ROSCOE: A MULTI-MICROCOMPUTER OPERATING SYSTEM
by
Marvin H. Solomon
and

Raphael A. Finkel

Computer Sciences Technical Report #321

May 1978

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of the
following graduate students who have been involved in the Roscoe
project: Jonathan Dreyer, Jack Fishburn, James Gish, Frank Horn,
Michael Horowitz, Wil Leland, Hossein Malek, Paul Pierce, Ronald
Tischler, and Milo Velimirovic. Their hard work has helped Ros-
coe to reach its current level of development and will be essen-~

tial in completing its design and implementation.

Roscoe: A Multi-microcomputer Operating System

Marvin H. Solomon

Raphael A. Finkel

Technical Report 321

Abstract

The Roscoe project at the University of Wisconsin is an ex-
perimental network of microcomputers running a common operating
system. The purpose of the project is to develop techniques and
software needed to create a distributed system that can run on
loosely coupled identical processors without shared memeory.
This paper gives an overview of Roscoe, introducing some of the
concepts on which it is based, and discussing some problems

currently under investigation.

ROSCOE: A MULTI-MINICOMPUTER OPERATING SYSTEM

1. INTRODUCTION

Parallelism in computer architectures has taken many forms.
At one extreme are architectures using tightly coupled, special-
purpose functional units responsible for the high performance of
computers like the CRAY-1l. At the other extreme are very loosely
coupled, general-purpose machines that form a community like the
ARPANET, spread across large physical distances. The Roscoe pro-
ject investigates a middle ground: a network of identical, phy-
sically close, small, general-purpose machines. The goal of such
networks is to create a computer resource that can serve many
users simultaneously and will devote as much available power as
necessary and appropriate simultaneously to each task. Individu-
al wusers are divorced from the physical realization of the com-
puter; the size of the network affects only the throughput, not
the design, of individual programs.

The technical problems that this research must attack are
twofold. First, suitable topologies for interconnecting large
numbers of small machines must be found. Constraints of simpli-
city and generality demand that the connection strategy be as un-
iform as possible and that the local complexity of the network be
small, Second, the operating system must be designed and imple-
mented so that the component machines are organized in a useful
way . Each of these problems can be addressed to a large extent

independently of the other. Since it 1s quite expensive at

current hardware prices to build a network large enough for in-
terconnection problems to become acute, these problems are best
investigated by analytic models and computer simulations. On the
other hand, operating system design issues can only be evaluated
by actual experience on real machines. Methodologies can be
developed on a small pilot system (on the order of five machines)
and extrapolated to larger systems.

In this paper we begin by classifying current computer net-
work research, in order to establish our terminology and identify
how Roscoe fits into this «classification. Next, we survey
current research, showing how it fits into our classification.
Finally, we describe Roscoe itself, indicating its relation to

other work.

2. A TAXONOMY OF PARALLELISM

Several excellent general discussions of recent software
developments based on parallel architectures are available in the
literature; see, for example, [Whitby-Strevens 1976] and [Baer
19761}. We begin by distinguishing between tightly and loosely
coupled functional units. Large scientific computers, such as
the CRAY-1 [Baskett 1977], the CDC Cyber series and the Illiac
1V, owe much of their speed to internal parallelism. Functional
units operate simultaneously and to a great degree independently.
However, the entire machine executes a single instruction stream,
and therefore the functional units are tightly coupled in their
interactions. The other extreme is typified by the hosts on the

ARPANET, where completely independent computations are the rule

and interactions are the exceptions. 1In short, tightly coupled
architectures are usually considered to form a single machine,
whereas loosely-coupled ones form many machines. The following
terms will only apply to architectures that are not tightly cou-
pled.

A centralized architecture is one in which operating system

functions for a community of processors are concentrated in one
central processor. If the management of tasks is spread among

all the processors, the network is termed distributed.

If the network is used as a device for allowing users to com-
municate with distant machines, but they must follow the local
conventions of that host's operating system, then the network is

properly speaking a computer communications network. 1If the en-

tire ensemble of machines appears to the user as a single entity,
and the physical nature of the machines is transparent to the

user, then the network is called a computer network or a

multi-processor.

All the machines in a homogeneous network are identical.

Otherwise the network is heterogeneous. Likewise, a network may

use identical machines for specialized functions, in which case

the network is functionally heterogeneous.

Close networks have all their machines near each other, in
the same room or rack. Distant networks have machines geographi-
cally distributed, perhaps across thousands of miles.

Almost all distributed networks use packet switching to ac-

complish message transfer. Large messages are split into short-

er packets, each of which travels through the network to be

reassembled at the destination. 1In contrast, telephone networks

traditionally wuse some form of circuit switching: the pathway

from source to destination is reserved during the course of the
connection.
A closely related issue is whether communication is achieved

through explicit messages, shared memory, or some combination of

both.

A last difference involves the components used in the net-
work. Most network designs employ significant amounts of special
equipment designed specifically for the network. Other designs

use more standard components.

3. ADVANTAGES OF NETWORKS OVER LARGE MACHINES

Development of networks, especially locally distributed com-
puter networks of minicomputers, has four major expected advan-
tages. First, networks allow modularity. This feature not only
helps to organize software, but also allows for easy incremental
upgrading of capacity.

Reliability is another special potential of computer net-
works. Redundancy, both of computation and data storage, is of-
ten natural to networks. If part of the hardware or software
should fail, other copies of important information can be made
available and the surviving hardware can recover from the
failure. At the worst, failing hardware can destroy only local
computation, while independent computation can proceed unhin-
dered. Reliability has been one of the goals of several distri-

buted computer networks, ([Mills 1976], [Ornstein 1975]).

