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"Science must debate all admissible hypotheses
in order to obtain a complete survey of all poss-
ible attempts at explanation....But it is unworthy
of a thinker who claims to be scientific to forget
the hypothetical origin of his propositions. The
arrogance and vehemence with which such concealed
hypotheses are defended are the usual result of
the feeling of dissatisfaction which thneir cham-
pion harbors in the secret depths of his conscience
about the justification of his ceuse.” H. v. Helm-
holtz (the father of perception as a science).

Overview

1) This paper first presents a set of positions
(on the issues posed for this volume) that argue
for probabilistic parallel-serial variable resolu—
tion percentual systems that can make use of large
smounts of diverse contextually interrelated in-
formation, in a dynemic flow of mixed environment-
driven (bottom-up) and internally driven (top-
down) flow of processes. It further presents the
position (on positions) thet the open-minded
application of scientific method by the vhole com-
munity of scientists, attacking such a complex and
difficult task as perception, is necessary, to in-
sure as great as possible a diversity of consid-
ered approaches.

2) The imminent arrival of true hardware-
embodied parallel-serial computers is briefly dis-
cussed, and the suggestion made that many of to-
day's perceptual systems will gain orders of mag-
nitude increases in speed and power when thelr
highly iterated operations are coded for hﬁghly
parallel computers built with arrays of 10™ to
10° programmable processors.

3) Finally, the author's "recognition cone"
systems are described, as an example of the paral-~
el-serial probabilistic epprecach being suggested.
A basic system for multi-layer recognition and -
description of a scene has been coded in EASEy
(a variant of Snobol), Fortran, and Bimula, and &
few test results have recently been obtained. Ex-
tensions and varistions have been coded in EASEy,
to handle continuing scenes of objects that move
about and change over time, binocular (and multi-
modal) perception, learning-by-discovery, and per-
ception as embedded in a larger cognitive system
(called "See-err").

®* This research has been supported by NSF Grant
MCST6-0T7333 and by the University of Wisconsin
Graduate School.

® To be published in "Machine Vision," A. Hanson
and E. Riseman, Editors, Academic Press, in press.
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Section 1. Positions, and Positions
on Positions

This paper tries to do three different things:
A) Positions are argued on some of the basic issues
of perceptual models that have been posed this
group., B) The final coming of very large arrays
of {10% and, potentially, more) processors whose
hardware is truely parallel, and the enormous po-
tential power this promises for many perceptual
processes, ere discussed. C) The author's "recog~
nition cones," for probabilistie parallel-serial
perception, are described, as examples of the kind
of architecture being proposed, and some test re-
sults are presented.

Introduction

A1l the participants in this volume were
asked to state their positions on a number of key
questions about how we should go about developing
perceptual systems. It was suggested that I use
my answers in this volume, I suspect partly because
they express a rather extreme viewpoint, at least
when compared with the mainstream approaches being
taken today.

This field has seen several major swings,
first to overly parallel systems (Rosenblatt's
"perceptrons”) and then to overly serial systems
(Minsky and Papert's "serial algorithms”). I think
the pendulum has begun to swing again. If I seem
to be attacking a straw man, fine¢ - that means
things are becoming better faster than I had
Judged.

The Free Choice of Science

But far more important than any specific po-
sition that I (or anybody else) could possibly take
is “the following: All approaches that reasonable,
thoughtful and knowledgeable people find promising
should therefore be tried. No individual or grant-
giving agency knows what the "truth" is, what the
"correct' approach is - especially in such a com-
plex and strange new field as this. People should
listen to and try to bild upon one another. But
we should resist the impulse to propagandize and
dogmatize mere opinions, or turn them into schools.
We have already seen too many bandwagons, too many
false hopes.

The scientific method means, sbove all, the
free choice by each expert scientist of the prob-
lems, spproaches and techniques that she or he has



Judged to hold the most promise. Thus individuals
should spread themselves over the promising alter-
natives (those that one individual finds under-
explored becoming for him especially promising in
their likely pay-offs; those that many individuals
find promising being more vigorously pursued).
This is the way for the whole community of
science to advance as fast as possible. Each in-
dividual should realize the strong likelihood that
he has chosen the wrong approach. This the fail-
ures as well as the successes play their vital
role, and all participate in any success. And far
more success can be achieved than if people expend
effort trying to make everything look like success.

A Discussion of the Position Quéstions

I. The most important answer to the questions
posed for this volume is the following simple
and rather obvious set of observations:

A. Nobody knows today what the right approach
will be. Ve are engaged in the empirical enter-

prise of designing by far the most complex and
highly structured system man has ever attempted.
All promising approaches should be pursued as vig-
orously as possible. :

B. Worse, nobody even knows how to evaluate
what is done. We still don't have a clear idea of
our goals -~ e.g. what is a "description," or what
would be a good "model for perception." -We don't
know how to cowmpare the different dimensions of
complexity - e.g. linear vs. non-linear transforms,
depth, color, texture, motion, or the relative
difficulties of straight vs. curved lines, or
letters vs. chairs vs. faces vs. trees,

C. Qurs is a mnst difficult problem. It has
been a central preoccupation of psychologists and
philosophers for thousands of ‘years. For the
first time we have a poverful enough tool in the
large computer to grapple with it effectively.
are making much faster progress; but we should
make clear and attack the difficulties, wather
than evade them. There is little value in hané-
ling a particular suitably. simple prcblem unless
it can then be generalized (or is of real prac-
tical importance).

D. Learning is orobably the key to the flex-
ibility and general-purpose adaptability that is
needed for a system that is able to recognize and
describe changing scenes of unanticipated objects.
Without learning, ad hoc programming can (cumber-
somely) handle a féw specific problems. But no
system can be large enough to handle "all possible
objects” (indeed this is a potentiaslly infinite
set, with new objects created all the time).
Rather, a system must be able to learn about that
subset of objects with which it must interact.

E. We have had arguments and proofs, that have
often been falsely overgeneralized and misinter-
preted, about the limitations of either of the
extremes of, for example: strictly parallel vs.
strictly serial; non-deterministic vs. determinis-
tic; perceptuasl characterizing vs. heuristic prob-
lem~solving; pre-programming vs. learning; multi-
variate vs. syntactic vs. framed; bottom-up vs.
top-down., Often a straw-man extreme is set up;
often the supposedly opposing approaches boil down
to much the same thing; often a judicious golden
mean can combine the several approeches to exploit
the strengths and eliminate the weaknesses of each.

