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Abstract

A computer vision model for recognizing objects in
real world scenes and locating them in three-dimensional gpace
ig described. It is intended for applications which reguire
navigation through an environment and interaction with objects
in it. The sysvem uses a recognition cone for feature extrac-
tion and preliminary recagnition, a segmentation algorithm,
and a routine for constructing a three-dimensional worlid model.
Several types of visual knowledge are incorporated into the sye-
tem including long-term object models, short-term object re-
presentations, and general routines for interpreting perspec-—
tive, shadows, highlights, occlusions, and texture gradients.
The vigion model ie currently implemented in SIMULA and is
being tested on near views of outdoor scenes. Resulte are
presented for one scene of a house and yard. The design of
a monocular motian parallax routine is given which will per-
mit the system to integrate several views of one scene over

time.,

Key words: computer vision, recognition, natural

scenes, scene analysis, depth perception, image processing.



Introduction

A number of computer vision applications require a
perceptual system capable of identifying salient objects in a
scene, developing an understanding of their spatial relation-
ships, and maintaining continmuity from one view to the next
as either the system's camera or objects move through the
scene. Typical of such applications are the computer control-
led chauffeur proposed by McCarthy in Baumgart (1), an extra-
terrestrial explorer as outlined by Lewie and Bejezy (2), a
navigational aid for the blind, or an industrial robot which
must move through and interact with its enviromment as in
Finkel et al. (3). Recently work has begun on a number of
complete, relatively general vision systems which will inter-
pret complex natural scenes in terms of object names from a
digitized picture of a scene (4,5,6,7,8,9,10). These systems
are a first step toward the type of perceptual front end requir-
ed by the above applications. However, most of these programs
either develop only a weak notion of spatial organization or
ignore the problem entirely. Marr proposes a system with
strong spatial vision but separates spatial organization en—
tirely from objeét identification (6). In goals and design
the system described in this paper is most similar to the
models of Riseman and Hanson (9) and of Sakai et al. (10).

This vision system extends the work of Uhr (4),

Riseman and Hanson (9), and Sakai et al. (10) by combining




several different depth cues to build a three-dimensional world
model from an image of a scene. The system incorporates the re-—
cognition system of Uhr (4,11) and a segmentation algorithm

to divide a scene into regions. Visual knowledge routines
acting as depth cues and a relaxation like adjustment routine
for combining the cues cycle over the regions to stitch them
together into distinct instances of objects in the world model.
The world model provides a spatial understanding of a scene asg
well as representing it in terms of object names. In addition,
the world model is & basis for integrating multiple views of

a scene over time. The overall design of the vision model is
given schematically in figure 1 with data representations listed

across the top and processes across the bottom.

Overview of the Scene Description System

The vision model described in this paper, with the
exception of the motion parallax routine, is coded in SINMULA
and is running on a UNIVAC 1110 computer at the University
of Wisconsin-Madison., It accepts digitized pictures and pro-
duces a description of the names of the objects in view, their
visible surface characteristics, and a three-dimensional model
or map of the scene. The system's analysis and feature extra-
ction program is designed to process a 600X 800 pixel (pic-
ture element) image where each pixel is a triple of eight bit
walues of red, green,'and blue light intensity. The system

is currently being tested on near views of outdoor scenes
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3.

containing objects such as houses, cars, streets, grass, and
trees. Figure 2 is a typical input scene; it ie the house scene
used by Ohlander in his thesis (12) and more recently by
Schacter et al. (13). When the motion parallax routine is
completed, the program's input will be a series of snapshots

or views of the same scene taken from different camera positions
like the succession of views an automaton would receive while
moving down a street.

The output from the system consistes of a three-
dimensional model and a set of objects and their descriptione.
For example, figure 3 shows a depth plot of the house scene
from figure 2 produced from the world model. Figure 4 re-
presents the area of the scene identified by the program as
forming a single house.

The program consists of a recognition cone after Uhr
(4), for feature extraction and an initial assigment of object
names to areas of the sceﬂe, a segmentation routine, a short-
term model builder, a set of long-term object models, and a
‘6t of routines embodying general visual knowledge such as infor-
mation about perspective, shading, and occlusions.

The recognition cone ie a parallel-serial cone struc-—
ture consisting of a number of processing layers. The first
layer or retina of the cone contains the three color pixels of
light intensity as digitized from the system's camera. Suc-—
cessive layers of the cone average the picture, compute sev-

eral measures of texture and color, and detect edges and angles.
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In the higher layers of the cone, object:names are assigned to
various areas based upon the presence of certain configurations
of edges and lower level features. The last layer is a 50X50
array containing a number of textural, color, and edge descrip—
tors at each point of the array and one or more possible in-
terpretations for that point.

The recognition cone's output is coarsely segmented
by first using the Zobrist-Thompson grouping operator (14) to
estimate the probability of an edge between two points in the
picture array, and then using Yakimovsky's (15) one pass
segmentation algorithm as modified by Nagel (16). A des-
cription is formed for each segment including texture, color,
size, adjacent segments, brightness, and a list of possible
interpretations for that segmént.

The short-term model builder is a routine which places
the segments produced by Yakimovsky's algorithm into a three-
dimensional model of the seene. The model builder forms the
hieart of the vision system. It uses a long-term memory model
of objects, the general visual knowledge routines, the segment
descriptions, and the previous’contents of short-term memory,
if any, to form the segments into three-dimensional surfaces
representing objects in the scene. The short-term memory model
‘8180 contains the déscription of the visual surface character-
igtics of the objects and parametérs specifying the location

and orientation of the system's camera and source of illumination.



Long-term memory models of objects include two types
of information., Most of the specific data on allowable shape,
color, texture, and relationships between the pieces of an
objectare &istributed throughout the recognition cone in the
form of configurational transforms. The other kind of object
information is individual models for each object which provide
a very general description of shape, size, orientation, and ex-
pected context for the object within a scene.

