "Logic per track devices" In Advances in
Computers, Vol. 10, New York, Academic Press(1970), PD.
291-296.

Parker, J.L., "A logic per track retrieval system," IFIP
Congress (1971), pp. TA-4-146 to TA-4-150.

Healy,L.D., Lipovski, G.J., and K.L. Doty, "The architecture
of a context addressed segment-sequential storage," Proc.
of 1972 FJCC , pp. 691-701.

Parhami, B. " A highly parallel computing system for infor-
mation retrieval," Proc. of 1972 FJCC, pPp. 681-690.

Minsky, N., "Rotating storage devices as partially associa-
tive memories," Proc. of 1972 FJCC, pp.587-596.

Lin,C.S., Smith,D., and J. Smith, "The design of a rotating
associative array memory for a relational database manage-
ment application," ACM Transactions on Data Base Systems,
Vol. 1,No. 1, March 1976, pp 53-65.

Jino,M. and Jane W.S. Liu, "Intelligent Magnetic Bubble
Memories," Proceedings of the Fifth Annual symposium on Com-
puter Architecture, April 1978, pp. 166-174.

Hsiao, D.K., Kannan, k. and Kerr,D.S., "Structure Memory
Designs for a Database Computer," Proceedings of the ACM An-
nual Conference, 1977, Seattle.

Su,S.Y.w., Copeland,G.P., and G.J. Lipovski, "Retrieval
Operations and Data Representations in a Context Addressed
Disk System," Proceedings of the ACM Programming Languages
and Information Retrieval Interface Meeting, 1973.

Copeland,G.P., Lipovski,G.J., and S.Y.W. Su, "The architec-
ture of CASSM: A Cellular System for Non-numeric Process-—
ing," Proceedings of the First Annual Workshop on Computer
Architecture, 1973.

Copeland,G.P. and S.Y.W. Su,"A high level data sublanguage
for context addressed segment-sequential memory," Proceed-
ings of the ACM SIGFIDET Workshop on Data Description, Ac-
cess, and Control, 1974.

Ozkarahan, E.A.,Schuster,S.A., and K.C. Smith,"RAP - An as-

14.

150

16.

17.

18'

19.

20.

21.

22,

-39

sociative processor for database management," Proceedings of
the 1975 NCC,pp.379-386.

Schuster,S.A., Ozkarahan,E.A., and K.C. Smith, "A wvirtual
memory system for a relational associative processor,"”
Proceedings of the 1976 NCC, pp. 855-862.

Ozkarahan, E.A., Schuster, S.A., and Sevcik, "Performance of
a Relational Associative Processor," ACM Transactions on
Data Base Systems, Vol. 2, No. 2, June 1977, pp 175-195.

Held, G.D., Stonebraker. M.R., and E. Wong, "INGRES - a re-
lational database system," Proc. of 1975 NCC, Vol 44, May
1975,pp. 409-416.

Stonebraker,'M.R., Wong, E., and P. Kreps, "The design and
implementation of INGRES," ACM Transactions on Data Base
Systems, Vol. 1, No. 3, Sept 1976, pp.189-222.

Wong,E. and K. Youssefi, "Decomposition - a strategy for
query processing," ACM Transactions on Data Base Systems,
Vol. 1,No. 3, Sept. 1976, pp. 223-241.

Codd,E.F., "A relational model of data for large shared data
banks," CACM. 13,6, 1970.

Wulf,w.A. and G.C. Bell, "C.MMP - a multi-mini processor,"
Proceedings of the 1972 FJCC, Vol. 41, pp. 765-777.

Hoare, C.A.R., "Monitors: An Operating System Structuring
Concept," CACM Vol. 17,10, Oct. 1974, pp. 549-557.

Eswaran, K.P., et.al., "The ©Notions of Consistency and
Predicate Locks in a Database System," CACM Vol. 19,11, Nov.
1976, pp. 624-633.

