PARALLEL-SERIAL PRODUCTION SYSTEMS WITH

MANY WORKING MEMORIES
by

Leonard Uhr

Computer Sciences Technical Report #313

January 1978

PARALLEL-SERIAL PRODUCTION SYSTEMS WITH MANY WORKING MEMORIES*

Leonard Uhr
University of Wisconsin

Abstract

This paper describes several extensions to standard Production
System (PS) languages that appear to make them more conveniently
usable for a wider variety of perceptual and cognitive systems. The
extensions are described (to parallel productions, multiple memories,
and productions that are implied by productions), and a programming
language ((PS)ZMn) is presented that incorporates them. Sketches are
given indicating how several different kinds of cognitive and per-
ceptual systems might be coded in this extended language, and sug-
gestions are made as to additional extensions that might further

augment the power and convenience of such a language.

*This research has been partially supported by National Science
Foundation grant MCS76-07333.

2

Introduction

This paper describes a Parallel-Serial Multi-Memory Production System

language, (PS)ZMn, that handles 1) parallel sets of productions,

2) more than one working memory in which to Took for the conditions
of productions, and fire the consequences of successful productions,
and 3) productions that are fired by productions. These extensions
would appear to be convenient for a variety of systems, where
parallel processes and dispersed memories are needed. The following
such systems are briefly described:

A) Several "Knowledge Sources," all working in parallel with
separate working memories, but communicating through a common single
"Blackboard" memory.

B) Systems for parallel compatability relaxation, where a
number of nodes are examined in parallel, for contextual information
that might serve to disambiguate them.

C) Discrimination nets (e.g. for "concept formation" and "EPAM"),
where a sorting tree is used to find the appropriate name.

D) Parallel-serial perceptual systems, where sensed information
is successively transformed, by layers of parallel feature-detectors
and characterizers, into successively more abstract memory represen-
tations.

E) Parallel search for solution paths in problem-solving.

The Appendix contains programs (in EASEy/Snobol*) for (PS)ZMn and
for a traditional (serial, single-memory) Production System, along

with a short Primer description of the language.

*See Uhr, 1974a; Griswold et al, 1968.

-3-

Parallel-Serial Production Systems With Many Working Memories

It is often necessary (as in systems for perception, memory search
and heuristic problem-solving) to apply a whole set of transformations,
or productions, to a Working Memory store in parallel. Systems with
several knowledge sources use parallel processes and several memories.
In multi-layered or hierarchical perceptual systems, the conditions of
productions must be looked for in one WMi and the consequent acts
effected on another WMj. Therefore a whole set of WM, WM],O..WMN are
needed. Each production will Took at a specified WMi (or several WM)
and, if fired (because all its conditions have been satisfied by a
match with elements in that WMi) effect its consequent acts (e.g.
insertions, deletions, arithmetic operations, generations of produc-
tions, input-output) on the specified WMj.

This paper describes extensions to current Production Systems
(PS) that handle such processes, without the often cumbersome code

otherwise needed, but also in a well-structured and simple way.

Traditional Production Systems

A Production System (PS) (Newell and McDermott, 1975; Rychener,

1976 Waterman, 1975) consists of an ordered set of Productions (P),P1,..

each with a set of Conditions (C) and a set of consequent Acts (A),
plus one Working Memory (WM). E.g.:

P1: RED BLUE == GREEN DELETE (RED) DELETE (BLUE)

P2: BROWN YELLOW == DIRT

P3: GREEN-DIRT = POOR-GRASS (STOP)

WM: RED BLUE YELLOW BROWN

.PM,

.

Each Condition specifies a set of elements. An element specifies a
string (or list structure) of sub-elements to be matched with strings
found in WM. The match usually demands that the first sub-elements
match, and that each subsequent sub-element in Ci match a subsequent
(but not necessarily the next) sub-element in WM., Variables are
usually bound by whatever they find in the first match where they
occur (rather than have the system try all possibilities). Acts specify
insertions or deletions in Working Memory, the generation of new
Productions, or any of several primitive Acts, 1ike OUTPUT, or STOP.
A Production "fires" its Acts if all its Conditions are satisfied.
Usually the system moves from the top Production down, until one
Production fires, when it jumps back to the top, to repeat the
process. Some systems use different flows, e.g. continuing on to

the next production whether the prior one fired or not (note that
this does not mean that Productions are applied in parallel, for

each fired Production immediately effects its Acts, and therefore
modifies WM). Some systems find all Productions that succeed, and
then use one of a variety of criteria for choosing and firing one
Production, e.g. the one that matches the most recently added element

in WM (Newell and McDermott, 1975).

Parallel-Serial Multi-Memory Production Systems

Living cognitive systems effect sets of parallel transformations,
and use a number of temporary buffer Working Memories. Such
parallel-serial multi-Tayered architectures seem similarly desirable
for computer-programmed systems since (one they run on the parra}]e]—

serial computers,see e.g. Duff, 1976, Lipovski, 1977, that current

-5-
technology is on the verge of making feasible) they offer great
economy and power.

(PS)ZMn extends traditional Production Systems so that they can
conveniently handle parallel processes applied to more than one
Memory. The key extensions include the following:

A) Any number of Memories can be specified and used, with sets
of Productions looking at and firing into each.

B) Each Production can look at several Memories, and fire
into several Memories, if desired.

C) Sets of Productions can be applied in either a Parallel or
a Serial mode, as specified, and the mode can be changed during a
run.

D) A Production can fire another Production, or set of
Productions, to be applied, as specified.

E) After a Production succeeds in firing, the system can
either attempt to fire the next Production, or go back to attempt
to fire the first Production, as specified.

A program (coded in EASEy/Snobol) for this extended Production
System (PS)ZMn is given, and described in detail, in the Appendix,
along with a brief Primer explaining how to program in it, and a
program for a standard serial single-memory Production System.

These extensions allow for relatively convenient coding of a
variety of perceptual and cognitive systems, some examples of which

are described below.

Some of the Uses of Multiple Memories, and of Parallel

and Dynamically Implied Productions

A single Memory can always be set up to do anything that

multiple memories can do (since standard Production Systems are based

-6-

on Post Productions they are universal computers, and anything can be
programmed in them) - but often at a heavy price. Essentially, the
system can no longer use the Memories' names and attendant pointers

to directly access sub-sets of information in the relevant Memories.
Rather, elements in the single Memory must be given appropriate name-
Tike tags, and the system must use the relatively slow Production-
matching routines to search for the appropriately tagged elements. All
the elements in a particular Memory could be grouped together, so that
only one tag was needed. But that means the system must work with

and try to match a large and cumbersome Tist of lists - and that can
be a slow and costly process. Alternately, each element can be
separate, but each with the same Memory tag. But that means the
search for the appropriate tag must be turned into a loop, and will
have to search through the entire Memory.