Barrow and Tenenbaum (17) say that a scene analyzer
must have stored explicitly or implicitly information about
the picture taking process, that is, the relationship between
the wisual properties of the physical surfaces in the real
world and their manifestations on the program's digitized input
array. This knowledge is represented explicitly in the present
system with general wisual knowledge or wisual inference rou-
tines. These contain information used by the model building
routihe to resolve problems of occlusion, shadows, highlights,
texture gradients, and perspective distartions in terms of the
objects' positions in the three-dimensional space of the scene,

This system is designed to handle a sequence of slow-
1y changing wiews of one scene over time. The processing of
one view-at a particular instant of time can affect future pro-
cessing Tn sevéral ways. First, the type and amount of pro-
cessing that the recognition cone does can be altered by adding
or deleting transforms that look for features chdracteristic

of particular objeets. Second, the short-term memory model of




the scene built up over previous views is used to change the
interpretation of transforms in the recognition cone and adjust
the weights in the Zobrist-Thompson grouping function to im-
prove segmentation. The model is also used to help decide on
one object name where the recognition cone has provided several
alternatives. Finally, the previous contents of the model

are used to compute an approximate depth based upon a camera

model and motion parallax,

Recognition Cone: Scene Analysis and Initial Recognition

This system uses a recognition cone developed by Uhr
to characterize the initial light intensity data in terms of
several textural, color, and edge measurements, and to generate
a set of possible interpretations or object names for points
in the cone based on the presence of specific shape and combin-
ations of surfaée features. Its structure and operation are
desceribed in Uhr and Douglass (18) and Uhr (11) and will only
be summarized here.

The cone is a sequence of layers or arrays of cells
where each cell ig itself a list of data and transforms. The
type of data contained in a cell depends upon the layer of the
cone. For example, cells at the first layer contain the brigh-
tness values for each of the three primary colors while cells
at layer five contain several textural measures, edges, and
combinations of edges. Transforms are procedures which com-

pute a walue or search for a combination of features in a set



of cells in one layer and output a value or implied name into
the next layer. All transforms in any oneé layer operate lo-—
gically in parallel and independently of each other. The lay-
ers are shown graphically in figure 5, and the construction of
one layer and of a cell is shown in figure 6.

The low level feature extraction performed by the
cone inclﬁdes color, texture, and edge detection. Color is
megsured by approximations to hue, saturation, and brightness
(19). Mean velues of hue, saturation and brightness over a
4X4 window are used as approximate first order statistics off
texture (see 20). 8everal methods of computing gradients of
edge point strength have been used, but a simple Roberts crbss
gradient (12) on the brightness values alone is:currently used
aiohg with a threshold to find edge points. Mean values of edge
strength, a couht of edge points above the threshold, and an
approximation to the standard deviation of edge point strength
about the mean over a window are used as second. order statistics
for measuring texture (20).

Edge points that are nearly colinear are grouped into
short line segments and the short line segments are in turn
compounded to form longer edges and angles. The short line
segments are used to compute two further measures of texture.
These are the mean number of edges per‘4X4 window amd the first
two most numerous edge orientations on a window. Principle
1ine orientation was found to be a strong texture discriminator

by gobrist and Thompsen for their data (14).
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The upper levels of the recognition cone use trans-
forms that look for configurations of lines, angles, colors,
and textures. When a transform finds a combination of features
matching its input descrition it can imply both object names
and further transforms to apply. For example, a transform
that finds a red hue and a brick like texture will add the inter-
pretation of "brick wall" for that area to the next layer and
also add transforms to check for the outline of a house. At
a higher level, a transform might look to see if one area has
"sky" as a possible interpretation with a linear edge below it
and an area that has "“roof™ as one interpretation below the
edge, If that transform finds seh a configuration, it will
increase the weight or confidence in those interpretations and
possibly add new transforms to search for an area with a "wall®
interpretation below the "roof". Thus transforms embody most of
the system's knowledge about shapes, surface properties, and
contextual constraints on the specific objects that the sys-
tem can recognize.

The output of the recognition cone for this system
is a layer containing for each point in the layer several mea-
sures of texture, hue, saturation, brightness, and a set (pos-
sibly empty) of interpretations or names. If the highest weighted
interpretations are selected and recognition is the primary
task to be accomplished, then the system is already a complete
scene description program at this point (gee Uhr and Douglass,

18). But, if a three-dimensional understanding of the scene is




reguilred then some additional processing is necessary. The
remainder of this paper describes segmentation of this output

and the construction of a short-term memory world model.

oegmentation of the Scene

The segmentation routine partitions the picture (act-
ually the last layer of the recognition cone) into regions
which are similar to one another in multidimensional feature
space. The assumption behind segmentation is that each region
will represent a distinct object or part of an object. The
primary reason for performing segmentation in this system is
to reduce the amount of data which must be processed by the
short term memory model builder.

A number of quite different segmentation technigues
hawve been deweloped from histogramming and thresholding used
by Ohlander (14) to the interpretation guided segmentation
program of Teneibeum and Barrow (21). Arbib and Riseman (22)
provide a relatively complete review of the literature on image
segmentation.

Yakimévsky's algorithm.(iS) has been selected for this
system because 1t combines the advantages of edge detection
and region growing and becawse it is a fast, one pass algorithm.
A modified form of the Zobrist-Thompson Gestalt distance function
(14) is wsed instead of Yakimovsky's local edge detector. It

provides a simple, adjustatile way to combine a number of feature




10,

measures into one edge operator.

