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ABSTRACT

A new programming language called TELOS is introduced
through a complete specification of its syntax and an infor-
mal description of its semantics. The design of TELOS 1is
discussed in view of a set of language design goals and the
needs of artificial intelligence (AI) programming.

TELOS is an attempt to provide powerful abstraction
mechanisms and other structuring facilities within a lan-
guage that provides the special capabilities needed for Al
research. Like most other AI languages, TELOS includes fa-
cilities needed for experimentation with large stores of
general knowledge, tentatively modifiable and associatively
referencable, and with various planning and reasoning strat-
egies. However, in contrast to other AI languages whose de-
sign has focused on building in certain powerful high-level
constructs, the design of TELOS has focused on building in
powerful abstraction mechanisms with which these particular
high-level constructs, as well as numerous others, can be
defined and implemented with reasonable ease.

Recently, programming languages have begun to appear
with features specifically designed to facilitate abstrac-
tion of the several different kinds needed in the program-
ming process, in particular, data abstraction and control
abstraction as well as procedural abstraction. TELOCS imple-

ments a set of data, control, and procedural abstraction
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mechanisms specifically tailored to AI requirements. By em-
phasizing abstraction mechanisms rather than high-level con-
structs, 1t has been possible to minimize theoretical bias
in the language, making TELOS potentially usable for inves-
tigation of competing theories.

The data abstraction capabilities provided in TELOS add
to the already powerful data type extension capabilities of
PASCAL. A programmer may define a problem-specific data
type by including details of representation and implementa-
tion within a definitional scoping called a ‘'capsule'. The
procedures and functions which realize possible primitive
operations on objects of the type being defined are an inte-
gral part of the definition, and the objects are character-
ized and used in terms of these defining operations.

The control abstraction capabilities provided in TELOS
enable convenient programmer definition of the novel kinds
of control regimes which are investigated in AI research,
that is, those which realize alternative problem-solving
strategies. Just as TELOS capsules localize data represen-
tation details, TELOS ‘overseers" 1localize interprocess
control-transfer and communication details needed to realize
desired control regimes.

Besides its abstraction mechanisms, TELOS contains oth-
er facilities which can contribute to the building of well-
structured programs, starting with the rich set of progranm

structuring facilities already available in PASCAL. If used
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correctly, these facilities can result in modularized, hier-
archical programs with reasonably comprehensible control and
data flows.

The design of TELOS is based on many of the same goals
as the design of PASCAL, though TELOS reflects a different
relative emphasis among the goals. There are conflicts be-
tween the need to include certain language capabilities seen
as necessary to support effective AI programming and the
goals of simplicity and minimality. The TELOS design at-
tempts to mediate the conflicts with compromises intended to
provide support for programming effectiveness, ease of de-
bugging, program comprehensibility and evolutionary program
development.

Several benefits should accrue for Al research from
such a language design:

(1) AI programs are highly complex. TELOS provides many
aids to managing and containing program complexity.

(2) Much of AI programming involves putting preliminary
ideas and hypotbeses into programs and then changing the
programs as suggested by experience with them. The improved
program comprehensibility possible with TELOS can make this
kind of evolutionary programming easier and more efficient.

(3) Improved AI programmer productivity, as is possible
with the features TELOS provides, will mean improved Al re-

search productivity.
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CHAPTER 1

Requirements for an Al Programming Environment

A major consideration in the design of a programming
language is the type of programs for which the language will
be used. The characterizing features of a language are
those which a designer feels are fundamental and thus will
be wused frequently. Such features are implemented as part
of the language to allow the programmer to ignore details
and concentrate on algorithms. Certain specialized features
have been seen as useful for programs in the area of artifi-
cial 1intelligence and consequently have been included in
some recently developed languages for Al programming.

Important aspects of a programming environment for the
development of artificial intelligence programs include ca=-
pabilities for programming complex environment structures,
facilities for sophisticated data manipulation, and system
support for interactive incremental model building. List
processing languages were an important first step toward
providing an environment to support the development of pro-
grams that manipulate complex symbolic data with varying
structure. The evolution of highly interactive LISP
[MAEHL62] systems that provide advanced testing and editing
components was the next important step. Finally, several
specialized programming languages have been developed, usu-

ally as extensions to existing languages intended for more
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general uses; e.g., PLANNER [Hew72] and CONNIVER [MS72] from

LISP.

Associative Retrieval

Associative retrieval capabilities are one of the most
important components of these latest AI 1languages. Their
run-time environments generally include a data base or asso-
ciative net that 1is accessed only by way of content-based
references. The content of this data base is usually inter-
preted as the "state of the world" as known to the program
(in a robot problem solving program, for instance) or as a
knowledge base from which to draw facts or inferences (e.g.,
in a question answering program). The data base essentially
provides an alternate way to reference data objects, quite
different 1in both form and utility from the traditional ap-
proach of naming data objects by binding them as the value
of a variable. \

The basic mechanism of associative retrieval is to ref-
erence a complex data object (an object with structure rath-
er than a single atomic value) through partial specification
of its value. Thus the entire object is referenced through
the content of the specified part or parts. Clearly, such a
reference is not necessarily unique. This lack of unique-
ness is a source of considerable power in providing data ma-
nipulation facilities, but can cause both conceptual and ef-

ficiency problems due to its potential generality.
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Under the most general implementation of such a re-
trieval mechanism, one could attempt to retrieve any complex
object with arbitrary structure that includes a particular
atomic value any place within the structure. Depending upon
the implementation, this request could be expensive. Fur-
ther, it is not obvious that a program could meaningfully
process various results of such requests, since the results
could have different and unrelated structures. A  language
designer might well be wary of providing facilities that
make such a retrieval appear as simple to a programmer as a
more completely specified reference that includes somne
structural information. Further, an implementor &ight well
gquestion whether the retrieval mechanisms necessary to honor
efficiently such a general request should be implemented at
the expense of making more likely operations less efficient
than they might otherwise be.

A second aspect of associative retrieval included in
the latest AI programming languages 1is the invocation of
procedures by matching a '"goal pattern" rather than by nam-
ing them directly. This feature 1s an extension of the idea
of generic procedures found in general purpose programming
languages. A generic procedure 1is really a set of related
procedures, all called by the same name, but differing in
the type(s) of the parameters on which they operate and the
values they return. The compiler identifies the procedure

to be called and generates the appropriate code.
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Pattern directed invocation eliminates the requirement
that the caller designate the name of a procedure to be
called. Rather, a goal to be achieved is specified, allow-
ing any procedure whose goal pattern matches the goal speci-
fication to be activated. This matching 1is done at run
time, allowing the use of procedures added to the system af-
ter the calling procedure was defined or compiled. As in
the case of associative data retrieval, there exists a pos-
sible ambiguity in matching the goal specification against
goal patterns of procedures. Again, this is a source of
both power and difficulties. The ambiguity is typically re-
solved by invoking the procedures that match in succession
until one indicates that it has successfully achieved the
goal. (The associated concept of failure and backtracking
will be discussed below.) This sequencing results in a
depth-~first search for a solution.

While depth-first searching is adequate for some prob-
lems, it is frequently inefficient and even unnatural as a
search strategy. CONNIVER includes some features that give
a programmer more control of the searching technique used.
A language might go farther along this line by allowing pro-
cedures to be retrieved according to their goal pattern,
much like data objects, and giving complete control of invo-
cation to the programmer. This flexibility requires the
system to provide the programmer with the ability to suspend

the execution of a procedure and to restart it later, along
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with the capability to manipulate these suspended procedures
as data objects, including functions to examine the state of

theilr executions as a basis for scheduling.

Contexts

An important tool for programming many AI applications
is a facility for saving and restoring data contexts. A
context consists principally of the state of the associative
data base, but may also include the values of some or all
global variables. Contexts are crucial for the implementa-
tion of any sort of mechanism for attempting alternative so-
lution methods, such as backtracking.

Previous mention has been made of the use of the data
base as a world model. Frequently procedures attempting to
achieve some goal, modeled by the the establishment of some
new state of the data base, will be designed to manipulate
the data base as intermediate goals are processed. The pro-
grammer could write procedures to keep an account of all
changes they make so the changes might be undone, if neces-
sary, but it would be a tedious and often inefficient task.
Having a mechanism for saving and restoring contexts built
into the language allows considerable simplification in im-
plementing a program that may attempt alternative solution
strategies.

The simplest mechanism of the kind just described pro-

vides the programmer with a simple backtracking environment;
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that is, the ability to save the context at a decision point
and to allow processing to continue with a selected strategy
until it succeeds or fails. Success allows processing to
continue on to the next step while failure results in a re-
storation of the context at the decision point and the invo-
cation of an alternative strategy. Such are the mechanisms
provided in PLANNER and FUZZY [LeF74]. A stack of contexts
is available to programmers in these languages.

A number of uses can be seen for a more general context
scheme. Backtracking is useful only for implementation of
depth-first searching and, even if it happens that such a
strategy 1is well-suited to a problem, a programmer might
prefer to preserve some information from attempts that fail.
Such preservation requires the retention of the various con-
texts used in a search for later reference, creating a tree
of contexts that branches (potentially) at every decision
point. This approach, of course, has wider applications
than merely providing more information to a depth-first at-
tempt at a solution. It can be wused to implement a
breadth~first search or any more sophisticated scheme, such
as a "multitracking" approach, where a number of strategies
are attempted 1in parallel. These strategies may be imple-
mented through use of parallel multiprocessing hardware or
through wuse of software to provide pseudo-parallel process-
ing, perhaps using dynamic evaluations of progress for sche-

duling decisions.




7

Another important use of contexts is 1in the area of
planning. Plans that must be designed in the absence of
complete information or depending on future events must in-
clude options for the various situations that might occur.
An obvious way to implement a program that c¢reates condi-
tional plans is to add information to the data base to rep-
resent each of the possibilities in an unknown case. Having
a context mechanism simplifies such an approach, particular-
ly when segments of a plan may depend on any number of con-

ditional assumptions.

An ubiquitous feature of AI programming languages 1is
the concept of failure, previously mentioned in the discus-
sion of contexts. Failure is a special kind of return from
a procedure, which signifies that a procedure was unable to
achieve a goal or otherwise fulfill its role in a search.
Having the concept of failure built into a language does not
really add any new capabilities, but like many other fea-
tures of Al languages, 1t enables the programmer to concen-
trate more on his algorithm and less on coding details.

Failure indication is the basis of the deductive mecha-
nisms that are an integral part of several AI languages.
Failure initiates backtracking in PLANNER, QLISP [Wil76] and
FUZZY. Since CONNIVER offers more general control state-

ments, failure in that language is not an automatic trigger



8
but will certainly play an important part in any search
Strategy a programmer designs. Failure is also a part of
the less powerful control mechanisms of SAIL [Van73], where
it is the negative return of a match function that controls
a FOR EACH statement. (This statement provides the ability
to process, in turn, each value that a match function gener-

ates.)

Demons

Another language feature unique to AI systems 1s the
demon. A demon 1is a procedure activated by a conditional
interrupt, usually when some "sensitive!" data is altered or
accessed. After execution of a demon, control returns to
the procedure that was executing when the event that trig-
gered the demon occurred (as is typical for an interrupt).

The semantics of demon invocation are highly dependent
upon how the programmer uses demons to alter global varia-
bles and the data base. The most common use of demons 1is a
solution to the "frame problem" [MH69] that occurs in
deductive problem solving formalisms. Simply stated, this
involves maintaining the logical consistency of a data base
as it 1is used to represent successive states in a solution
space. Demons may be invoked as assertions are added to or
removed from the data base, making other appropriate changes

in a state to insure its consistency.




Generators

Generators are a control construct introduced in the
list processing language IPL-V [NTFGM64] and carried over to
some later AI languages, particularly CONNIVER, FUZZY and
SAIL. More recently, general-purpose languages such as
ALPHARD [SWL77] and CLU [LSAST77] have included generators.
Generators are special purpose coroutines that may be reen-
tered, providing a new value each time they are entered.
They may be used to scan a list structure, return the re-
sults of successive deductions or pattern matches, or return
at each step the result of any iterative general computation
implemented by a programmer. To implement generators as
truly independent of the procedures to which they provide
values, it is necessary that they have the ability to oper-
ate in an independent data context (maintained during
suspensions), thus requiring the context tree implementation
discussed above, rather than the simple context stack. A
tree 1s necessary so that a procedure using a generator is
not restricted in its use of contexts in between invocations

of the generator.

Incremental Model Building

The construction of complex heuristic programs can be
greatly aided by interactive program development tools. In
contrast to the development of more well-defined algorithmic

programs, experimental execution and subsequent modification
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is frequently part of the design effort for AI programs.
Thus a system that provides editing and interactive debug-
ging packages 1s strongly desired. The most advanced devel-
opments in this area are found in the work of Teitelman
[Tei69,Tei77].

Such tools are only a part of the desired capabilities,
however. It 1is also important that a system be procedure
oriented so that an entire program need not be recompiled or
reprocessed as the result of modifying a limited number of
existing procedures or adding new ones. In an interpretive
LISP-based system, this feature is available automatically
since LISP is inherently function oriented. It is something
that must consciously be developed in any compiled system,
particularly one based on a general-purpose programming lan-
guage rather than LISP.

The associative retrieval of procedures makes it possi-
ble for existing procedures to interact with newly defined
ones without the necessity that they be '"aware" of one an-
other (in the sense of being able to name one another ex-
plicitly). This capability has been stressed as one of the
main strengths of pattern-directed procedure invocation (or
retrieval), simplifying the execute-and-modify cycle de-
scribed above as a useful development technique and permit-
ting the addition of new heuristics to achieve a particular

goal without requiring modification of the procedures that
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generate that goal, or even without detailed knowledge of

what other heuristics are available.
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CHAPTER 2

Existing Artificial Intelligence Languages

The recognition of a number of inadequacies shared by
some or all of the existing artificial intelligence program-
ming languages has led to the design of TELOS. One of the
major drawbacks in existing languages 1s the lack of a capa-
bility to work with large amounts of data as is necessary
for "real world" problem solving, particularly due to effi-~
ciency problems. Other problems with these languages in-
clude context mechanisms, local and global control primi-
tives, facilities for "non-AI" processing, general efficien-

cy and transportability.

