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Abstract

Human infants are able to accumulate considerable
knowledge in their first year of life without having well-
developed communications skills. Pattern induction is pro-
posed as a mechanism for accomplishing learning in a
precommunication environment. This mechanism acts by de-
tecting and describing regularities in memories of past ex-
periences. Recognizer—-predictors, structures having some
similarities to productions, are proposed to represent and
utilize information gathered by pattern induction. In this
paper, recognizer-predictor structures and the ©process by
which pattern induction formulates them are described in the
context of MUL, an existing TELOS program modelling

infant~like development in a very simple environment.



Introduction

This paper describes continuing research on a computer
model of some aspects of early intellectual development in

humans, focusing particularly on pattern induction, a learn-

ing mechanism proposed as underlying that development.
“Early intellectual development is taken to be that occur-

ring in infancy, or more precisely the sensorimotor period

of Piaget.

Piaget characterizes four periods in the intellectual
development of humans [Piaget 1954, Piaget & Inhelder 1969].
The first, and primary subject of this research, is called
the sensorimotor period. Lasting until the infant reaches
about two vyears of age, this period is marked by a slow
struggle to grasp fundamental environmental properties.
Among the more important of these is “"object vermanence”:
the infant must learn to recognize that objects will create
certain reproducible effects on his sensory input streams.
In general, the infant must learn elementary coordination of
motor and sensory activities.

Piaget's observations led him to propose three later
periods: the pre-operational wperiod (lasting until about
age 6), the concrete-operational period (lasting in part for
the remainder of life), and the formal-operational period
(beginning, with luck, at adolescence). During the
pre—-operational period the <child begins to think about
events which are not actually occurring. The child is not
capable of sustaining any coordinated or purposeful thinking

until the concrete-operational period. buring this third
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period, the <child develops the skills needed for effective
understanding of specific {(concrete) events. The
formal—-operational period is characterized by the appearance
of capabilities for hypothesis, systematic experimentation,

and formalization (abstraction).

From the perspective of the infant, the problem faced
immediately after birth is to make sense of a confusing mass
of input and output. Sensory input arrives, continually es-
tablishing new conditions at various interfaces with the
brain. Motor output is produced when certain conditions are
detected at the output interfaces. By hypothesis, these in-
terfaces are to higher level constructs than individual mus-
cles or sense organs. Units of motor output might be ac-
tions 1like grasping and reaching. Sensory input might con-
sist in part of outputs from line and motion detectors.

Certainly an external teacher cannot be relied upon at
this stage: The infant can't isolate a teacher as an ob-
ject. the infant must discover from experience that the
conditions 1t observes at these interfaces are not random.

Reqularities are present. The learning system proposed

here, called MUL, acts to detect and describe these
regularities, and then to use the descriptions first to rec-
ognize events, then to predict unobserved events, and per-
haps eventually to hypothesize scenarios for possible event
seguences. The name "MUL" 1is an acronym for Method

Underlying Learning and coincidentally describes that meth-

od: “mulling” things over.



MUL

In the next section, a version of MUL 1is described.
The algorithms presented are not intended as a final word on
MUL, but rather as a sort of existence proof. The design
and implementation are continually evolving, even in funda-
mental wavys. MUL does exist as a TELOS program, and it is
largely a result of the support that language offers that
such design evolution 1is easily carried out. Appendix 2
presents a brief description of TELOS, as used in the MUL
program.

The model for learning systems proposed by Smith, et
al. [smith 1977] provides a framework in which to discuss
the current MUL. To begin, learned knowledge is represented
by creating symbolic structures rather than by adjusting pa-
rameters. The MUL learning element does not learn in direct
response to input: it strives to discover and describe
regularities among episodic memories (fading records of
MUL's physical and mental experiences). The MUL program
thus learns by discovery, selecting its own subjects as well
as examples and non—-examples for them.