Perhaps the most important feature of computer networks is
their potential for speed, either measured by response time or by
total system throughput. 1In order to get quick response, tasks
must be subdivided into portions that can be simultaneously exe-
cuted on independent machines. Since the individual machines may
not be very fast, the appearance of speed is gained through ap-
propriate use of parallelism. High overall throughput <can be
achieved by simultaneously running many independent tasks (such
as separate users) on individual machines that only cooperate
with respect to shared or limited resources.

The last advantage is cost. Large number-crunchers have not
become cheaper (although their power has certainly increased over
the past years). However, minicomputers and individual logic
chips are becoming less expensive. The result is that large net-
works of minicomputers do not cost more than individual large

scientific computers.

4. RESEARCH IN NETWORK OPERATING SYSTEMS

Although the field of networking is fairly young, many vari-
ous types of networks have already been investigated. 1In this
section we briefly summarize some of this work and discuss how it
fits into the classification developed earlier.

The most famous project to date has been the development of
the Arpanet, a heterogeneous computer communications network that
has more than fifty member computers across the United States and
Europe. This project has encountered and solved many of the in-

teresting problems stemming from packet switching, particularly

discovery of lost messages, duplication of messages, and messages
that arrive out of proper order. This work has been aimed pri-
marily at low-level IMP-to-IMP protocols (An IMP is an interface
message processor), and much less attention has been given to
host-to host protocols that allow many computers to be wused as
one large resource. To an extent this failure is due to the wide
variation of constituent hosts. One notable effort at creating a
computer network (as opposed to a computer communications network
alone) from the Arpanet is the Rsexec project, as described in
[Thomas 1973]. This system of programs spans several hosts, all
running the same basic operating system, Tenex. The principal
feature of Rsexec (and McRoss, which uses Rsexec) is that it pro-
vides a file system that allows the wuser to refer to a file
without needing to know on which of the hosts it resides. The
existence of the network is not completely transparent, however,
as the user must specify at which sites copies of files are to be
stored. Distributed file storage with the possibility of multi-
ple copies gives rise to problems of consistency and protection
that are still unsolved.

Many other networks of computers with properties similar to
the Arpanet exist. For example, the Telenet is based on a prac-
tically identical scheme. The Aloha network in Hawaii is special
in its use of radio as one of the communications media. Problems
of contention for the scarce radio resource introduce interesting
complexity in this kind of network. Another network in which
contention for the solitary communications link is important is

the ETHERNET at Xerox Palo Alto Research Center. Here many

identical minicomputers are attached to a single high-speed ca-
ble. This network is used for sharing expensive resources such
as a printer and mass storage; the overall traffic on the ether
turns out to be well within its bandwith. A distributed operat-
ing system could make use of such a topology, but that is not the
current use of the network; rather, each computer serves a soli-
tary user directly connected through a keyboard, and tasks are
never given to currently inactive processors.

An important attempt to use many minicomputers in an organ-
ized whole is the C.mmp project at Carnegie-Mellon. (See, for
instance, [Wulf 1974]1.) Here up to 16 PDP-11 minicomputers and
up to 16 memories are connected together in such a way that any
processor can access any memory. All interprocessor communica-
tion 1is accomplished through shared memory. This architecture
requires a very expensive crossbar switch, which becomes more ex-
pensive quadratically with the size of the network. 1In addition,
it turns out that up to a large number of the memory references
result in contention, forcing one processor to wait while another
is serviced. For this reason, the expected performance of the
network is not very close to the theoretical optimum, in which
all processors and all memories are fully active. The expense
and special hardware required for the connection are also severe
drawbacks.

If the application for which the network is intended is
well-enough understood, it is possible to make a special-purpose
network with very high performance. A good example of this ap-

proach 1is the Pluribus machine. (See [Ornstein 1975].) The

principal goals of this network are to provide extreme reliabili-
ty through redundancy and mutual suspicion, and at the same time
provide adequate throughput for a time-critical application.
(The principal application of the Pluribus machine is message
switching in the Arpanet.) The individual processors are all
identical, and a simple bus architecture connects processors and
memories. Some common memory is used for communication, but in
case of failure a consensus of the machines can press a new area
of memory into service for this task. The application program is
encoded 1in 1independent strips, each of which takes a short time
to execute. Each task is then accomplished by assigning com-
ponent strips to available processors. Reliablility is enhanced
by the fact that each strip first checks to see if its actions
are appropriate in the current context; no harm results from in-
voking a strip accidentally. The allocation of strips to proces-
sors depends on a special hardware device called a Pseudo Inter-
rupt Device, but most of the other hardware in the Pluribus 1is
standard. Although the performance of this machine is impres-
sive, much of it depends on the careful hand-encoding of the par-
ticular application into strips. It is not clear how generally
applicable this technique is, nor whether it can be automatically
done by a compiler.