The original development of Production Systems was directed
toward work with a very small "Working Memory" for scratch-pad 1ike
intermediate results, one that models the human "short-term memory"
that is capable of handling some small number like 7 items. For such
uses there is no need to add more Memories or other structures. But
for a general-purpose programming language multiple Memories serve a
number of purposes.

Without a parallel capability of the sort provided in (PS)ZMn, a
program must make several extra passes through a set of transforms
to simulate parallel processes. The first pass would not actually
change the Memory; rather, it would output its set of acts each
specially tagged as a temporary output. Then the program would have
to keep applying a set of Productions that Tooked for all these tags,
use the output information from the tagged elements to modify Memory,

and erase all these tagged temporary elements.

-7-

The dynamic implication of transforms gives the programmer
powerful control capabilities for structuring the flow of processes.
Without this feature a program must use a production that adds an
element to Memory that only one other Production - the one to be
fired next - will succeed in matching. This means the system must
make an extra cycle through its productions to find that next
production, in addition to adding and deleting the identifying
element. Dynamic Productions make this process direct and simple.

The present system can use dynamically implied productions, but
it cannot generate them. For it can insert newly generated produc-
tions only into its main list of Productions (as is done by standard
Production Systems). But it also needs the ability to insert a
Production's name into the list of Consequences of another Produc-
tion, and to choose that Production correctly. This needs a
capability of modifying a Production, and not simply creating one,
and of accessing and conveniently storing histories of the names of
Productions fired. Such an extension is discussed below, as part of
a more general ability to create, modify, and erase both Productions
and Memories - that is, to treat productions and memories in exactly

the same way.

-8-

Parallel Sets of "Knowledge Sources"as Parallel

Communicating Production Systems

An attractive structure for cognitive and perceptual systems
is one that uses a set of independent "Knowledge Sources" (e.g. Reddy,
1973, Lowerre, 1976), or "demons" (e.g. Lenat, 1977). Each works at
the same time, independently of the others, and therefore could be
executed in parallel by one processor in a suitable network of
minicomputers, or parallel processors. All communicate with one
another by passing information into and out of a common "blackboard"
memory. Such Systems cannot be conveniently coded in a standard
Production System language 1ike PSG or PAS-2, because the knowledge
sources act in parallel, and often contain parallel processes.

Such a system can quite straightforwardly be handled by
(PS)ZMH, as follows: Each Knowledge Source is executed in turn,
since each works with its own local memory. Then, after all have
completed their processes, a set of parallel productions transfers
their (present, intermediate) results to the common Blackboard
Memory. Then a second set of parallel productions transfers selected
information from the common Memory to the individual Knowledge
Sources' memories.

2Mn make the transfer of infor-

The parallel capabilities of (PS)
mation into and out of the common Memory very convenient, since there
is now no danger of unwanted interactions between Knowledge Sources.
And now each Knowledge Source can itself contain a mixture of parallel
and serial flows of productions. And each can contain one (or more)
separate menmories, whereas in a standard PS each subset of memories

would have to be protected (in a very cumbersome way) from all

Knowledge Sources that did not have access to it.

-9-

Most large Production-oriented programs of this sort appear to
be Production Systems in spirit, but without being coded in an
actual Production System language. The extensions handled by (PS)ZMn
would appear to move in the direction of a language that might be

suitable for convenient coding and running of such large production

Production Systems.

Compatibility Pairs

A production for relaxation using pairs of compatibility labels
(e.g. Zucker, 1977; Rosenfeld and Davis, in Press; Barrow and
Tenenbaum, 1976) need only be a 2-tuple, designating the label to be
Tooked at and the context label. When both are found the label is
fired into an output Memory. But each label must be search for in
its designated memory, and many such productions must be applied in
parallel. And to iterate to more distant contexts each must imply
the next production to apply. The present system will handle
deterministic constraints, if it raises a flag with each success, tests
and Towers the flag after each iteration, and then stops iterating
after one pass without raising the flag (meaning that nothing new
has been accomplished). Extensions to be discussed below will handle
probabilistic constraints and dynamic stopping rules, and also
situations that mix compatibility pairs with other types of

transforms.

-10-

A Production System that Uses Compatability Pairs to

Choose Among Productions

Zucker, 1977, has suggested that compatibility pair relaxation
techniques might fruitfully be used to choose the single judged-best
Production to fire next, when a serial Production System finds that
more than one Production might fire. (This is the case in those
standard Production Systems that, instead of firing the first
Production that succeeds, get all Productions that succeed, and then
use some criterion to choose among them.)

2Mn allows such a system to be coded entirely as a parallel-

(PS)
serial Production System, as follows:

List all the Productions to be chosen among as a parallel set
on the MASTER list (the main list of productions - see the Appendix).
Each Production implies all of its compatibility labels as dynamically
implied Productions on its set of ACTS. Thus all Productions that
succeed fire their compatibility labels onto the set of (parallel)
productions that will fire next, after this parallel set has been
completed. Then this parallel set of compatibility labels will be
applied. This procedure continues, as in the proceeding section,
until either a single production remains or no more relaxation can be
done. Thus the separate relaxation phase is absorbed into and

handled by the (PS)ZMn Production System.

-11-

Discrimination Nets, Concept Formation, EPAM

The program uses a tree of Production, each making one test. The
Master list starts with a Production that tests for the first node of
the discrimination net (really a tree), followed by all Productions
on its negative path., If it succeeds it implies the Production on
its positive path to be immediately executed in the serial mode follow-
ed by all Productions on that node's negative path. Thus the fragment
of a discrimination tree shown in Figure 1 needs the Productions

shown in Table 1 (a number refers to the test for that node):

+M*> MASTER = 1, 3, 7...
1 =2, 5,...
3 =6, 8,...
4 = output 'yes',9
9 =10, 11...
10 =12, output 'no'
Figure 1 Table 1

Note that the only Productions on the MASTER list are the first and
the successive '-' (failure) branches from it. All other Productions
are implied by Productions that fire.

This program uses a true discrimination tree, where each
Production tests only the single next node. This is in sharp con-
trast to the EPAM program coded in PAS-2 (which uses a template for
each entire path in the tree, and has no ability to dynamically imply
transforms).

A program that generates nodes to build a true discrimination tree

must wait for extended generation capabilities, as discussed below.