Data Base Size

The attention of Al researchers has of late turned away
from demonstrating solutions to "toy" problems toward “real
world" problems. (Examples of such systems include the
Hearsay speech wunderstanding system [REFN73] and MYCIN
[Sho76], a medical diagnosis program.) The ability to handle
a large data base is crucial to developing a problem solving
system that can function in a complex environment. The
LISP-based AI 1languages are not used sucessfully for such
work, largely due to the lack of efficiency in available im-
plementations of these languages. Part of the reason for

this difficulty is that, being rooted in LISP, they lose ef-
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ficiency when forced to manipulate list structures (their
only primitive data type) to perform tasks for which they
are not well suited. SAIL has a more efficient data base
mechanism, at the expense of only handling ordered triples
(though they may be nested).

The existing AI languages do not give programmers ways
to help a compiler or interpreter execute a program as effi-
ciently as possible. An important aid in the manipulation
of large data bases would be some way to specify logical
segmentation of the data base. Segmentation would allow re-
quests for searches with respect to one or several of these
logical segments with the implication that a system might
maintain separate indices of the objects in the various seg-
ments if such a scheme 1is found most efficient by the
implementor.

The existing languages are also not well suited for
work with large data bases because they allow no interaction
with secondary storage other than perhaps depending wupon a
demand paging mechanism that might be part of the operating
system under which a system runs. Another advantage of log-
ical segmentation is that a system might use it for storage
management purposes. Objects in the same logical domain are
natural candidates for storage together so as to minimize
swapping, and if the associative index of the data base is
also segmented, even it need not all be kept in working mem-

ory. A system can even use the segmentation as a basis for




T4
anticipating storage requests so as to fetch information
from secondary storage before it is actually required.

Once an object is located in the data base, all of the
LISP-based languages except QLISP require that a working
space copy be made before the object can be used. (QLISP
does not separate the data base and working space.) As the
data base and the objects in it grow more complex, this
copying becomes particularly expensive. A mechanism for
referencing objects in the data base, possible with some re-
strictions on how the reference may be used to change an ob-
ject, can be very useful in minimizing the cost of interact-
ing with such objects.

TELOS 1is designed as a set of extensions to PASCAL.
This helps to eliminate some of the data base efficiency
problems found with LISP-based languages, since the more
flexible data structures of PASCAL can be used to implement
the data base mechanism. Since PASCAL is a strongly typed
language, objects in the data base that have different
structures are recognized to be of different types. These
type distinctions provide a natural segmentation of the data
base, yielding the advantages discussed above. Finally,
while TELOS does separate the data base from the general
working space (PASCAL's heap storage for dynamically allo-
cated objects), pointers to data base objects are included

in the language. Data base pointers eliminate the ineffi-
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ciency of unnecessarily copying data base objects into the

working space in order to examine them.

Contexts

PLANNER and FUZZY offer a context mechanism that allows
the programmer a stack of contexts. In MICRO-PLANNER, a new
context is created at each backtrack point and released when
the alternatives at that point have been exhausted. In
FUZZY, a new context is created each time a procedure is en-
tered and released upon exit (with appropriate effects when
the procedure succeeds). FUZZY also allows the programmer
to add new contexts explicitly to the stack and creates con-
texts 1in association with the FOR constructs available for
looping. As previously noted, such a stack mechanism is on-
ly useful for programming searches using a depth-first
strategy. Since many problems do not lend themselves to a
depth-first search and since such a strategy is often inef-
ficient even 1f appropriate, a more powerful mechanism is
clearly desired.

This particular problem was a principal motivation for
the development of CONNIVER [SM72] after early experience
with MICRO-PLANNER revealed the weakness. The approach tak-
en by Sussman and McDermott in developing CONNIVER was to
allow the programmer to treat context frames as data objects
and build them into any desired structure. This has the ap-

peal of great generality, but suffers from the difficulty of
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requiring too much involvement by the programmer with the
details of an implementation.

The ability to manipulate the data structures used by a
system to control a program is a general problem with CON-
NIVER, not 1limited to the context mechanism. While such
power is sometimes useful, it also encourages the use of
"clever" programming tricks that are highly dependent on im-
plementation details, which tends to make programs hard to
understand or debug. The available documentation for CON-
NIVER is, in fact, a unique blend of language description
and technical documentation.

The contexts provided in SAIL are quite different,
reflecting the fact that SAIL is rooted in ALGOL, a block
structured language. Contexts have scope based on the block
in which they are declared. Variables must be explicitly
stored into and retrieved from a context. Consequently,
contexts have no inherent ordering or relationship to one
another. Given this context mechanism, it is possible for a
context to include a value for a variable that has been
deallocated, causing an error if an attempt is made to re-
store such a variable.

The most crucial problem with the SAIL context mecha-
nism is that it does not include the associative data Dbase.
Having contexts for variables is helpful, but as can be seen

from the earlier discussion of the use of contexts, the ca-
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pability to restore states of a data base is especially use-
ful.

The context mechanism available with QA4 and QLISP of-
fers the Dbest combination of usefulness and usability. It
includes primitives for creating a tree of contexts, inde-
pendent of any control structures used by a program. The
importance of this arrangement is that it allows a program-
mer to maintain a more general hierarchy than a stack so
that searches other than depth-first might be conveniently
performed. At the same time, the independence from control
structures prevents the system from forcing the use of more
contexts than are necessary. The net result of these fea-
tures is a useful, well-defined context mechanism that never
need be programmed around and that allows an efficient use
of contexts.

TELOS includes a context mechanism much like that pro-
vided in QA4 and QLISP. An important addition to this mech-
anism in TELOS is that a routine may only reference contexts
that it can name, and their descendants. There is no system
provided routine that allows a routine to discover the name
of any ancestor of a context. Thus routines can protect lo-

cal versions of the data base from routines they call.

Control Primitives

Innovations in control structures in AI languages have

been mostly in the area of global strategy control. The two




18
main contributions of PLANNER in this area were
pattern~directed function invocation and automatic back-
tracking. As discussed previously, automatic backtracking
has been found to be quite wuseful in some cases but a
hindrance in others. CONNIVER took the step of offering the
programmer the tools to construct any desired control mecha-
nism (backtracking included). SAIL offers a different ap-
proach to this specification of global control, because it
is not dependent on pattern-directed invocation. The SAIL
programmer must explicitly specify saving and restoration of
variables in contexts and call procedures explicitly, either
by naming them or using procedure variables.

The concept of associatively retrieving a procedure for
execution is powerful, but is more controllable used in con-
junction with procedure variables as found in SAIL. Proce-
dure variables allow a programmer maximum flexibility in
creating control strategies. This situation is an example
of a case where all the desired features appear to exist
somewhere but are unfortunately not combined in any one pre-
vious language.

TELOS allows associative retrieval of routines through
the general data base mechanism and the use of routine ref-
erence variables. Any criterion (including a goal pattern)
may be used to find objects in the data base that contain
routine references. There 1is no automatic invocation of

referenced routines; rather, invocation is left to the dis-
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cretion of the routine initiating the data base search.
This separation of retrieval from invocation, the availabil-
ity of routine reference variables, and the tree-structured
context mechanism provide the basis for programming a wide
variety of control strategies. Special routines called
overseers are included in TELOS to encapsulate the implemen-
tation details of such strategies and thus to present the
strategies to other parts of the program as control

abstractions.

Programming in the LISP-based AI languages 1is frequent-
ly made difficult by the lack of any local control struc-
tures other than COND. While this branching construct 1is
powerful, it isn't very useful for programming iterations.
It is unfortunate to be forced to use recursive calls when a
simple local WHILE loop would solve the problem. Use of
COND and GO to gain this efficiency sacrifices a considera-
ble amount of elegance and clarity. (The result has been
the 1introduction of certain ALGOL-like control structures
into some LISP implementations.) SAIL, being ALGOL-based,
naturally avoids this problem, having the complete set of
ALGOL control constructs to draw upon. TELOS similarly
avoids the problem, having available the variety of control
constructs included in PASCAL.

In addition to the LISP primitives, FUZZY offers an in-
teresting and useful set of FOR loops. Unfortunately these

are tied too closely to the context and backtracking mecha-
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nisms, leading to some difficult problems in trying to avoid

what the system does automatically.

Facilities for General Processing

SAIL is strong in this area, having all of ALGOL as its
base as well as some useful extensions, especilally a facili-
ty for creating and controlling independent processes. The
LISP—bésed languages are weak here, essentially offering on-
ly 1list processing and recursion. Simply trying to do any
arithmetic (not an uncommon need, even in AI programming!)
can be difficult in LISP. Of course, a language rooted in
an advanced LISP system (as QLISP in INTERLISP [Tei75]) has
a less serious problem, since such LISPs include syntactic
extensions and operations that relieve many such problems.
Nevertheless, a programmer wanting to use one of the AI lan-
guages must choose, if such alternatives are available, be-
tween the general processing capabilities of SAIL or the
more sophisticated data base mechanisms of the LISP-based
languages. The fact that the associative retrieval capabil-
ities of SAIL are not linked to the context mechanisms and
handle only ordered triples is a severe limitation. Again,
there is clearly the need to draw the most useful aspects of
the various languages together,

Recent work in the programming languages field has fo-
cused on facilities for defining new data types, particular-

ly structures or records consisting of existing types. The
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existing AI languages have typically provided a small set of
composite types that take atomic values as their component
parts. It is more useful to provide for user-defined types
in a language and to allow such types to be treated on a par
with built-in types in the construction of composite types.

A related research theme in programming languages 1is
data abstraction. Proposals in this area suggest that in-
cluding basic operations on a data type within its defini-
tion provides a number of advantages. A data type can be
considered as an abstraction, using the operations so de-
fined on objects of the type without consideration of the
implementation of the operations or of the type 1itself.
Such a feature is clearly useful in the construction of
large AI systems where sheer complexity is one of the usual
problems encountered.

TELOS, having the features of PASCAL included, has no
problems with features for implementing the lowest levels of
algorithmic detail (such as arithmetic). It also has the
powerful type definition capabilities of PASCAL, in particu-~
lar for defining record and pointer types. Like SAIL, it
includes facilities for creating and controlling suspendable
processes (though there is currently no provision for paral-
lel execution). Additionally, TELOS includes an
encapsulation mechanism intended for the definition of ab-

stract data types.
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Effeciency

Experience with the implementations of MICRO-PLANNER
and FUZZY on the UNIVAC 1110 has shown them to be unreasona-
bly inefficient for programming other than small problems,
even though 1110 LISP is one of the fastest available and
the interpreters for these two languages are compiled. The
problem seems to be the dynamic nature of LISP, which re-
quires, among other things, resolving all non-local variable
references at run-time. This problem seems to indicate the
necessity of either a dedicated computer or an AI language
that uses a compiled language as its base.

SAIL is the primary example of an Al language based up-
on a compiled language (ALGOL) and does not suffer from many
of the efficiency problems found with the LISP-based lan-
guages. As noted previously, the fact that SAIL has ALGOL
as a base gives it strong advantages in general processing
facilities over the LISP-based languages. The major weak-
nesses of SAIL are in the AI processing features it lacks,
while the weaknesses of the other languages derive to a
great extent from their base in LISP. These observations
seem to indicate that adding the desired AI features to a
general-purpose algorithmic language should turn out to be a
fruitful step, exactly what has been done in the design of

TELOS.
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Transportability

The lack of easy dissemination of most AI languages be-

yond the research centers at which they were developed poses
a difficult problem for the community of AI researchers.
(MICRO-PLANNER is something of an exception to this state-
ment.) The lack of general availability of most AI languages
makes it impossible for researchers to understand and evalu-
ate new developments, much less take advantage of them and
build wupon them. The main cause of this problem has been
that implementations have been heavily dependent on local
LISP features or operating systems. While this does con-
tribute to greater efficiency, some effort must be made to
consider the transportability problem.

Comments ﬁy McDermott [McD76] eloquently indicate the
difficulties that occur in an attempt to extend the work of
other AI researchers due to only "preliminary'" versions of
reported programs being implemented. Only marginal benefits
will result from the development of programs complete as re-
ported, if it is impossible to transport them to systems
other than the one on which they are developed. It is hoped
that TELOS can be made somewhat transportable through the
use of PASCAL as its implementation language as well as its

basis.
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Language Level

According to the developers of most of the languages
considered above, far less use is currently being made of
these 1languages (with the possible exception of SAIL) than
was anticipated when they were first introduced
[SIGART/SIGPLANTT]. The consensus judgement seems to be
that the languages are too "high level." They include fea-
tures that implement particular problem-solving strategies
considered necessary when the languages were designed, rath-
er than providing more generally useful utilities. The need
seems to be for a language that provides tools for the easy
implementation of strategies without being restrictive about
their nature. TELOS has been designed explicitly for the
provision of such tools, particularly through 1its abstrac-

tion features.

2.PAK

One recent effort toward the design of an AI language
has been based on many of the same goals as TELOS. The
2.PAK language has as its main objectives the provision of a
good set of primitives suitable for Al applications and the
inclusion of ideas obtained from research into programming
languages in general [Mel74]. The first of these objectives
includes a recognition that the primitives provided by the
several languages modelled after PLANNER are sometimes too

high-level and are difficult for a programmer to control as
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precisely as is required. The second objective 1leads to
such general goals as minimality, readability, simplicity,
natural syntax, efficiency and good abstraction capabili-
ties.

The specific features of 2.PAK developed from these
goals include its basis as a block structured language, a
variety of standard data types typical of general purpose
languages with the wuse of strongly typed variables,
user-defined record structures, global control primitives
that deal with transfers to and from coroutines, and local
sequencing statements that include if, while and case. The
AT features 1include generalized pattern matching with
user-defined functions and data types, a context mechanism
completely independent of any control primitives and an as-
sociative data base in the form of a directed graph with la-
beled nodes and edges.

The goals of 2.PAK and the resulting features seem in-
telligently selected from the experiences of programmers
with the early AI languages. The main weakness that appears
is the restricted nature of the provided data base, which
allows nothing but strings as labels, thus eliminating the
use of records in the data base. This data base is actually
an extension of the base language, and other schemes may be
implemented by any programmer. Since the goal of an AI lan-

guage 1s to provide such tools, requiring a programmer to
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develop an associative retrieval system independently is not
the most desirable situation.

The fact that 2.PAK is not based on any well-known pro-
gramming language also reduces its attractiveness (and prob-
ably its transportability). There is considerable resis-
tance by programmers to the adoption of a completely new
language. It is hoped that TELOS will be attractive to pro-
grammers, since it adds a number of useful features to a

well-known and widely available language.
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CHAPTER 3

TELOS Specifications

TELOS 1is an extension of the programming language PAS-
CAL. Although TELOS is designed with the intention of pro-
viding features of use specifically in artificial intelli-
gence programming, such programming 1is sufficiently general
that most of the features will be useful in a much wider
range of applications. A summary of the main features fol-
lows.