We

II. To answer or respond to some of the
questions posed:

1. There can be no "primary basis for segment-
tation"{unless we restrict the set of scenes the
program 1s asked to handle to scenes that always
contain the information (e.g. perfect contours)
with which the program has been designed to seg-
ment), One object will have clean and sharp edges,
but internal regions that vary in color, texture,
intensity, etc. in wild and arbitrary ways (e.g.
Hawaiian Mu-Mus). Another object will have homo-
geneous regions but no edges; or dotted, frag-
zented or foggy - essentially vague - edges (e.g.
Chinese landscapes). Therefore perception systems
must look for both regions and edges--and expect
not to find them. They must be able to make do
with fragmentary information, combined from diverse
sources. And higher-level features are probably
crucial: many objects can be segmented only after
they have been perceived. Perception infers and
constructs the object; segmentation can then be
ugsed to re-cover non-existent boundaries.

2. The more information the easier the seg-
mentation process - if the system is capable of
combining information from many diverse and unan-—
ticipated sources. Color can be especially helpful
in giving qualitatively different regions between
which edges can relatively easily be drawn. The
motion of an object against a background is prob-
ably even more helpful, potentially (but this poses
very difficult problems), since the perceiver now
has a sequence of very slowly changing images from
which to construct the object. Striking textures
are helpful, like color; but many textures are
quite subtle and variable. Perception of objects
that move seems to me the most important problem
still to be attacked. Once we achieve such sys-—
tems we will be able to make powerful use of the
additional information they can gather.

4. Parallel-serial systems are obviously
needed, rather than either parallel or serial sys-
tems. Minsky and Papert devastated strictly paral~
lel systems (1l-layer "perceptrons"), showing their
explosive inefficiency at handling global prop-
erties like parity or connectivity. Long before
that Selfridge had pointed out that strictly ser—
ial systems are only as good as their weakest
links. And attempts to use serial techniques for
real-world patterns seem to develop intolerably
long chains of tests. Parallel takes space; ser-
ial takes time.

But these are both straw-man extremes. By
combining serial and parallel processes we can min-
imize time and space and gain the virtues of both.
For example, to compute parity (that is, whether
there is an odd or even number of 1s) over an
array of Os and ls, a completely parallel "l-layer
perceptron"” takes only one moment of time. but
needs 2N elements, each with N connections (N
the Number of cells in the array) (Minsky and Pap-
ert, 1969). They propose instead a very simple
serial algorithm, that looks at and counts (mod-
ulo 2) each cell in the array, and therefore takes
N (times a small constant) moments of time. But a
parallel-serial set of simple binary exclusive-or
operators, where the first layer looked at the
array, a second layer looked at the output array
of the first layer, and so on, needs only N - 1
elements, each with only 2 connections, and takes
only log,N moments of time! Thus both space and

time requlirements are brought down to accepteble




small numbers. Input to a visual system, or to any '

sensor that is gathering information about an ed-
vironment, in highly parallel, and it seems foolish
to insist upon handling it in a serial manner. A
serial approach usually has a problem-solving fla-
vor; parallel-serial approaches force us to a more
probabilistic combining of diverse sources of in-
formation - I think giving more the flavor of liv-
ing perceptusl systems and of semantic contextual
interactions. They also give great efficiency,
robustness over unanticipated distortions, and
economies in speed.

5.-6. The human eye - like the computer - can
get a global property only by successively com=-
pounding the local intensities ond gradients sensed
by its retinal receptors. It may well be useful to
"glance" first at the higher-level things found,
and then dip down to details, as needed. But if
this "glance" entails computing lower-level partial
functions in order to achieve these higher-level
things it seems wasteful not to use them, to have
them interact with "top-down" semantic guidance.
Again, all levels are obviously needed. For ex-
ample, grey-level gradients sometimes can be re-
solved into contours only after the highest seman~
tic levels have resolved vague objects so that the
level and type of fogginess can be assessed, and
used to change the parameters for low-level edging
and contour detection.

"7. We can always construct counter-example-
like problems that cannot be segmented at the ret-
inal level. Therefore there must be an inner-
directed top-down component to perception, one
that allows higher-level characteristics, and "what
the system expects and is looking for" to influence
segmentation. This entails a’ judicious combining
of both inner- and outer-directed processes. For
example two eyes, one nostril and one lip can be
enough to imply a face, which then segments bheeks,
chin, ete. N

We do not know what "primitive features"
are necessary for vision. Attneave and Arnoult,
Hubel and Wiesel, and others have suggested prim-
jtives that seem buildable into larger wholes.

~But the only way we can tell whether they work
{and, more important, how efficiently, generally
and powerfully) is to build a computer program
around them, and test it.

Polyhedra recognition reduces the problem
enormously, to straight-edge and regular-region
detection. And many other scene-analysis systems
similarly simplify to look for features that seem
appropriate for recognition of a very small set
of objects of special interest. This is fine if
future expansion, to a wider variety of objects,
is kept in mind, and effected. But too often ad
hoc techniques are particularized to the simple -
problem, only to meke it even more difficult to
generalize.

For example, real-world objects can have almost
any kind of complex (broken and fragmented) curve
for their contours. They hardly ever have flat
surfaces and stralght edges. )

11. Multiple sources of knowledge can be ac~
cessed and used when and if a serial program calls
for them. Or they can be got by more or less in-
dependent processors or demons, and put in a com-
mon working memory for one another's use. But
there are problems with such structures, and it

seems best to impose a structure over the system
that lets the flow of processes trigger needed pro-
cesses, as appropriate. This needs techniques

to merge and combine, and to choose among, what is
found. The parallel-serial pyramid/cone systems
attempt to do this, and the living visual system
does this with celebrated success.

13, Objects like furniture, faces, or letters
have a 2- or 3-dimensional structure that is far
more complex than is the "syntactic" structure of
words in a sentence. The basic problem of percep-
tion is to characterize that structure. Almost
any system for reasonably Jdifficult real-world
problems does just that, whether by compounding
and interrelating primitive features, or by look-
ing for features that are themselves structural.

14.-16. Much current work scems to attack a
specific domain in order to chop the problem down
to size, and develop ad hoc partial solutions,
without any thought, or hope, of future relaxationh
and generalization. This is fine vhen there is an
important practical problem to be solved, and
enough general understanding of our techniques so
that a particular solution can be achieved with a
reasonable amount of effort. But too often we are
jollied into thinking that a problem (e.g. poly-
hedra) is practical, or generalizable, and solv- -
able. Then, when it proves to be more difficult
than originally claimed, ad hoc devices are scotch-
taped on to give a few striking demonstration re-
sults, but also eliminating any possibility of
generalizing.