Since MUL is not expected to respond to input in any
conventional sense, there are no "correct responses” availa-
ble for performance evaluation. The level of performance is
instead measured by estimating the extent to which the envi-
ronment is understood. Understanding is operationally de-
fined, for the purposes of this research, as the ability to

anticipate future events.
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The following diagram illustrates the organization of
MUL, following the Smith model except in details of informa-
tion flow and blackboard structure. The next sections of
this paper will describe the operation of each functional
unit. See Appendix 1 for a brief characterization of MUL in

terms of the Smith model.
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Figure 1. MUL organization

Memory & Performance

Memory for the MUL system is composed of two sections:
the episodic (or fact) store and the knowledge store. The
fact store is composed of objects called nodes, and serves
to record the experiences of MUL, both physical and mental.
Several types of nodes will exist for any particular envi-
ronment: each node type is predefined with a fixed organi-
zation of fields, each with a fixed interpretation. New
node types are not introduced during the operation of MUL.
A node, of anv type., is always fully instantiated at the
time of its creation, in the sense that each information

field must have a definite value, which remains constant
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throughout the 1life of the node. Nodes also have one or
more auxiliary fields, distinguished from information fields
and not used by the pattern matching process. For instance.
the CRITIC procedure maintains an auxiliary field for an es-
timate of each node's 1importance. Auxiliary fields may
change in value as the importance of the node is altered.

The knowledge store medium is the recognizer/predictor
structure (RP for short). An RP is a nonempty set of pat-
terns for fact nodes. Associated with each component pat-
tern is a statistic called the "prediction energy” of that
component. RPs are created by the learning element dis-
cussed in a later section. The RPs and their component pat-
terns are limited in complexity by the sophistication of
that element.

An RP recognizes a group of fact nodes when each compo-
nent pattern of the RP matches some node in the group. 1In
MUL, successful RP application results in the creation of an
RP-success fact node "naming” the recognized node dgroup Or
at least announcing that the node group has certain proper-
ties.

RPs are not applied to all nodes of episodic memory,
but only to fact nodes in a short term memory (sTM) . New
nodes have a chance to enter this STM as they enter episodic
memory. However, since the STM is of fixed size, it may al-
ready be full of nodes. This conflict is resolved by rela-
tive node importance: the least important node is forced to
relinguish its claim to an STM position, without undergoing

RP analysis. Nodes are selected one by one from STM, under-
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going an examination in which RP component patterns matching
the node are found and “activated®". That is, satisfied pat-
terns are flagged with information concerning the date and
circumstances of the new match. The RP containing a newly
activated pattern as a component is examined. If all 1its
component patterns have been matched within a suitably short
time, then the RP “succeeds”, and an appropriate RP-success
fact node is generated to enter in its turn 1into episodic
memory. The suitably short time mentioned above is repre-
sented by a constant called "ACTIVATION_LIFE" in the current
MUL. RP-success nodes serve a dual purpose: they allow MUL
to examine the progress of its own thought process and, be-
cause that examination might result in the creation of new
RPs recognizing regularities in RP-success node occurrence,
can be used to build hierarchies of recognizers. A “table™
RP might recognize occurrences of “flat—-surface”
RP-successes, "leg" RP-successes, and so forth.

RP use may result in fact node prediction by the fol-
lowing mechanism. Whenever an RP is found to have recent
(within ACTIVATION LIFE) matches for most (currently, all
but one) of its component patterns,. that RP creates a "pres-
sure” to find matches for its remaining unmatched
component (s). This pressure is a function of the importance
of the RP, the importance(s) of the nodes used in the match-
es, and the prediction energy associated with the unmatched
component(s). The prediction energy is a measure of the va-
lidity of past predictions of that component. When the

pressure 1is great enough MUL will take steps to find or



manufacture (predict) a matching node. This process serves

several ©purposes. It enables MUL to anticipate node occur-
rence. 1t can be used to fill in missing information, as
with “defaults” for frames [Winston 1975]. Finally, it is
used to direct motor behavior: prediction of a motor activ-
ity fact node has the side effect of reguesting that the ap-
propriate activity be performed.