The Gestalt distance function, I}, referred to as the
Zobrist-Thompson grouping operator, isa linear weighted sum of
n elementary distance functions, di’ i=1,2,...,n. An ele-
mentary function measures the likelihood that two points or
neighborhoods of points in an image will be wvisually grouped
together based upon the difference in the walue of their ith
feature. In the present system, an elementary distance function,

da represents a scaled diffefence between values of the ith

i
feature for two points in the recognition cone's output layer.
Since the cone is gradually reduced from a 600X800 array to

a 5050 array, each point in the 50X50 layer represents a neigh-
borhood of points in the initial layer, If Cys 1= 1,2,000y91
represents a weight expressing the relative importance of the
ith feature in grouping two points together, then the strength
of an edge element, that is the probability that the points will
not be grouped together in the same segment, is B, where:

n
D = cqdq+e dot.. e d  if e d >t (a threshold)

1l

0O otherwise.

Il

The weights, Cyis in this system are obtained empir-
ically by adjusting weights and threshold and subjectively
evaluating the resulting segmentation. The weights can be
readjusted over time based upon the world model in short term
memory. In this system the first of Yakimovsky's two assump-
tions behind segmentation, that the image of an object must
be approximately uniform or smoothly changing in ite local pro-

perties (15), is relaxed by using first and seecond order statis-



11.

tical texture measures in the Zobrist-Thompson grouping oper—
ator.

The output from the Zobrist~Thompson grouping operator
igs formed into two arrays in a suitable form for input to
Yakimovsky's algorithm., One array expresses the probability
of an: edge between point (i,j) and (i,j-1) and the other array
the probability of an edge between (i,j) and (i-1,j). These
arrays are then input to Yakimovsky's algorithm as modified by
Nagel (16). This algorithm defines segment boundaries by sear—
ehing for "walleys" and "peaks" of edge walues. The output
is an array expressing the segment that each point in the array
belongs to and the boundary points of the segment.

For each segment a deseription is compiled. This
includes mean hue, saturation, texture wvalues, and an indication
of the variability snd range of these values. Also included
are the siize of the segment, the names of adjacent segments,
the order or number of adjacent segments, and a minimum bound-
ing rectangle for the segment in the output array. A list is
made for each segment of all the interpretations for points in
the segment along with: a total confidence value for those in-
terpretations over the segment as a whole. The segmented pic-
ture and the segment descriptions form the input to the world
model construction routine.

Figure 7 shows the digitized version of the house
scene shown in figure 2. It is averaged down to a 50X50 arrayv

in ten gray levels. Figure 8 presents the stronger edge points
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which result from applying the grouping operator to a 50X50
array of the house scene using hue, saturation, and inten-
sity and two texture measures as terms for the operator.
After the initial segmentation by the algorithm,
the output is improwved by merging some of the smaller seg—
ments into larger neighbors if they are similar in their
characteristics. The Zobrist-Thompson operator is weed again
to decide on thelr similarity, this time with the segment
descriptors as terms for the operator. Merging is conser-
vative in this vision model. Unlike the approach of Tanimoto
and Pavlidis (23), which tries to merge out highlights and
regions produced by shading gradients, this model views those
regions as importan spatial and lighting cues for the con-
struction of the world model. For the house scene, 104 re-
gions were produced by the first pass of the segmentation
routiﬁé and 76 regions were léft after merging. The bound-

aries of the final segmentation are given in figure 9.

Construction of the Short-Term World Model

The madeli construction routine merges segments into
a three-dimensional model and selects between alternative in-

terpretations for the segments to form a single, internally
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consistent view of the environment as it is visually manifested
in a scené; The model forms what would be the output of the
systemtoahigh level planner. The world model is built from the
segment descriptipns, the prewious ghort-term world model if
any, the long-term models of speecific objects and collections of
objects, and general wisual heuristics or wision routines con-
cerning aspects of the picture taking process.

A placement algorithm is responsible for initially
assigning an object name and a depth td a segment. An adjust-
ment procedure refines the initial depth based upon information
from the general visual knowledge routines. An object form-
ation routine decides which segments should be grouped together
to form specific instances of an object in the scene. The
representation of the world model consists of three parts: a
two-dimenSional'éfray of picture pointé, a set of segments or
region descriptions, and a set of object descriptions. These
parts form a short——term world model because their contents
are updated with each new view'bf the scene that the éystem
gets.

As in the layers of the recognition cone, each point
of the two-dimensiongl array of the world model corresponds to
a small area of the digitized scene. Each point of the array
contains a walue representing a depth for that point and the
name of the segment that that point lies in. The region des-
criptions congist of the ségment description formed during seg:'

mentation and a depth and orientation for a region. Object



14.

descriptions consist of an object name such as "house" or "tree"
and an object number to distinguish betwéen different instances
of the same objecf,éuch as a scene with several houses. An
object description also has a iist of the regions which belong
to that objeét;

A.segment or region is the basic building block af the
world model.” It is an area of the scene which is approximately
uniform in its visual attritmtes. It is treatedl as a two-dim—
ensional surface which can be flat or curved or locallﬁ distorted.
Fach region has a depth assigned to it by the placement routine
“which expresses the distance of the center of gravity of the
region from the system's camera. In addition, each region has
a roll, tilt, and pan angle indicating the orientation of the
region's surface with respect to the image plane. Finally,
each point on the region's surface can be locally distorted from
the average depth and orientation of the surface as a whole.
These local distortions are expressed as depths in the two-~-di-
mensional model array. For example, a crumpled newspaper lyimé
on a desk in front of the system's camera would be spatially
represented in'the world model by a region with a depth equal
to the depth of the center point of the paper plus a tilt angle
indicating that the paper was lying flat and by the displace-
ments in depth of each point on the paper due to the fact that
it is crinkled and not a flat plane.

The placémént routine is responsible for putting the

regions produced by the segmentation algorithm into the world
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model. The routine places a region in the model by selecting

a single interpretation for it, assigning it a depth and spatial
orientation, and marking the corresponding area of the two-di-
mensional array as belonging to that region.