As with most other AI languages, a TELOS-compiled pro-
gram includes an associative data base. TELOS provides a
context-saving mechanism ~that allows alternative versions of
the data base to co-exist, and pattern mechanisms used for
associative referencing of data base objects. The data base
consists of pointer-linked objects constructed from the
structured types provided by PASCAL and TELOS. These data
base objects have identity across contexts, 1.e., they may
take on different values in different contexts with these
different values being identified as versions of the same
object. Data base objects may be referenced associatively
but they may also be referenced directly with data base ob-
ject pointers. Given a pointer to a particular data base
object, all of the different context-specific values of the
object are potentially available. Data base objects may

have data base object pointers as components, enabling ex-
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plicit cross-referencing within the data base. Associative
cross-referencing is also possible, resulting from data base
objects having patterns as components. Data base component
pointers are also available; such a pointer references di-
rectly the value of a data base object in a particular con-
text, or a component of such a context-specific value.

The TELOS data context mechanism enables the creation
of a tree of contexts, with the root context existing at the
beginning of program execution. All other contexts must Dbe
explicitly created by the programmer. In addition to the
system-provided data base, variables may be explicitly de-
clared as context-relative. An independent instance of each

such relative variable is provided when a new context is

created.

The patterns used in associative retrieval are con-
structed as "calls" to (i.e., records containing actual pa-
rameter assignments for) a special kind of routine called a

matchroutine. TELOS provides three standard matchroutines:

MatchAny, MatchValue and MatchObject. MatchAny successfully
matches any object; MatchValue matches only objects exactly
equal to its single parameter; and MatchObject uses other
matchroutine parameter records provided as its parameters to
match structured objects component by component.
Matchroutines that satisfy any other desired specification

may be provided by the programmer.
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More generally useful features in TELOS include rou-
tines that may be executed as suspendable processes; a mech-
anism for building encapsulated, abstract data types, possi-
bly including suspended processes as components; an event
mechanism that integrates exception handling, process
intercommunication and control, and user-specified condi-
tional interrupts (the "demons" of earlier AI languages);
routine reference variables, parameter records ('"calls") and
generalized routine invocation; and extensions to the point-
er and array types provided in PASCAL.

Coroutines are routines much like procedures, differing

in that they are executed as processes rather than being
simply called as procedures are. That 1s, coroutines may
return controcl to the routines which invoke them without
terminating. They may be used to define iteration-
controlling generators or they may be wused by control-
regime-defining overseers for implementation of any control
scheme desired. Overseers are routines that serve as proc-
ess schedulers and inter-process message handlers,
encapsulating the details of control regimes (e.g. complex
problem-solving strategies) implemented using processes. An
overseer serves to implement a strategy as a control ab-
straction, much as encapsulated data types implement data
abstractions.

The data encapsulation mechanism of TELOS provides for

the definition of capsules, which include a data structure
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definition along with routines defining the operations pos-
sible on the structure. Capsules may be parameterized by
types, thus allowing the generation of a number of distinct
capsule types based on a single capsule definition. The ab-
straction capabilities provided by overseers and capsules
will be useful in managing the complexity that arises in the
design of large programs (e.g., AI programs) .

The event mechanism of TELOS provides for the defini-

tion of three kinds of events: escape events for exception
handling, suspend events for process control and
intercommunication, and signal events for a conditional-

interrupt capability. Event handlers, which are invoked
when events occur, may be activated on routine calls and
within compound statements. Related handlers may be grouped
together as teams.

Parameter forms may be defined in TELOS, distinguished

by the number and types of parameters required by a routine.
These forms may be used to declare variables that reference
routines and to pass such references as parameters, provid-
ing a complete specification of the parameters required by a
formal routine. Parameter records defined in terms of these
parameter forms, i.e., records containing fields correspond-
ing to the parameter structure of a routine, provide a capa-
bility in TELOS for creating and manipulating expressions as
data objects. The capability to include routine reference

variables and parameter-describing patterns (or other kinds
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of routine descriptions) within objects stored in the data
base provides the basis for a programmer to implement
pattern-directed (or other kinds of generalized) routine in-
vocation.

Pointers in TELOS may be declared to reference objects
of more than one type. Such wmulti-ftype pointers are re-
stricted to use within typecase statements, which guarantee
the type of the referenced object before it is used and ena-
ble the retention in the 1language of the advantages of
strict typing of pointers.

Array declarations are extended in TELOS to allow some
type compatibility between arrays of different size but with
the same component type and with 1index types which are
subranges of the same type. These extensions allow differ-
ently sized arrays to be passed as parameters corresponding
to a single formal parameter type, and it also allows crea-
tion within dynamic storage space of arrays whose size 1is
determined at run-time.

The following specifications describe the extensions to
the syntax and informal semantics of PASCAL that comprise
TELOS. They are based on the syntax and notation of the re-
vised report as printed in [JW75]. The complete syntax of
PASCAL is included here, but only the TELOS extensions are
discussed. Where syntax is presented without discussion, it

is unchanged from the PASCAL report.
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1. Notation
Throughout this document the symbol "->'" is substituted for
the "up arrow" symbol used in pointer declarations and oper-
ations in PASCAL. The style of capitalization adopted for

reserved words below does not imply that capitalization must

be significant to a TELOS compiler.

{letter> ::=
A'BICIDIEIFIGIHITIJIKILIMINIOIPIQIRISITIUIVIWIXiY IZ}

albleldlelflgihiiljikiliminioipigirisitiuiviwixiyiz

<digit> ::= 0111213415161 71819

<special symbol> ::= + | - | % | / | = | <> | < >} &= |
>= 0 )y v b= I b
=>4ty bt b2l b LD %0 % 1 And § Any
Array | Begin | BeginX | Capsule | Case | Clone | Const

! ContextRef | Continue | Coroutine | DB | DBC | Decla-

rations | Div | Do | Downto | Else | End | Environment
| Escape | Event | Except | Exports | Extend | File |
For | Form | ForStep | Function | Goto | Header | If |

In | Incontext | Index | Indexing | Label | Matching |

MatchRoutine | Mod | NewProcess | Nil | Not | Of | Or |

Otherwise | Overseer | Packed | Parameters | Pattern ;|

Procedure | ProcessRef | Program | ReadOnly | Record |

Relative | Repeat | RoutineRef | Routines | Sequencer |
Set | Signal | Suspend | Team | Then { To | Type |

Typecase | Unstored | Until | Var | While | With
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1.1 Identifiers

Identifiers are defined as

<identifier> ::= <letter> {<letter, digit or underscore>}

1 1

{letter, digit or underscore> ::= <letter> ; ddigit>

1.2 Numeric and string constants

Integer and real constants are described by

<unsigned number> ::= <unsigned integer> | <unsigned real>
<unsigned integer> ::= <{digit sequence>
<unsigned real> ::= <unsigned integer>.<digit sequence> |

<unsigned integer>.<digit sequence>E<scale factor> |

{unsigned integer>E<scale factor>
<digit sequence> ::= <digit>{<digit>}
{scale factor> ::= <unsigned integer> |
{sign><unsigned integer>

{sign> ::= + | =~

Strings are defined as
{string> ::= '<character>{<character>}’

Strings consisting of a single character are the constants

of the standard type Char, as in PASCAL.

2. Data type definitions

i i I

{type> ::=z <simple type> | <pointer type> | <reference type>

{capsule type> | <structured type>
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{type definition> ::= <identifer> = <type>

2.1 Simple types

{simple type> <scalar type> | <subrange type> |

{type identifier>

<scalar type> (<identifier> {,<identifier>} )

H

{subrange type> ::= <const> .. <const>

Standard simple types are Integer, Real, Boolean and

Char.

2.2 Pointer types

<pointer type> ::= <working space pointer type> |

{data base pointer type>

2.2.1 Working space pointer types

<working space pointer type> ::= => Any |

-> <type identifier> {Qr <type identifier>}

TELOS includes pointers that may reference dynamically
allocated objects of more than one type. A pointer type de-
clared with a sequence of type identifers separated by Jr
(rather than a single identifier, as in PASCAL) allows a
pointer of this type to reference objects of any of the

types included in the specified set of type alternatives.




35
Use of the Any specification allows a pointer to reference
objects of any type. Pointer variables that may reference
more than one type are called multi-type pointers. The
pointer in PASCAL is simply the special <case of a TELOS
working space pointer which may point to objects of only a

single type.

There are restrictions placed on the use of multi-type
pointers to guarantee type security. Type-dependent uses of
referenced variables (<pointer variable>->) based on
multi-type pointers may occur only within a typecase state-
ment (see Section T7.2.2.1). The value of a multi-type
pointer may be assigned to another pointer in general only
if the second may reference any type referenced by the
first. Assignment to a more restricted pointer may take
place only within a typecase alternative that guarantees
that an object of an allowable type is being assigned to the
more restricted pointer. Any two pointers that may refer-
ence at least one common type may be compared for equality
or type equivalence (see SameType function, Section 8.8) at

any time.

2.2.2 Data base pointer types

{data base pointer type> ::=z <data base object pointer type>

i <data base component pointer type>
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2.2.2.1 Data base object pointers

{data base object pointer type> ::= DB-> Any .

DB-> <type identifier> {QOr <type identifier>}

Objects in the data base may be referenced using data
base object pointers (DBOP's) as well as through the associ-
ative referencing mechanism (described in Section 4.6). The
value of an object (a DBO) referenced by a DBOP 1is context
dependent, being the value for the current context if a con-
text prefix is not specified when the DBOP is used. DBOP's
are read-only references. They cannot be used to directly
alter the value of a data base object with a simple assign-
ment statement. System functions are provided for changing
DBO values through DBOP's. Note that DBOP's may be compo-
nents of objects stored in the data base, so that DBO's may
cross-reference one another. Multi-type data base pointers
are subject to the same restrictions as multi-type working

space pointers.

2.2.2.2 Data base component pointers

t

DBC-> Any

<data base component pointer type>

DBC-> <type identifier> {Qr <type identifier>}

Components of objects in the data base may be refer-
enced using data base component pointers. LLike DBOP's,

DBCP's are read-only references. The objects they reference
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may not be changed with an assignment statement or passed as

Var parameters. However, component pointer references are
context-specific. DBCP's are used to reference a component
of a DBO value for a particular context. If the structure

of the DBO value into which the DBCP references is changed,

use of the DBCP becomes an invalid pointer reference.

2.3 Reference types

<reference type> ::= <routine ref type> | <process ref type>

{context ref type>

Assignment of a reference variable value to a second
reference variable does not cause a copy of the referenced
object to be made, but rather results in two variables ref-

erencing the same object.

2.3.1 Routine reference types

To improve on the capability to pass routines as param-
eters and to allow variables that reference routines, rou-
tine reference types are definable in TELOS. Routine refer-
ence types are defined in terms of parameter forms, which in
turn are defined in terms of parameter and return type spec-

ifications.
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{parameter form> ::=

{proc routine kind> <parameter spec> |

Function <parameter spec> : <type identifier> |

MatchRoutine <parameter spec> Matching <type identifier>

<proc routine kind> ::= Procedure | Coroutine | QOverseer
Kparameter spec> ::= (<formal parameter section>
{,{formal parameter section>} ) | <empty>

{parameter form definition> ::=

<identifier> = <parameter form>

Routine reference types can be defined from parameter forms

using:

<routine ref type> ::= RoutineRef Any |

RoutineRef <parameter form identifier>
{Or <parameter form identifier>}

{parameter form identifier> ::= <identifier>

A routine reference type defined with only one parame-
ter form identifier specified can be used to declare varia-
bles that may reference routines with only one parameter
structure. An empty <parameter spec> in a parameter form
declaration indicates that the parameter form defined has no

parameters.

A routine reference type defined with Any as the form

specification or with a sequence of parameter form identifi-
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ers separated by Or can be used to declare a multi-type rou-
tine reference variable. In the former case, a variable of
the type may be used to reference any routine; in the lat-
ter, it may take on values from a restricted set of parame-
ter forms. Multi-type routine reference variables are re-
stricted in much the same way that multi-type pointers are.
They can be used to call a routine only in a typecase state-
ment. The value of a multi-type routine variable may be as-
signed to another routine reference variable in general only
if the second may take values of any form that may be a val-
ue of the first. Assignment to a more restricted wvariable
may take place only within a typecase alternative which
guarantees that a routine of the right form is being as-
signed to the restricted variable. Routine reference varia-
bles may be compared for equality at any time. They may
take as values only routines declared at the outermost level

(not routines declared within other routines).

2.3.2 Process reference types

One of the routine kinds introduced in TELOS, the
coroutine (see Section 5.2), is executed as a suspendable
process. Variables used in the manipulation of such proc-

esses are process reference variables. Process reference

types are defined using:
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{process ref type> ::= ProcessRef Any |

ProcessRef <parameter form identifier>

{Or <parameter form identifier>}

A process reference variable can reference processes
created from coroutines with any of the parameter forms
specified in its process reference type declaration. or
course, a single parameter form is an alternative. If a
process reference variable can reference processes created
from more than one parameter form, any type-dependent use of
the variable must take place within a typecase statement.
The restrictions on multi-type process reference variables
are analogous to those on pointers and routine reference

variables.

An overseer or a routine within a capsule (in a re-
stricted way) may use a prdcess reference variable to access
or change the parameter values of a suspended process. The
form of such a reference is:

{internal variable> ::=

<process ref variable>.<parameter identifier>

where <parameter identifier>‘is one of those appearing in

the parameter form declaration of the process archetype.
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2.3.3 Context reference types

To support the data context mechanism of TELOS, a
built-in type called ContextRef is provided. Variables of
this type are used to name the contexts created and
manipulated by the context operations described in Section
8.4, A standard variable

CurrentContext : ContextRef
may be used in any program to access (though not to change)

the currently active context.