The process begins with the application of the
unmatched pattern to episodic memory. If a sufficiently re-
cent node matches then that node is used to satisfy the pat-
tern {(the node must have seemed too unimportant to process
when it entered memory). If no recent node is found, a new
fact node 1is manufactured (using the most recent node
matched as a model) and entered into episodic memory as
though it had Jjust occurred normally. This manufacture
process becomes complicated only when an RP-success node 1is
to be manufactured. 1In this case, MUL tries to support the
new node by finding or manufacturing nodes to match the com-
ponents of the predicted RP. That is. each component of the
predicted RP is itself predicted. Prediction (particularly
of RP-success nodes) is thus a top-down process as opposed
to the bottom-up process represented by normal RP applica-
tion.

The RP structures share some features with the
productions of production systems (cf [Davis 1975]). Most
important, new RPs can be learned and introduced with as

little difficulty as (pure) productions. RPs have a struc-

ture similar to productions, although the distinction be-
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tween whether a component is in the antecedent or the conse=-
gquent rests solely on the size of its prediction energy:
nodes having non-zero prediction energies may act as
conseguents during the node manufacture process. Node
manufacture is similar to the evaluation of a triggered pro-
duction's conseauent not only in that new nodes are intro-
duced into memory, but also in that side effects may occur.

For RPs, the only side effects now possible are motor activ-

ities.

Some differences from standard production systems are impor-

tant, however:

~-RPs are matched in parallel: many RPs may exist in a par-
tially matched state at any given time.

~The order in which component patterns are matched is not
important, except 1in creating pressures for component
satisfaction.

~The nodes matched by components of an RP need not be pres-
ent 1in the STM, or even in episodic memory,., when the RP
succeeds. The only requirement is that all matches must
have occurred within ACTIVATION _LIFE time units.

-RPs are not required to have components with non-zero pre-
diction energies, nor are they restricted from having sev-
eral. RPs may in this way have an arbitrary number of
“conseqguents”.

-an RP produces an RP-success node when all 1its expected
patterns are satisfied.

~memory nodes do not have an associated truth value, only an

importance. This 1s not an oversight, but a result of a
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hypothesis that the concepts of truth and falsehood are
learned, arising later than the sensorimotor period.

—-the use of RPs does not involve “backing up" or
"unwinding”, as no specific goal is present. The concept
of *“working towards a goal” is also assumed to be learned,
although desires may be intrinsic. Desires are not cur-
rently represented in MUL, but the node manufacture process

should support the development of goal-directed behavior.

Critic:

The CRITIC is responsible for resource allocation deci-
sions. It is not a monolythic element but a set of algo-
rithms distributed to points of use within other MUL program
elements.

Many resource allocation questions are answered on the
basis of the fact node importance values maintained by
CRITIC algorithms. For example, importance is used in de-
ciding which nodes can enter and remain in STM for RP activ-
ity processing, which nodes should be culled from a full
episodic memory, and which nodes should be subjected to the
MUL learning process. A simple evaluation of the importance
of each node 1s done as the node is created, by a fixed
mechanism depending on what process created the node. fFor
nodes introduced by the sensory apparatus, importance is a
constant moderate value, as it is for nodes introduced by
physical activity. Physical activity node importance is
higher. Nodes introduced by prediction have their impor-

tance defined as a function of their prediction energy.
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RP-success nodes have an importance dependent on the impor-
tance of the nodes matched.

The operations of CRITIC algorithms on RPs in the
knowledge store are also simple. RP pattern prediction en-
ergies are calculated from a count of the number of times
the pattern was predicted and a count of how many of these
predictions were validated. A prediction is validated when
a fact node equivalent to the predicted node is encountered
within ACTIVATION LIFE time units after the prediction. Two
nodes are equivalent iff the values in their non-auxiliary
fields are equivalent.

The space available in the knowledge store is limited.
For this reason RPs must be occasionally culled. Deciding
which RP to abandon is another major task of CRITIC algo-
rithms. The importance of maintaining an RP is a function
of how often and how well the RP is performing 1ts two
tasks, recognition and prediction. An RP's predictive
strength is the importance of the most important node it
would predict 1if all 1its other patterns were matched by
nodes of some standard importance. Recognizer strength 1is
measured as the importance of the RP-success node Jenerated
given that all component patterns matched nodes of the stan-

dard importance.
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Learning Element

The learning element is charged with the task of intro-
ducing new RPs. The creation of a new RP might be Jjustified
either because of trusted communication (ie, being told) or
because of experience. Since MUL operates in the
pre—-communication sensorimotor period, learning must be
based on experience. Each new RP, then, should act to rec-
ognize that a situation is similar to a previously experi-
enced situation, and suggest information about unobserved
features of the recognized situation.