-12 -

Layered Perceptual Systems (E.G. Cones, Pyramids,

Hierarchical Relaxation

The use of a sequence of several memories between pairs of which
are sandwiched sets of parallel productions can be quite straightfor-
wardly coded as a parallel-serial production system. Productions
need only be stored as parallel sets, their INput MEMory and OUTput
MEMory specified for each such set, with the OUTput MEMory for one
set the INput MEMory for the corresponding subsequent set.

Dynamically implied transforms can be handled as productions
that are implied as consequent acts of successful productions.
Iterations through relaxation can be handled by using the same INput
MEMory and OUTput MEMory for several cycles. These would be
especially attractive for parallel-serial layered perceptual systems
such as the cones and pyramids being developed by Hanson and Riseman,
1974; Tanimoto, 19763 Uhr, 1972, 1974b, and others.,

Such systems would benefit greatly from several extensions
(that are projected for future productions systems). These include a)
weights, thresholds, and probabilistic productions, b) a convenient
way to iterate through a whole array of memory Tocations (as in the
2-dimensional retinal mosaic), applying the same set of parallel
productions in parallel to each cell in the array, and c) techniques
for choosing among alternative implications (as in naming and
describing), and for deciding when to choose (as in deciding when to

stop relaxing).

-13-

Heuristic Problem-Solving

A heuristic problem-solver could take advantages of several lTevels
of parallel processes, given a suitable language. Typically, a whole
set of heuristic evaluation functions is to be applied in parallel to
a node that might be a candidate for further search. And a whole set
of such candidate nodes might conveniently be evaluated in this way,
in parallel.

A (PS)ZMn program with the following structure can handie such a
system:

The set of heuristics is coded as a parallel set of Productions.

For a heuristically guided search for a path from a set of
Givens to a Goal (or from Goal to Givens), the Givens (or the Goal)
are input as elements in the first WM. The Rules of Inference (some-
times called legal moves, transformations, etc,) are coded as a
parallel set of productions and put on the MASTER Tist. They are
applied, giving the buds (which are put into a second WM) from the
presently achieved expressions, delete all elements in the first WM,
and fire the set of heuristics (coded as a second parallel set of
productions). The heuristics now look at these budded expressions,
and accumulate the evaluation of each. They are followed by a serial
set of productions that chooses and puts into the first WM the most
highly valued expression(s), deleting all expressions in the second
WM. The Rules of Inference are again applied, and this process

continues.

-14-

I have ignored a number of important details, but almost certainly
several more Working Memories will be preferable - e.g. to store the
pointers back from buds to their fathers for later use in getting

the solution-path, and to get that path.

-15-

Some Additional Extensions That Would Seem to be Useful

There are several further extensions that would appear to make
for substantial further improvements in the ease of coding of
cognitive and perceptual systems, and the resulting transparancy
and clarity of structure of the resulting systems. These include
the following:

A) Probabilistic transforms would allow for the merging of
multiple implications, from perceptual characterizers or problem-
solving heuristics. This entails rather simple extensions (that will
be reported on in a subsequent paper): 1) Associated with each element
of a condition will be a number (that can be interpreted as a weight,
probability, fuzzy value, or whatever the programmer desires),
associated with each production will be a threshold, and associated
with each implied act will be a weight. When the combined weights
of successful conditions exceeds the Production's threshold, the
Production will be considered to succeed, and fire its implications
with their assigned weights. 2) Several implications of the same
thing will have their weights merged. 3) When this is specified in
the program, then the system will choose among alternative
implications from among some mutually exclusive set that the
programmer has specified.

B) A set of Productions should be able to iterate conveniently
through an array of memories. This would allow for very convenient
and straightforward coding of perception systems, e.g. pyramids and
cones, and relaxation labelling, where sets of transforms (coded as
Productions) could be applied to the different cells, or regions,

of the retinal image, or internal abstracted images.

-16-

C) A system should have a more general set of capabilities
for creating and erasing lists (whether Productions or Mermories),
and adding and deleting information to and from these lists. This
would allow for the convenient building, and modifying, of complex
list structures and graphs of information. If done with as much
generality as possible, it should also make Productions and Memories,

and their manipulations, as similar as possible.

-17-
Discussion

Today's production systems have a heritage much older than Post's
productions, and much broader than problem-selving. For Post pro-
ductions are probably the single Turing machine-equivalent formulation
that most directly embodies that elusive (and possibly imaginary)
entity, "intuitive thinking." The rules of inference of Euclid's
geometry, and of Aristotle's syllogism, are very similar to productions.
Thus modus ponens (If A then B; A is true, therefore B is true), and
the more modern mathematical function or mapping, which transforms from
sets of things to new sets of things, as specified, are closely related.

And this type of thinking has repeatedly been re-invented, as the
basis of diverse systems of science and of thought. The Tinguist's
rewrite rules and transformations, the physicist's Feynam diagrams,
the psychologist's S-R mappings, the lines of reasoning of detective,
diagnostician or trouble-shooter - these are only a few of the examples
of the kinds of thinking people, whether technically trained or not,
frequently if not almost always fall into.

So an embodiment of thinking in terms of productions would seem
especially desirable. We could use it conveniently; we could under-
stand it; and it might well be appropriate, and powerful. But it is
therefore especially important that the particular basis we choose
be sufficiently flexible and powerful so that it does not limit the
person who programs, or formulates, a system.

The tree major extensions to Production Systems incorporated into
(PS)ZMn - 1) the ability to apply productions in parallel, when
desired, 2) the partitioning of information into several working
memories, and 3) the firing of productions to be applied next by

productions that are fired - often appear to go together, and to

-] 8~

complement and enhance one another. But one might prefer to use only
one, or two, of these extensions, for the following reasons:

1) If it is known that all prograrmers who will use the pro-
duction system language will code all their programs using only
serial productions, then the parallel capability is not needed. Or
one might want to force all programs into the serial discipline, to
try to develop as powerful as possible a set of serial algorithms
(e.g. so that they will execute efficiently on serial computers).
This might be of more general value if we had reason to think that
thinking is best handled serially. But many ccgnitive processes,
especially in perception and associative memory search but also in
heuristic deductive probelm-solving, appear to have important
parallel components. And although yesterday's computers are serial,
today's are beginning to be parallel, and tomorrow's will become
increasingly parallel.

2) From a certain esthetic perspective as to the meaning of
"simplicity" the single Working Memory seems simpler than several
Working Memories. But if we define "simple" as the most direct
mapping of the flow of processes effected by the program into that
program's architecture, then if the program uses several memory
stores it seems less simple to throw them all together into one,
and then do a lot of otherwise unnecessary searching and matching
to find the one that is needed.

3) Productions that fire productions to be applied may well
violate the simple modular structure of standard production

languages, with their top-down flow through the stack of productions.