2.4 Capsule types

An encapsulation facility is provided for the defini-
tion of data abstractions. It enables the definition of da-
ta objects whose structure may only be accessed and
manipulated by routines that are part of the defining
capsule. Unless explicitly exported, representation details
of capsule objects are not available. Capsule definitions
may be parameterized by types. A capsule type 1is defined
using a capsule name and appropriate actual parameter type
names. Parameters other than types are not possible; in
particular, TELOS does not consider size to be a defining

characteristic of capsule data types.
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{capsule type> ::=z <capsule identifier> |
<capsule identifier> ( <type identifier>

{, <type identifier>} )

2.4.1 The capsule specification

{capsule definition> ::=

<identifier> = <capsule specification>
<capsule specification> ::= (Capsule <type parm list>

<exports part> <constant definition part>
<type definition part> <header part>

<event declaration part> <routine heading list> End

{type parm list> ::= <empty> i
(<formal type parm> {;<formal type parm>})
<formal type parm> ::=

<identifier> [<routine spec> {;<routine spec>}]

<routine spec> ::= <standard op> |
<identifier> : <parameter form>
<standard op> ::= = <> b > K ) o> s

The type parameter descriptions must include specifica-
tions of all operations that are required to be defined for
allowable actual type parameters. The syntax provides a set
of standard operators that may be required of formal type
parameters. When an actual parameter used in a capsule type

definition is itself a capsule type, the relational opera-
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tors stand for functions within the parameter capsule named
EQ, NE, LT, GT, LE and GE, respectively, which take two op-
erands of the type as ReadOnly parameters (see Section 5.1)
and return a Boolean value. The assignment operator stands
for a procedure named ASSIGN that takes two parameters of
the same type, the first a Var parameter and the second a
ReadOnly parameter. These standard ops are only an abbrevi-
ation. The same routines could be imported using the second
form of specification. The second form includes the speci-
fication of a routine name and its parameter form. Any ac-

tual parameter (type) must include an operator that matches

this specification.

When the actual type parameter 1is a standard PASCAL
type, the meanings of the standard operators are as defined
in PASCAL. (All are not necessarily defined; recall in par-
ticular that comparisons are undefined for record types in
PASCAL.) When the actual parameter type is a capsule type,
routines with the required names and parameter forms must
have appeared in the capsule specification used to define

the parameter type.

The exports list has the following form:

{exports part> ::= Exports <export item> {,<export item>} ;

<export item> ::= <identifier> |
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<identifier> (<export item> {,<export item>})

The various forms of export items serve several differ-
ent purposes. The first form, simply an identifier, is used
to export any identifier defined within the capsule. This
includes constants, types, events, and variables in the
header part. (Note that capsule operations and their param-
eter forms are indicated to be externally available not in
the <exports part> but rather in the <routine heading list>;
see below.) The internal structure of any record or capsule
so exported is not accessible outside of the <capsule, and
header variables may be used only to reference values, not
to change them. (Header variables of process vreference
types may not be exported.) The second export item form is
used for exporting capsules and other types defined within
the capsule, allowing external reference only to the partic-
ular operations or internal details of the exported type as
specified with the subordinate exports list included within
parentheses. Names of routines within an inner capsule must

appear 1in this 1list to be accessible outside of the outer

capsule.

<header part> ::=

Header <record section> {; <record section>} End
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The <header part> defines what is in effect a record
(without variants) that serves as the top-level portion of
the data structure defined by the capsule. An instance of
this ‘"record" is allocated when an object of this type is
created. At later stages of processing, the entire object
may consist of this header and other data objects that can
be reached by following pointers, starting with any con-
tained in the header. The rest of the structure is built by
routines defined in the capsule. Thus the total structure
of a capsule object is defined only implicitly at the point

of capsule definition.

<routine heading list> ::=

<routine heading> {, <routine heading>}

{routine heading> ::= <procedure heading> |
(function heading> | <overseer heading> |
<coroutine heading> | <matchroutine heading>

The routine heading list of the capsule specification
defines the externally accessible routines that are part of
the capsule. Only the headings of the routines are part of
the specification of the capsule. Their bodies will be part
of the capsule body, which appears in the routine declara-

tion section of the program.
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{constant definition part> and <type definition part> denote
the same syntax here as in the standard PASCAL definition.

See section 2.5.2 for the definition of <record section>.

From outside of the capsule, references to names in the
exports list that are fields of an instance of the header
part are analogous to references to PASCAL record fields:

{capsule variable>.<identifier>

The routines appearing in the routine heading list are
the operators defined for objects of a capsule type. All of
these operators must have their operand objects passed as
explicit parameters. In general, capsule names should be
distinguished from type names, because capsules may be
parameterized. In the case of these particular operand ob-
Jects, their "type" in the formal parameter specification of
the operations may be specified with the name of the capsule
within which the operations are being defined. These opera-
tions are not associated with a specific instance of the
type, but rather are allowed to use and reference
non-exported items defined in the capsule because of their
inclusion in the capsule definition. References to exter-
nally accessible routines and to types and constants in the
exports list from outside of the capsule take the form:

{capsule type identifier>j<identifier>
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2.4,2 The capsule body

The details of the implementation of a capsule are con-
tained within the capsule body, which appears in the routine

declaration section of the program.

{routine declaration> ::= <capsule body>
<capsule body> ::= Capsule <capsule identifier>

<constant definition part> <type definition part>
<header part> <event declaration part>

<routine declaration part> End

The <capsule identifier> associates the capsule body
with the capsule specification previously detailed for that
identifier (in the type definition part of the program).
Any constants, types or header variables that appear in the
body are additions to those that appeared in the specifica-
tion and are accessible only within the body itself. Any
such header variables may be considered to be appended to
those from the specification part to form the entire header
"pecord". No definitions from the specification part may be

repeated in the body.

All routines 1listed 1in the specification must be de-
clared fully in the routine declaration part. The headings
of these routines are repeated in the body, with the number

and types of their parameters required to be the same. Oth-
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er routines may also be declared in the body. These rou-

tines are only accessible within the body itself.

2.5 Structured types

{structured type> ::=z <unpacked structured type> |
Packed <unpacked structured type>
i }

<unpacked structured type> ::= <array type> ; <record type> ,

<set type> | <file type> | <parm record type>

Set types and file types are the same in TELOS as in
PASCAL. Array types and record types are extended as de-
scribed in the following sections and parameter record types

are added as a new structured type.

2.5.1 Array types

{array type> ::=
§

Array [<index type> {,<index type>}] Of <component type> ;

<array type identifier> [<index type> {,<index type>}]

Array declaration syntax is extended so that the index
type range specified in an array type declaration determines
allowable index values for an array of that type, but it
does not necessarily determine array size. If a variable is
declared to be of an array type simply using a type identi-

fier (or an explicit in-line array declaration), its size is
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determined by the maximum allowable index values (just as in
PASCAL). 1If the second declaration form above is used, the
size 1is determined by the ranges of the provided index
types, which must be the same as or subranges of the corre-
sponding index types in the original declaration. The num-
ber of index types provided must be the same as in the orig-
inal declaration. Array variables declared using the same
array type identifier but with different index ranges may be
provided as actual parameters for a formal parameter of the

array type from which they were defined (see Section 5.1).

Two standard functions are introduced for use with ar-
rays. HiBound and LoBound produce the upper and lower bound
values when provided with an array reference and an integer
dimension as parameters. Thus HiBound(A,2) returns as 1its

value the upper bound of the second dimension of array A.

TELOS provides extensions of the standard procedure New
that allow the dynamic allocation of arrays with size deter-
mined at run-time (described in Section 8.2). Array assign-
ments can only take place when HiBound and LoBound return
the same values for the source and target arrays. Thus as-

signment can never change the size of an array object.

2.5.2 Record types

{record type> ::= Record <field list> End
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{field list> ::= <fixed part> | <variant part> |
<fixed part> ; <variant part>
{fixed part> ::= <record section> {;<record section>}
{record section> ::= <empty> |
<field identifier> {,<field identifier>} : <type>
{field attributes>
{variant part> ::= Case <tag field> <type identifier> Qf

<variant> {;<variant>}

<variant> ::= <empty> | <case label list> : (<field list>)
{case label list> ::= <case label> {,<case label>}

{case label> ::= <constant>

{tag field> ::= <identifier> : | <empty>

The standard PASCAL record declaration syntax is ex-
tended only by the addition of <field attributes> to the
declaration of field names and their type in a <record sec-
tion>. The various attributes that may be specified by this
extension provide instructions to the data base storage
mechanism when objects of the type being declared are stored

in the data base.

{field attribute> ::= <empty> | <indexing attribute> |
Unstored

{indexing attribute> ::=z Index <exception list> | Sequencer

<exception list> ::z <empty> |

Except ( <constant> {, <constant>} )




51

The indexing attribute Index may be attached to any
field, signifying that the values in or pointed to by that
field are to be usable for associative retrieval from the
data base of objects of the record type being declared. Da-
ta base objects consist of pointer-linked structures with a
single record, array or capsule header designated as the
"top object' when such a structure is stored. For the Index
attribute on fields in other than the top object to cause
those fields to be indexed, all pointers followed to reach
the object from the top must have Index attached to them.
An exception list may be attached to any field which is of a
simple type, specifying certain constant values of that type
for which indexing is not to be performed. The Seguencer
attribute may be substituted for Index on any field which 1is
of an enumerated type, real type or string type (packed ar-
ray of Char). This indicates that the order in which ob-
jects are retrieved by Find and FindEach (see Section 8.6)
is to be based on the field. The ordering is descending for
a field of an enumeration or real type and lexicographic for
strings. Only one sequencer per record is allowed, and only
the sequencer in the top object of a data base object is

used by the retrieval functions.

Unstored may be attached to any field, meaning that the
field will not be included when an object of the type con-

taining the field is stored in the data base. No space is
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provided for it in a data base object and the field is thus
inaccessible using data base pointers. Any Unstored fields

are left uninitialized when obJjects containing them are cop-

ied from the data base to working space.

2.5.3 Parameter record types

Records with fields <corresponding to the parameter
structures declared for parameter forms may be declared as
parameter record types. Parameter records may be wused to
build the actual parameter specification of a routine call

at run-time.

{parm record type> ::=

Parameters Of <parameter form identifier>

The first field of a parameter record is named Routine
and its type is RoutineRef <routine form identifier>, using
the form specified in the type declaration. The record de-
fined contains additional fields named and typed by the pa-
rameter names in the corresponding parameter form declara-

tion.

Parameter fields corresponding to value parameters may
be given values by simple assignment of a value of an allow-
able type to the field. Var and ReadOnly (see Section 5.1)

parameter fields contain a reference to an object rather
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then a value. This reference may be to any global variable
not 1in a variant, to a field in the same record or capsule
header as the parameter record, or to a dynamically allocat-
ed variable (i.e., an object or component of an object
pointed to using a working space pointer). Var and ReadOnly
parameter references are established using the Bind routine,

described in Section 8.3.

2.5.3.1 Patterns
{working space pointer type> ::=

Pattern Matching <type identifier>

The ‘'pattern" type definition syntax above defines a
multi-type pointer that may point to any parameter record
for a matchroutine that will match <type identifier>. Thus
the range of this pointer type is implicitly defined by the
matchroutine declarations in the program. Matchroutine pa-
rameter records are used as data descriptions ('patterns")
for such purposes as associative retrieval from the data
base. A number of system-defined matchroutines and special
syntactic conventions, described below, are available to fa-

cilitate use of patterns.
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3. Variable declaration and denotation

{variable declaration> ::=

<identifier> {,<identifier>} : <type>

<variable> ::= <entire variable> | <referenced variable> |
{component variable> | <function designator>

<entire variable> ::= <variable identifier>

{variable identifier> = <identifier>

<referenced variable> ::z <pointer variable> ->

<pointer variable> ::= <variable>

3.1 Component variables

<component variable> ::= <indexed variable> | <file buffer> |

{prefixed variable>

{indexed variable> ::=

<array variable> [<expression> {,<expression>}]

{array variable> ::= <variable>
<file buffer> ::= <file variable> ->
{file variable> ::= <variable>

3.1.1 Prefixed variables

<prefixed variable> ::= <variable> . <identifier>
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The prefixed variable notation has a number of differ-

ent interpretations in TELOS. If the variable names a rec-
ord or a parameter record then the identifier is interpreted
as a field name. If the variable is a process reference
variable, then the identifier is interpreted as a parameter
name of the process archetype parameter form. Finally, if
the variable is a context reference variable, then the iden-
tifier must be a relative variable (see Section 9.1) or a
data base object pointer. In either case, the prefixed var-
iable refers to the context-relative value of the designated

object.

3.2 Function designators

A  function designator is considered to be a <factor>
(see the <expression> syntax in Section 6) in PASCAL. TELOGS
includes it as a variable so that if a function returns an
appropriate value, it may be used in a component variable

denotation.

{function designator> ::= <function>
<actual parameters> <event handler clause>
|

{function> ::= <function identifier>

{routine reference variable>

<actual parameters> and <event handler clause> are defined

in Sections 7.1.3 and 7.1.3.1, respectively.



4, Event declarations

The event mechanism in TELOS is available for handling
faults that occur during execution, for monitoring certain
system~-defined events, for monitoring events defined by the
programmer, and for communication and control transfers be-
tween processes and their controlling overseers. Events are

defined using the following syntax:

<event declaration> ::=

<event kind> Event <event identifier> <parameter spec>

<event kind> ::=z Escape | Signal | Suspend

All three kinds of events may have parameters, declared
like routine parameters. <parameter spec> is defined below
in Section 5.1. The three event kinds are distinguished by
the following properties. An escape event is regarded as a
termination of the computation that caused the event. An
event handler (see Section 7.7.3.1) must be active to handle
any escape event that is raised or the program will termi-
nate. The handler for an escape event may not return con-

trol to the point where the event occurred.

A signal event is informational in nature and need not
be handled. Entry and exit of every routine are among the
system-defined signal events. If a handler is invoked by a

signal event, it may return control to the point in the com-
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putation where the event occurred or it may cause that com-

putation to be terminated (simply by not returning control).

A suspend event 1s used to transfer control from a
process back to its controlling overseer (see Section 5.4).
All suspend events must be handled by the controlling
overseer. The overseer may choose not to immediately return
control to a process when a suspend event occurs without

causing termination of the process.

5. Routine declarations

<routine declaration> ::= <procedure declaration> |
{function declaration> | <coroutine declaration> |
<overseer declaration> | <matchroutine declaration> |

{team declaration>
To the procedures and functions in PASCAL, TELOS adds

coroutines, overseers, matchroutines and teams.

5.1 Procedure declarations

{procedure declaration> ::= <procedure heading> ; <block>
{procedure heading> ::=

Procedure <identifier> <parameter spec> <form spec>
{form spec> ::= <empty> | Form <parameter form identifier>
i

{parameter ‘spec> ::= <empty> |

(<formal parameter section>



{; <formal parameter section>} )

<formal parameter section> ::= <parameter group> }

Var <parameter group> | ReadOnly <parameter group>
{parameter group»> ::!=
<identifier> {, <identifier>}
{type identifier> <array indicator>

<array indicator> ::= ¥ | <empty>

<form spec> at the end of a procedure heading may bDe
used to indicate that the procedure has some previously de-
clared form as its parameter form. Even when <form spec> 1is
not null, the formal parameters are included in the declara-
tion. The same type names must be used to declare the pa-
rameters as in the form declaration, though renaming of tha
parameters is allowed. Declaring a routine without a form
name results in an implicit declaration of a form with the

same name as the routine.