MUL's process for discovering the regularities of expe-
rience Jjustifying RP formation 1is called “pattern induc-
tion“. 7o indicate how pattern induction might be accom-
plished, this section ©presents a general framework for a
pattern induction mechanism. Its goal is to produce new
RPs, by finding component patterns (here called Pl,....,Pn
and Px) such that when nodes matching these patterns are en-
countered, the RP-success node generated will be useful. As
a simplification, only one pattern (Px) is allowed to devel-
op a non-zero prediction energy.

Y. Given a fact node X chosen by the instance selector:
[This algorithm will try to create an RP having as a
component a pattern (Px) matching X. With luck, the
algorithm can assign a non-zero prediction energy to

Px, so that future occurrences of X can be foreseen.]
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1. From the set {nodes N of episodic memory. where N was en-
tered less than ACTIVATION LIFE time units before X}
choose MAX or fewer nodes, say {Al....,Am}

~ ACTIVATION LIFE is currently 1: patterns will remain
activated after matching a new fact node for only one
environment step. Thus, RPs can succeed only if all
their patterns are matched within one environment
step of one another.

-~ The choice of the Ai is currently random, weighted by
node importance. A more sophisticated scheme is be-

ing designed, with the aim of defining relatedness

between nodes. For example, a retina cell might be
related to its nearest neighbors and to its previous
values. A node could then be introduced to the set
{x,Al,...,Ai} only if it were related to some node
already in the set. The effects and Jjustifications
of relatedness are similar to those for recognition
cones [Uhr 1977]}.
- MAX is currently 3: RPs contain at most four compo-
nent patterns including Px.
[If a new RP is formed, it will describe some or all
nodes in {Al,....Am,X}, and may possibly have a
non-zero prediction energy for the pattern matching X.]
2. For each Ai construct a pattern Gi as a loose generaliza-
tion of Ai.
- Loose generalization is currently very loose indeed:
the pattern requires only that the node type be the

same as Ai's type. This will certainly be changed in
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later MUL versions, and is now used only for simplic-
ity.
[MUL, will attempt to find other occasions when nodes
similar to {Al,...,Am} occurred together. These occa-
sions will be called node groups.]
By searching episodic memory, construct a sample S con-
taining some groups of nodes recognized by the patterns
Gi. A group is recognized by the Gi if: 1) if nodes nl
and n2 are in the group, then nl and n2 were entered less
than ACTIVATION LIFE time units apart; 2) each Gi matches
some node in the group; 3) each node in the group is
matched by some Gi; and 4) the number of nodes in the
group is not greater than the number of Gi's.
[The groups in S represent other occurrences of nodes
similar to the nodes in the group {Al,....Am}. The
steps below will attempt to describe the conditions (in
terms of internal group properties) present when a node
similar to X entered episodic memory just after the oc-
currence of a group. Ideally, the conditions can be
described in terms of patterns, enabling the creation
of a predicting RP.]
If the size of the sample does not exceed MIN_SAMPLE_SIZE
or if the number of groups in S which lead to an X-like
node does not exceed MIN LEADING_TO X then a new group of
Ai's is selected and processing resumes at step 2.

episodic store not more than ACTIVATION_LIFE time
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units after the youngest node in that group, but not
before the oldest node in the group.

- MIN_SAMPLE SIZE is currently 5: RPs are created only
if at least 5 groups in S support them.

- MIN LEADING TO X 1is now a function of the total num-
ber of X—-equivalent nodes residing in the episodic
store. An X—-eguivalent node is a node whose informa-
tion fields (as opposed to auxiliary fields) are
egquivalent to those of X. This definition allows
prediction to be based on even a single occurrence of
a very important node.

- An X-like node is a node that matches a loose gener-
alization of X.

- Each new group of Ai's is one node smaller than 1its
predecessor, but formed by random choice. This de-
crease in size terminates looping. If size =zero 1is
reached then the learning element returns in failure.