A "general vision system" must be our long-
term goal, since it is simply a part of science's
age-0ld goal of building a theory of the intelli-
gent mind/brain. This is not a 5 or 10 year goal;
it will probably only be set back by crash-project
approaches. Applications can help move toward that:
goal, but only if they are chosen to give us a
variety of experiences, so that we can examine,
compare, generalize, and improve upon the specific
systems we develop to handle each apolication. An
application of overriding practical importance
(that cannot be handled well enough, or cheaply
enough, by humans) should certainly be attacked
for its own sake. But progress will be faster,
and results will be more informative, if we de-
velop a general body of knowledge that can be
applied to each application.

15. In my opinion, parallel-serial systems
thet integrate characterizing transforms for a
variety of kinds of information in a combined
outer- and inner-directed flow of processing are
the most attractive. The transforus must be cap-
able of assessing configurations of more or less
loosely interrelated characteristics (which are
themselves configurations of characteristics,
etc.). Weights and thresholds should be used, to
give efficiency, and to allow for the many non-
linear variations and defective information that
will always be present in any but artifical toy
scenes.

More important, no system could handle "all
possible objects."” Rather, we must develop tech-
niques for discovery-learning of sets of features
and higher-level characteristics sufficient for
the environmental scenes that confront such a
learning system.

Most important, as wide as possible a variety
of approaches should be explored, compared and
evaluated.

17.-18. One of our bigpest problems is just
the development of criteria for evaluating and
comparing systems.. We don't even know what 'des-




cription" means, or what are the basic dimensions
of complexity. There are a potentially infinite
number of possible objects, and of each object's
parts, and momentary representations (think of all
the faces, and noses, and expressions of Liv Ull-
men's face). How do we compare a system that can
handle 26 printed vs. handwritten letters (by the
same, vs. by diffevent writer(s)) vs. b4 different
polyhedra vs. chair-or-table, vs. chair-or-couch,
vs. John-ovr-Teddy vs. John~or-Jackie? How compare
scenes with only one object, vs. two or four, when
they are separated, vs. touching or overlapping?

We have a rough idea of the dimensions, (e.g.
2-d, 3-d, time, intensity, color, texture, motion,
linear transformation, noises, non-linear transfor-
mations). But it is too easy to find a problem
that looks hard but turns out to be handleable -~
where we don't know whether that shows we have
achieved an interesting system, or have shown the
problem to be simpler than it appears.

But some steps can be taken immediately: Pro-
grams should be tested, and their performance com-
pared to one another. Standard sets of test scene-
instances would therefore be very helpful. They
should fairly mirror the range of underlying prob-
lems, and should not be biased toward any partic-
ular approach. Tests should be made on scene-in-
stances that the designer of the system has not
seen himself, since that iz the only way to guar—
antee that he has not built in overly specific ad
hoec knowledge. (It is fine to build in knowledge.
But the designer must be given an understanding of
the whole set of scenes his system will be asked
to handle, either by being given a good set of sam-
ple instances or, if possible, in some other way.
But if somebody designs a program to handle one
particular picture of a red house with evergreens,
and tests his program on just that one picture,
how can we judge the results?)

18. We don't know how "hard" vision is, or
how long we must work. A good vision system must
use contextual semantic knowledge of the most cen-
tral sort, as and when it judges thesc appropriate.
It must manipulate its world, construct its envi-
ronment, and discover good concepts. So it needs
‘a solution to the problems of "cognition" and
"intelligence" as well. ' But we can certainly
simplify. A full-blown vision system might need
a 10,0002 retina, and the ability to describe
scenes with hundreds of objects and thousands of
qualities, features and peculiarities, from among
millions of possible object~classes, each with
billions of possible instances (I have just been
describing a human being). But we can develop our
systems using a far smaller retina (50029 100=7)
and far simpler scenes {of 5 or 10 objects) and
possible object classes (100Q? 100?) each with far
fewer possible instances (1007 10%2). So today's
{or next year's) computers should be sufficient.
But we must try to develop systems that can handle
more objec¢ts once given cither more built-in knowl-
edge or learning experiences.

ITI. To recapitulate some of the issues:

I think we need non-deterministic parallel-
serial systems that intimately integrate large
amounts of contextually relevant information in a
mixed inner- and outer-directed way, combining
weights and making choices, trying to do as well
as possible and expecting very defective and unan-
ticipated scenes. They must learn, and be as flex—
ible, general and adaptive as possible.

I know we need to encourage all promising
approaches, develop good criteria for evaluating
and comparing systems, achieve a much better con-
ception of our intermediate and longer-term goals,,
and be more realistic in our expectations and
promises.

Several things seem compelling about percep-
tual systems. Their purpose is to gather useful
information about the external enviroament. They
must be efficient, robust over wildly fragumented
and distorted scenos and fast enough to respond in
time. The cognitive system lies within a two-
dimensional "skin" that can most efficiently be
used by a set of parallel input sensors, whose in-
formation can best be combined and analyzed by sets
of relatively local parallel transforms. This
means the overwhelmingly complex functions oomputed
by perceptual systems are best decomposed into auc—
cessively simpler sets of functions, and all ap-
plied in a parallel-serial flow of processes.

Some of these functions should be built in, but
some of them must be learned.

Such a picture fits well with the structure of
living systems, with their highly parallel sensory
organs, and successive layers of parallel and rel-
atively local synapses/transformations in the reti-
na, lateral geniculate and cortical projection
areas. But nature is not peculiar; rather, such
systems evolved because they are eminently sensi-
ble. I know of no good arguments why any unnatural

"artificial" device gives advantages. We can ex-
ploit the computer's "brute force" only if we cut
our problems down to toy size - just as a British
Museum algorithm (randomly examine every move!) can
win at tic-tac-toe but never at chess.