The placement routine selects an interpretation from
the set of object names output by the recognition cone. It
orders the set and selects the highest weighted name. If there
are no names associated with the region or if the confidence
weights for all the names are low, then the region will be labeled
as having no interpretation. The interpretation given to a re-
gion by the placement routine can be reweighted or changed
by the wvisual knowledge routines as explained below.

The placement routine uses one of several heuristics
to compute an initial estimate of a region's depth. It starts
by examining the informaticn in the long-term object model
corresponding to the region's interpretation. If the long-
term object model indicated that the object is typically on
the ground (as is the case for grass or pavement), then the
placement routine will assign a depth to the region based on
the ground plane hypothesis (see Duda and Hart, 24). If the
objeet is not on the ground, then the placement routine will
attempt to use any available information about the expected
size of an object to estimate the region's distance from the
camera. If the region is uninterpreted or has no information
useful for estimating its depth in its associated long-term

model, then the placement routine will assign it a default
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depth.

A1l depth assignments have an associated confidence
weight. This weight is initially set low and gradually in-
creased as improvements are made in the initial depth esti-
mate by the adjustment routine. This initial weight reflects
the type and quality of information used. For example, an
estimate made using the ground plane hypothesis generally has
a higher weight than one using the expected size of an object,
and the confidence in the expected size of some objects, such as
é’ “person, is higher then the confidence in the expected
gize of a tree. |

The placement routine, like the ad justment and vis-
ual inference routines, is designed to operate logically in 7
parallel on all regions at the same time. In actual imple-
mentation on a serial computer, it places the largest inter-
preted regions first, using a strategy similar to that of
Sakai et al. (7).

After a region is initially placed, the general
visual knowledgé‘foutines are called to improve upon the depth
estimate and possibly correct or strengthen the confidence in
the region's interpretation. These routines are a collection
of heuristics about ocelusion, shadow, perspective and the
ground plane hypothesis. They generate hypotheses about a
region's depth and orientation with respect to the surround-
ing regions and store these hypotheses in the form of a rel-

ative displacement between two regions and a confidence
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weight. An example of the type of inference that these routines
make is "if a region labeled tree is surrounded on three sides
by a region labeled house, then the tree region is in front of
the house region". The content of these routines is described
more fully in the section below on visual knowledge routines.

An adjustment routine examines the various hypotheses
generated by the visual knowledge routines and resolves them
in an improved estimate of a region's depth and orientation.

An error is computed for the depth of every point on the
boundary of the region being adjusted by comparing the depth
of that point with the depth of the points in the neighboring
regions and looking at the spatial relationship between the re-
gions as hypothesized by the visual-knowledge- routines.

The adjustment routine weights the errors by the. con-
fidence in theﬁhypotheSQS-it used aﬁdlfhe confidence in the.
depth of the neighboring regions. The weighted error is then
used to calculate a new depth and orientation for the region
being adjusted soas to minimize the error. Correcting:a re-—
gion's plééément causes its confidence weight to be increased.
Regions which have a confidence above 80 per cent will not be
gdjusted.

Adjusting a region's position in turn indicates
corrections in surrounding regions to be made by the adjust-
ment routine. This pattern of successive corrections by the

adjustment routine causes the routine to be cycled repeatedly
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over all the regions. The cycling using confidence weights
has the effect of propagating reliable information about the
depth of one region to other regions. For example, if the sys-
tem knows with some certainty that a region labeled as a tree
lies about 100 feet from the camera and the occlusfén heuristics
indicate that the region is in front of a second region labeled
as a house then the tree's depth can be usged to set a minimum
bound on the distance of the house. Improving the estimate
of the house's depth can, in turn, be used to improve estimates
for the depth of any regions known to be behind the house such
as other trees.

The cycling of the adjustment routine stops when a
stable interpretation of the scene has been achieved. A
stable interpretation is one in which all the regions in the
world model either have a placement confidence above 80 per cent
or have a depth and orientation which is in agreement with the
depth and orientation of the surrounding regions. The spread
of information between the regions by a repeated application of
of an ad justment routine is similar to éhe relaxation techniques
used by Tanenbaum and Barrow (21) and Rosenfeld et al. (25) %o
econstrain the interpretafions‘of a scene or match a template
to a portion¢of an image.

Figure 10 shows a dspth plot of the house scene of
figure 2 after initial placement of all the regions but before

an adjustment. It represents the distance of each point in the
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scene from the camera by a scale of gray where the darker the '
point, the closer it is to the camera. PFigure 11 plots the depth
of the scene after one cycle of adjustment for all regions.
Notice how just one update has registered many of the regions

of the house and trees. The perceived depth of the scene after
five cycles of the adjustment routine is shown in figure 12.

The region boundaries produced by the segmentation algorithm are
drawn in on the depth plot to indicate how the location of regiomns
in depth changes.

The construction of the short term world model is
completed by designating regions as parts of particular objects.
Assigning a region to an object in the object list should not be
confused with assigning an object interpretation to a region.

For example, the placement routine using information from the
recggnition cone on shape, texture, etc., might assign the inter—
pretation of "house" to a region which forms the roof of a

house in a scene. But an object formation routine must decide
what regions ghould be taken together with the roof region to
form one particular instance of a house in the scene.

The object formation routine assigns regions to objeets
in the foiiowing way. PFor each region it checks to see if the
region has any neighboring regions with the same interpreta-
tion. If there are such regions, then the region under ¢én-
gideration is assigned to the same object ag its neighbors. If
no neighbor shares a common interpretation, the object formation

routine looks at the world model to see if the region might
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belong to an object which is occluded by another object in .-
front of it., If the region still can not be grouped with other
regions to form a single object, then a new instance of the
object is formed. Separate instances of an object may later

be merged into a single instance as the placement routine places
more regions into the world model and as the visual knowledge
and adjustment routines produce a better understanding of
gspatial relationships in the scene.