-19-

But in my opinion they more closely reflect the actual operative flow
of the program, in the sense of the productions that actually will
fire. Without this capability the programmer must resort to cumbersome
devices that make use of the addition and deletion of special data
symbols to direct the program's flow. These devices clutter up the
program, waste time in execution, and make it far more difficult to
understand what the program is doing. Thus (in my opinion) they
superficially introduce better, simpler, structure when in actuality
they introduce far worse problems of structuring.

In any case, firing productions serves chiefly to facilitate
serial processes, and can most easily be dispensed with for the
parallel perceptual and associative memory systems that have chiefly
motivated these extensions. The more serial the process, the greater
the saving in computer time. For example, a typical serial "dis-
crimination net" (really a tree) program for concept formation
(or Waterman's version of EPAM) will need to try to fire one half
of its total set of productions for each discrimination-step (on the
average, assuming all branches of the tree are equally likely).

Thus as the tree grows larger (as it will, unless the system is
only asked to handle toy problems) the traditional PS program takes
longer. But a (PS)ZMn program, since each node directly fires the
appropriate next production to try to fire, remains as fast no
matter how large the discrimination net might become.

The standard and the extended Production Systems presented in
this paper are relatively simple programs because they are coded in

Snobo1/EASEy, which itself is a powerful pattern-matching production

-20-
language (that also has many of the features, in particular multiple
memories, incorporated into (PS)ZMH).

In fact Snobol/EASEy might be used directly as a vehicle for
coding a Production System. Its built-in left-to-right match is in
ways more powerful (with much more back-tracking) than the matches
used in most Production Systems. And its multiple memories, powerful
control structure, arithmetic and inequalities, and recursive
functions can be very convenient.

But a language 1ike Snobol, and a typical Snobol-encoded
program, do not have the clean, simple, modular structure of a
Production System. A very interesting and fruitful line of future
development would seem to 1ie in the combining of these two

approaches to Productions.

=21 -

Appendices

A) Format Rules for Coding and Inputting Productions

Building Productions and Memories from Elements

Both Productions and Memories are linear strings of elements.
They are exactly the same, except that a Production contains an
equal sign ('=') that separates the IF-Conditions (those that must
match for the Production to succeed and fire) on its Teft-hand-side
from the THEN-Consequences (the acts that will be effected if the
production succeeds) on its right-hand-side.

An element is enclosed in element brackets ('<' ... '>'), and
made up of a string of sub-elements, each followed by one (or more)
space(s)., A sub-element is a string of symbols (not including
spaces). If the first symbol is an asterick ('*') the sub-element
is a variable that is to be bound and given a value during the
matching process (see below). Elements can be grouped in sub-strings
(for purposes of specifying the Memories to which they are to be
applied, as described below), by ending each sub-string with a
semi-colon(';'). (Note that many Production Systems handle elements
with embedded parentheses. The (PS)ZMn program given below needs a

more powerful MATCH routine to handle such constructs.)

Matching Productions with Memories

A Production is considered to have succeeded in matching its
elements with memory elements only if all its elements are matched,
according to the following procedure: Each Element is looked for in
a specified Memory. The program takes the first Memory input to it

during its initializing phase as the dominant Memory (called 'INMEM')

-2l

into which Productions are to look, and the second Memory (or if there
is no second Memory, the first) given it as the dominant Memory (called
'OUTMEM') for firing out its acts (if it succeeds). But these

dominant memories can be changed, as desired by the programmer, by
specifying new dominant INMEM and/or OUTMEM as part of a card that
specifies the MODE of the subsequent set of Productions (described
below). (The format used is :(new dominant INMEM): and/or ;(new
dominant OUTMEM); without any separating spaces.) A temporary
different Memory can be specified for any sub-string of elements

that follows it by :(new temporary INMEM): and ;(new temporary OUTMEM);,
These temporary memories hold only for the sub-string of elements

that they start.

The program looks for each Element in the (either the current
dominant or the just-specified temporary) Memory. The first sub-
element of the Element must exactly match the first sub-element of
some element in the specified Memory, and all subsequent sub-
elements must match some sub-element of that same Element, in order.
(Thus the match insists that the Production Element be a left-anchored
ordered sub-string of the Memory element that it is considered to
match.) Any variables are assigned as their values the first sub-
element that they match, and the match from that binding on-ward
insists upon finding that assigned sub-element value when that
variable is to be matched again. (Thus there is no attempt to re~bind
variables.) The first element that matches in the Memory is taken
as the matching element (which therefore binds any variables).

This procedure is fairly typical of Production Systems, although

there has been a great deal of variety in the details of the match.

-23-

But virtually all Production Systems insist that the first sub-
element of the Production match the first sub-element of the Memory
element, and bind variables permanently - as does this system. I
should note that this contrasts with a Tanguage Tike Snobol, that
will try all possible bindings, in an attempt to make a much more

general (and, potentially, explosive in terms of time taken) match.

-24-

Acting, When the Production Succeeds

Fach Element of the THEN-Consequences specifies an act to be
effected, consequent upon the perfect match of all the Elements of
that Production. As with IF-Conditions the Act is effected into
the current Dominant Memory unless a temporary output Memory has
just been specified for its sub-string.

The first sub-element of each Act element specifies its
Operation (e.g. 'DELETE' or 'ADD' or 'OUTPUT', which immediately
outputs to the external world) or 'STOP', which immediately ends
this run), and the rest of the elements specify its arguments.
Currently coded Acts include:

ADD (the specified new element to the output memory specified);

DELETE (the specified element from the memory specified);

SAY (outputs the specified string);

STOP (ends the run, outputting "STOPPED");

GEN (generates the new specified production, inserting it
where specified on the MASTER Tist);

PROD (puts the name of the specified production on the Tist of

productions to be fired next).

-25-

Coding a Standard Production System, with a Single Working Memory

If only a standard Production System is needed, coding is
quite simple and straightforward. Each Production is input with a P
in column 1 (followed by cards with a + in column 1, if needed because
the production does not fit on one card). The Production's elements
then follow, ended by a right-bracket. The Memory is input in the
same format, but with an M in column 1.

That is all that is needed for a Parallel production system, since
the MAINMODE is initialized in the program to PARallel. But if a serial
system is desired (and that is the standard mode for today's Production
Systems) one additional input card is needed:

M MAINMODE SER]

The program is initialized to go DOWN to the next Production
after a Production succeeds. That is a common alternative used in
today's systems. But if the alternative that the program return to
the first Production after success is preferred one additional input
card is needed:

M FLOW TOP]

Note that the programmer need not name the Productions. The
program names them P1,P2,...Pn. If the program has generate acts that
refer to Productions, the programmer can figure out what these
assigned names will be, and use them accordingly. But it may be more
convenient for the programmer to assign names, either to those pro-
ductions that he refers to in his program, or to all productions. In
that case the name is put right after the right-bracket on the Pro-
duction's input card. (For the programmer's convenience these named

Productions are also numbered.)