‘Could a nature capable of evolving protein
molecules, DNA and neurons be unable to develop
magnetic memories? Did nature build the awesome
complexity of a cell just to slow neurons down to
millisecond speeds, rather than the nanosecond
speeds already available in inorganic metals? This
is not to say that we shouldn't try to develop non-
natural techniques, but to remind how intelligent
nature is,

Section 2: Parallel-Serial Hardware
Structured for Perception Systems

1976 saw the coming of two new computer sys-
tems that connect relatively large parallel arrays
of programmable processors (1002 in Duff's CLIP e
1976, and 5122 in Kruse's PICAP, 1976) to a small
serial computer system. FEach processor would be
cumbersome as a general-purpose CPU, but is quite
appropriate for a wide variety of perceptual opera-
tions. Kruse's PICAP (which is serial at the hard-
ware level, but fast enough because of its buiit-in
array processor to handle TV images in real time)
has already been used for very interesting finger-
print and microscope slide recognition. And Cor-
dells, Duff and Levialdi, 1976, have shown that for
thinning, contour extraction, and several other
basic picture processes Duff's CLIP L is many
orders of magnitude faster than a serial computer.
And such arrays are now cheap. The parallel array
increases the cost of Duff's total mini-computer-
based system less than 20%.

But these systems are only the beginning. For
the technologies are rapidly improving, so that
more can be packed on a single chip, and the cost



of chips continues to go down (and is even cheaper
in larger quantities). Possibly even more impor-
tant, there is a whole range of architectures for
parallel~serial computers of this sort - ones with
very large arrays, rather than the few dozens we
see on systems like ILLIAC-4 - that are almost en-
tirely unexplored.

Toward Parallel-Serial Architectures For
Very Large Arrays

For example, a system with 5 or 10 arrays
arranged in layers like the layers of pyramids
and cones (see below) would literally be able to
handle almost all of their processes in one fell
sweep. New scenes could be input by a tv camera
every 30 msec, or faster, so thab real-time mo-
tions could be handled without any strain. Even
better would be a large array (say 12002) that
could be re-~configured under program control, e.g.
into one deep cone, or a binocular pair of slightly
smaller cones.

A variety of configurations for networks of
Processors, and of arrays of processors, are now
possible - if we knew what to do with them and how
to program them. But for scene description we do
know what to do with the large parnllel arrays.
And, as in this case, when parallel structures are
appropriate, and are known, the savings can be
enormously greater than what has become known as
"Minsky's conjecture"” - that concurrent processors
speed things up only by logeN (N = Number of pro-
cessors). On the contrary, for cone/pyramid struc—
tures they would speed things up by a factor of
LNy (where ly = Number of processors in the largest
(retinal) layer and L = the number of Layers). So
a 10-Layer pyramid with a 10002 retina would be
processed 10' times faster!

Systems that Would Benefit Greatly from
Parallel-Serial Hardware

A number of researchers have been exploring
layered parallel-serial variable-resoclution struc-
tures for scene description, including Hanson and
Riseman, 1974, 1976; Tenimoto, 1975, 1976; Levine,

--1976; Douglass, 1977; Klinger and Dyer, 197h4; Uhr,
1971, 1974; Unr and Douglass, 1977. A variety of
different strategies are being pursued, but all
have in common a relatively well structured set of
large numbers cf parallel-serial operations and a
regular flow of processes through this pyramid/cone
structure. So these systems could literally gain
10% to 109 - fold in speed if they could be pro-
grammed for and run on a computer with hardware
parallel arrays, one for each layer.

An increasing number of today's systems for
scene description also seem to be moving in the .
direction of using successive stages of processes
that are already conceived of as highly parallel,
or would benefit greatly if re-structured into
parallel form (as they almost certainly would be
if the appropriate parallel-serial hardware were
available). For example, the recent development of
"spring~loaded” "relaxation" techniques, by Zucker,
1976; Davis and Rosenfeld, 1976; Tenenbeum and
Barrow, 1976; and Fischler and Elschlager, 1973
use parallel and in some cases probabilistic opera-

+ tions that appear to speed-up and generalize ear-
lier serial systems that resolve incompatibilitics
(e.g. Waltz, 1975; Guzman, 1968).

Still others are consciously exploring the
values of parallel-~serial processes (e.g. Waltz,
197T7; Williams, 1976; Hannah, 19Th; Zobrist, 1971
Zobrist and Thompson, 1975.)

Highly Parallel Aspects that are Present
in Many Other Perceptual Systems

Finally, a number of systems that have not
emphasized these aspects of their structure would
appear to have important parallel and probabilis-
tic components. These include, I think, some of
the most interesting and powerful of today's per-
ceptual systems, e.g. Ejiri, 1972; Sakai, Kanade
and Ohta, 1976; Hagel, 1976; Mckee and Aggerwal,
1976; Moayer and Fu, 1976; Ohlander, 1975; Reddy,
1973, Lowerre, 1976. Such systems are usually
described in terms of successive serial stages, or
of a small set of demon-like processors that act
concurrently. Superficially these may appear to
demand a traditional serial computer, or, possibly,
a multi-processor with 10 or 20 independent CPUs
(and all the attendant headaches) interacting
through one common working memory.

But usually when one looks at the details of
the processes performed within each stage, or each
demon, one finds very large amounts of parallel
processing. For any scene description system must
first process the very large array of parallel in-
formation input to the "retina." And almost al-
ways local averaging, differencing and edge detect-
ing - all essentially parallel processes - go on
at the early stages.

But even at the highest levels, the Ffact that
the same objects might be found almost anywhere in
the scene often entails large iterating loops that
usually have an equivalent parallel algorithm. And
the similarity-match of each of the alternative
possible "models" or "descriptions" of the possi-
ble objects is often far more efficiently done by
a parallel-serial sorting network of their partial
features, much like & complex discrimination net,
rather than by the serial matching of each possible
model in turn (which becomes exponentially slow,
and extremely complex e.g. in backtracking possi-
bilities when "similarity" is assessed, as must
be done for natural real-world objects) rather
than the far simpler exact match that can be used
for straight-edged polyhedra or similarly simpli-
fied sets of objects).

Section 3: "Recogmition Cones" for
Perception, add Some Results

The following describes the basic structure of
the parallel-serial probabilistic "recognition
cone" perceptual systems I have been developing.
Extensions are briefly described that begin to
handle motion and change, binocular and multi-
modal perception, learning-by-discovery, and per-
ception as embedded in and aided by the larger
set of processes of a wholistic cognitive system.
A series of layers of transforms, applied in paral-~
lel at each layer, successively extracts, compounds,
coalesces and abstracts information. Each trans-
form acts much like a simplified synapse that fires
when enough of its specified pattern of inputs is
present to exceed its threshold. A large number of
transforms must be progremmed into or learned by
the system. Only a few preliminary sets of trans-
forms have been used so far.
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Fiéure 1. Recognition Cones (Ki) compared with
the (mythical) typical Artificial Intelligence
(AI) systems for vision, and with typical Pat-
tern Recognition (PR), on some ot the basic di~
mensions and positions discussed above.