Figure 13 shows a simple stylized example of the
problem. Here a tree in the foreground divides a house into
several different regions. By using texture or shape cues it
is possible to determine the presence of a house and a tree
but only by developing a spatial understanding of the scene
can the program determine that all the house regions belong to
the same house with a tree in front rather than to two separate
houses with a view of the background between them. The next
section covers some of the specific heuristics used to obtain

this type of scene understanding and their organization.

General Visual Knowledge Routines

The general Visual knowledge routines contain the
knowledge used to interpret a scene in three-dimensions. The
types of information they use carrespond roughly to the major

monocular depth or perspective cues identified by psychologists
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Figure 13. A simple example of one instance of an
object, the house, divided into separate parts by an
occluding object in the foreground.
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(26). The cues used by the present program include texture
gradients, shadows and highlights, expected size, ground planen
occlusion or interposition, linear perspective, and motion
parallax. These routines are best thought of as general know-
ledge because they contain information which is largely in-
dependent of the specific: o6bjeets which might be in a scene.
These routines process regions as they are merged into the
short-term world model using as data the region descriptions
and the long-term object models.

The program's general visual knowledge consists of
sets of heuristies. REach set is grouped under the heading
of one of the depth cues and is associated with a routine.
The routine applies its heuristice to the regions as they
are being placed into the world model. All routines operate
logically in parallel and independently of one another.
Normally, the routines hypothesize a spatial relationship
between a region and one of ite neighbors and compute a weight
expressing the routine's confidence in the correctness of
that hypothesis. They can also change the object interpre-
tation of a region or raise or lower the confidence weight
in an interpretation. The hypotheses about a region’s orien-—
tation. are all represented in g common form and associated with
the region's description. The adjustment routine interprets
the hypotheses to obtain an improved estimate of the region's
depth as explained above.

Of the depth cues included in this vision model,
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occlusion is the most completely developed. Occlusion, usu-
ally referred to as interposition in the psychology literature,
(Massaro, 26) occurs when one object is positioned in front of‘
andher object in such a way that the projection of the object
in front onto the image covers up part of the image of the -
object behind. Except for scenes of polyhedra, occlusion has
beén used very little as a depth cue. In scenes of straight-
polyhedra, it dis possible to unrawvel overlapping objects by
categorizing vertices into seweral +types as Waltz's program
did (27). Ohlander (12) is one of the very few who has de-
veloped heuristics for resolving occlusion problems in natural
scenes, His approach compares the characteristics of regions
as opposed to the vertices.

The occlusion routine in this program uses about
30 different heuristics to decide if a region is overlapping,
is overlapped, or is touching another region. There are two
general categories of heuristics, semantic and nonsemantic.
The nonsemantic ones include a number of questions about the
positioning ard characteristics of one region with respect
to its neighbors. These heuristice are an extension of Oh-
lander's proposed technigques. An example of a nonsemantic
heuristic would be the rule that if one region is surrounded
on three sides by another region, then the surrounded region
occludes the other region. Many of the positional relation-
ships between regions are calculated using a minimum bounding

rectangle around a region. Implications of oeclusion for a
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region are weighted to reflect a confidence in the heuristic.

Semantic heuristics involve aregion's object inter-
pretation., They can be diviaed into é@ecial shape transforms .
and expected object relationships as expressed in the long-
term object models. An example of an expected relationship
is that a region labeled as a roof would be expected to touch
a region labeled as a wall rather than occlude it or be occluded
by it. Another example would be the long-term model for a
window which would indicate that a window region lies in the
same plane as a surrounding wall region.

Shape transforms are transforme in the recognition
cone which match part of the outline of an object and imply
that object's name. For example, certain transforms match
roof outlines to detect houses and other transforms match the
outline of trees. When these transforms succesd in matching,
they indicate that the object they match lies in front of the
bordering objects. This information on oceclusion is passed
along to region descriptions by the segmentation algorithm,

Shape transforms represent one solution to the fig-
ure-ground problem of perceptual psychology. A region is
perceived as figure when the boundary between that region
and its neighbors is perceived to belong to the contour of
that region. When the contour of a region is perceived, it
means that it must lie closer to the viewer than the neighbor-

ing occluded regions. Where a contour can be perceived as



belonging to either of two adjacent regions in an image then
an ambiguous interpretation can result. Where other depth
cues are absent or are also ambiguous, then figure-ground
reversals occur. There are manyrexaméles of such reversing
images. One ef the best known is the faces-vase picture by
Bdgar Rubin. The presentation of a similar ambiguous figure
to the vision model described here would result in conflic-
ting hypotheses as to which regions were occluding each other
and could lead to oscillation in the depth estimates assigned
to the regions during the cycling of the adjustment routine.

The visual knowledge routines for inferring depth
from expected @bjeet size and from the ground plane hypothegis
are quite simple compared to the occlusion routine. The ex-
pected size routine uses the one heuristie: that the area of
an object's image is proportional to its actual size and dis-
tance from the eameré. By retriewing ‘the expected size of an
object from the long-term model of that object, the routine
can estimate an object's depth. The size can be predicted with
much more certainty for some objects than for others and. this
degree of certainty is expressed in a weight.

Using the hypothesis that the ground is a plane,
the ground plane rautine”can calculate the depth of points in
the image using an apprdiimate model of the camera's position
and orientation (see Duaa.end Hart, 24). The grbﬁhd plane

hypothesis has been used successfully and frequently in in-
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door robot vision programe. The potential for hills and dips
in near views of outdoor scenes makes the hypothesis much
liess reliable but still a useful cue.