By applying some pattern-narrowing method to the Gi. at-
tempt to find patterns Pi such that if the Pi's recognize
some group in S, then that group leads to an X-eguivalent
node. These Pi are precisely the patterns needed to form
a predicting RP.

- The current pattern—narrowing process begins with the
Pi eguivalent to the Gi. S is divided 1into S-yes
(containing groups in S leading to X-eguivalent
nodes), and S-no (the remainder of S). While a mem-
ber of S-no can be found to be recognized by the Pi,

some change will be made in one of the Pi so that the
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member of S$-no will no longetr match. The changed Pi
may no longer recognize some groups in S-yes: These
groups are dropped from S-yes. The change to the Pi
is currently a minimal one, in the sense that no oth-
er change would result in fewer nodes being dropped
from S-yes. If S-yes has fewer than MIN LEADING _TO X
members remaining, then continue at step 6.

6. If no basis for predicting X is found, then an attempt is
made to construct a non-predicting RP recognizing
cooccurrences of X with important groups in 8. At some
later time a predicting RP may be learned to predict
these cooccurrences by predicting occurrences of
RP-success nodes for this RP. For example, it is diffi-
cult to successfully predict the occurrence of vertical
poles on the basis of low-level local information, but if
the concept of a table is known, and a table is expected
in some location then table legs can be predicted.

—- In the current MUL, this recognizer creation step 1is
straightforward. The group in S that lead to the X
given by the instance selector is used as a model.
The Pi are created to specifically recognize groups
equivalent to this group, with Px being constructed
as for a predicting RP except that its prediction en-

ergy is zero.

This particular algorithm, especially in detail, is not
the last word on pattern induction implementation. Numerous

variations await investigation, each promising their own
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benefits. Some general comments can be made on more funda-
mental aspects of pattern induction, however.

The pattern induction mechanism is not a “reaction to
input”, but acts on recurrent aspects of experience. Of
course, MIN LEADING TO X may be very small (even one) 1f X
is of sufficient importance, so that "guick®” learning is
possible. The cautious approach of (normally) learning only
in response to several similar experiences should result in
more stable behavior.

Pattern induction acts to define similarity between ex-
periences. That is, two nodes can be regarded as similar if
they match the same pattern. Since patterns are associated
with RPs, the definition of similarity which they represent
is wvalid only for the purposes of the containing RP. This
gradual and domain-specific development of similarity allows
exact matches to be required for pattern matching during RP
use. Although approximate matching is still done during RP
construction, damage done by a bad match is limited to the
introduction of a bad RP. Bad RPs are introduced in any
case, so that damage from improper matches 1is corrected by
the already required RP culling process.

Pattern induction also acts to define “"relatedness” be-
tween nodes: an RP implies that nodes matched by its pat-
terns are related to one another, especially if a prediction
is involved. While pattern induction does not guarantee the
relevance of these relationships, the action of the CRITIC
should leave only consistently useful RPs, thus defining

relatedness and relevance by experience.
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Pattern induction 1is currently the only mechanism for
learning used by MUL. This is not out of a desire for econ-
omy, minimality. or elegance, goals rejected eloguently by
Minsky [Winston 19751, but rather because complexity
obscures behavior. Other mechanisms or improvements will be
introduced, but pattern induction and its interaction with
the RPs it creates seem to offer unusually comprehensive ca-
pabilities. One potential improvement might be applying
newly created RPs across episodic memory to more oprecisely
determine their usability and prediction energy. Experience
with earlier MUL versions has indicated that improvements
are required in the pattern induction mechanism, particular-
ly in the construction of 1its samples. The relatedness

mechanism mentioned may effect that improvement.

Instance Selector

MUL has, as yet, no specific goals. Its level of per-
formance is measured as a function of how well it
anticipates 1its environment. Future development of “de-
sires” will probably not affect this measure other than by
emphasizing desire~related experiences. The function of the
instance selector is to focus the learning element on nodes
which were unpredicted but, because of their importance,

should have been.

Environment

The choice of environment is not important to the study

of MUL, as long as it is an environment within which learn-
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ing from experience is possible. Unfortunately, MUL can not
be switched to completely new environments without difficul-
ty, as the nodes of episodic memory,. and thus the patterns
matching them, are environment-specific.