The Basic Perceptual System
for a Single Static Scene

The basic model (Uhr,'19T1; 197k see Figure 2)
inputs & sensed scene onto its "Retina" (an array
of any size specified). A Ffirst internal
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Figure 2. Recognition Cone Structure. Layers of
transforms (dotted lines) look at and imply
things into buffer stores, transforming from
retina to apex.

layer of "transforms" looks at the cells of the
retina. Each transform is located at a particu-
lar cell, and "looks at" any number of (usually
neighboring) cells for specified information.

When and if any transform succeeds (becquse the
combined weights of the found parts exceeds its
threshold) it nmerges those things that it implies
into the corresponding cell of the internal buffer
into which it fires. A single transform is thus.
roughly like a synapse, with a number of neurons

"T'firing into it from the cells it "looks at" and a

number of neurons firing out of it, sending the
messages as to what it implies (when it fires)
into the next layer.

Layering

Thus the first layer of transforms looks at
the retinal input and fires into the first in-
ternal buffer, an array that now stores informa-
tion and is treated exactly like the retina.

A second layer of transforms locks at this
first internal buffer and merges its successfully
implied things into the next internal buffer. This
process continues, with a third, a fourth, and what-
ever number of layers of transforms desired (that
is, specified for a particular run).

Convergence

Convergence occurs at each layer, as desired,
by heving a Row and Column* STEP-size specified,

*¥Caps are used to refer to actual names used in the
computer program.

to indicate the amount of shrinkage from each
layer to the next. E.g. the Retina might be set as
a 16 by 36 array, and shrinkage factors used to di-
vide this for convergence into the next layer occur
as follows: 2 by 2 gives 8 by 18; 2 by 3 gives 4 by
6; 2 by 3 gives 2 by 2; 2 by 2 gives 1 by 1.

Cone Structure of Layers of Parallel-Serial Trans-
forms

Thus the system forms a parallel-serial struc-
ture of many layers of trancforms sandwiched be-
tween buffer arrays that store information. The
overall structure is that of a cone whose base is
the retinal input buffer and whose apex is the fi-
nal buffer thal contains a single cell. Fach layer
of transforms operates in parallel (that is, in
simulated parallel time, as programmed on the ser-
ial digital computer).

The Structure of Transforms

Each transform has the following form: A DES-
CRiption specifies the parts of the configuration
that the transform is to look for. A "part" can
be a specitic thing, or a class, with an associated
minimum acceptable value, a weight and relative lo-
cation. (It can also be a procedure that computes
any desired function that has been coded as a sub-
routine; but such procedures secem undesirable when
modelling living visual systems, since they do not
appear to be found in networks of neurons.) The
transform looks for each part (as though neuronal
processes were sending information about these
parts to the transform-synapse) and combines the
weights (which can be positive or negative) of
those parts that are found (at the moment the com-
bining function is simple addition or multiplica-
tion of weights, but any desired combining function
can easily be inserted). IT the combined weight
exceeds the transform's THRESHold, the transform
"fires," by MERGEing the things that it IMPLIES in-
to the corresponding cell of the next layer inter-
nal buffer or one of the lists described below.

The Variety of Things, Names, and Structures that
Transforms can Imply

This structure allows for a great enough va-
riety of "things" that might be implied into the
next layer so that the various processes that are
usually handled by separate subroutines in most
models of visual systems can be handled in a homo-
geneous way by this single general mechanism. Thus
a transform can serve to "pre-process" in the sense
of averaging out noise or differencing to enhance
gradients and edges. Or it can imply internal
things like "local horizontal edge" and then a
next-layer transform can look for several of these
things and build-up bigger structures, like "long
horizontal edge". Configurations can be got, like
"horizontal connected to vertical’ or "table-top."
External names, like "A" or "FACE" or "TABLE" can
also be implied. All this information is implied
and merged back toward the apex of the cone.

A simple example of the structure we can give
a cone follows: Transform layer 1 averages
the intensity of light in each local region,
or combines the primary colors. Layer 2 dif-
ferences locally (e.g. looking at a 3 by 3 region,
or if desired, a larger region), giving the
center cell a high positive weight and the 8



surrounding cells low negative weights). At layer
3 around 5 or 10 transforms reside at each cell,
each transform looking for a relatively simple
local feature (e.g. Hubel-Wiesel-like local ori-
ented edges; or local sets of cell values that the
system has generated through prior learning). At
layer L transforms look for spatially related con-
figurations of several of these local edges (e.g.
to build up longer edges, contour segments, and
angles). At layer 5 transforms look for higher-
level configurations of these configurations.

In addition to implying transformed values
and internal names, transforms at any layer can
also imply external names, ones that will be chosen
among when the output - the assigned names or des-
cription - is chosen. For example, a long vertical
can imply the letter "I" with a high weight, aend
the letter "E" and "TABLE" each with a lower weight.
Then a transform that compounds the long vertical
with a horizontal at the bottom going to the right
can imply "E" with a high weight and negatively im-
ply, to inhibit, "I" and "TABLE". A more periph-
eral transform that implies a short local vertical
edge or gradient (which will be one of the input
parts that allow a higher-level transform to suc-
cessfully imply a long vertical edge) can also im-
ply "I" or "E" - albeit with only a low weight.
Thus each transform can imply a variety of things,
including internal names and external names, of
parts, wholes, wholes made up of wholes, and also
of qualities (e.g. "STRAIGHT" or "DARK") and inter-
nal transformations (e.g. the cleaned-up or en-
hanced gradient).

Dynamically Implied Transforms and Things to Look
For

A successful transform can imply new trans-—
forms to apply, and/or mew things to search for
(which in turn point to transforms that imply
them), along with relative projected positions.
This means that not all transforms need to be
assigned to cell locations within the recognition
cone, and epplied to all input scenes. Rather,
particular transforms can be called and used only

-when information gathered so far suggests that

they might be useful. It seems hard to give a
physiological interpretation to such dynamically
implied transforms. But to the extent that a
very large number of transforms is needed to han-
dle all the different things that a general-purpose
eye must perceive they can effect an enormous sav-
ing, since only the small sub-set needed for each *
particular scene need be used, rather than using
all transforms on every scene. (Note that it is
not clear how many transforms will be needed. But
the parallel-serial structure that allows trans-—
forms to build up larger wholes at successive lay-
ers is designed for economy.)