The presence of a non-empty array indicator after an
array type identifier means that actual parameter arrays of
any size within the range allowed by <type identifier> may
be used. Such formal parameters are called variable-size

array parameters.

TELOS adds the ReadOnly parameter mode to those availa-

ble in PASCAL. WNeither a ReadOnly parameter nor any object
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referenced through it may appear on the left-hand side of an
assignment or be passed as a Var parameter to another rou-
tine. Thus the parameter acts like a named constant within

the body.

PASCAL allows passing procedures and functions as pa-
rameters without any indication of the parameters these rou-
tines require. This form of parameter specification is not
included in TELOS, and thus TELOS is not upward compatible
with PASCAL in this respect. HKRoutines are passed as parame-
ters simply by passing routine references, so no special
routine parameter syntax 1is needed (and a simple routine
name is not a valid actual parameter). If the parameter
type can accommodate more than one parameter form, it can
only be used to call a routine within a typecase statement,
as is usual with multi-type objects. Compile-time determi-

nation of the correctness of parameters for calls using rou-

tine reference parameters is possible using this mechanism.

<block> ::= <label declaration part>
<constant definition part> <type definition part>
<variable declaration part> <event declaration part>

<routine declaration part> <{statement part>

|

{label declaration part> ::= <empty> ,

Label <label> {, <label>} ;

<constant definition part> ::= <empty> |
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Const <constant definition> {; <constant definition>} ;
i

<type definition part> ::= <empty> |

Type <type part definition> {; <type part definition>};

{type part definition> ::= <type definition> |
<capsule definition> | <parameter form definition>
{variable declaration part> ::= <empty> ;

Var <variable declaration> {; <variable declaration>} ;
<event declaration part> ::= {<event declaration>;}
{routine declaration part> ::= {<routine declaration>;}
{statement part> ::= <compound statement>

|

<label> ::= <unsigned integer> | <identifier>

TELOS allows identifiers as well as integers to be used as

labels.

<constant definition> ::=z <identifier> = <constant>

{constant> ::= <unsigned number> | <sign><unsigned number> |
<constant identifier> | <sign><constant identifier> |
<string>

<constant identifier> ::=z <identifier>

5.2 Function declarations

<function declaration> ::=z <function heading> ; <block>
<function heading> ::= Function <identifier>
{parameter spec> : <result type> <form spec>

<result type> ::= <type identifier>
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Any type for which assignment is defined may be the re-
sult type of a function, rather than only scalar, subrange
and pointer types as in PASCAL. Thus only files and capsule
types which don't have an exported ASSIGN procedure are eXx-
cluded as return values. The return value of a function is
specified by assignment to the function identifier within
the body. Any other use of the identifier within the body

is interpreted as a recursive call of the function.

5.3 Coroutine declarations

<coroutine declaration> ::=z <coroutine heading> ; <block>
{coroutine heading> ::=

Coroutine <identifier> <parameter spec> <form spec>

Coroutines are syntactically like procedures, with the
substitution of Coroutine for Procedure in the declaration.
Coroutines are executed as processes; that is, they may re-
turn control to a calling routine without terminating, using
an event statement that causes a suspend event. Such event
statements may only appear in coroutines and overseers, and
in procedures and functions declared within these two kinds
of routines. After execution of the 1last statement in a

coroutine, the suspend event EOP (end of process) automati-

cally occurs.
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Within capsules coroutines may not be declared within
other routines, in order to ensure that the environment of a

suspended process 1s always accessible when it is restarted.

5.4 Overseer declarations

<overseer declaration> ::=z <overseer heading> ; <block>
<overseer heading> ::=

Qverseer <identifier> <parameter spec> <form spec>

Overseers are special-purpose procedures available for
the implementation of user-specified control regimes and
problem-solving strategies. They are distinct from standard
procedures to serve the purpose of encapsulating the details
of such implementations. Overseers are the only routines
within which use may be made of TELOS features for manipu-
lating processes, except for routines within capsules which
may manipulate processes attached to capsule instances.
(Any routine may use the step statement, which executes a
"generator" coroutine; see Section 7.3.2.1.) These features
include the statements and standard routines that create,
copy and terminate processes; the continue statement that
invokes (restarts) a suspended process; and the capability
to reference the parameters of a suspended process. (Any
routine declared within an overseer may also use these fea-

tures.)
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As noted in the previous section, overseers may them-
selves cause suspend events, suspending the process in which
they are executing. (This enables the construction of hier-
archical, multi-level control regimes.) Suspend event han-
dlers may appear on overseer calls in order to handle events
caused within the overseer, but it is not required that the
event be handled at the point of call, except in the case of
an overseer call from the main process (the process corre-
sponding to the main program). In the case of such a call,
if control 1is not returned to the suspended overseer from
within the handler, the overseer is terminated (analogously
to what happens for signal events). Suspend event handlers
also appear within overseers, as part of the continue state-
ment that causes a process to be invoked. Since all suspend
events caused by a process must be handled in the continue
statement used to invoke it, these are the only places that

suspend event handlers may appear.

5.5 MatchRoutine declarations

<matchroutine declaration> ::=
<matchroutine heading> ; <matchroutine block>
{matchroutine heading> ::=

MatchRoutine <identifier> <parameter spec>

Matching <identifier> : <match type> <form spec>

<match type> ::= <type identifier>
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<matchroutine block> ::= <label declaration part>
<constant definition part> <type definition part>
{variable declaration part> <routine declaration part>
<index part> <compound statement>

<index part> ::= <empty> | Indexing <compound statement> ;

Matchroutines allow the programmer to specify data de-
scriptions other than those available using the
system-provided matchroutines MatchPattern, MatchValue and
MatchAny. They may have parameters like any other routine
and they always have one additional implicit parameter: the
object being matched. A name énd type for this object are
provided after the keyword Matching. The parameter mode for
this matching parameter is ReadOnly. If the object to be
matched satisfies the conditions of the matchroutine, the
routine indicates success by causing the parameterless es-
cape event Matched, which terminates execution of the rou-
tine. Failure is indicated by exiting the routine without
an explicit success indication. Matchroutines are not exe-
cuted by explicit call as are other routines. They may only
be called by the Match function or by the various data base

associative retrieval routines (described in Section 8.6).

Matchroutines have an optional index part, used to lim-
it associative retrieval cost by narrowing the set of candi-

date objects against which the routine will be applied. The
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index part is also used to determine the index entries under
which parameter records for matchroutines are listed when
they are stored in the data base. Within the <compound
statement> that is the body of the index part, values may be
provided for indexing by executing

Index (<expression> {,<expression>} )
Any number of calls to the procedure Index may occur within
the statement. Such a call specifies that the value(s) of
the expression(s) in those calls which are executed must be
somewhere within any object the matchroutine will attempt to
match. This index part is executed only once for a given
retrieval operation, before the retrieval mechanism selects

the candidates to provide to the matchroutine.

5.6 Team declarations

{team declaration> ::= <team heading> ; <team block>
<team heading> ::= Team <team id> <parameter spec>
<team block> ::= <label declaration part>

{constant definition part> <type definition part>
<variable declaration part> <routine declaration part>
Begin <handler item> {; <handler item>} End
Teams are not executable routines, but rather serve to
name and parameterize event handlers, and to enable collec-
tion of a group of event handlers into one body. This en-

tire group of handlers can then be used as a "team" Dby in-
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clusion of a single specification in a handler list. Values
for the parameters are provided whenever the team identifier
is so used. The names defined in the declaration sections
of the team may be used within the included handlers. These
handlers are, of course, also parameterized by the parame-
ters of the individual events to which they respectively ap-

ply. <handler item> is defined in Section 7.71.3.1.

6. Expressions

<unsigned constant> ::= <unsigned number> | <string> |

<constant identifier> | Nil | Any

{factor> ::= <variable> | <unsigned constant> | <set> |

(<expression>) | Not <factor>
<set> ::= [ <element list> ]
<element list> ::= <empty> | <element> {,<element>}
<element> ::= <expression> | <expression>..<expression>»
<term> ::= <factor> | <term> <multiplying operator> <factor>
|

{simple expression> ::= <term> | <adding operator> <term> |

{simple expression> <adding operator> <term>

{expression> ::= <simple expression> |

<constructor expression> | <process expression> |
{simple expression><relational operator>

{simple expression>

"
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<multiplying operator>

<adding operator> ::= + | - | oOr




<relational operator> ::= = | <> | < | <= | >= ; > | in

There are several ways in which the expression syntax
of TELOS differs from that of PASCAL. As noted in Section
3.2, <function designator> is a <variable> rather than a
{factor>. <constructor expression> and <process expression>
are added as forms of <expression>. Finally, the constant
Any is added, to be used in the construction of matchroutine
parameter records. Note that the constant Nil is the null
value for reference variables as well as for working space

and data base pointers.

6.1 Constructor expressions

{constructor expression> ::=

<object constructor> | <pattern constructor>

6.1.1 Objeect constructors

<object constructor> :::=

<type desc> [! <field value list> !]

<type desc> ::= <type id> | -> <type 1id>
{field value list> ::= <labeled field value list> |
{positional field value list> | <array field value list>

<labeled field value list> ::=
{labeled field value> {, <labeled field value>}
{labeled field value> ::=

Kfield identifier> : <field value>
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{field value> ::= <expression>
{positional field value 1list> ::=
<field value> {,<field value>}
<array field value 1list> ::=

{expression> : <positional field value list>

Record, capsule and parameter-record objects may be
constructed using the labeled field value 1list form. The
field identifiers designate the destinations of their corre-
sponding values, which must match the declared types of the
fields. The fields need not be named in any particular or=-
der, and it is not required that all fields be assigned val-
ues. Any fields for which values are not provided are con-
sidered to be uninitialized. When a parameter record 1is
constructed with a labeled field value constructor, it is
required that the first labeled field value provide a value
for the Routine field. Since only routines within capsules
have write-access to capsule header variables, capsule

constructors are meaningful only within capsules.

The positional field value form of constructor is an
alternate mechanism that can be used to construct record,
capsule and parameter-record objects. The first value on
the list is assigned to the first field of the object being
constructed (which is the Routine field in the parameter

record case), the second value to the second field, and so
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on for as many values as are provided. Type agreement be-
tween values and fields is, of course, required. It is not
required that all fields be assigned values. Any not as-
signed are considered to be uninitialized. An error occurs

if too many values are included in the constructor.

The positional field value 1list can additionally be
used to construct array objects. If the <type identifier>
in <type desc> names an array type, it determines the type
of the elements required in the list and its maximum index
range determines the size of the array constructed. The
first value in the list is assigned to the first element of
the array, the second value to the second element, and so on
for as many values as are provided. It is not required that
all elements be assigned values. All values in the list
must be of the component type required by <{type identifier>,
unless that type is a pointer type. If the component type
required is a pointer type, the values may be of any type
which the pointer type may reference. Objects are allocated
in the heap to store each value and the corresponding point-
ers are stored in the appropriate elements of the construct-

ed array.

The array field value list is used to construct an ar-
ray for which the lower bound is to be determined by the ex-

pression bracketed by colons and for which the size is to be
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determined by the number of values in the list. The value
of the expression must be of the index type of (type identi-
fier> and the upper bound resulting from the constructor

must be no greater than the maximum value of the index type.

If the pointer form of <type desc> is used, the value
of <constructor expression> is a pointer to the object con-
structed. Otherwise, the constructed object is the value of

the expression. !

6.1.2 Pattern constructors

<pattern constructor> ::=

<type identifier> [? <field value list> 7]

A pattern constructor can be used to construct a param-
eter résord for a matchroutine that matches objects of the
type determined by <type identifier>. The matchroutine will
always be the system-defined routine MatchObject, which can
match record, array or capsule types. The value of <{pattern

constructor> will be a pointer to the constructed

matchroutine parameter record.

If <type identifier> names a record type, then
MatchObject will have parameters with the same names as each
of the fields of the record type. The type of each of these

parameters is a pattern matching the type of the correspond-
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ing field. (MatchObject cannot be used to match variant re-
cords; a user-defined matchroutine must be used instead.)
Either a labeled field value list or a positional 1list may
be used to construct the parameter record for MatchObject
matching a record. Since all of the parameter fields in the
object being constructed are themselves patterns (i.e.,
pointers to parameter records), all of the expressions in
the value list must evaluate to pointers to parameter re-
cords or values that can be converted to parameter records

according to the following rules:

(1) If the expression is Any, then a parameter record is
created for a call to MatchAny, a system-defined
matchroutine with no parameters which matches any val-

ue .

(2) If the expression evaluates to a value of the type of
the field to be matched, a parameter record is created
for a call to MatchValue, with the value of the expres-
sion as its single parameter (named Value). This sys-
tem-defined matchroutine matches an object of the same
type as and exactly equal to Value, for any type for

which equality is defined.

An occurrence of

<{matchroutine> <actual parameters>
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which looks like a function designator works differently for
matchroutines; it is an expression that directs that a pa-
rameter record be constructed for the indicated matchroutine
with the provided parameters, with a pointer to this parame-
ter record being the value of the expression. Only the sys-
tem function Match can actually call matchroutines.
<matchroutine> ::= <identifier> |

<matchroutine reference variable>

Association of values from the value list with fields
of the parameter record operates in a manner similar to that
for object constructors for both labeled and positional
lists. Any parameters to MatchObject for which patterns are
not provided are set as ©parameter records for Matchiny.
When MatchObject is applied against a particular object, it
will succeed if each of its parameters successfully matches

the corresponding field in the object.

If <type identifier> names an array type, only a single
value may appear within the brackets. For array types,
MatchObject has a single parameter named Component, which is
a pattern for the component type of the array being matched.
MatchObject will successfully match a particular array when
the component pattern successfully matches every element of

the array. The conversions listed above for the record case
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will be applied to a value provided for Component, if neces-

sary.

If <type identifier> names a capsule type, exported
header fields of the capsule are considered as determining a
record whose field names are used as parameter names for
MatchObject. Construction of the parameter record for
MatchObject for a capsule type works like such construction
for a record type except that only the labeled field value
form of constructor may be used. More complex patterns for
capsule objects can be constructed using matchroutines other

than MatchObject, defined as part of capsule definitions.