The texture gradient routine estimates a region's
orientation by using siimple measurements of the size and coarse-
ness : of texture elements computed by the recognition cone.
Horn (28) proposed the use of texture gradients, in a manner
gimilar to shading gradients, to derive the precise shape of
ebject surfaces. Texture gradients have been used, in a pro-
gram by Bajcsy and Leiberman (29), to estimate object depth,
in particular the surface of the ground. The routine for
this present system uses texture gradients in a more heuristic
and 1ess‘preeise way. The program measures changes in texture
coarseness between different windows over a region., Although
texture gradients could be used to determine point by point
chamges in surface curvature for a region, the present routine
usges only average changes in texture coarseness over a whole
region. These changes are interpreted in terms of a tilt and
pan for the regioﬁ»with respect to the image plane. The long-
term object models help resolve ambiguities in interpreting the
average gradients. For example, the model for a brick wall
indicates that it is usually perpendicﬂiar to the ground and
therefore the gradient routine will tend to interpret a tex-
ture gradient for a. region labeled as a brick wall only in

terms of a pan angle for the region away from the image planel
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Shadows and highlights are detected by comparing
the descriptions of neighboring regions. Two regions are
rated for their similarity using the Zobrist-Thompson distance
function on the region descriptions. The function is computed
twice, once with average light intensity included as one of
the terms of the functiion and once without it. If the two
ifegions differ in light intensity but are similar in other
properties, then they will be judged as being shadowed (or
highlighted) and unshadowed (or not highlighted) portions of
tlie same region. Special weight is glven to the texture des-
criptors since saturation and hue values can change in com—
plex ways when a region is shadowed.

The object interpretations of two regions are also
compared for similarity. If the regions share a common object
name, then changes in their characteristics are more likely
to be interpreted as shadowed and unshadowed parts of the
same object. Conversely, two regidns with different object
names may be reinterpreted if the shadow routine finds that
they are very similar except in light intensity.

The shadow: rolitine makes no attempt to infer what
objects are casting shadows. Extending the shadow routine
to make such iriferences from the three-dimensional world model
and hypotheses about the direction of the lighting source
“would greatly enchance the program's ability to detect shadows
and would provide additional depth information.

Linear perspective is the final depth cue used by
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the system. It has been used by artists in paintings since
the Renaissance to convey a sense of space in two-dimensional
pictures. It inwvolves a set Of'éSSumptiOﬂS about the way
objects and surfaces are foreshortened in an image as they
slant away from a viewer. In particular, lines that are par-
allel in a scene and recede from a viewer appear to meet at
a distant vanishing point in an image.

Although the equations of linear perspective are
well understood (24), it is still guite difficult for a com-
putef vision system to detect it in complex outdoor scenes
with partially occluded objects, irregular region boundaries,
anﬁ segmentation errors. Furthermore, the interpretation of
the slopes of lines in an image, even when they can be recog-
nized as approaching a single point, requires object specific”
knowledge on the part of the viewer, human or machine. The
painting, Les Promenades d'Euclide by René Magritte, provides
an example of the power and pitfalls of linear perspective.
The artist depicts a roof with a conical steeple next to a
view of a Parisian boulevard receding into the distance. The
two images are juxtaposéd in such a way that the foreshortening
of the street, as its sides slant toward a vanishing point
on the horizon, produces éxactly the same outlineas the poin-
ted sides of the steeple. The sloping sides of the street give
a strong impressioanf the street lying on the ground and run-—
ning off in the distance. For the steeple, exactly the same

configuration of lines helps convey the feeling of a conical




28.

object rising perpendicular to the ground.

The linear perspective routine copes with some am-
biguities by consulting information in the world model and
information about specific objectes in the long-term object ‘
models. The routine starts by trying to measure the fore-
shortening of a region in two directions. It calculates the
‘ height‘and width across a region by scanning the region from
top to bottom aﬁd left to right. Next, the average derivative
or change in the neight and in the width of the region is
computed. The averages are used as heuristics for estimating
the foreshortening in a region along two axes. When calculat-
ing the averages, the routine disregards points where the world
model indicates that a region's boundary is occluded by another
region. To exprese the foreshortening of a region as a tilt
or pan of the region away from the camera, the routine must
consult the long-term object model corresponding to the region's
interpretation. In the case of a brick wall, the long-term
model indicates with weights that the wall frequently has par-
allel sides and is usually perpendicualr to the ground. A
narrowing in a wall region along the horizontal axis of the
image plane would then be interpreted as a pan away from the

image plane.

Long-Term Object Models

A long-term object model describes the general char—
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apteristics and properties shared by many different instances
of a particular object. The main purpose of long-term models
is to aid in the construction of the short—tefm,%ofld mode}
‘by providing information on the spatial organigation of objects
and providing contextual constraints which can reduce the
‘pdésible interpretations for a region. The models contain the
system's knowledge of specific objects, which is used by the
visual knowledge routines, placement routine, and the object
formation routine. The models are called "long-term" to dis-
tinguish them from the short-term object descriptions in the
world model which fépresent specific instances of objects in
view in a particular scene.

The object models are probably most similar in flavor
to the models of Sakai et al. (7), with two important differ-
ences. One, these models place much more emphasis and detail
on describing the spatial relationships between the parte of
an object and other ‘objects. Two, Sakai et al. match their
models against region descriptions to recognize objects in the
scene. In this system, identification of objects is done by
the transforms in the recognition cone and not by matching
the long—terﬁ models to region descriptions.

The present éystem's models are implemented as in-
gstances of SIMULA classes so that they all have a common form.
The models contain average values for surface texture and hue,
values for expected object size and variations in size, the

name and relationship of any siimpler objects that form the
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object, and contexts that the object is likely to be found in,
along with the orientation ef the object with respect to other
objects in that context. The models also indicate for eac@
object any larger or more complex object that this object is

a part of, and special descriptors which indicate, for example,
whether or not the object sits on the ground, has parallel gides,
or is likely to consist of several distinct regione. The model
for an object also contains pointers to transforme in the re-
cognition cone that imply the presence of that object in a

scene,

The long-term model for a brick wall that has been
given to the program will be described to illustrate a typical
model. A wall has an expected size but 2 low confidence weight
since brick walls vary widely in size. A typical texture and
hue are specified for red bricks at a standard reference dis-
tance. The model indicates that a wall does consist of bricks
as subparts and it can itself form a part of the object house.
Expected contexts or associations for a wall include windows
which are specified to be surrounded by the wall and to lie in
the same plane ag the wall. Other walls can also touch a wall,
almost always at right angles. A wall is specified to be found
near trees and grass and to touch théhground, usually forming
the vertical leg of a right triangle. The wall model designa-
tes a wall as being recognizable at the region level, meaning
that it can consist of a single region of fairly uniform pro-

perties, as opposed to an object like a house which consists
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FIGURE 14.