Such dynamic transforms serve three important
purposes:

1) They allow the system to "glance about"
(at least with the "mind's eye") to look for addi-
tional characteristics that would confirm or deny
tentative hunches. E.g. a vertical edge might im-
ply "look for a horizontal edge near the top" or
"1ook for en 'F'" which further implies "look for
the transforms that imply 'F'" which will include
this particular transform. Or "D" might imply
"1ook for 'DOG'" which implies "look for 'Q' a bit
to the right".

2) They serve to give feedback loops to

earlier lsyers of processing. E.g. "D" implies
"look for 'DOG'" which implies "look for 'G' to the
right" which implies "look for 'Vertical-curve' and
'Horizontal-edge'" (which will be found at earlier,
more peripheral, layers).

3) They allow for quick und convenient shifts
of attention, for the system can imply and roll in
the transforms related to the particular type of
things the system now infers it is viewing. E.g.
when "chair" is implied it can imply "furniture,”
which then implies characterizers that imply other
kinds of furniture. Thus a bottom-up flow triggers
a top-down flow that merges in with it.

Dynamically Implied Triggers to Decide

A transform can also imply a trigger that a
decision be made:. The trigger can specify the par-
ticular class of objects among which the single
most highly weighted is to be chosen. The cell
where the transform trigger fires is then looked at
and the things stored in it chosen among, the choice
being transferred to a FOUND list. The cell at
which the choice is made serves as the apex of a
sub-cone whose base is a sub-region of the retina.
This helps the system handle scenes of several ob-
jeets, by assigning descriptive names to sub-
regions.

A Summary of the Overall Structure of "Recognition
Cones"

The overall structure, then, is a parallel-
serial "cone" that uses successive parallel layers
of probabilistic configurational transforms to pro-
cess information input to a sensory retina. Con-
vergence and merging of information implied by suc~-
cessfully applied transforms from one layer to the
next gives the cone structure, from retinal base to
a final layer with only one cell, the apex.

Each transform looks at a whole set of inter-
related parts (things or processes), combines the
weights of those that it finds, and fires if this
combined weight exceeds its threshold, by merging
the things it implies into the corresponding cell
of the next internel buffer (or into the list of
dynamiczally implied transforms or things to look
for, or triggering a choice in that cell, putting
that choice into the FOUND list).

The number of layers, steps of convergence,
and particular transforms must be specified for a
particular run {or, if learning is being investi-
gated, some or 2l)l may be the result of prio learn-
ing experiences).

Handling Continuing Scenes of
Moving and Changing Objects

The program for single static input scenes re-
initializes itself for each new scene by erasing
all of its temporary lists, including the retina,
the apex, and the other internal buffers of the
cone, The program for scenes of moving and chang-
ing objects {(Uhr, 1976b) simply "fades" rather than
erasing these lists. Fading means lowering slight-
1y the weights of the things stored in them, and
erasing a thing whose weight has been lowered be-
low a specified minimum.

Now an implied thing is merged into a cell that
may already contain that thing, because it was
merged into it at some recent prior moment in time
(but not at the same moment of time, since there



has not yet been time to place it there). The
first time something is merged into a cell it is
given an initial high weight. This serves to make
new things salient, and also moving things, since
their motion means that they will be merged for the
first time into some local cell for which they are
new things. Thus salience - in the sense of the
size of the weight associated with a thing.~ is a
function of its newness (change) and motion. It is
also, of course, a function of the transtorms that
imply it and, since transforms can imoly other
transforms to apply, and also things to look for
vhich in turn imply transforms to apply that would
imply them, of a potentially very rich set of con-
textual information that implies it.

Depending upon the fade factor, the initial
and continuing merge weights, and the relative
weights associated with implied things, different
things will become salient, and different times
will be nheeded for them to fade oub of memory.
Much playing around needs to be done to get good
weights (hopefully this will be done automatically,
by learning routines). But this appears to be a
simple and attractive way of giving continuity -
over time, with a "short-term memory" that is dis-
persed throughout all the layers of the perceptual
system, from retina to apex.

Handling Two or More Eves

Extending the recognition cone to handle two
eyes (Uhr, 1977b) turned out to be surprisingly
easy. Since this was basicelly a matter of put-’
ting the single-eye system into a higher-level
loop that iterates the same processes over the
second eye, it was Jjust about as simple to have
the system handle any number of eyes, as desig-
nated to it at the start of a run.

The one-eye system must be given the speci-
fic layers at the start of a run. The multi-
input system must also be given, for each layer,
the "from-eye" and "to-eye" for each eye at that
layer. Two or more eyes therefore converge if
they all have the szme "to-eye." This allows us
to specify a convergence layer wherever we wish.
We can even start with many eyes (and/or "ears,"

“"fingers" or other input organs) and have sev-
eral groups converge into several different eyes
at the same layer, and these, and others, cdn=
verge at subsequent layers. That is, we can
set up a tree whose buds are the separate retinal
images of the several eyes, whose root is the
layer at which all inputs have been converged to-
gether, with any number of intermediate nodes
of convergence into which several converging
nodes link.

Learning by Discovery and Induction
of Transforms and Layers

Extensions were coded to the binocular vision

system that allow the program to generate and dis--

cover new transforms, both as a function of exter-
nal feedback and of the internal feedback got from
the convergence of the transformed image from the
two eyes into a single internal array (Uhr, 1977b).
This was designed to explore issues of competition
between the two eyes, and the anomalies that occur
when one eye is sutured, so that its cone is not
given the experience needed to develop properly.
For the two eyes appear to be in a competitive-

cooperative situation, as determined by very in-
teresting recent experiments by Guillery, 19T7h;
and others.

A second extension that learns much more ex-
tensively has been formulated, and is now being
coded (Uhr, 1977a). This system attempts to gen—
erate a nev transform that is as different as pos~
gible from already-existing transforms (either
already—-generated, or learned). It iterates the
transform out through the entire layer, collects
inductive evidence about this whole set of similar
transforms, feeding it back to each indivdidual
transform in the set, and, after enough evidence
has bueen accunulated, tries Lo decide on the appro-
priate (sub-) array within which that transform
should reside, vund be considered to have been "dis-
covered as worth using." It also will generate a
whole tree of transforms, when needed, sprouting
back from the layer in which the root %ransform
has been indicated by feedback.