6.2 Process expressions

{process expression> ::=

NewProcess <coroutine specification> |

Clone <process ref variable>
<coroutine specification> ::= <coroutine> <actual parameters>

i <coroutine parameter record variable>

<coroutine> ::=z <coroutine identifier> |

<coroutine reference variable>

Process expressions may be used by overseers and rou-
Lines within capsules to create processes. When the

NewProcess form is used, the coroutine specified and the ac-

tual parameters provided are used to create a process, but
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no execution of the new process occurs. A reference to the
created process is the value of the expression. If the
process expression is within a capsule routine, the

coroutine must be declared within the same capsule and the
process reference which is the value of the expression may
be assigned only to a process reference variable included in

the header of an instance of the capsule.

When the Clone form is used, a new process 1s created

by making an exact copy of the process referenced by <proc-
ess ref variable>. The Bind routine (described in Section
8.3) may be used to make changes in the Var and ReadOnly pa-
rameter bindings of the newly created process. Simple as-
signments may be used to change value parameters. (Recall
that overseers may use
<process ref variable>.<{parameter name>

to reference parameters of processes they control.) If the
reference variable is multi-type, it can be used in a clone
expression only within a typecase statement that establishes
its archetype form. Again, if the expression is within a
capsule routine, the value of the expression can only be as-
signed to a process reference variable in the header of a
capsule instance, S0 that the process can only be

manipulated by operations defined within that same capsule.
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If a process 1s created by an overseer, it is attached

to that overseer. Only that overseer may invoke, terminate
or copy the process and that the process 1s automatically
terminated when the overseer terminates. When a process is
created within a capsule routine, it becomes attached to the
capsule instance whose header contains the reference varia-
ble to which the value of the expression is assigned. It is
automatically terminated if that capsule instance is re-

turned to free storage.

The base execution context of the newly created process
is the value of CurrentContext when either form of process
expression 1s executed. (An incontext statement can, of
course, be used to make CurrentContext distinct from the
main context of the creating routine; see Section 7.2.5.)
Note that if a cloned process was executing within one or
more incontext statements (thus causing a stack of current
context values to be created) when it suspended, the corre-
sponding current context stack of the clone process will be
the same as the one associated with the cloned process ex-
cept possibly for the bottom context of the stack. That is,
only the base context of the clone may be different, depend-
ing on the context in which the clone expression is evaluat-

ed.
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7. Statements

{statement> ::=z <unlabeled statement> |

<label> : <unlabeled statement>
<unlabeled statement> ::= <simple statement> |

{structured statement>

<label> ::= <unsigned integer> | <identifier>

Identifiers are allowed as labels in TELOS, in addition

to the unsigned integer labels of PASCAL.

7.1 Simple statements

<simple statement> ::=

<assignment statement> | <goto statement> |
{routine statement> | <event statement> |
<continue statement> | <empty statement>

7.1.1 Assignment statements

<assignment statement> ::= <variable> := <expression> |

{function identifier> := <expression>

7.1.1.1 Pattern assignment

If the type of the variable on the left-hand side of an

assignment is Pattern Matching <type>, the same type conver-

sions that take place within pattern constructors (see Sec-
tion 6.1.2) will be applied to the value of the right-hand

side expression. No conversion will take place if the value
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is already a pointer to a parameter record for a
matchroutine matching <type>. Such an object can be created
by a pattern constructor, by an appropriately valued func-
tion or by an occurrence of

{matchroutine> <actual parameters>

7.1.1.2 Routine reference assignment

Assignment to routine reference type variables requires
that the right-hand side be a routine reference, not a sim-
ple routine name. The system function

Ref(<routine identifier>)
returns as its value a reference to the routine whose name

is provided as its parameter.

7.1.2 Goto statements

{goto statement> ::=z= Goto <label>

TELOS restricts the goto statement so that Goto's out
of routines are not allowed. That is, the label referenced
in a goto statement must be declared and defined in the same
routine in which the statement appears. TELOS is not upward

compatible with standard PASCAL in this respect.

7.1.3 Routine statements

<routine statement> ::= <procedure or overseer>

{actual parameters> <event handler clause>



73

{procedure or overseer> ::= <identifier> ;

{routine reference variable>

{routine reference variable> ::= <variable>
<actual parameters> ::= <empty> | ( <parameter list> ) |
( <parameter list> ; <parameter list> )

<parameter list> ::=
<actual parameter> {, <actual parameter> }

<actual parameter> ::= <expression>

The routine statement is used to cause execution of a
procedure or an overseer. The routine to be called may be
explicitly named or specified using a routine reference var-
iable. Value and variable parameters operate in TELOS Jjust
as in PASCAL. TELOS also includes a ReadOnly parameter
mode. The actual parameter corresponding to a ReadOnly pa-
rameter may be any expression other than one designating a
component of a packed structure (as for Var parameters).
ReadOnly parameters act 1like variable parameters except
that, within the routine, assignment to the parameter or any
variable referenced through the parameter is forbidden; al-
so, within the routine, the parameter or any variable refer-

enced through it may not be bound to a Var parameter.

A variable number of parameters may be provided to a
routine if the last or only formal parameter 1is a

variable-size array ReadOnly parameter. If the array is the
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only formal parameter, the entire parameter list is used to
construct an array to be used as the single actual parame-
ter. If there are other formal parameters and the array is
the 1last, a semicolon separates the rest of the actual pa-
rameters from those used to construct the array. The lower
bound of the constructed array is the minimum of the index
type of the parameter type; its size is determined by the
number of values in the sequence. The types of the values
must match the component type of the array formal parameter.
If this component type is a pattern type, the type conver-
sions described for pattern constructors (see Section 6.1.2)
will be applied to the expressions used to construct the ar-
ray. If the component type is a pointer type, these expres-
sions may be of any type that may be referenced by pointers
of that type. Objects are allocated in the heap to store
each value and the corresponding pointers are stored in the
appropriate elements of the constructed array. In any of
the above cases, the size of the array constructed must be
within the bounds allowed by the type of the array formal

parameter.

7.1.3.1 Event Handlers

<event handler clause> ::=
[# <handler item> {; <handler item>} *]
<handler item> ::= <event identifier> : <event handler> |

<team identifier> <actual parameters>
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<event handler> ::= <{statement>

During the execution of the routine to which a handler
clause is attached, the handlers for the events listed ex-
plicitly or within any named teams are active. If one of
these events occurs within the routine, control is trans-
ferred to the corresponding handler. Within a handler, the
parameters of the corresponding event may be referenced sim-

ply using the parameter identifiers.

Handlers for suspend or signal events may cause control
to return to the place where the event occurred by executing
the standard procedure Resume. Resume may not be used in
escape event handlers because escape events cause termina-~
tion of the routine or statement where they occur. If a
handler for a signal event does not execute Resume, the rou-
tine causing the event is terminated just as if the event
had been an escape event. If a handler neither causes an-
other event nor returns control by using Resume, then con-
trol passes to the statement following the routine statement
to which the handler is attached. Such a control flow 1is
not allowed if the handler is attached to a function call
(see Section 3.2). Any handler associated with a function
call must either execute a Resume (for a signal event),
cause another event to occur, or execute Yield(<expression>)

to provide a value for the function evaluation.
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7.1.4 Event statements

<event statement> ::=

{event kind> <event identifier> <actual parameters>

Event statements are executed to cause the occurrence
of a user-defined event. Actual parameters must be provided
for all parameters specified in the event declaration. They
behave 1like parameters to routines and have the same re-
strictions placed upon them. Suspend events may only be
caused from within Coroutines and Overseers. All suspend
events within a coroutine must be handled within a continue
statement used to invoke a process created from the
coroutine, so handlers for suspend events in coroutines may
only appear in continue statements. (This ensures that an
overseer maintains control of the processes attached to it.)
Handlers for suspend events in overseers may be attached to
routine statements that call overseers. (Such handlers are
required to be on the overseer call if it occurs in the main
process. The main process 1s created when execution begins,
with the main program as its archetype. All routines are
executed in the main process if a program does no explicit

process creation.)

7.1.5 Continue statements

{continue statement> ::= Continue <process reference>

Until <handler item> {; <handler item>} End
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The continue statement is used to continue (resume) the
execution of a suspended process (or start execution of one
that has just been created). The continue statement may on-
ly appear in an overseer or within a routine in a capsule.
If the process invoked by the continue statement has previ-
ously returned via an EOP suspend event, such an event oc-
curs again immediately upon reinvocation of the process. If
the process causes any suspend event for which a handler is
not provided in the continue statement, a RunError escape
event occurs. Handlers for escape and signal events may al-

so be included in the handler list of a continue statement.

7.2 Structured statements

{structured statement> ::= <compound statement> |
<conditional statement> | <repetitive statement> |
<with statement> | <incontext statement>

7.2.1 Compound statements

{compound statement> ::=
Begin <statement> {; <statement>} End |
BeginX <statement> {; <{statement>}

Except <handler item> {; <handler item>} End

The second form of compound statement activates the

handlers for the 1list of events specified in the handler




items during the execution of the statement 1ist and

routines called therein.

7.2.2 Conditional statements

<conditional statement> ::= <if statement> |

{case statement> | <typecase statement>

<if statement> ::= If <expression> Then <statement> |

If <expression> Then <statement> Els {statement>

{case statement> ::= Case <expression> QOf

{case list element> {; <case list element>}

<otherwise clause> End

<case list element> ::= <empty> |

{case label> {, <case label>} : <{statement>

{case label> ::= <constant>

<otherwise clause> ::= <empty> | Qtherwise <statement>
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any

The case statement of PASCAL is extended to include an

optional QOtherwise clause in TELOS.

7.2.2.1 Typecase statements

<typecase statement> ::= Typecase <multi-type variable> Of

<typecase element> {; <typecase element>}
<otherwise clause> End

<multi-type variable> ::= <variable>

|

<typecase element> ::= <{empty> ,

<{type or form identifier> : <{statement>



<type or form identifier> ::= <identifier>

The type of the object referenced by the wmulti-type
variable 1is used to select the statement to be executed by
matching with the type or parameter form names used as la-
bels. (Parameter forms rather than types are used if the
multi-type variable in question is a routine or process ref-
erence.) If none of the labels match the type (or form) of
the variable, the otherwise clause is executed. If none 1is
present, an error occurs. If a type-labeled statement is
executed, the type of the object referenced by the
multi-type variable is known, so the variable may be used
like a uniquely typed variable in this syntactic context.
No assignment may be made to the multi-type variable within
a <typecase element> that could change its type (and could
thus result in its value contradicting the 1label of the
statement). Within the <overwise clause> nothing 1is known
about the type of the multi-type variable, and thus no
type-dependent use may be made of it, and the only restric-
tions on assignment to 1t are those that exist for

multi-type variables in general.

7.2.3 Repetitive statements

{repetitive statement> ::= <while statement> |

{for statement> | <repeat statement> | <step statement>

{while statement> ::= While <expression> Do <statement>
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{repeat statement> ::=
Repeat <statement> {; <statement>} Until <expression>

<for statement> ::=

For <control variable> := <for list> Do <statement>

{for list> ::= <initial value> To <final value> |

<initial value> Downto <final value>

{control variable> ::= <identifier>
<initial value> ::= <expression>
{final value> ::= <expression>

7.2.3.1 Step statements

<step statement> ::=
ForStep <coroutine specification> <event handler clause>

Do <statement>

Overseers and routines within capsules may create proc-
esses and manipulate them as described above. Any routine
may use the step statement, which takes advantage of the
suspension capability of processes to provide a '"generator"
feature. The coroutine in the heading is activated as a
process. This process is executed until it causes the sys-
tem suspend event Step. Control then passes to the step
statement and the contained <{statement> is executed once. A
Var parameter 1is used to communicate the value provided by
the generator coroutine for use within <stqtement>. This

sequence 1is repeated until the process finishes execution of
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the coroutine body, resulting in the occurrence of the sus-
pend event EOP. If the process causes any other suspend
events, an error occurs, resulting in a RunError escape
event. The event handler on the coroutine call may handle

escape and signal events.

7.2.4 With statements

<with statement> ::=

ith <record variable list> Do <statement> |

=

=

ith <multi-type variable list> Do <statement>

<record variable 1list> ::= <record variable> <tag constants>
{, <record variable> <tag constants>}

{tag constants> ::= <empty> | ( <constant> {, <constant>} )

Tag values may be specified for a record variable in a
with statement. They are used to indicate that certain var-
iants of the record must be active when the with statement
is executed. The first constant must correspond to the val-
ue of the first tag, the second to the second tag, and so
on. A tag error will occur if this is not the case. In the
scope of the With, these tags may not be changed and thus
access to fiélds of the specified variants is guaranteed to

be correct without further run-time checking.
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<multi-type variable list> ::=
<multi-type variable> : <type or form identifier>

{, <multi-type variable> : <type or form identifier>}

This version of the with statement can be used to make
type-dependent references to a multi-type object, much like
in a typecase statement. If the type didentifier does not
agree with the type of the object at run-time, a type error
occurs. In the scope of this With, field or parameter names
that designate fields or parameters of the object named by
<multi-type variable> may be referenced without the variable
prefix (like record fields in a standard with statement).
In this scope, no assignment may be made that changes the

type of the multi-type variable.

7.2.5 Incontext statements

Execution of a TELOS program begins in a context creat-
ed by the system; this context becomes the root of the con-
text tree. No other contexts are ever created implicitly;
new contexts are only created upon explicit command (using
CreateContext). Routines are executed in the context that
is current for their calling routine when the call takes
place. An incontext statement may be used as a means to

call routines in a separate context.
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Changes to the database and to relative variables may

be made with respect to any context in the context tree.
Assigning a new value to a relative varilable in a particular
context has no effect on the value of that variable in any
other context, including any current descendants of the
changed context. Changing an existing database obJject has
more complex implications that will be discussed in Section

8.6.

<incontext statement> :::=

Incontext <context reference> Do <statement>

The incontext statement sets the current context to the
one referenced by <context reference> for the execution of
the <{statement>. At the end of this execution, the current
context 1is switched back to the starting context, i.e., to
the context within which the incontext statement was execut-
ed. The current context of a routine can be changed by no
other means. In particular, an assignment to CurrentContext
is not allowed. The execution context of the program may,
however, change when an overseer invokes a process since a
process resumes execution in the context in which it was ex-

ecuting when it last suspended.