THE CONTENTS OF A LONG TERM MODEL

Size, variation in size.

Parts, example: walls and roof for a house.

Relationships between parts.
Specified as angles of contact between parts,
and orientation of each part with respect to
ajoining parts.

Expected contexts for an object or any larger
objects that this object is a part of.

Orientation of the object with respect to other
objects in a context expressed as an approx-
imate roll, tilt, and pan with respect to the
object.

Expected surface properties: color, texture, etc.
(if applicable)

Special predicates (see text): "on the ground",
"vertical to ground", "parallel sides", "segment

- level”, planar, etc.

Backlinks to the transforms that imply this object.
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of several different looking parts. Finally, the model spec-
ifies that a wall is a plane and usually has parallel sgides.
Most of the information in any object model is
weighted with a confidence value. The weight lets routines
such. as the visual knowledge routines rate the probability
that their hypotheses are eorrect. Spatial orientations, like
the relationship between a wall and a window, are given by a
set of standard parameters which indicate probable angles
of contact between objects and whether one object is usually
above or below or beside another object.
The major parts of a long-term object model are

summarized in figure 14.

Processing Scenes Over Time

This system is designed to merge successive views
of a scene over time to enhance the accuracy of the world
model and reduce processing time. For an industrial robot
that must navigate through and manipulate objects in its en-
vironment, integrating a sequence of views over time is im-—
portant for several reasons. It maintains a continuity from
one view to the next while providing information to direct
the analysis of each new input image in terms of the last.
It increases the system's confidence in the object interpre-

tations and the world model by providing new perspectives on
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objects and permitting monocular motion parallax to be used
for depth calculations. Analyziné scenes over time is crucial
if any objects actually move in the scene. Finally, a vision
system that can process several views of a scene provides a
robot planner top down control over what is perceived by con-
trolling what views of a scene the vision system gets.

This system uses the information from a previous
view in seweral ways to assist in processing the current view.
It can influence lower level processing by using the objects
that were found in the previous view to select additional
transforme to be used in the recognition cone. It can lower
the threshold and reweight the terms of the Zobrist-Thompson
operator to get a coarser or finer segmentation. It uses
the region descriptions from the last view to match up cor-
responding areas of the current view. DPaired regions from
the two views are used to select an interpretation for the
new region, assign it to an object, and to get an additional
depth estimate from the parallax in the region's position in
the two views. The pairing of regions and the motion parallax
calculations are designed but not implemented at this time.

Region matching ie performed by a vieual inference
routine for motion parallax. The routine assumes that dif-
ferent views of a gcene are relatively close together in time
and viewing position. Even go, most regions can be expected

to change in position and size from one image to the next.
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This characteristic makes the pr&blem of motion parallax more
similar to the problem of regilstering stereoscopic images made
at the same moment of time than to the problem of detecting

a small number of moving objects from several views of a scene
taken from the same camera position. Nevertheless, this sys-
tem's parallax routine matches region boundaries in & manner
more reminiscent of the movement deteection wwrk of Potter (30),
Aggarwald and Duda (31), and Nagel (32) than of the point for
peint cross correlation approach of such stereovision programs
as Hannah's (33).

The motion parallax routine is called after the
placement routine has made an initial placement of a region
into the short—-term world model. The parallax routine at—
tempts to match the boundary of the region with the boundary
of the corresponding region in the previous scene. It reduces
matching expense by first selecting a small set of candidate
regions from the previous scene, matdhing a region against
these candidates with a simple comparison function hased on
the regions' descriptions, and using the depth information
in the world model generated from the previous view.

Before any matching occurs, the world model built
up from the previous views is transformed as follows to cor-
respond approximately to its appearance in the next input
image. The transformation is made by moving segments accor-

ding to their depth and orientation and the parameteré‘des-
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cribing how the camera will be moved before the next view.
New region descriptions are computed to complete the update
of the world model. The model is then saved and a new image
is input and segmented. The regions from the new segmentation
can now be matched against the o0ld model to find their cor-
responding regions in the previous image. Any discrepancies
between the predicted location of a region and its actuai'pés-
ition in the new segmentation can be attributed either to in-
accuracy in the model's estimate of depth and orientation for
the regién or fbwéctual movemeht of the object that contains
the region.

Each region from the current view of the scene is
matched in turn against a set of candidate regions from the
previous image. A region from the current view of the scene
that is being matchéd is referred to here as the target region.
The set of candidates contains regions in the same general
area of the image as the target region and also regions of
similar size and intensity from elsewhere in the previous
image. A comparison function measures the similarity between
the target region and the candidate regions and the‘most gim—
ilar mateh is selected. The comparison function is a Zobrist—
Thompson operator which forms the sum of the weighted differ-
ences between the two regions' properties. The properties
used are textual measures, hue, saturation, intensity, order

of cohnectivity or the number of different neighboring regions,
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object interpretation, and region size. Target regions which
are not rated By>fhe 70brist-Thompson operator to be similar
to any of théwcandidates are left unmatched. Conflicts be-
tween two target regions matching on the same candidate region
are resolved by selecting the closeet match.