-26-

Inputting and Formatting a Set of Productions and Memories,

and Initiating a Run

The program is initialized so that the Dominant Mode of process-
ing (called MAINMODE) is Parallel (called PAR) and the Dominant Flow,
of Productions (called FLOW) is to the next Production (called DOWN)
after a production fires. The system outputs the string: 'STARTING A
NEW SET OF PRODUCTIONS.' and then waits for a set of inputs, that
will initialize its memory with Productions, Memories and other
information, and initiate a run.

These inputs must be of the following form:

In Column 1 the TYPE is specified, followed by a space,
followed by a string of INFOrmation, followed by an end-bracket
(* 1), followed by a NAME (the NAME is optional in the case of a
Production).

The program will handle any number of runs through the same
Production System, or modified Production Systems, or completely
different Production Systems. A run begins with the input of the
needed Productions, Memories or Memory, and parameters.

Productions must be given TYPE = P, and input in order. They
will be numbered i = 1,2,...n, and given the NAME Pi unless a NAME
has been specified by the programmer.

Memories must be given TYPE = M. The first two Memories must
be input in order if there are more than one (so that the program can
assign them as the dominant INput MEMory and OUTput MEMory) but all
other memories can be input in any order desired.

Other parameters and 1ists, including Productions that are

implied by other Productions but are not on the MASTER 1ist of

] -

Productions are input with TYPE = X and must have a NAME. This is
the way to change MAINMODE (to either SER - for SERjal - or PAR -
for PARallel) and FLOW (to either TOP - to return to the first
Production when a Production succeeds - or DOWN - to apply the next
Production when a Production succeeds).

When any of the above does not fit on one card it can be
followed by continuation cards with TYPE = + (that is, a + in the
first column), with the NAME assumed to be the same.

The MODE can be assigned and re-assigned with a TYPE = MODE
card, where the MODE is either PAR or SER. These must be input
interspersed among the ordered Production cards, at the actual points
where they are to change the MODE. Note that the format is:

MODE (PAR or SER)]

An element is a bracketed ordered 1ist of sub-elements, each
followed by one space. A sub-element is an ordered Tist of symbols
(not including the space symbol).

A Memory is an ordered 1ist of elements.

A Production is an ordered 1ist of elements, with the following
additions: An equal sign (' = ') (surrounded by spaces) separates
the Production's IF-CONDITIONS from its THEN-CONSEQUENCES. Elements
must be grouped into a sub-set (indicated by a trailing percent
(*%') sign) if they are to be looked for in, or fired into, some
Memory other than the current Dominant Memory, with the temporary
memory specified at the start of that sub-set (see below). This
means that first comes the sub-set of elements that refer to the
Dominant Memory, followed by %, then the temporary Memory, then the
sub-set that will refer to it, then a % (then other sub-sets referring

to still other memories, using the same format).

-28-

Changes in Memories to be looked at and to be fired into must
be handled in the following ways:

When the Dominant Memory is to be changed (that is, from then
on until the next change) the change(s) must be indicated as part
of a MODE card. The INput MEMory must be surrounded by colons
(":(new input memory):') and the OUTput MEMory must be surrounded
by simicolons (';(new output memory);'). If both are changed,
input must precede output, and the new MODE (either 'PAR' or 'SER')
must always be given,placed last. No spaces can be used between
memories and mode. E.g.: MODE :MEM7:;BLACKBOARD;PAR (sets INMEM as
MEM7, OUTMEM as BLACKBOARD and PARallel MODE.)

When some other Memory is to be used by some of the elements
in a Production that Memory must be specified at the start of a
sub-set of elements (to which that memory refers). That sub-set of
elements is ended with a percent sign ('%'). A temporary Input
MEMory is surrounded by colons (':(temporary input memory):') and a
temporary output memory is surrounded by semi-colons ('; (temporary
output memory);') with no spaces allowed.

After a run, the system can be re-initialized, so that all its
Productions and Memories (that is, all Tists input with TYPE = P or M)
are erased, by inputting one card with TYPE = INIT - that is,

INIT]

(Note that this does not erase any of the parameters or dynamic
transforms that were input with TYPE = X cards. If their erasure
is desired - as may be the case if a lot of dynamically implied
productions might otherwise waste too much memory space (but note
that they will not have any effect on subsequent runs) - they can

simply be input with TYPE = M cards, rather than TYPE = X cards.

-29-

That is possible because only the first two memories will be noticed
by the program - but that means that when only one Memory is
specified it must be specified twice as the first two memories

(its contents need be given only the second time).)

If only a few things need to be changed for the next run, the
programmer should not use the INIT card, but instead simply input
cards (of TYPE = M) with the NAMEs or the Productions, Memories,
and other 1lists to be changed.

A yrun is initiated with a card whose TYPE = GO - that is,

GO]

(NOTE that a second run can be initiated through the same
Production System by having two GO cards immediately following the
input of that system. But the second run will use the system that
results from the first run. The only ways the initial system can be
used twice is to input it again, or restore it to its original form
(which will usually be too complex a process to attempt). It would
be quite simple and straightforward to have the system store a copy of
the original Production System for subsequent runs. But it did not
seem worth bothering with such an option in the present demonstration

system, since it might easily waste excessive amounts of memory.)

-30-

2

A Detailed Statement-by-Statement Description of the (ps)°M" Programs

Initializing the Program and Setting up the Productions and Memories

Statements I1 through I22 Initialize the system, Inputting its
Productions, Memories and parameters, and re-initializing for sub-
sequent runs.

I1 sets the maximum number of Productions to be TRIED in a run
(after which the run will be terminated). (TRIED = 9999 in the sample
program.)

12 sets the MAIN MODE for processing to be PARallel (the other
option is SERial).

I3 sets the main FLOW to be DOWN (to the next Production after a
Production fires; the other option is TOP, which goes to the first
Production after a Production succeeds).

[4 outputs that a new run is starting.

15 inputs INFOrmation of a specified TYPE and with an optional
NAME, and goes to the statement for that TYPE.

16-112 handle Productions: I6 assigns the next integer to this
Production. 17-I8 give it an integer NAME if no name was input, I9
stores this Production's NAME on the MASTER 1ist, I10 stores the
INFOrmation on this Production's contents under its NAME, I11
outputs this NAME and its contents (from the present card), and I12
copies this NAME (in case there are continuation cards).