A sequel to the C.mmp project is currently underway at Carne-
gie Mellon. Cm* is a network of clusters, or computer modules.
Each cluster contains up to 14 microcomputers (LSI-1lls) under the
control of a special-purpose microcoded processor known as the

K.map. Each microcomputer has its own special hardware as well,

called the S.local. The function of the K.map and the S.local is
resolving memory references. Although each processor has its own
local memory, the logical memory for the ensemble is composed of
all the individual memories. Each memory reference must be
decoded and directed to the appropriate place. 1If the reference
is 1local, the S.local will direct the request to the local
memory. If the reference can be found elsewhere in the same
cluster, the K.map redirects the reference. If another cluster
must be accessed, the K.map routes the request (perhaps indirect-
ly through other K.maps) to the right cluster. If most refer-
ences are in fact local, then the overhead is not severe. Howev-
er, the more distant the references are, the farther the informa-
tion must travel. A program loop that continually requires dis-
tant data will run very slowly indeed. This architecture is a
hybrid: It uses message transfer for communication on the physi-
cal level, but employs shared memory on the logical level for all
operating system functions.

An extremely important contribution to the field of distri-
buted computer networks has been made by the Distributed Computer
System (DCS) at the University of California at Irvine. (See
[Farber 1972, 1973].) Several computers (on the order of five)
reside on a high-speed communications ring, something 1like the
Ethernet. There are two ways in which DCS differs from the Eth-
ernet: the computers are heterogeneous, and more important, a
single operating system links them all. The kernel of this
operating system resides in each individual processor, and its

primary purpose 1is to deliver messages among the processes both

10

on its machine and on other machines of the network. The file
system is distributed among all the machines. 1In order to read a
file, a process sends a message to the catalogue process, which
finds the correct physical volume process. The physical volume
process creates a new process for the desired file, and the re-
guesting process then carries on all negotiations with this file
process. This strategy makes the physical location of files in-
visible to the wuser and all user programs. In addition, since
all mail is directed to processes, not machines, it is not neces-
sary to keep track globally of process-processor bindings.

The ring architecture allows resource sharing based on bid-
ding. Messages may be broadcast to every processor soliciting
bids for a desired resource. The customer for the resource can
then choose the processor that offers the best price. The bids
are based on such considerations as scarcity of the resource,
current demand, and current load on the bidding processor. The
ring structure may be used to enhance reliability. If any pro-
cessor should malfunction, that error cannot damage the connec-—
tion among all the other machines. TIf several other processors
notice consistent malfunction in one of the ring processors, they
can cause it to be disconnected from the ring. This amputation
is similar to the action that can be taken in the Pluribus archi-
tecture to remove a failing component. However, if a ring con-
nection fails, it could disconnect the entire network, since each
connection must actively retransmit all information that travels
through it.

Using a ring mechanism has a price. As the number of proces-

11

sors increases, the contention on the ring becomes more severe.
Some special-purpose hardware is necessary to provide the inter-
face between the ring and each processor. This hardware contains
a small associative memory to determine if an incoming message is
intended for a process on the local machine. A subtler failing
of a ring mechanism is that it encourages the use of broadcast
messages. These messages must be considered by each processor.
In a very large network, it might cause unacceptable overhead to
require that every processor receive such messages; they begin to
appear like junk mail. 1In a large network in which the cost of a
message varies with the distance it must travel (unlike the si-
tuation in the ring), a more local broadcast might be less costly
to perform and more useful in its yield.

The Distributed Computer Network (DCN; see [Mills 1976]) is a
close relative to Roscoe. This network contains about five
PDP-11s of various sizes. They are interconnected by a variety
of data paths with a variety of characteristics. A single

operating system connects the entire network. All communication

is performed by sending messages between processes, and as with
DCS, these messages are sent to ports, several of which may be
owned by any process. The file structure is very much like that
of DCS, except that once a file is opened, it is read and placed
in the logical address space of the requesting process. (Four of
the processors have memory management.) The network has several
strategies for error recovery. These strategies are also used to
re-establish connections with processes that migrate (which hap-

pens only on explicit user request). The operating system is

12

distributed much like that of DCS. Each processor (called a
hostel) has a resident program in charge of message buffering,
process scheduling, and interrupt management. Individual "sys-
tem" processes are provided for all file and device manipulation.
One of these system processes, the stream demon, makes sure that
files are read as necessary when processes refer to them in their
logical memory. The Distributed Computer Network does not pro-
vide dynamic resource allocation, in the sense that DCS sends out
requests for bids. Each hostel operates independently of the
others except when required to receive or send a message. No
dynamic load balancing is attempted. Since the network is not
regular (it 1is neither a ring nor any particular pattern), each
processor must contain routing tables that associate not only
processes with hostels, but also associate routes with hostels.

The Micronet project at SUNY-Buffalo (see [Wittie 78]) is
another relative of Roscoe. On the order of 20 LSI-11 microcom-
puters are being assembled into a network. A special-purpose
frontend microcomputer handles communications in the network;
each machine-frontend pair is connected to at most two high-speed
busses. The operating system makes communication and file
transfer appear very similar from the point of view of the user
program. This project is still in the formative stage, so it is
not clear how the operating system will make use of the communi-
cations paths.

The Unix operating system is being modified (see [Chesson
75]1) to introduce a networking feature. The user can specify on

what machine any program should execute. A communications 1link

13

appears like a Unix pipe, which can be read from or written to in
the same manner as a file. If many processes all have entry to
the same group, as this 1link is called, then whatever is written
by any can be read by the others. There is no way to select mes-
sages from the group; any read operation receives all current
messages from the group multiplexed together. Some files in the
directory are entries into groups. Any process that has permis-
sion to write in a special group file can request permission to
join the group. The group owner can grant or refuse that permis-
sion. Much of the effort in network Unix has been directed to
making inter-machine data flow as efficient as possible and to
keep such communication as much within the spirit of Unix as pos-
sible.