The "context blocks" imposed by the incontext statement

help to keep track of when the implicitly referenced context
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is being changed. References to other contexts are possible
at any time, of course, but only explicitly through use of
context variable notation. The only contexts that can be
referenced by a routine are 1its initial current context
(with its descendants) and those which the routine can ex-

plicitly name.

The incontext statement is analogous to the with state-
ment in PASCAL. It sets up a run-time scope much like the
scope created by the with statement at compile time. An im-

portant difference is that the incontext scope is inherited

by called routines while the with scope is not.

8. Standard routines

The routines described below are additions to the set
of standard routines provided by PASCAL. Many of them take
parameters of more than one type. In such cases the parame-
ter type is replaced in these specifications by a
meta-variable enclosed by '<' and '>' that describes the pa-

rameter.

8.1 Array bounds functions

HiBound (ReadOnly Arr : <array variable>; Dim : Integer)
{index type of this dimension of Arr>
When provided with an array and an integer dimension as

parameters, HiBound returns as 1its value the upper
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bound of the dimension of the array selected by the
second parameter. A RunError event occurs if Dim does

not select a valid dimension.

LoBound (ReadOnly Arr : <array variable>; Dim : Integer)
{index type of this dimension of Arr>
When provided with an array and an integer dimension as
parameters, LoBound returns as its value the lower
bound of the dimension of the array selected by the
second parameter. A RunError event occurs if Dim does

not select a valid dimension.

8.2 Dynamic allocation and de-allocation procedures

Extensions of PASCAL's New allow the dynamic allocation
of arrays with size determined at run-time, as well as the
use of New in connection with multi-type pointers. A call

to New takes the form:

New (<subpool> <pointer variable> <allocation parameters>)
{subpool> ::= <integer> , | <empty>

<allocation parameters> {, <tag constant>} |

1

i

{, <bound setting>} | , <type identifier> | <empty>
}

<bound setting> ::= <type identifier>

{expression> .. <expression>
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The subpool parameter to New is used to logically group

heap allocations into groups. The Dispose procedure may be
used to free, in one operation, all heap allocations in the
same subpool. If <subpool> is <empty>, then the object is

allocated from subpool 0.

The first case of the allocation parameters is the syn-
tax for allocating records with variants. The tag constants
supplied are used to allocate the smallest space necessary
for the corresponding variants and these values are assigned
to the tags. The second is for allocating arrays. As in
the <case for declaring array variables, lack of any bounds
settings will result in the maximum size being allocated.
The third form of allocation parameter is vrequired if

{pointer variable> is a multi-type pointer.

CopyStructure (<subpool> <pointer variable>)
{-> same type as pointer>
CopyStructure copies the object pointed ¢to by the
pointer and the entire pointer closure from that ob-
ject. It returns a pointer to the top object of the
newly created structure. <subpool> has the same mean-

ing as for New.
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Dispose (<integer>) or Dispose (<pointer variable>)
The first form of Dispose returns to free storage all
objects allocated as part of the subpool designated by
the <integer>. The second form deallocates the object

referenced by the pointer.

DisposeStructure (<pointer variable))
This procedure is an extension of Dispose, causing the
object referenced by the parameter pointer to be
de-allocated, along with all objects in the pointer
closure from the object. The pointer closure from a
given object 1includes all objects that can be reached

by following pointers starting from the given object.

8.3 Parameter record routines

Bind (Var Field : <param record field>; Var V : <variable>)

Bind (Var Parm : <process parameter> ; Var V : <variable>)
A procedure used to set Var and ReadOnly parameter
fields in parameter records, and to change the bindings
of such parameters for processes created by cloning ex-
isting processes. V must be a global variable; a field
in a record or capsule header containing the parameter
record as a component (for the first form of Bind); a
field in a capsule header containing a reference to the
process (for the second form); or an object allocated

from the heap or part of such an object. It cannot be
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a local variable of any routine, or a component of such
a variable. V may not be within a variant and, of
course, it must be of the type required by the parame-
ter field. Binding to an object allocated in the heap
results in a validity check when a parameter record is

used to call a routine.

Execute (ReadOnly PR : <procedure or overseer param record>)

Eval

A procedure used to cause the execution of a procedure
or an overseer specified using a parameter record. The
routine is called with the parameter values and bind-
ings provided in the record. A list of event handlers
to be active during the execution may be attached to
Execute, as on any other procedure call. A parameter

record may be reused by Execute any number of times.

(ReadOnly PR : <function param record>)

{return type of PR.Routine>
A function used to cause the execution of a function
specified wusing a parameter record. The type of the
value it returns is determined by the return type of
the function referenced in the parameter record. A pa-
rameter record may be reused by Eval any number of

times.
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8.4 Context routines

CreateContext (Parent : ContextRef) : ContextRef
A function which creates a new context that descends
from the context referenced by Parent and which returns
a referernce to the new context as 1its value.
CreateContext does not change CurrentContext.
For example, CreateContext (CurrentContext) creates a
descendant of the current context which is initially

identical to it.

Release (Cxt : ContextRef)
Cxt and all its descendants are removed from the con-
text tree. A context error escape event results if
this procedure is executed when CurrentContext has Cxt
or any of its descendants as its value. (Among other
things, this restriction prevents Release from ever be-
ing legally applied to the root of the context tree.) A
context error may later result if an attempt 1s made to

use a context that has been released.

Subcontexts (Parent : ContextRef; Var Child : ContextRef)
A system-defined coroutine that provides as its values
references to each of the subcontexts (immediate
descendants in the context tree) of the context refer-
enced by Parent, for use in a step statement. That is,

it suspends using the system event Step, with Child set
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to a different one of the descendants on successive in-

vocations, with no particular order implied.

Finalize (C1, C2 : ContextRef)
Causes the context C1 to become identical to CZ2 and
then to be stripped of all its descendants. C2 must be
a descendant of C1. All values established for objects
in C2 by way of explicit changes in contexts between C1

and C2 will be included in the final constitution of

Ct.

8.5 Event routines

All event routines may be used only within handlers.

Resume
A procedure that returns control from an event handler
for a signal or suspend event to the location where the
event occurred. Resume is not allowed in escape event
handlers because escape events cause termination of the

statement or routine in which they occur.

Yield (Value : <expression>)
Provides a value for a function call from a handler at-

tached to the call. The type of <expression> must

match the return type of the function.
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Enable (<team identifier> <actual parameters)>)
A procedure that may be used within a handler to add
the handlers 1in the named team to the list of active
handlers of which it is a part. An instance of the

team is created with the provided parameters.

Disable (Tm : <team identifier>) or Disable
Disable is a procedure that removes handlers from the
active list. If it has a parameter, it removes all of
the handlers in Tm. If it has no parameter, it deacti-

vates the handler in which it occurs.

8.6 Data base routines

The TELOS data base consists of pointer-linked struc-
tures created from record, array and capsule obJjects. A
particular data base object (DBO) may take on different val-
ues (of the same type) with respect to different contexts.
If a DBO has not been explicitly given a value in a particu-
lar context, it will inherit its value for that context from
the parent context. A DBO does not necessarily have a value
in every context. If no value has been explicitly given in
some context and no ancestor of that context has a value for
that DBO, then the DBO is said to be undefined for that con-
text. The value of a DBO in any context for which it is de-
fined 1is that structure that can be reached by following

normal pointers from a designated "top object" (a record,
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array or capsule header). Only objects of types defined at
the outermost level of the program may be stored in the data
base, either as a top object or as a component of a DBO.
Records containing untagged variants may not be stored in
the data base; any attempt to store such a record will re-

sult in a RunError.

Defined (ReadOnly Ptr : <DBOP>; Cxt : ContextRef)
Boolean
A function that returns true if Ptr references a de-

fined value in Cxt.

Store (ReadOnly Obj : <object expression>)
<DB-> type of stored object>
The parameter Obj must be a record, array or capsule
object. Store creates a new data base object (DBO)
with the pointer closure from Obj copied into the data
base as the value of the new DBO in the current con-
text. The copy of Obj itself is called the top object
of the new DBO. The type of 0Obj determines the type of
the DBO, restricting the type of values taken on by the
DBO in any other context to be of the same type. The
values of any indexed fields of the top object are used
to create associative references to the DBO. If a
pointer field 1s indexed, indexing is applied to the

object it references. If a matchroutine parameter rec-
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ord is contained in or pointed to from an indexed field
of the top object, the index part of the routine it
references 1is executed to obtain index values for re-
trieval by the PatternGet function (defined 1later in
this section). Store returns a data base object point-

er (DBOP) pointing to the newly created DBO.

Change (Var Obj : <DBO component> ; NewValue : <expression>)
Change 1s used to alter values within an existing DBO.
(Simple assignment may not be used.) Obj must reference
a portion of a DBO value that 1is neither a working
space pointer nor a structured object containing any
such pointer (other than Unstored pointers). (Replace
is used to change a DBO when its structure is changed.)
NewValue must be of the proper type to be assigned as
the value of the designated component. If the Change
is performed in a context other than the one in which
the active DBO value was created, then a new DBO value
is created in the current context. This new value of
the DBO will be active in the current context and all
of 1its descendants unless a Change or Replace has pre-
viously been performed on the DBO in one or more of the
descendant contexts. For each such case, a DBOConflict
signal event is caused so that the programmer may re-
solve the conflict. A default handler that results in

a RunError event is invoked if the program provides no
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other for DBOConflict. The DBO component changed may
be specified using a component pointer, as well as

through a DBOP.

Replace (Ptr : <DBOP>; ReadOnly Obj : <object expression>)
The type of Obj must be the same as the type of the DBO
referenced by Ptr. This DBO is given a value in the
current context equivalent to that which would result
from Store(0bj). If the DBO has previously been ex-
plicitly given a value in the current context, that
value 1is removed from the data base and all component
pointers referencing into it are invalidated. DBO val-
ues for contexts other than the current context and its
descendants are unaffected, with DBOConflict events oc-
curring under the same conditions and with the same re-

sults as for Change.

Delete (Var Obj : <data base object>)
The procedure Delete is used to remove changes to data
base objects from the data base. If Obj has been given
a value explicitly in the current context (by use of
Store, Change or Replace), that value is deleted, with
the wvalue of the object in the current context revert-
ing to an inherited value. If it is the only existing
value for Obj, the object is also removed from the data

base, 1in which case any DBOP's referencing it become
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invalid pointers. Delete has no effect if there is no
explicit value for O0Obj in the current context.
DBOConflict events can result from Delete wunder the
same conditions and with the same results as for

Change.

(ReadOnly Ptn : <pattern>) : <DB-> type pattern matches>
Find searches the data base for a DBO whose value 1in
the current context 1is matched by Ptn. If more than
one match is found, a sequencer field in the top object
will be used to determine which to return, selecting
the DBO with the value ranking highest in the ordering
on that field. If no sequencer is specified, or if
there 1is not a unique highest value, the most recently
created DBO is selected (from those with the highest
value in the 1latter <case). The data base is locked
during this operation: no Stores or Changes may be

done by matchroutines activated during the match.

FindEach (Ptn : <pattern>; Var Matched : <DBOP variable>)

A coroutine that will return pointers to all DBO's that
match Ptn, wupon successive invocations. It uses the
suspend event Step so that it can be used as a genera-
tor by a step statement. The DBOP parameter, Matched,
is a Var parameter that receives the return values; it

must be a DBOP for the type of object that Ptn matches.
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The ordering of the DBOP's returned is determined like
the selection process in Find. Between invocations of
a process created from FindEach, Stores and Changes may
be executed that will change the generation sequence.
For example, if an object is stored which Ptn matches,
it will Dbe returned by the process. If its sequencer
value is greater than or equal to that of any DBO yet
to be produced, a DBOP to the new object will be the

value of the next invocation of the process.

FindContext (Ptn : <pattern>; Var Cxt : ContextRef)
A coroutine that returns all contexts in the subtree
rooted at CurrentContext that contain an object that
Ptn matches. It uses the suspend event Step with a
different context assigned +to Cxt each time it sus-

pends.

PatternGet (ReadOnly Obj : <any type>;

Var WSP : <working space pointer>;

Var DBP : <data base object pointer>)
PatternGet is a coroutine which searches the data dase
for objects with top level records containing or point-
ing to a matchroutine parameter record which matches
Obj. The coroutine uses the suspend event Step, with
the pointers referencing a new object each time it sus-

pends. The two pointer variables provided as actual
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parameters must be pointers to the same type of objects
or to the same set of types, if they are multi-type.
The types of objects searched in the data base for an
acceptable pattern are limited to the types allowed for
the parameter pointers. When PatternGet suspends, WSP
references a working space copy resulting from the
match and DBP references the DBO from which the copy
was made. Providing a working space copy as one of the
products of a successful match makes possible binding
Var parameters of the matchroutine to components of the
object of which the parameter record is a component.
After matching, the (modified) working space copy is
available for inspection of or further operation on

these components.

Match (ReadOnly Ptn : <pattern>;
ReadOnly Obj : <data object>) : Boolean
A  function that returns true if Ptn matches 0Obj. This
function is the matching component used by the func-

tions that search the data base.

Fetch (ReadOnly Obj : <DBO component>) : <-> type of Obj>
A  function which copies a DBO value or part of a DBO
from the data base into the working space and returns a
pointer to the copy. The entire pointer c¢losure from

Obj 1is copied. Fetch may have a subpool specified, as
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with New. It 1is an optional first parameter,

preceeding 0Obj.

8.7 MatchRoutines

MatchAny

A matchroutine requiring no parameters which matches

any object.

MatchValue (Value : <value>)
A matchroutine that matches an object of the same type
as and exactly equal to Value (for any type for which

equality is declared).

MatchObject (<Kparameters depend on type being matched>)

A description of MatchObject is given in Section 6.1.2.

8.8 Miscellaneous routines

SameType (P1, P2 : <ptr or ref variable>) : Boolean
A function that tells 1if <two RoutineRef variables,
ProcessRef variables or pointer variables reference ob-
jects of the same type. (In the case of pointers, both
must be of the same kind -- working space, data base
object or data base component.) The value of the func-

tion is false if either or both of the variables do not

reference valid objects. One or both of the variables

may be multi-type.
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Terminate (Pref : ProcessRef)
A procedure used to de-activate, i.e., to remove from
the system, suspended processes attached to either an
overseer or capsule instance. 1t may be used only by

overseers and capsule routines.

VarHash (Var V : <variable>) : 1Integer
A  function that provides a unique integer value corre-
sponding to each object local to a routine or in the
working space and to each data base object. (VarHash
may not be applied to components of data base objects.)
This value does not vary with the content of the ob-
ject. When applied to Var or ReadOnly parameters or to
such parameter fields in a parameter record, the value
returned is that corresponding to the object bound as

the parameter.