110-112 handle inputs that are parameters and dynamically implied
Productions. (No integer number is assigned, and the NAME is not

listed on MASTER; otherwise the same processes are effected.)

-31-

113, 110-112 input Memories.

114-115 input continuation cards for Tists too long for a single
card.

116 inputs a change MODE (PARallel or SERial).

117-118 re-INITialize for a new run, erasing all MEMORIES and .
MASTER Productions.

119-122 put the MAINMODE at the start of the MASTER list and

get the dominant INput MEMory and OUTput MEMory.

Applying the Productions

Statements P1 through P15 form the main program, applying
Productions, looking for their IF-CONDITIONS and firing the THEN-
CONSEQUENCES of those that succeed, until some stopping rule is
invoked:

P1-P2 initialize, making a Copy of the MASTER 1ist of Pro-
ductions and setting the number of FIRED Productions to zero.

P3 gets the next MODE and set of Productions TODO from CMASTER,
P5-P6 get (if they are specified) the new dominant INMEMory and/or
OUTMEMory from the start of MODE, and the system goes to the
indicated MODE (either PARallel or SERial).

If CMASTER has been emptied, P4 checks whether any Productions
have been fired in this pass: If yes, it goes to TOP to make
another pass through MASTER; if no, the run has ended, and it goes
to BEGIN a subsequent run.

P7-P9 handle the SERial mode, by getting just one Production
TODO and putting any LATER ones back onto CMASTER.

P10 calls the APPly function for this set of (one or more)

Productions TODO.

-32-

P11 FIREs any successful Productions' ACTs.

P12 checks whether any Productions have been fired (they will
have been put onto ACT). If no, the program goes to the statement
indicated by the FLOW (either DOWN or back to the TOP). If yes, these
implied Productions are put at the start of CMASTER, with the

specified mode (or the dominant MAINMODE if no mode is specified).

The Functions that APPLY and MATCH Productions, and ACT

Statement AQ defines the APPLY function. Al gets the next
PRODuction from TODO, A2 adds 1 to the number of Productions TRIED
(the program ending this run if it reaches 9999), and A3 calls the
MATCH function.

MO defines the MATCH function, which tries to match one PRODuction.
M1 gets the PRODuction's CONDitionS and ACTS. M2 gets the next sub-set
of elements (IFS) from the CONDitionS and M3-M5 get any temporary
INput MEMory indicated.

M6 gets the next element from IFS (its FIRST sub-element and the
REST of its sub-elements). (If no more M7 erases this MEMory and its
Copy (CMEM).) M8 makes a Copy (CMEM of this MEMory) for this set of
elements. M9 gets the first occurrent as a first sub-element of the
FIRST sub-element in the CMEMory and the REST of that element in
Memory (MREST). M10 lists this as a possible ELement for match.
M11-M13 look for each PART of the REST of this element, but first M17
checks whether this PART is a variable (indicated by an asterisk ('*')
at its start). If it is, Mi8 checks whether it is already bound and
if not M19 gets the next sub-element in the REST of this Memory ele-
ment as the VALue that binds it, and M20 lists it as a possible bind-

ing on MAYBIND. But if M19 can't get a binding (because no more

-33-

sub-elements remain), or M21 can't match the already-bound variable,
this element is abandoned and M9 tries the next element in memory
that matches the FIRST part of this element (if no more match the
whole match fails).

After M13 has matched all PARTs of an element M14 erases that
ELement from MEMory and M15-M16 add its MAYBINDings to the chosen
BINDINGS. (NOTE WELL how only the first bindings of variables are
used, rather than having the program try all possible bindings.)

After M2 has matched all IFS in this Production's CONDitionS,
M21-M26 binds all this Production's ACTS' variables (indicated by
asterisks ('*')), listing them on APPLY, and adds 1 to the count of
Productions FIRED.

After all the Productions TODO have been APPLYed, any ACTS implied by
successfully fired Productions are effected by the ACT function.

ACTO defines ACT. ACT1-ACT3 gets the next sub-group of acts
(THEN) and their MEMory. ACT4 gets the next element (an OPeration
followed by its ARGument) and goes to that OPeration.

Operations presently coded include the following:

ADD adds the ARGument as a new element of the indicated
MEMory (ACTS). ,

DELETE erases the ARGument if it is a complete element of the
indicated MEMory (ACT6).

SAY outputs the ARGument (e.g. the concept, name, or other
answer) (ACT7).

STOP ends the run, outputs STOPPED, and will return the program

to BEGIN any subsequent run (ACT8).

-34 -

GEN will GENerate a new Production, Tisting it right after
WHERE on the MASTER list (ACT9-ACT13). (Its variables were bound on
BINDINGS; ACT11 surrounds its Elements with <...>).

PROD indicates a PRODuction to be fired, which is put onto
ACT (ACT14).

Additional acts can easily be added, each as a separate set
of code labelled with the act's OPeration, the act's ARGument

formatted appropriately.

-35-

(A Parallel-Serial Production System with Many Statement No.
(Working Memories = (PSZ)Mn

BEGIN TRIED = 9999 I1

(Assume PARallel mode and DOWNward FLOW ti11 input specifies otherwise
MAINMODE = 'PAR' 12
FLOW = "DOWN' I3

(INputs Productions, Memories, MODE, and other parameters
(Subsequent runs can modify any Productions and Memories, or
(INITialize, erasing all, then building anew.

OUTPUT 'STARTING A NEW SET OF PRODUCTIONS.' 14

IN INPUT TYPE INFO] NAME [+ $('I'TYPE) - end] I5
(Production can have programmer given NAME (else uses next integer)

Ip P = P + 1 16

l@gﬂl_(NAME, NULL) [- IP2] 17

NAME = 'p' P 18

IP2 On MASTER 1ist NAME 19

(Initializes dynamically implied Productions and other things not
(1isted on Memories

IX $NAME = INFO 110
12 output P' ' NAME = ' INFO [IN] 111
(Initializes Memories

CNAME = NAME , 112
M on MEMORIES list NAME [1IX] 113

(Adds information to Memory 1ist and long Production (comes
(right after, or must give its name)

I+ IDENT(NAME, NULL) yes - NAME = CNAME 114
on $CNAME 1ist INFO [I2] 115

(Input change of MODE (and :inmem: and/or ;outmem; - no spaces allowed

IMODE on MASTER set > INFO [I2] 116

(INITialize card erases all Productions and Memories

TINIT from $(MASTER MEMORIES) get THING = [-IN] 117
erase $THING [IINIT] I8

(Starts processing the just-input Productions and Memories

IGO MASTER = > MAINMODE MASTER '>END' I19

output 'MASTER LIST = ' MASTER 120

-36-

(Assumes first Memory(s) are INMEM and OUTMEM (till told otherwise
(by Productions)

from MEMORIES get INMEM OUTMEM [+ TOP] 121
from MEMORIES get INMEM 122
OUTMEM = INMEM 123
TOP CMASTER = MASTER P1
erase FIRED P2

DOWN at start of CMASTER get >MODE TODO >MODE2 = >MODEZ [+MEM] ©P3
(If no Productions fired in complete pass through MASTER the run
(has ended.