The current environment 1is a 3 x n atray of colored,
textured cells inspired by Becker's environment [Becker
197081]. MUL receives sensory input from a 3 x 3 cell retina
(each cell specifies red, black, white and colorless), a
touch sensor status (returning the texture in the environ-
ment cell occupied by the hand), a hand status (open or
closed), and an arm status (raised, centered or lowered). A
major departure from Becker is that all sensory information
is received for each time interval. Possible motor activity
events are a body move (left or right), an arm move (raise
or lower), and a hand move (open or close).

The only movements in the environment are generated by
MUL: body moves and arm moves. MUL also has the potential
to “carry" the colored blocks to new cells in the environ-
ment. No change in MUL structure is anticipated in order to
handle non-MUL controlled motion, or other environmental
changes. The environment may be altered in the future, par-
ticularly after “desire” apparatus is added to MUL, so that
more interesting learning can be studied. One of the im-
pressive features of MUL is its adaptability to alterations
in its environment.

This particular environment was chosen because it 1s
simple enough that a sizable episodic memory for it could be

maintained, because a number of simple extensions can in-
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crease its complexity to more interesting levels, and Dbe-

cause it has been used in previous research.

Final Comments

MUL exists as a TELOS program running on the UNIVAC
1109 at the University of Wisconsin - Madison. The existing
version has succeeded in discovering simple relationships.
For example, it has discovered that if it can see things,
then its eye must be open. MUL's pattern induction is, how-
ever, prone to seek relationships between plainly unrelated
events. The introduction of relatedness among fact nodes
will alleviate this problem.

While MUL is somewhat primitive to be called a cogni-
tive model, and has yet to be observed in realistic opera-
tion, some observations on 1its expected behavior can Dbe
made.

- MUL seems to face problems similar to those hypothesized
to dominate the human sensorimotor period. 1In particular,
the discovery of object permanence is considered a land-
mark goal for MUL.

- Fortunately, while psychologists must guess about an in-
fant's thoughts from indirect cues such as eye movements
and facial expressions, MUL “psychologists® can examine
MUL's knowledge directly.

~ As with an infant, no single “"rule” will appear to de-
scribe a concept like object permanence. Rather, it seems
likely that each object will be described by an essential-

ly independent set of RPs . Object permanence will be
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reflected as an overall property of the predictions made
by these RPs.

- As with an infant, MUL is expected to learn slowly. An

idea Of the real-time resources needed for a productive MUL

run can be estimated from an approximation of the number of
database retrieval operations done in processing each envi-
ronment step and the number of environment steps to be proc-
essed. By design the environment moves to a new state when

MUL has done some constant number of data base accesses

(currently 46 of the inverse pattern retrieval operations).

The real time reguired for these operations rises with the

log of the number of items in episodic memory and is thus

bounded by memory capacity. Preliminary trials indicate
that MUL processing should not exceed 5 seconds per environ-
ment step and on the average should be about two seconds.

Since in the simpler environment there is less to be

learned, MUL is expected to learn interesting things within

504 environment steps, or about 1,008 seconds of execution

time. For comparison, infants may not exhibit signs of hav-

ing 1learned for as long as 1,000,000 seconds (about 16

days) .

- Pattern induction reguires a large amount of memory. The
needs of episodic memory dominate: given that fact noaes
require 36 bytes of storage, and appear at the rate of 50
nodes per environment step, storage demands could approach

a megabyte after the 500 steps planned.
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These observations should make clear that no HAL 200¥
will spring full-grown from the core of the UNIVAC. MUL is
not primarily an attempt to construct an artificial intelli-
gence. The aim of MUL research is to develop an existence
proof that learning by pattern induction can solve problems
analogous to those faced by infants during their
sensorimotor period. The MUL design will be vindicated if
its 1learning by detection and description of regularity can

help elucidate human intellectual development.



20w

Appendix 1

A characterization of the MUL system after the fashion of

the model for learning systems proposed in [Smith 1977].

Purpose: To learn to understand an environment, given that
understanding is measured by the accuracy of predictions of
future or otherwise unobserved events.