An important contribution to message-based program design is
the module concept of Plits, as described in [Feldman 1977].
Each message appears somewhat like a procedure call, with formal
arguments bound to actual arguments at the time the message is
constructed. Each argument fits into a slot, whose name is men-
tioned by the caller. These names are not generally known, and
therefore only those processes that know the slot names can read
the message. If the message passes through several intermediate
hands before arriving at its destination, it is safe from tamper-
ing, since the intermediaries will only look at the slots that
pertain to routing, and will not even be aware of slots that do

not concern them.

14

5. THE ROSCOE OPERATING SYSTEM

The Roscoe project investigates operating systems for physi-
cally and functionally homogeneous, close, distributed computer
networks. We do not want to use a simple ring structure such as
DCS ([Farber 72, 731), because it cannot be extended without in-
troducing increased contention. Furthermore, we wish to use
standard available equipment as much as possible, so that our ef-
forts can be directed toward software, and not hardware, design
and implementation. The goal of the Roscoe network is to provide
a computation resource in which individual resources such as
files and processors are shared among processes. Our current
work is centered around construction of an operating system that
allows a cluster of initially five LSI-11 computers to provide
such a computation resource. Although we intend to produce a
working prototype system, the design is strongly influenced by
the idea that Roscoe is a testbed for techniques that should be
applicable to much larger collections of processors.

Tt is clear that distributed computing offers the potential
for extremely cost-effective implementations of large operating
systems. But before this potential may be realized, many prob-
lems of software design must be overcome: transmission and rout-
ing of messages, sharing of resources (including the processor
resource and the file system), protection and recovery from
failure.

In Roscoe, communication among processes is implemented ex-

clusively by explicit messages. The decision not to use logical

15

or physical sharing of memory for communication is influenced
both by the constraints of currently available hardware and by
our perception of cost bottlenecks likely to arise as the number
of processors increases. Physical sharing leads to complicated
crossbar switches, whose cost and complexity would be prohibitive
for 1large numbers of processors. Logical sharing hides the cost
of communication between physically distant processes. Explicit
message passing 1is used by several other projects, including

Plits [Feldman 77] and Micronet [Wittie 78].

5.1 Processes

The fundamental unit of execution is a process. Each processor
runs one or more processes. Each process is constrained to run
on one processor at a time, but it may migrate to another. The
purpose of this migration is to ease contention for message path-
ways and to allow a heavily-loaded processor to divest itself of
some of its load to neighboring machines. Algorithms for load-
balancing are a major goal of this research. Since the LSI-11
does not have dynamic address translation, swapping of processes
onto secondary store and migration of processes are restricted in
that the core image must eventually be placed into memory at ex-
actly the addresses from which it came (although potentially on a
different machine). Special hardware (like the S.local of the
Cm* project or revisions to the LSI microcode) may alleviate this
restriction in the future. Another possibility is to translate
user programs into a location-independent intermediate code with

an interpreter resident in each machine within the Roscoe net-

16

work.

Migration introduces some difficult problems. 1In fact, some
researchers consider it infeasible; [Feldman 1977] calls it one
of the "current fantasies of distributed computing." It must be
possible to direct messages to a process that has moved. TIf for-
warding tables are kept, then they will eventually overflow.
This catastrophe can be postponed by distributing "change-of-
address" notices. Since process-host associations will eventual-
ly become unreliable (and may be destroyed due to a component
failure), messages may be forced to actively seek their destina-
tion by wandering through the network. Some research into this
concept is currently underway at Xerox PARC (E. McCreight, per-
sonal communication). One result is the "Flying Dutchman" prob-
lem, in which the destination process has in fact disappeared,

and the message that is seeking it is doomed to wander forever.

5.2 Messages

All communication among processes takes the form of messages.
The concept of ports, as defined in DCN [Mills 1976] and also
employed by Farber [Farber 1972, 1973], allows each process to
distinguish the various messages it might receive. This idea has

been recently combined with the notion of capabilities [Fabry

1974] in the Demos operating system designed by Baskett for the
CRAY~-1 computer. (See [Baskett 1977].) This operating system
employs links, which are both permissions and pathways for mes-
sages. Only the recipient process (called the owner of the link)

can create a link pointing to itself. This link can then be

17

presented to another process (across another, pre-existing 1ink)
to enable the second process (called the holder of the link) to
direct messages to the first. As a process creates a link, it
specifies which channel (analogous to Mills' port) incoming mes-
sages across that link will enter. The receive command specifies
a set of channels that the receiving process wishes to become
sensitive to. (It is interesting to note that Feldman's Plits
language and the Thoth microcomputer project [Cheriton 1977] both
follow similar policies that allow a program to enable receipt of
any of a set of messages.) The link concept provides a means of
protection, since a process will only be able to send messages to
processes that have given permission. (The Plits language, in
contrast, allows messages to be directed to any process whose
name 1is known. This set always includes those processes from
which messages have been received.) Links come in several fla-
vors, which enhance the protection. For example, a reply link
may only be used once; it is a permission to send exactly one
message. The owner of a link can specify certain restrictions
that will apply to any holder of that link. The holder can be
prevented from duplicating the link or giving it away by enclos-
ing it in a message. 1In addition, the owner can specify that it
be notified whenever the holder copies, gives away, or destroys
the link. The notification is not forgeable by a user. These
notifications allow the owner of a resource to keep track of how
many processes hold links to it. When the last of the links is
destroyed, the resource is free to be re-used.