Perception Embedded in a lLarger
Cognitive System

The perceptual recognition cone has been em-
bedded in a larger "SEER"¥* system (Uhr, 1975a,
1975b, 1976a) that also begins to cycle through the
other major cognitive processes - remembering, sim-
Ple problem~solving, language understanding, and
motor action. This gives a stronger inner-directed
component to-the perceptual (sub-) system, and
allows perception to call on and interact with
memory searches, deductions, and external motor
actions (e.g moving the eye, searching for and
prodding the object).

It also raises a number of very interesting
problems that must be attacked if we want to put
the separate sub-systems that are typically em~
bodied in separate pregrams back together into
well-integrated wholistic systems.

Tests of the Static One-Eye
Recognition Cone

The EASEy-Snobol programs are too slow and
take up too much core memory to be tested in any
reasonably economical way. So a Fortran and, more
recently, a Simula version of the-basic recognition
cone have been coded, and a few tests have been made
made (see Uhr and Douglass, 1977, for a first re-
port). These include tests of:

a) one letter or symbol at a time, but varying
over many linear and non-linear distorticns (e.g.
rubber-sheet stretchings, introduction of many gaps
and extraneous crossings, turning into dotted
lines);

b) "place-settings" that are scenes of knives,
forks, spoons and plates arranged in various tra-
ditional patterns;

¢} natural "real-world" scenes, of houses,
trees, cars, sky, grass, etc.

Figure 3 shows approximate drawings of three
place-settings that the Simula program recognized
and’ described {the individual pieces, and also the
whole place-setting were correctly named). Table 1
summarizes the specifications of the actual layers
and sets of transforms used. '

¥Semantic Sensed Enviroument Encoder and Responder;
See-Errr). ‘



Teble 1. Specifications of the Cones Used for the Test Run

A) For simple letters
and symbols:

Size of Arrav Type of Tronsform Applied Shrinkace

20 by 20 1. Local edge dctectors 1/2
10 by 10 2. Feature detectors 1/2
5by S 3. Compotnd characterizers 1/5

B) For place-settings:
20 by 48 1. Local edge detectors -

20 by 48 2. Feature dotectors 1/2
10 by 2b 3. Compound charanterizers 1/2
5 by 12 4, Compound characterizers 1/5, 1/12

C) For outdoor scene:

Fortran 800 by 600 1. Averesge 1/%, 1/3
200 by 200 2. Hue, saturation, inten-—
sity cropped
Simula 120 by 120 3. Gradients 1/2
60 by 60 . Short edges, texture 1/2

30 vy 30 5. Long edges, compounds, tex-
turés of short edges -

‘30 by 30 6. Higher~level compounds -
30 vy 30 T. Higher-level compounds -
15 by 15 8. Average 1/2

8 by 8 9. Average 1/2
Lby b 10. Average 1/2

Figure 3. Place-settings were input into a 20 by
48 array. About 20 transforms were used, in a
h~layer cone. It took rcughly two hours for a
human to formulate and code the transforms, and
8 seconds of 1110 CPU time to describe each

1@l
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Ohlander's {1975) color pictures were used for
the natural "real-world" scenes. Figures 4-0 show
how a 1lO0-layer cone with approxzimately 70 trans-
forms successively transformed a 600 by 800 array
containing a house scene (also used by Hanson and
Riseman, 197}, 1976), and, in the later layers,
assigned names to regions of the scene: (It_took
roughly 120 hours to formulate and 40 hours to
code the transforms, and 90 seconds of 1110 CPU
time to process one scene.) The transforms were
"chosen to be useful and general over a wide vari-
ety of scenes. But additional tests will be needed
to determine whether they are sufficient, or
vwhether additional transforms are needed.

The following transforms were used, each transform
iterated ®Bnd applied everyvhere to its input buffer
(see Table lc): (In general, weights of implica-
tions go up moving deeper into the cone.)

Layer 1: Averaging is effected by looking at each

4 by 3 local array of cells, and outputting the sum
of the intensities for each of the 3 primary colors
into the cell in the output buffer layer corres—
ponding to the center of the 4 by 3, thus converg-
ing from an 800 by 600 to a 200 by 200 array.

This was done chiefly to reduce the very large
amount of data in the 800 by 600 tv image. Aver-
aging is probably usually a reasonable thing to do
on most scenes. But if the scene might contain any
tiny details of importance, then the system cannot
take the chance of averaging such information out
of existence., Rather, it should start with some-
thing like local differencing, to get gradients and,
edges,

Layer 2. The primary colors are combined, giving
a) hue (the single combined color), b) saturation
of that color, and c¢) intensity of that color.
This combining is effected by a transform with 3
narts to its Conditions, wh2re all 3 parts look at
the same cell, giving a 200 by 200 output array.

The first two layers of transforms are effected
by a Fortran program. The 200 by 200 image is now
cropped to 120 by 120 and the Simula program takes -
over. (The Simula program is now being modified so
that it will handle arrays larger than 12C by 120,
so that the Fortran program will no longer be
needed.)

Layer 3: Local gradients are computed, using a
transform that looks at the 4 parts in a 2 by 2
array, and sums the absolute values of the dif-
ference between the Northwest and Scutheast pair
of cells, plus the difference between the Northeast
and Southwest pair of cells.

Layer L: Short local edges are searched for in a U
by b4 array, using 4 edge detectors (one for each of
the slopes 45°, 90°, 135°, 183°). A texture de-
tector fires if more than 6 simple gradient points
above a threshold of 16 (from layer 3) are found
in a 4 by 4 local array.

Layer 5: Long edges, angles, curves and textures
are compounded together, using transforms that
typically fire if about 3 oput of 5 parts are found.

Two additional textures are got, by counting
the number of edges in a 4 by b4 window, and by
getting the principal orientation of edges in a
4 by 4 window.

Layer 6: A number of different compounding trans-
forms look for configurations of edges (e.g. ver—
tical edge, slope) end region elements (e.g. wall,
sky) and already-implied objects (e.g. roof, window,
house). Three examples follow:

a) Blue sbove a long horizontal edge above the
previously implied object roof implies sky (above)
and house (below):

gé& Blue

vpfi%o Root

- Sy

House

b) A low saturation region, an angle of long
edges, and brick color and briek texture on the



other side of the edges implies house, with window
in the low saturation region and wall in the brick
region:

angle
low brick color - T wall
saturation brick texture window house

¢) Blue above two long sloped edgeé giving an
upward pointing angle with green below implies
trees below:

blue
+ angle
= tree
green

Layer T7: Still more higher-level compounds that
are combinations of previously-implied names are
looked for.