Environment: A matrix, each element containing a color and

a texture. Program recieves such input as retina cell val-
ues, touch sensor value, arm status, etc. Output of pro-
gram controls arm, body, hand, etc. Noise-free, with no
externally generated motion (at present).

Performance Element: Applies recognizer/predictor struc-

tures (provided by the learning element) to current "impor-
tant” memory nodes, producing new memory nodes if the ap-
plications are successful either in recognition or in pre-
diction.

Learning Element: Employs pattern induction to create new

recognizer/predictor structures. Pattern induction 1is a
learning paradigm: episodic memory is searched for
regularities, particularly regularities that suggest that
the occurrence of one class of memory node seems dependent
on the previous occurrence of some other class(es) of memo-
ry node(s). A recognizer structure describes any
reqularity found. It will be given a predictive role if an

antecedent/consequent relation can be established.
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Critic: sets the importance of each memory node as it is
created, and each recognizer/predictor when necessary.
These importance values are used to decide space and time
allocation in the other functional units.

Instance Selector: selects the memory node upon which the

attentions of the learning element should be focussed. 1Its
choice 1is a function of importance of each memory node and

to what extent the memory node was predicted.

Appendix 2

The programming language TELOS is an extension of PAS-
CAL designed specifically for the high-level applications
common in artificial intelligence [Travis 1977, LeBlanc
1977]. TELOS incorporates facilities for modularization (by
data and control abstraction), for psuedo-parallelism (by
coroutines and generators), for inter—- and intra- process
communication (by an EVENT mechanism unifying messages and
software interrupts) . and for an associative,
context~dependent data base. Only the data base related fa-
cilities have been implemented so far, since only those fa-
cilities were absolutely necessary for MUL construction.

The TELOS data base is composed of data base objects
(DBOs) . DBOs are dynamically created by user calls to the
system STORE function. The call STORE( <ptr> ) will cause
the creation of a new DBO ha%ing as its wvalue a

transcription (into the data base) of the object referenced
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by <ptr>. The only constraint on <ptr> is that it must be a
pointer-valued expression: only objects referenced Dby
pointers may be transcribed into the data base. STORE re-—
turns a reference called a DBOP (for DBO pointer) to the new
DBO. User programs may use DBOPs as they would pointers, to
obtain access to DBO values. DBO values may also be ac-
cessed by associative lookup, as will be explained later.

The following annotated excerpt from the declaration of
the fact node type should give the flavor of episodic memory
contents (as well as a glimpse of the TELOS database facili-
ty). Numbers in parentheses () refer to explanatory notes

found below.

fact_node = PACKED RECORD (1)
importance : INTEGER SEQUENCER; (2)
birth date : age_type INDEXED; (3)
CASE class : memory node_classes INDEXED OF
retina_event:
( pos : retina_positions; color : colors ); (4)
rp_success_event:
( rp : DB-> rp_node; (5)

nodes matched : -> nodes_matched_listcell ); (6)

-

END; { of fact node }



(1)

(3)

(4)

(5)
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TELOS records have the same structure as PASCAL records,
and may be PACKED to conserve storage. TELOS keywords
are capitalized for readablity only.
When record objects are STOREd into the TELOS database,
keywords in the field declarations direct the database
routines. A field marked 'SEQUENCER' will determine the
order in which database objects (DBOs) of this type will
be returned by associative retrieval operations. A
field marked 'INDEXED' will have an inverted index 1list
constructed for values found in that field (used to meet
REQUIREMENTS: see below). A field marked 'UNSTORED'
will not be placed in the database, and its value will
be ignored.
'pirth date’ records the time of creation for this fact
node.
The retina event node has two information fields, in ad-
dition to the universal auxilliary fields birth_date and
importance, and the universal information field 'class'.
The pos field provides a unigue identifier of the retina
cell represented, while the color field records the
“color® seen by that cell at the time this node was cre-
ated. Other fields might have been included (eg. in-
tensity) .
With the dbop (for database object pointer) TELOS allows
direct access to specific objects in its database. The
field ‘'rp' will provide a «cross reference from an
rp_success fact node to an rp_node defining the

recognizer/predictor (RP) that succeeded. The dbop fa-
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cility also allows direct read access to the database,
and write access via a CHANGE function.