We make heavy use of 1links in Roscoe. One goal of our

18

research is to investigate the utility of links as a formulation
on which to build a robust and capable distributed operating sys-

tem.

5.3 Flow Control

The object of flow control is to allocate the scarce system
resources of message buffers and use of inter-machine links in
such a way that no process is perpetually starved waiting for a
message buffer, and the links are not left idle when messages are
waiting to be sent. These problems can be solved in a single~
machine system by instituting scheduling rules. For example, the
Thoth operating system, under which processes communicate ex-
clusively through messages, insists that the sender of a message
be blocked until the message is received. In this way, only one
buffer need be allocated for each active process; that buffer
holds the one message that the process might currently have out-
standing.

The problems of allocation of buffers becomes much more dif-
ficult when resource control is distributed. Each machine has a
pool of message buffers. These may be requested in several ways:
A local user may wish to send a message, an external message may
arrive for local delivery, and an external message may arrive for
forwarding. If the allocator decides not to honor the request
for a buffer, the local user is blocked, or the external message
is refused. There are two ways that a message buffer can be
released: a local user accepts its message, or a neighboring

site accepts its message. Until one of these events occurs, the

19

local operating system must hold on to the buffer.

The task of the flow control algorithm is to decide whether
to honor each request for a buffer. If the allocator is too
stingy, very little communication will take place. If it is too
generous, the buffer supply may be exhausted, blocking all furth-
er work. One of the research goals of Roscoe is to investigate
buffer allocation strategies.

Some theoretical results can be achieved. The first question
is how many buffers are absolutely necessary to prevent a buffer
deadlock, which is the situation in which all processes are
blocked, but if more message buffers were available, computation
could proceed and eventually terminate. This situation must be

distinguished from a process deadlock, which in its simplest form

consists of two processes, each of which is waiting for a message
from the other, with no messages currently sitting in buffers.
Here no number of extra buffers can unblock either process.

Even in a very simple case an unbounded number af buffers 1is
necessary. Consider two processes, each of which runs this pro-

gram:

send n messages to the other process.
receive n messadges from the other process.

Neither process can receive a single message until it has placed
n messages in message buffers. This algorithm requires n+l
buffers, n for the messages sent by the first process, and 1 for
all the messages that the second might send after the first has
finished. This result assumes an optimal scheduling of the
processes that allows the first process to send all its messages

before starting the second one. A pessimal schedule would have

20

each send n-1 messages and then finally send the last one. Here
2n-1 buffers would be needed.

Since examples of this form can be made arbitrarily bad, it
is hopeless to provide enough buffers for all possible situa-
tions. However, there is some hope that an allocation scheme ex-
ists that will avoid deadlock 1in those cases where there are
enough buffers. Even if there are plenty of buffers, allocation
decisions can be made that cause deadlock. 1In particular, if we
decide that each of the two processes above must only engage one
buffer at a time for sending, then even if plenty of buffers are
available, the processes will reach deadlock if n is greater than
one.

Let us avoid the problem that the previous example caused by
prohibiting a second message from being sent between the
processes until the first is received. We will call this rule
the propriety restriction. The algorithm still has a deadlock,
but now we will call it a process deadlock, since the process
failed to run a proper program. Now the worst case that can be
constructed for p processes is this:

send a message to each other process
receive all messages

The optimal schedule in this instance turns out to let process 1
send all its p-1 messages, enabling it to receive all messages
without queueing them. Then let process 2 send all its p-1 mes-
sages. One of them is accepted immediately by process 1, and the
other p-2 must be gqueued. Then process 2 can accept the message
awaiting it from process 1. Each process in turn is then allowed

to send all its messages. The ith process will send p-1 mes-

21

sages, i-1 of which are immediately accepted (therefore requiring
a total of only one transient buffer), and p-i of which must be
gueued and require buffer space. Then the ith process can accept
the 1i-1 messages awaiting it. The execution of the ith process
causes an increase in the number of buffers needed of

(p-i) - (i-1) = p - 21 + 1.
The number of buffers in use after k processes have completed is

summation (p - 2i + 1) = k (p-k).
1 <k<1

This expression reaches a maximum after half the processes have
been scheduled, when about p2/4 buffers are needed. A pessimal
schedule will allow each of the processes to send p-2 messages
before any process may send the last message. 1In this case, al-
most pz buffers are needed.

The problem is compounded if processes can selectively re-
ceive messages. For example, a Plits process can restrict its
attention to incoming messages relating to a particular transac-
tion. A Thoth process can restrict its attention to incoming
messages from one other process. Roscoe processes (and Demos
processes) can select some combination of 16 channels to activate
for message reception. Thus an algorithm can be written in which
a process demands input on channel 1 before it will relieve the
system of the message currently waiting on channel 2.

In this case, the propriety restriction can be recast to re-
guire that a process cannot send a message along a channel to a
destination until all previous messages on that same channel to

that same destination have been received. Now a very bad user

program is this:

22

send a message on each channel to each other process
for each channel do
receive p-1 messages on that channel

The number of required buffers approaches 16 p2, assuming that 16
channels are available. The situation in Roscoe cannot get quite
that bad, since the number of links held by any one process is
limited (at the moment, to 20). However, Roscoe does not enforce
the propriety restriction.

One other source of complexity is the fact that a free buffer
on one machine does not necessarily help a buffer depletion on a
neighboring machine. The buffer pool is local to each machine,
and even if enough system-wide buffers exist, problems can arise.
One can imagine flow control algorithms that try to relieve local
buffer depletion by remote storage to other machines.