Layer 8: Fach implied name is averaged over a 2 by
2 array. '

Layer 9: Each implied neme is averaged over a 2 by
2 array. :

Layer 10: Each implied name is averaged over a 2
by 2 array.

This is but a first approximation to a good
set of transforms, and a good overall architec-
ture,

Since the last three layers of the cone sim-
Ply average and converge, they serve only to
merge implied names and labels into larger and
larger regions. They thus indicate what higher~
level identifications predominate; but they do
not actually add further information to the des-
cription process. Probably five or ten more layers
of transforms would be needed in a full-blown Sys=-
tem, -

Much more work is also needed in choosing the
individual transforms, and the weights of their
various implications. The present set of trans-
forms was not chosen with the specific scene used
for this first test of the system in mind. So they

"will probably work reasonably well on a variety of
outdoor scenes of this sort. But we can expect
that experience with new scenes will indicate dif-
ficulties, and that a good bit of work will be
needed to add, modify, and reweight transforms.

As the system is asked to describe a greater
variety of scenes and objects, it will need to be
given a larget set of transforms. There are good
reasons to think that this system's successive
compounding of the rather general probabilistic
configurational transforms that it uses meens that
the total number of transforms needed will level
off at a manageable size. But only experimental
tests with a wide range of scenes will be able to
decide this issue,

- 10 =

The hope is to put as much ag possible of the
burden of generating a food set of transforms onto
learning routines. The transform structure was de-
signed with learning in mind, and first versions -
of learning routines are being coded. But the
amount of computer time needed for the program to
generate and adjust the weights of a good set of
transforms may be quite large. It seems most
likely that a mixture of some learning by the pro-
gram and a good bit of human effort spent in mod-
ifying and fine~tuning the set of transtorms will
be needed to get as good performance as possible.
But learning becomes crucial when the system must
recognize and describe new and unanticipated ob-~
Jects.

The test results that follow should be examined
keeping in mind these possibilities for extending
and improving the system's overall architecture
and individual transforms.
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Figure 5 shows the single most highly implied thing output
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Figure T shows the most highly implied things in Lsyer T,

the next layer.
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Figure 8 shows only those cells into which House (H) is

Note how the higher-level compound

for house has turned many of the local "Wall" areas into

"House."

most highly implied.
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Figures 9a, 9b, and 9c show the outputs from Layers

8, 9, and 10.
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Conclusion

These are but first results, yet they seem
quite comparable to those achieved to date by
other perceptual systems on these very difficult
scene description problems. The hope is that a

wide variety of scenes of natural objects will be

handled by this system, after it has been given,
or has learned, a sufficient (yet economical,
efficient and general) set of transforms. More
transforms are needed to handle a wider range of
Scenes,
be general, not ad hoc to the particular test

scenes. And when appropriately structured paral-

But the present transforms were chosen to

.

lel-serial hardware becomes available this kind of

system will certainly be extremely fast, and will

hopefully be powerful.
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APPENDIX

Position Questions

Segmentation

1.

Whet should be the primary basis of segmenta~
tion: regions, edges, clusters in feature
space? Are these equivalent? (How) should
they be combined?

How can multiple features and sensory modal-
ities, including color, texture, depth, mo-
tion, be used to simplify segmentation? What
are the current limitations in reliably pro-
cessing each of those features? Given these
difficulties, what is the relative utility

of each to the segmentation process.

Which techniques will be powerful enough to
deal with the textural variations of natural
scenes. What techniques (e.g., histograms)
are necessary {or desirable) to extract
global feature activity? How can different
levels of texture (micro—macro) be detected
and utilized?

Do parallel vs. sequential approaches lead
to different methodologies? To what extent
should we be concerned with the development
of parallelism at this point?

How does the resolution of the sensory data
affect the segmentation process and ultimate
performance of the system? Can crude seg-
mentation be obtained from coarsely sampled
data? Should we be considering the equiv-
alent of eye movements and/or foveation?

Is the processing of a hierarchy of resol-
tion levels helpful? How can a scene be
tglanced at' to guickly determine and lo-
cate one or two objects or relationships

of immediate interest?

How can (or should) semantic knowledge

pe used to guide low level segmentation?
What level(s) of knowledge is needed e.g.,
domain independent interpretation of grey
levels as surfaces; domain specific in-
terpretation of regions as objects?

How well can (must) segmentation be per-
formed at the retinal level without ex-
plicit knowledge? With only domain in-
dependent knowledge?

Representation

8.

As logical ‘units' for higher processing,
what primitive visual features are necessary
(or sufficient) to adequately characterize
the nature of a region? A line? A surface?
An object? What are the deficiencies of

our current representations of these feg=
tures?

Given that there is a transformation from the
sensory data to the symbols representing the

'meaning' of the sensory data, where is the
point in the process that the numbers and
symbols meet? Are there any well-defined in-
termediate levels between sensory date and

symbols? If so, what form do these inter-
mediate representations take?

Systems

10. How should the overall systems be organized?

11.

12.

13.

How should semantic knowledge be represented
and applied? Should there be a hierarchiw
cally structured knowledge base? Frame-like
structures? Relaxation or constraint satis-
faction methods?

How can multiple sources of knowledge be in-
tegrated?

How should goal-oriented vision systems be
developed? Can general systems be provided
goals after their design is fixed? Or should
task-specific systems be developed out of
standardized components? How can the goals
be integrated into the control strategy to
affect the focus of its processing and the
depth of its analysis?

Does vision have anything to learn fromspeech
understanding systems? Is there any 'visual
linguistics'? Are syntactic methods viable?

Research Directions

1k,

15.

16.

1T7.

18.

1—16"

Are our current techniques representative of
the full range of possibilities? What are
their fundamental and practical Llimitations?
Can they be extended to much larger domains
(to handle a much larger number of objects
using less domain specific knowledge)? Are
distinctly different approaches (e.g., from
brain studies) required or potentially useful?

What are important and promising directions
for further research and what problems can be
expected?

What are the potential applications of these
systems, special purpose (near—term) or gen-
eral? 1Is a general vision system a viable
goal for research or should research be appli-
cations driven?

Evaluation

What is the criteria for judging the perfor-
mance of vision systems, both applications and
general systems?

What are reasonable expectations for computer
vision systems? All agree that vision is hard,
but how hard is it? What is the level of com-
plexity, amount of knowledge, computational
capacity needed? Can we expect general vision
systems in five years? Ten years? Fifty years?