Once regions from the old and new views have been
matched, the motion parallax routine attempts to match the
boundaries of the pairs of regions to get a new estimate for
a region's depth and orientation. Normally, the depth est-
imate from the pafallax routine is treated like the hypothesis
of any other visual knowledge routine. These hypotheses are
combined with other estimétesmby the adjustment routine. But
a large discrepancy between the<depth.of a region indicated
by motion parallax and that predicted from the other visual
knowledge routines in the old world model may be interpreted
as object motion. if the long-term model associated with the
object interpretation of the region indicates that it is a
movable object, then the discrepancy is attributed to object
motion. If the long-term model indicates that a regiomn is
unlikely to be moving, then the discrepancy is resolved by
either discounting the match as a pad mateh and disregarding
it as a depth cue or by accepting the depth estimate from
the old world model, depénding on the Siﬁilarity rating for
the match and the confidence weight for the region in the

old world model.
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Results

The vision model described in the preceding section,
with the exception of the motion parallax routine, has been
implemented in SIMULA and is running on a UNIVAC 1110 computer.
The program was given long-term object models and transforms
for a number of objects including tree, house, grass, sky, car,
street, window, brick wall, concrete wall, roof, and grouﬁd.
Figures 3 and 4Vand figures 6 through 13 show the program's
output at various stages of processing for figure 2 as the
input scene. The performance of the recognition cone on figure
2 and on other data is reported elsewhere (18).

Figure 15 shows a picture of the distinct objects
found in the scene, where each individual instance of an object
is represented by a different uniform shade of gray. Figures
16 and 17 give the major group of trees fringing the house
and the major regionbof grase respectively. All of the regions
of the house which were correctly identified as belonging
to a house were also correctly merged into one house ag shown
in figure 3. Using the world model and its occlusion heuris-—
tics, the program correctly inferred that the wall which ex-
tends in front of the house was part of the house ewven though
the wall is totally isolated from the rest of the house by
trees. A few small portions of the roof of the house were in-

correctly identified and therefore were not incorporated into
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37.

the house in the short-term world model,

The depth jplot generated from the world model shown
in figure 3 represents the distance of each point in the scene
from the camera by a grayscale value. The lighter the point
the farther it is from thé camera. The boundaries of the
objects found by the program are outlined on the depth plot.
Pigure 18 is the same as figure 3 but it gives a scaled wvalue
representing the depth of each point in the scene.

Figures 3 and 18 fﬁdicate that the program success-
fully determined the general spatial organization of the scene.
The world model that was formed indichtes that the grass re-
Jcedes from the camera in the foreground and that the trees and
house rise verticéll& from the ground. The wall in front of
the house does extend in the model out away from the house
and the large tree near to where the wall meets the house
is represented as standing in front of the ‘house. Mot of the
complex structure of the house was missed by the progfam.

The house was treated as if it were viewed front on. The
program did not find the front first floor exteﬁsion on the
‘house and did not detect the boundary betwéen the end of the
house which slants away to the left and the front of the house
which slants away to the right. Theése errors are due prgm~
arily to the failure of the texture operators to detect changes
in the brick or tree texture. After averaging in the cone,

the resolution was too coarse to detect texture gradients of

that scale.
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Figure 19 gives a list of CPU execution times for
warious parts of the program on the house scene of figure 2.
The total execution time for an entire run of the program
from a 600X800 image to the output of the world model is ap-
proximately 4 minutes, 13 seconds with an additional 1 mimute,
45 seconds spent by SIMULA in garbage collection for'a total
CPU time of about 6 minutes for an entire run. The total pool

of storage available to the program is 56k of 36 bit words.

Diseussion

Three aspeets of the computer vision model presented
here should be emphasized: the use of multiple depth cues,
the breakdowm: of visual information into several distinct
types, and the spatial organization of a scene. The predic-
tions of all depth cues are represented in a common form and
combined by a single procedure. The cycling of the adjustment
routine lets the higher weighted and more accurate depﬁh
information be spread'over the scene. Combi¥ing cues which
indicate an absolute distance, such as expected size or motion
parallax, with cues thdt indicate relative positioning, such
as occlusion or shadow, lets the program resolve the depth
of regions that would be ambiguous using only one cue. The
house in figure 2 is an example. Since the base of the house

is largely screened by trees, it would be difficult to use
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the ground plane hypothesis directly on the house. But the
ground plane hypothesis can be used on the grass and occlusion
knowledge can indicate that the trees are touching the grass
and that the house is behind the trees. In this way, the
ground plane hypothesis can indirectly contribute to the depth
determination of the house.

It was useful in the design of this vision model
to structure the system's knowledge into four distinct types.
The first type consists of operators which characterize the
image in terms of a set of features or ‘descriptors. This type
includes such operators as edge detectors and measures for
hue and texture. Object-specific knowledge is the second
category of visual information used. It specifies what speci-
fic objects look like in terms of size, shape, and surface
characteristices and in terms of expected contexts for the
object. Object appearance is described in terms of the fea-
tures of the first kind of visual Knowledge. In this program,
object-specific knowledge is represented by recognition cone
transforms and by long-term object models. In contrast to
object-specific krnowledge, general visual knowledge represents
information, largely independent of what particular objects
might be in the scene, about the mapping of a three-dimensional
scene onto a two—-dimerisional image. The final type of know-
ledge is the short-term world model. It is both the end re-

sult of processing a scene and the basis for processing the
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next view, The world model is different from both object spe-
cific knowledge and general knowledge in that it is a descrip-
tion of the specific characteristics of the actual objects

in view.

The appropriate output for a computer vision system
depends upon what it is being used for. An optical character
recognition machine need only supply names of letters in a
left to right and top to bottom scan. A flexible, mobile
industrial automaton needs to know not only what objects are
in front of it but also fairly precisely where they are located.
The vision system described here sitrives for the latter type
of scene understanding. Some sort of spatial organization is
necessary if a vision system is to know not only what kind
of objects 1t is observimg but how many and were they are.

The use of multiple depth cues working on a common three-dimen-
sional world model enables the present vision system to ap-

proach that type of scene description.
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