Since an enormous number of buffers is needed to begin to
solve the problem properly, some other approach must be found.
Plits makes sure that one buffer is available for each possible
communication path, but strongly restricts the number of such
paths. 1In Roscoe, we cannot afford enough buffers, and we do not
want to restrict user programs to the extent necessary to be able
to afford buffers. Therefore, the buffers that are available
must be carefully allocated to try to prevent buffer deadlock in
the common cases, and only to infinitely block user programs that
are behaving unreasonably (by sending many messages to recipients
that are unwilling to receive them).

When buffers are plentiful, practically any request should be
honored. When buffers become scarce, some requests should be

denied. We expect the research into proper denial strategies to

23

be quite fruitful. One simple idea that may prove worthwhile is
when buffers are scarce to refuse to accept any messages over
external links that are not directed to a process currently wait-
ing for a message on the channel of the incoming message. Anoth-
er possible heuristic is to prevent local processes from sending
any local message that will have to be queued or any foreign mes-

sage that the neighboring machine is willing to take immediately.

5.4 VFiles

DCS, DCN, and Demos all use interprocess communication to
manage files. This approach seems the only reasonable one in an
environment where interprocess communication is the fundamental
operation and data may reside on a distant machine. Unlike DCN,
we do not map the files into logical memory, principally because
the LSI-11 does not have the necessary memory management facili-
ty. Unlike Demos, we do not use data windows in links to access
distant memory directly. Not only does such usage lead to pro-
tection problems, it also is difficult to implement on a mul-
tiprocessor machine.

Operating systems like Multics and Unix that have multi-
leveled hierarchical file structures have shown that this organi-
zation has extremely nice properties for the user, who can ar-
range personal files according to logical groupings. We arrange
Roscoe files in a similar fashion, so that directories are files
that can be read 1like other files, with all files ultimately
linked at the root of the directory.

However, it is desirable to place the physical disk drives on

24

various machines scattered throughout Roscoe. In this way, re-
quests for file access do not have to be funnelled through one
processor, tying up all local link bandwith in transferring file
contents. The problem is to coordinate use of files on different
machines so the user sees one universal file system capable of
opening any file, no matter where it might be located.

If the user program has no control over where files are
stored, then random fluctuations will eventually place some
often-needed files quite far physically from the machine in which
a user process is running. This situation argues for some user
control. However, any reasonable algorithms that can be found
for the allocation of file space with respect to the location of
the frequent users ought to be embedded in the part of the file
system that the ordinary user does not control. Then there is no
danger that the user will persistently make poor choices of
placement, to the detriment of all other users of the network.

Every machine that has a disk must have a device driver for
it. A file system process exists in each such machine as well.
This file system process knows the full path name of each file in
the local disk. 1If a local user requests a file that resides on
that disk, the file system process can open the file and provide
the wuser program with a file access link that it can use to read
and write the file. The user program sends read/write requests
on that 1link and encloses a reply link that the file access pro-
cess can use to return data and success codes. When the user
program wishes to close the file, it destroys its link to the

file access process, which receives a notification that the 1link

25

was destroyed and closes the file.

If a local process requests a file that is higher in the file
hierarchy or 1in another branch, then the local file system must
pass the request on to a distant file system process that may be
able to help. One such distant process is the owner of the root
of the whole directory. 1If the local file process has a link to
this root, then it is easy to relay the request to it. However,
consistent use of this strategy will result in high wuse of the
root process, which may cause bottlenecks. A different approach
is for the local file process to pass the request to the file
process that owns the parent disk, in whose directory the entire
local disk volume resides. Either that process can satisfy the
request or it can relay the request yet another level up the
hierarchy.

The inverse problem occurs when a user requests a file that
sits below the local disk: one of the directories in the path is
on the local disk, but the path extends to another disk. 1In this
case, the 1local file process should direct the request to the
distant file process that owns the child disk that holds that
directory.

These considerations imply that each local file process must
have 1links to the parent of its disk and to each of the possible
children of its disk. In addition, it must know the full path
name of the top-level directory on the local disk. The number of
necessary links may be very high. Much of this information may
be stored on the disk itself. 1In particular, each disk has (in a

globally known area) a description that includes the path name of

26

its top-level directory and an entry that can be translated to a
link to the owner of the parent disk. Each lowest-level directo-
ry that leads to another disk has a special entry that can be
translated to a link to the owner of the child disk.

Initialization of this scheme is worth considering in some
detail. Initialization must occur not only when Roscoe is first
brought up on a machine, but also whenever it is restarted after
any failure. Let us assume that a fresh Roscoe has just started
to execute on a machine. One of the first jobs is to determine
if there is a disk on the machine. If so, a file handler process
(whose code must be either part of the Roscoe kernel or easily
found on the disk) must be instantiated. This process will read
the information in the root of the disk to find the path name and
a link to the parent. A message should be sent to the parent
file process that informs it that the local files are now avail-
able again. The distant file process that receives that message
should install the return link as the appropriate child 1in 1its
disk. Furthermore, any lowest-level directory entries that ex-
tend to other machines require that confirmatory messages be sent
so that the file system becomes linked together properly. This
scheme should be able to survive unplugging a disk from one
machine and installing it on another.