(6) The rp_success_event preserves not only a reference to
the rp which succeeded. but also links to the particular
memory nodes matched. (This information is not yet used
by MUL, but is helpful in tracing MUL activity.)
"nodes matched _listcell” has this declaration:

nodes_matched_listcell = RECORD
matched node : DB-> fact_node;
next : -> nodes_matched_listcell;

END;

Associative retrieval of DBO values is based on a fa-
cility for matching an object with & pattern. TELOS pat-
terns are not template affairs to be fitted against some oOb-
ject. Rather, patterns are data structures interpretable as
a routine <call with arguments (cf a LISP list). As data
structures, they behave as records, with a structure defined
as a field ROUTINE, referencing an appropriate MatchRoutine,
and other fields <corresponding to the formal parameter
structure of the MatchRoutine. As an example, the following
MatchRoutine will match any retina_event fact node whose pos
field value is in pos_set, and whose color is in color_set:

MatchRoutine match _retina ( pos_set:retina_pos_set;
color set:color_sets ) MATCHING e : DB-> fact_node;
BEGIN
match_retina := (e->.pos IN pos_set)

AND (e->.color IN color_set);
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END:
REQUIREMENTS

BEGIN REQUIRE ( retina_event ) END;
Both the REQUIREMENTS and MATCHING parts of the above rou-
tine are procedure definitions sharing the same formal pa-
rameter structure. FEach may define its own constants, vari-
ables, even procedures and functions. The MATCHING proce-
dure part is executed by the TELOS system when an object is
to be matched. 1If the routine returns TRUE, a match has oc-
curred. The REQUIREMENTS part 1s executed to reduce the
number of candidates for which the associated MATCHING part
might return TRUE. The call "REQUIRE( retina event )", for
instance, indicates that any object to be matched must con-

tain the constant "retina event*®.

As an example, suppose the variable "pat"” is defined:
pat : PATTERN MATCHING DB-> fact node;
Then pat may be assigned a pattern:
pat := -> match_retinal!
ROUTINEREF ( match_retina ),
[lower left], [red, black] !];
This pattern consists of a call to the above MatchRoutine,
and if it were emploved for associative retrieval, say by:
ce. Find( pat ) ...
its REQUIREMENTS would specify that any fact node its MATCH-
ING part might be applied against should have the constant
“retina_event” within it, and from those candidates it would

match only those whose pos is lower left and whose color is
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either red or black. Find is a generator returning each ob-
ject matched, the order in this case controlled by the
SEQUENCER field 'importance' of fact nodes.

Besides this rather ordinary mechanism for associative
retrieval, TELOS provides an inverse operation: instead of
returning objects that match a given pattern (as above),
this inverse operation returns objects containing patterns
matching a given object. 1Inverse pattern retieval is very
useful in MUL, particularly in determining which RPs are

triggered by the nodes in STM.

In exploring new and involved ideas, the exploration
process does not flow smoothly from idea through design and
implementation to final testing and results. At each stage,
new information and new ideas arise, suggesting or even
forcing changes in the implementation, the design, and some-
times in the basic ideas themselves. The primary contcibu-
tion of TELOS is that it encourages, rather than impedes,
this process of evolutionary design. TELOS hides the de-
tails of data base implementation, so that changes in data
structures are automatically reflected in alterations in da-
ta base activities. In fact, by wusing mechanisms like
type—-checking, TELOS can even point out where further chang-
es must be made. TELOS also places no real constraints on
choice of data structures. Users are free to choose data
structures on the basis of their needs rather than the needs
of the system. Because the details of the database activi-

ties are hidden within TELOS, users can construct more read-
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able and comprehensible programs, uncluttered with
auxilliary code and data needed for data base activities.
Finally,. and perhaps most important, TELOS benefits not just
MUL research, but the whole community of AI researchers.
Considerable effort has been devoted to the design and
development of TELOS, effort that might otherwise have gone
to MUL implementation in some existing language. Experience
with MUL has reinforced feelings that this division of ef-

fort was justified.
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