GT(FIRED, 0) [+ TOP - BEGIN] P4
(Optionally INMEMory and OUTMEMory can be changed at each MODE
(indication

MEM at start of MODE get : INMEM : = P5
at start of MODE get ; OUTMEM ; = [$MODE] P6

(In SERial mode applies only 1 production at a time

SER from TODO get TODO LATER till end P7
INDENT(LATER , NULL) [+ PAR 1] P8
at start of CMASTER 1ist > MODE LATER P9

PAR APPLY() [- BEGIN] P10

FIRE ACT() [- BEGIN] P11

(If any new Productions have been implied (onto ACT) will APPLY
(them right now

IDENT(ACT NULL) [+ SFLOW] P12
(Uses specified mode of MAINMODE

at start of ACT get > [+ FI2] P13

at start of ACT list MAINMODE P14

(Puts implied Productions at start of CMASTER, to be pulled off

(and applied by DOWN

FI2 at start of CMASTER Tist MAINMODE ACT [DOWN] P15
(Wi11 APPLY a Parallel set (so if serial there's only 1 PRODuction

in TODO)

APPLY DEFINE: APPLY() AO
AP from TODO get PROD = [- return] Al
LT(TRIED , 0) TRIED = TRIED - 1 [freturn] A2

MATCH($PROD) [AP1] A3

MATCH
MA1

-37-

DEFINE: MATCH(PROD) erase BINDINGS
from PROD get CONDS '=' ACTS till end

(Get the MEMory and IFS from CONDITIONS

MA2

from CONDS get IFS % + [-BINDACTS]
start IFS get : MEM : = [MA8]

(Get the FIRST subelement and the REST of the next element

MA8
MA3

MAS

MEM = INMEM

MEM = $MEM

from IFS get < FIRST REST > = [+ MA5]
erase MEM CMEM [MA2]

CMEM = MEM

]

1]

(Get the next element whose FIRST subelement matches

MAS

MA7

from CMEM get LEFT < that FIRST MREST > = [- freturn]
EL = FIRST MREST

CREST = REST

erase MAYBIND

from CREST get PART = [+ MA4]

(erase this successfully matched Element from MEMory and add its
(BINDINGS (from MAYBIND)

MA4

(Bind this

MAG

(Use BINDINGS got in MATCH to assign values to VARjables in ACTS

BINDACTS

BI2

from MEM get < that EL > =

on BINDINGS set MAYBIND

erase MAYBIND [MA3]

at start of PART get '*' = [- MA6]

from $(BINDINGS MAYBIND) get that PART PART [+ MA6]
variable PART with VALue got from MEMORY

from MREST get VAL = [- MA9]

on MAYBIND 1ist PART VAL [MA7]

from MREST get LEFT that PART = [+ MA7 - MA9]

from ACTS get LEFT '*' VAR = [+ BI2]
FIRED = FIRED + 1

on APPLY 1ist ACTS [return]

from BINDINGS get that VAR VAL

on APPLY list LEFT VAL [BINDACTS]

MO
M1

M2
M3

M4
M5
M6
M7
M8

M10
M11
M12
M13

M14
M15
M16
M17
M18

M19
M20
M21

M22
M23
M24
M25
M26

-38-

ACT DEFINE: ACT()

ACT1 from APPLY get THENS % = [- return]
at start THENS get ; MEM ; = [+ACT2]
MEM = OUTMEM

ACT2 from THENS get < OP ARG > = [+ $0P - ACT1]
ADD start SMEM set < ARG > [ACT2]

DELETE from $MEM get < EEEE'ARG > = [ACT2]

SAY output ARG [ACT1]

STOP output 'STOPPED' [freturn]

(The ARGument will be in Production form with variables that
(have been assigned values
GEN from ARG get WHERE =

P =P + 1

GEN1 from ARG get '(' EL ')' = < EL > [+GEN1]

on $('P'P) Tist ARG

GEN2 from MASTER get that WHERE = WHERE 'p' p [ACT2]
(Will imply a PRODuction (put on ACT) to fire next
PROD on ACT 1ist ARG [ACT1]

end

ACTO
ACT1
ACT2
ACT3
ACT4
ACTS
ACT6
ACT7
ACT8

ACT9

ACT10
ACT11
ACT12
ACT13

ACT14

-39-

A Standard Serial Production System with a Single Memory

The following is a Snobol/EASEy program that handles a standard
Production System, one that applies a sequence of Productions in
series, all inputting from and outputting to a single working
Memory. To keep the program as simple as possible (and to reflect
the workings of any particular Productions System, 1ike PSG or
PAS-2), only one type of flow is built in - a return to the first
Production (i.e., as done by FLOW = TOP in (PS)ZMn). The system
will end when either a STOP act is fired or it has TRIED 9999
Productions; it will not re-initialize itself and handle a sequence
of runs. (Nor, of course, does it handle more than one Memory, or
parallel sets of Productions, or dynamically implied Productions -
since these are not handled by standard Production Systems.)

The statements are numbered at the right to indicate
resemblances to statements in (PS)ZMn, with A indicating that some
(usually minor) Alterations have been made. This program might be
made even more similar to the (sub-set of) code in (PS)ZMn, if
functions were used, as there, to MATCH and to ACT. But for variety,
and to indicate more clearly the program's flow, it is coded
without functions.

This program might best be examined by comparing its statements
to the similar statements in (PS)ZMn. But a brief description is
given now:

Statements I1-I5 input the Productions (which the program will
number from P1 through Pn) and the single Memory (which must be
input first, and whose name is P1).

P1-P2 loop through the Productions (if the last has been tried,

unsuccessfully, as indicated by CMASTER being empty, the system has

-40-

made an entire pass through all Productions without firing any,
and therefore the entire run ends).

M1-M17 try to MATCH this Production. If M2 finds no more
CONDitionS ACT1-ACT12 fire the successful Production's ACTS:

ACT1-ACT4 get any VARiables' VALues from BINDINGS.

ACT5-ACT13 effect the ACTS (almost exactly as done in
(PS)ZMn), except for the Single Memory and the absence of implied
Productions).