Other aspects of distributed file systems will also be inves-
tigated by Roscoe. A method of access hints, as suggested in
[Lampson 74], may make some directory searches much faster, since
fewer messages would have to be sent. The situation under which

a new disk pack is initialized must be considered, as must the

27

situation when a disk pack runs out of room. Standard operations
such as checking the disk for consistency must also be designed;
to an extent they can be modelled after the Unix pattern. Roscoe
machines that do not have disks must still have access to the
file system. One method would be to use the nearest file process
that can be found. 1In this case, some arrangement must be made
to find that file process.

Another issue is restricting rights to files. Most modern
operating systems associate protection information with each file
to indicate which users are to have what rights to that file.
Typical rights include read, write, and execute access. The fun-
damental protection mechanism in Roscoe is the link, which is in-
tended to be given selectively only to processes that are to have
the type of access that link provides. 1In order to mesh the link
mechanism with file protection, we need to be able to prevent in-
discriminate distribution of file-access links. The question is
where the responsibility should lie for making the decision. If
the file process is to make the decision, then it must know some-
thing about the requesting process, which would violate the Ros-
coe philosophy that insists that no process know any identifying
feature of any other. If the requesting process is expected to
identify itself in some manner to the file handler, then there is
the danger that it might forge a name and acquire illegal
privileges. The kernel might append an identifying source on
each message in such a way that a recipient can only compare it
with other sources, but now if the file process must relay the

request to another file process elsewhere, the source field has

28

been obliterated. The reply link supplied by the user may con-
tain identification placed there by the kernel, which would avoid
that problem.

An alternate approach is to have the file process always form
the appropriate file access link and include it in the response.
It also will include conditions under which this link may actual-
ly be given to the recipient process. The kernel that governs
the requesting process can check those conditions against the
identity of that process and possibly destroy the link instead of
giving it to the user. The user sees a failure return and cannot
distinguish between the file not existing and permission being
denied to access it. The file system sees the destruction of the
link as if the user had closed the file. This scheme will work
even if the request must be relayed several steps before a file
process is found that can respond to it, because the response
travels directly back to the original requestor. However, it
causes files to be opened and immediately closed again.

The problem of contention for files gives rise to some in-
teresting research questions. 1If files are duplicated, then how
can updates be performed? If files are not duplicated, then how
can many users read simultaneously without overloading the net-
work locally? Some of these issues have been discussed in [Lamp-

son 76].

29

6. CURRENT STATUS

Roscoe is being implemented on five LSI-11 machines. Each
has 28K words of memory, a programmable clock, extended instruc-
tion set, a serial link (intended for the console teletype), and
parallel-word links to one or more other LSI-11 machines. In ad-
dition, each LSI-11 has a parallel-word link to a PDP-11/40 run-
ning Unix. The serial links are directed to a manual switch that
can connect any one of them to the Unix machine.

All software for Roscoe is being prepared under Unix. User
programs are written in C (the Unix systems implementation
language), as is most of the kernel. A very few parts of the
kernel (currently less than 30 lines of code) are written in as-
sembler; these pieces deal with interrupt and user call dispatch-
ing and stack modifications necessary for scheduling. A modifi-
cation has been made to the C compiler so that procedure entry
code checks stack limits. In this way, bugs caused by stack
overflow (which is not detected by the hardware) can be
discovered and corrected.

A prototype kernel has been implemented. It has four func-
tions. It manages links for each user, allowing new links to be
made, messages to be sent and received, and 1links to be des-
troyed. It schedules the users, employing a non-preemptive tech-
nigque in which a user process is only blocked if it tries to re-
ceive a message that is not yet available or to send a message
when no buffers are available, or if it explicitly yields control

or dies. It provides a relocating loader that can accept a load

30

module from the PDP-11/40 and load it into memory. Finally, the
kernel routes messages along the parallel-word interfaces to oth-
er machines and accepts messages from other machines.

Several utility programs have been written that operate 1like
user processes and communicate wvia 1links. One is a teletype
handler, and another is a primitive file system that treats the

Unix machine as a backing store.
7. SUMMARY AND CONCLUSIONS

Roscoe is an operating system that allows a cluster of five
LSI-11 computers to co-operate in providing a computing service
similar to that provided by a single, much more expensive,
machine. Although we intend to produce a working prototype sys-
tem, the design will be strongly influenced by the idea that Ros-
coe is a testbed for techniques that should be applicable to much
larger collections of processors. As we have indicated above, we
borrow extensively from operating system concepts recently ad-
vanced by other researchers, with the goal of applying their
ideas to the problem of creating a multi-microprocessor based on
communication through message-passing rather than shared memory.
Before the potential of distributed computing can be realized,
many problems of software design must be overcome. Some of these
are detailed above: sharing of resources, including the proces-
sor resource and the file system; transmission and routing of
messages; and protection and recovery from failure. No doubt
other unforeseen problems will arise in the course of implementa-

tion. Further research associated with this project will include

31

adaptation of specific problems to the structure of our system;
other researchers are 1investigating the ©possibility of a
multiprocessor-based compiler, automatic partitioning of problems

into communicating processes, and the problems of managing a dis-

tributed data base.

32

REFERENCES
Anderson, G. A, and Jensen, E. D., "Computer Interconnection
Strategies: Taxonomy, Characteristics, and Examples",

Computing Surveys, Vol. 7, No. 4, pp. 197-213, Dec., 1975.

Arden, B. E., Berenbaum, A. D., "A Multi-Microprocessor Computer
System Architecture", Proceedings of the Fifth Symposium on
Operating Systems Principles, (In Operating Systems Review,
Vol. 9, No. 5) pp. 114-121, November, 1975.