M4-M17 are almost identical to (PS)ZMn in the way they attempt
to MATCH the Production (except for the absence of specifications
of different Memories for groups of elements). Each element of the
Production is matched with the first matching element of the
(single) MEMory, their FIRST sub-elements both coming first, and
the first BINDING of a VARiable used throughout (or else the

match fails).

-41-

A Standard Production System (Serially Applies Productions to

First inputs the Memory, then the Productions

(

(a Single Memory)

(

(Program assigns all names, P1, P2,...Pn (P1 is the Memory)

IN input INFO] TYPE [+ $('I' TYPE) - end] I5.A I
I P=P+1 16 12
on MASTER 1ist 'P' P 19 I3
$('P' P) = INFO [IN] I10.A 14
(Continuation cards Must follow immediately
I+ on $CNAME 1ist INFO [IN] 115 15
1GO from MASTER get MEM CMASTER till end PT.A P1
NEXT from CMASTER get PROD = [- end] Al.A P2
N2 from $PROD get CONDS ‘'=' ACTS till end M1.A M1
MATCH from CONDS get < FIRST REST > = [+ M1] M6.A M2

(After successful MATCH, Production's ACTS output, GO back
(to top Production

ACT1 from ACTS get < OP ARG > = [- IGO0] ACT4.A ACTI
ACT3 from ARG get '*' VAR = '*%' [- $OP] M22.A ACT2
* from BINDINGS get that VAR VAL M24.A ACT3
from ARG get '*%' = VAL * * [ACT3] M25.A ACT4
ADD start $('P' P) set < ARG > [ACT1] ACT5.A ACT5
DELETE from $('P' P) get < that ARG > [ACT1] ACT6.A ACT6
SAY output ARG [ACT1] ACT7 ACT7
STOP output 'STOPPED' [end] ACT8.A ACT8
GEN from ARC get WHERE = ACT9 ACT9
P - P + 1 ACT10 ACT10
GENT from ARG get '(* EL ')' = < EL > [+ GEN1] ACTIT ACT11
on $('P'P) list ARG ACT12 ACT12
from MASTER get that WHERE = WHERE 'P' P [ACT1] ACT13 ACT13
M1 CMEM = MEM MB.A M3
MA9 from CMEM get LEFT < that FIRST MREST > = [+ M3IM9.A M4
LT(TRIED, 9999) TRIED = TRIED + 1 [- end] A2.A M5
M3 EL = FIRST MREST M10.A M6
CREST = REST MIT M7
erase MAYBIND MI2 M8

MA7 from CREST get PART = [+ MA4] M13 M9

42—

from MEM get < that EL > = M4 M10
on BINDINGS set MAYBIND MI5 M1
erase MAYBIND [MATCH] MI6.A MI2
MAG at start of PART get '*' = [+ MAG] MI7 M3
from $(BINDINGS MAYBIND) get that PART PART [+ MA6] M18 M14
from MREST get VAL = [- MA9] M19 MI5
on MAYBIND list PART VAL [MA7] M20 M16
MAG from MREST get LEFT that PART = [+ MA7 - MA9] M21 M17

end

“3m

References

Davis, R. and King, J. An overview of production systems, Comp. Sci.
Dept. Memo AIM-271, Stanford Univ., 1975,

Duff, M. J. B. CLIP 4: a Targe scale integrated circuit array parallel
processor, Proc. IJCPR-3, 1976, 4, 728-733.

Erman, L. D. and Lesser, V. R. A multi-level ortanization for problem-
solving using many, diverse, cooperating sources of knowledge,
Proc, 4th IJCAI, 1975, 483-490.

Feigenbaum, E., Buchanan, B. and Lederberg, J. On generality and
problem-solving: a case study using the DENDRAL program. In
B. Melzer and D. Michie (Eds.), Machine Intelligence 6,
Edinburgh U. Press, 1971, pp. 165-190.

Griswold, R. E., Poage, J. F. and Polonsky, I. P,, The SNOBOL4
Programming Language, Englewood-Cliffs: Prentice-Hall, 1968.

Hanson, A. R. and Riseman, E. M. Pre-processing cones: a computational
structure for scene analysis, Tech. Rept. 74C-7, Univ. of Mass.,
1974,

Lenat, D. B. Automated theory formation in mathematics, Proc. 5th
I1JCAI, 1977, 833-842.

Lipovski, J. On a varistructured array of microprocessors, IEEE Trans.
Computers, 1977, 26, 125-138.

Lowerre, B. T. The Harpy Speech Recognition System, Unpubl, Ph. D.
Diss., Carnegie-Mellon Univ., 1976.

McDermott, J., Newell, A. and Moore, J. The efficiency of certain
production system implementations, Comp. Sci. Dept. Tech. Rept.,
Carnegie-Mellon Univ., 1976.

Newell, A. and Simon, H. A. Human Problem Solving, Englewood-C]iffs:
Prentice-Hall, 1972.

Newell, A. and McDermott, J. PSG manual, Comp. Sci. Dept. Tech. Rept.,
Carnegie-Mellon Univ., 1975,

Reddy, D. R., et al. The HEARSAY-1 speech understanding system, Proc.
I1JCAI-3, 1973, 185-193. .

Rosenfeld, A. and Davis, L. S. Hierarchical relaxation, In: Machine
Vision (Edited by A. R. Hanson and E. M. Riseman), New York:
Academic, in press.

Rychener, M. D., Production systems as a programming language for
Artificial Intelligence applications, Unpubl. Ph.D. Diss.,
Carnegie-Mellon Univ., 1976.

-84~

Tanimoto, S. L. Pictorial feature distortion in a pyramid, Comp.
Graphics_Image Proc., 1976, 5, 333-352.

Tennenbaum, J. M. and Barrow, H. G. IGS: A paradigm for integrated
image segmentation and interpretation, Proc. 3rd IJCPR, 1976,
504-513.

Uhr, L. Layered "recognition cone" networks that pre-process,
classify and describe, IEEE Trans. Computers, 1972, 21,
758-768.

Uhr, L., EASEy: An English-l1ike programming language for artificial

intelligence and complex information processing, Comp. Sci.
Dept. Tech. Rept. 233, Univ. of Wisconsin, 1974. {a)

Uhr, L. A model of form perception and scene description. Computer
Sciences Dept. Tech. Rept. 231, Univ. of Wisconsin, 1974. (b)

Waterman, D. A., Adaptive production systems, Proc. 4th IJCAI, 1975,
296-303.

Zucker, S. W. Relaxation labeling and the reduction of local
ambiguities, Proc. IJCPR-3, 1976, 4, 852-861,