Baer, J-L., "Multiprocessing Systems" IEEE Transactions on
Computers, Vol. C-25 No. 12, pp. 1271-1277, December, 1976.

Baskett, F. and Keller, T. W., An Evaluation of the CRAY-1
Computer, Los Alamos Scientific Laboraroty Reprot, 1977,

Baskett, F., Howard, J. H., Montague J. T., "Task Communication
in Demos", Proceedings of the Sixth Symposium on Operating
Systems Principles, pp. 23-31, November 1977.

Bene¥,, V.E., Mathematical Theory of Connecting Networks and
Telephone Traffic, Academic Press, 1965.

Cheriton, D. R., Malcolm, M. A., Melen, L. S., and Sager, G. R.,
Thoth, a Portable Real-Time Operating System, Report
CS-77-11, University of Waterloo Computer Science Depart-
ment, October, 1977,

Chesson, G. L., "The Network Unix System", Proceedings of the
Fifth Symposium on Operating Systems Principles, (In
Operating Systems Review, Vol. 9, No. 5) pp. 60-66, No-
vember, 1975.

Enslow, P. H., "Multiprocessor Organization -- A Survey",
Computing Surveys, Vol. 9, No. 1, pp. 103-129, March, 1977.

Enslow, P, H.,, Multiprocessors and Parallel Processing, John Wi~
ley and Sons, New York, 1974.

Farber, D. J., Heinrich, F. R., "The Structure of a Distributed
Computer System -- The File System", Proceedings of the
International Conference on Computer Communications, Ppp.
364-370, October, 1972. T

Farber, D. J., Feldman, J., Heinrich, F. R., Hopwood, M. D., Lar-
son, K. C., Loomis, D. C., Rowee, L. A., "The Distributed
Computing System", Proceedings of the Seeventh Annual IEEE
Computer Society International Conference, pp. 31-34, Febru-
ary, 1973,

Feldman, J. A. A Programming Methodology for Distributed
Computing (among other things) TR9, Computer Sciences

33

Department, University of Rochester, September 1976.

Finkel, R. A., Solomon, M. H., Processor Interconnection
Strategies, University of Wisconsin -- Madison Computer Sci-
ences Technical Report #301, July 1977.

Jones, A. K., Chansler, R. J. Jr., Durham, I., Feiler, P.,
Schwans, K., "Software Management of Cm* -- A Distributed
Multiprocessor", Proceedings of the National Computer

Conference, Vol 46, pp. 657-663, AFIPS Press, 1977.

Kleinrock, L., "On Communications and Networks", IEEE
Transactions on Computers, Vol. C-25 No. 12, pp. 1326-1335,

December, 1976.

Lampson, B. W., An Open Operating System for a Single User
Machine, Xerox Palo Alto Research Center report, 1974 (ap-

proximately).

Lampson, B. W., Sturgis, H. Crash Recovery in a Distributed
Storage System, Xerox Palo Alto Research Center reprot, 1976
(approximately) .

McQuillan, J. M. "Graph Theory Applied to Optimal Connectivity

in Computer Networks," Computer Communication Review
(SIGCOMM) , 7,2 April, 1977,

Mills, D., "An Overview of the Distributed Computer Network",
Proceedings of the National Computer Conference, Vol. 45,
pp. 523-531, AFIPS Press, 1976,

Ornstein, S. M., Crowther, W. R., Kraley, M. F., Bressler, R. D,
Michel, A., and Heart, F. E. "Pluribus -- A Reliable Mul-
tiprocessor," Proceedings of the National Computer
Conference, Vol. 45, AFIPS Press, 1975.

Ritchie, D. M., Thompson, K., "The UNIX Time-Sharing System",
Communications of the ACM, Vol. 17, No 7, pp. 365-375, July
1974,

Swan, R. J., Fuller, S. H., Siewiorek, D. P., "Cm* -- A Modular
Multi-processor”, Proceedings of the National Computer
Conference, Vol. 46, pp. 637-644, AFIPS Press, 1977.

Swan, R. J., Bechtolsheim, A., Lai, K-W., Ousterhout, J. K., "The
Implementation of the Cm* Multi-Microprocessor", Proceedings

of the National Computer Conference, Vol. 46, pp. 645-655,
AFIPS Press, 1977.

Thomas, R. H., "A Resource Sharing Executive for the ARPAnet",

Proceedings of the National Computer Conference, Vol. 42,
AFIPS Press, 1973.

Whitby-Strevens, C., "Current Research 1in Computer Networks",

34

Computer Communication Review, Vol. 6, No. 2, April 1976.

Widdoes, L. C., "The Minerva Multimicroprocessor", Proceedings of
the Third Symposium on Computer Architecture, pp. 34-39,
1976.

Wittie, L. D. Efficient Message Routing in Mega-Micro-Computer
Networks, State University of New York at Buffalo Technical
Report, 1976.

Wittie, L. D., Micronet: A reconfigurable microcomputer network
for distributed systems research, State University of New
York at Buffalo Technical Report TR 143, April, 1978.

Wulf, W., et al, "HYDRA: The Kernel of a Multiprocessor Operating

System," Communications of the ACM 17, 6 June, 1974.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of the
following graduate students who have been involved in the Roscoe
project: Jonathan Dreyer, Jack Fishburn, James Gish, Frank Horn,
Michael Horowitz, wil Leland, Hossein Malek, Paul Pierce, Ronald
Tischler, and Milo Velimirovic. Their hard work has helped Ros-~
coe to reach its current level of development and will be essen-

tial in completing its design and implementation.