Ref (Routine : <routine identifier>) : <routine reference>
Ref returns a reference to the routine named as its pa-

rameter.

9. Programs
{program> ::= <program heading> <program block>
{program heading> ::=

Program <identifier> (<program parameters>)
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{program parameters> ::=
<file identifier> {, <file identifier>}
{program block> ::=
{label declaration part> <constant definition part>
{type definition part> <variable declaration part>
{relative declaration part> <event declaration part>

{routine declaration part> <statement part>

9.1 Relative variable declarations

{relative declaration part> ::z <empty> |

Relative <variable declaration>

{; <variable declaration>} ;

The relative variable declaration part in the main pro-
gram 1is used to create a set of context-relative variables.
When a new context is created, space is allocated for each
of the relative variables in a block attached to the con-
text. The initial values for these variables in this con-
text are the values the variables have in the parent con-
text. After that initialization the values of the variables
in different contexts are independent; changing a relative
variable 1in any context affects the value in no other con-
text. A relative variable identifier stands for the version
of the variable associated with the current context. It may
be prefixed by a context reference to obtain a value from

another context (see Section 3.2.1). Data base object
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pointers may not be relative variables, since the objects
they reference are already context-relative. It is to be
noted that the dynamic allocation space (heap) 1is not
context-relative and that a relative variable that is a heap
pointer may reference the same heap object from its value in
more than one context. The initialization of relative vari-
ables in a new context does not include making copies of the

objects any relative pointers reference.

9.2 Modular Compilation Features

TELOS includes extensions that allow the creation of a
global environment, separate compilation of routines using
that environment, and additions to the environment without
requiring recompilation of existing routines and declara-
tions. Four kinds of modules are recognized to implement
these features. The syntax of file identifiers and module
headings may be implementation dependent, in order to inter-

face with existing file systems as efficiently as possible.

9.2.71 Declaration modules

Declaration modules are used to create an environment.

<declaration module> ::=
{declaration heading> <declaration block>

{declaration heading> ::= Declarations (<file identifier>) ;




{declaration block> ::= <constant definition part>
{type definition part> <variable declaration part>
{relative declaration part> <event declaration part>
{routine heading 1list>

|

{routine heading list> ::= <empty> |

<routine heading> {, <routine heading>}

Within the module may be declarations of constants,
types, variables and events just as in a standard main pro-
gram. Among the types, of course, may be capsule specifica-
tions. Following these declarations come declarations of
the headings of routines that are to be part of the environ-
ment. These headings are identical to the headings in nor-

mal declarations.

Any identifier defined in a declaration module may be
referenced in any other module compiled using the environ-
ment created from the declarations. This mechanism allows
routines compiled separately to call each other and to use
the same global constants, types, variables and events.
Compilation of a declaration module creates a description of
an environment, which is written into the file specified 1in

the declaration heading.
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9.2.2 Routine modules

Routine modules are used to provide the bodies of rou-

tines and capsules declared in an environment.

{routine module> ::=
{routine module head> <routine module block>
{routine module head> ::=z <environment head> Routines
(<identifier> {, <identifier>});

<environment head> ::= Environment (<file identifier>) ;

{routine module block> ::= <constant definition part>
{type definition part> <variable declaration part>

<event declaration part> <routine declaration part>

The file specified in the environment head provides the
environment in which the module is to be compiled. The 1list
of identifiers in the heading tells the compiler which of
the routines defined in the module are to match declarations
in the environment and thus are to be callable from outside
of the module. This list may also include capsule names,
indicating that the bodies for the named capsules will be
found in the routine declaration part, corresponding to
capsule specifications in the environment. Routine modules
may also include declarations of constants, types, varia-
bles, events and local routines. The variables so declared
are statically allocated and thus retain their values be-

tween calls to routines in the module. A routine module de-
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fines a new name scope, so identifiers used in the global
environment may be redefined within the module. When a rou-
tine declared in the global environment is defined in a rou-
tine module, the declaration of its parameters is repeated
and the types must match those specified in the environment
declaration. (The parameter names need not match those in

the declaration.)

9.2.3 Environment extension moduies

Environment extension modules are used to make additions

to an environment.

<environment extension module> ::=
{extend heading> <declaration block>
{extend heading> ::=

Extend (Kold file identifier>, <new file identifier>) ;

Environment extension modules may add any kind of declara-
tion to the environment, but cannot change any existing
ones. The environment description from the old environment
file 1s expanded to describe the extended environment and is

written as the new environment file.

9.2.4 Main program modules

Main program modules are used to compile the main program

body. They look exactly like regular PASCAL programs except
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that the heading is prefixed by an environment heading to

supply an environment file specification.

<main module> ::=

<environment head> <program heading> <block>

If any routine modules have been compiled in environments
produced by extending earlier environment declarations, the
main program module must be compiled in the last of the ex-
tended environments. Only a linear succession of environ-
ments may be used to compile the modules that make up a pro-

gram.

10. System events

10.1 Escape events

RunError
This escape event occurs when a run-time error 1is de-
tected that should terminate execution. After generat-
ing an appropriate diagnostic message, the system will
cause this event rather than terminating the program.
This will allow only a routine or process to be tehmi—
nated by the error rather than the whole progran. If
no handler exists for this event, termination of the

whole program will occur. The errors that result in
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this event include such things as arithmetic faults,
out-of-range subscripts, use of invalid pointers or
references, use of fields of inactive variants, file
errors, etc. No provision is made to communicate the

nature of the error to a handler.

10.2 Signal events

There are some system signal events that will be avail-
able to handlers only if they are explicitly declared in the

event declaration part of the program.

10.2.1 Entry and exit events

Entry to and exit from any routine (including system
routines) can be signal events, if they have been explicit-
ly declared as such. The events are declared using the

following:

Signal Event <routine identifier>$Entry ;

Signal Event <routine identifier>$Exit ;

These events have as parameters those that exist for the
routine, which are named in the routine declaration. They
are referenced in a handler just as they would be within the
routine. In handlers for entry and exit events, the
CurrentContext value for the routine can be referenced as

EventContext. (Handlers execute in the context that is cur-
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rent for the routine in which they are attached.) In a han-
dler for the exit event for a function, the return value may

be referenced as ExitResult.

If the routine is a coroutine, the entry event occurs
each time a process for which the coroutine is the archetype
is invoked and the exit event occurs each time it suspends.
The identity of the particular process involved may be ref-
erenced in such a handler using the process reference varia-

ble EventProcess.

10.2.2 Data base events

Entry and exit events for type-generic system-provided
routines and, in particular, for the data base routines need
a further specification of the type of object being operated
on. Thus a declaration of the exit event for storing an ob-

ject of some type would appear as:

Signal Event <type>$Store$Exit ;

Handlers for such events provide a data base demon capabili-
ty in TELOS. The type separation of data base events mini-
mizes the number of handler invocations that occur, since
handlers need not decide if they are applicable to the par-

ticular type of object involved in the data base operation.
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10.3 Data base conflict events

This system signal event need not explicitly be de-
clared. If a change is made to a data base object in a con-
text that has descendants, a possible ambiguity in the mean-
ing of that change exists. If the object has previously
been changed in one or more of these descendants, there is a
question as to how far the new change should propagate. The
event mechanism is used to allow the programmer to explicit-
ly decide the question. For each such conflicting change,

the following signal event occurs:

Signal Event DBOConflict

(Obj : DB->Any; Change, Conflict : ContextRef) ;

A pointer to the DBO and contexts 1in question are
available as parameters. The handler may make a new change
to the object in the context referenced by Conflict, it may
use Delete to remove the old change altogether, or it may
allow the old change to stand. Use of Change, Replace or
Delete within the handler may result in a DBOConflict event
in some descendant contexts of Conflict. Execution of the
handler must end with a call to Resume or a RunError occurs.
If no explicit new change to the DBO is made, the old change
stands. If no handler exists for this event, the system
handler generates a diagnostic message and a RunError escape

event occurs.
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CHAPTER 4

Language Design Goals and the Design of TELOS

The programming language design process is far from an
exact science. It involves trade-offs among design goals
and resolution of conflicts between an overall design phi-
losophy and requirements for the intended use of a language.
Since TELOS is an extension of PASCAL, its design has cer-
tainly been influenced by the "PASCAL philosophy" of pro-
gramming language design. However, the complexity of TELOS
represents a large step away from the sparseness that char-
acterizes PASCAL. The following presentation of design
goals 1is Dbased fundamentally on ideas presented by Wirth
[Wir74], Hoare [Hoa73], and Spencer, Tremblay and Sorensen
[STS7TT7]. These goals represent an emerging approach to pro-
gramming language design that has gained a fairly wide, but
by no means universal, acceptance.

PASCAL is the most prominent example of a design based
on the goals discussed below. TELOS does not satisfy them
to the extent that PASCAL does, principally because of a
different relative emphasis among the goals. Following the
discussion of the design goals is an analysis of the design
of TELOS, particularly concerning its divergence from the

PASCAL philosophy.
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Design Goals

The design goals that constitute this emerging approach
include:

(1) simplicity - Language concepts should be as clear and
easy to understand as possible.

(2) minimality - A language should include the minimum use-
ful set of opeations for effective, efficient program-
ming in the intended application area.

(3) programming effectiveness - The language should contrib-
ute to programming effectiveness by aiding and encourag-
ing good program design.

(4) ease of debugging - The necessity for debugging should
be minimized by encouraging good design and the imple-
mentation should guarantee security to reduce the scope
of bugs.

(5) readability - Programs should be comprehensible to a hu-
man reader.

(6) compilability and efficiency - The language constructs
should enable fast translation to efficient object code.

(7) security - All vrestrictions in a language should be
enforceable, preferably at compile-time.

The goals enumerated above are interdependent to some con-

siderable extent. As they are developed below, this

interdependence will be discussed as it influences the re-

quirements which derive from particular goals.
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Simplicity

Simplicity should not be confused with generality or
lack of structure in a language. Limitless generality or
q complete orthogonality (any possible combination of features
is allowed, e.g., complex integers) leads only to a language
that 1is difficult to master or impossible to implement com-
pletely or efficiently. Rather, simplicity 1s achieved
through the inclusion in a language of only those features
which are transparently understandable and which are based
on concepts developed from the intended use of the language.

Modularity (not needing to know all of a language to
use it) has been suggested as an alternative to simplicity.
The design of PL/1 1is based on the modularity concept
[RR65]. The principal shortcoming of this approach is prob-
ably in the area of debugging. It is necessary for a pro-
grammer to understand what incorrectly written programs do
in order to debug them, a task complicated by the accidental
invocation of unknown features. Such problems make modular-
ity an inadequate substitute for simplicity.

ALGOL 68 [VW75] is a language that has been designed to
have maximum generality rather than simplicity. Its lack of
popular support despite its powerful features 1is at least
partly due to its overwhelming complexity. It also presents
implementation difficulties, particularly requiring consid-
erable run-time checking to produce a secure implementation

[Tho77]. TELOS includes features of greater complexity than
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those in PASCAL, but has not moved toward allowing the gen-
erality of ALGOL 68. Its intended use for AI programming
has led particularly to the inclusion of features oriented

toward handling complex data structures and control schemes.

Minimality

Minimality is a goal closely related to simplicity.
Certainly the inclusion of only the minimum useful set of
operations necessary in a language will enhance its simplic-
ity. The fewer features there are in a language, the more
easily it can be mastered. Minimality can also make another
important contribution to a language. It enhances the de-
velopment of an efficient, reliable compiler and good docu-
mentation.

The idea of minimality has not been ignored during the
design of TELOS, but it has not had a dominant effect on the
resulting language. The usefulness of features for program-
ming effectiveness has been considered to be of greater val-
ue than the contribution their absence would make to

minimality.

Programming Effectiveness

A programming language exerts a strong influence on how
a programmer formulates and solves a problem. It is thus
essential that a language provide assistance in program de-

velopment. One aspect of this assistance is program docu-
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mentation. The readability of a language 1is an important
part of making a program largely self-documenting. An even
more important aspect is that of program design. The lan-
guage should allow the program to record design decisions in
such a way that they are easily understood and modified as
required. This goal is best met by the inclusion of ab-
straction capabilities, with procedural abstraction being
the most common example. The importance of abstraction 1is
that the intent of a programmer need not be obscured by im-
plementation details. Abstraction also serves the purpose
of localizing the effect of implementation changes and helps
to manage program complexity.

Most languages support procedural abstraction; other
kinds, such as data abstraction, are far less common. No
matter what features are available, it is important that the
language assist in the use of conventions that ensure coop-
eration among the various parts of a program. Such program-
ming effectiveness is one of the primary concerns in the de-
sign of TELOS, motivated by the necessity of being able to
handle the complex structures used in AI programs and by the
need to manage the complexity of AI programs. Abstraction

mechanisms have been a major result of this emphasis.

ase of Debugging
Many of the other goals contribute to the next goal -

that programs written 1in the language can easily be de-
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bugged. An understandable and readable language is obvious-
ly important. A language that provides abstraction capabil~-
ities and otherwise encourages good design will minimize the
necessity of debugging. A secure implementation will re-
strict the scope of bugs, catching errors where they occur
rather than by their frequently obscure side effects.

Other aspects of the design of a language also contrib-
ute to ease of debugging, principally by outright elimina-
tion of the possibility of some errors. High-level languag-
es in general remove the possibility of branching to arbi-
trary places in a program or even into data. Strong typing
and mandatory declarations give the compiler the information
to detect many cases of misuse of variables. PASCAL's re-
strictions on pointers eliminate many runaway-pointer errors
and make dangling pointers inexpensive to detect. Attempts
to provide this kind of aid to debugging have influenced a
number of features of TELOS. Aspects of overseer control of
processes and of the event mechanism are motivated by this

goal.

Readability

There has lately been an increasing recognition of the
importance of the readability of programs. It is necessary
that a program communicate well with a computer, but commu-
nication with humans is even more important. Programs must

be read to be debugged and extended, frequently by program-
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mers other than the original author. A program that is not
understandable is almost worthless.

Since external documentation and comments are often in-
complete and out of date, the program text becomes the main
source of information. This makes the programming language
a crucial factor in producing a readable program. While it
is important to be able to write programs easily, any ver-
sion of a program is only written once. Since they are read
many times, 1t is more important that programs be readable
than writeable [Hoa73]. APL "one-liners" are an extreme ex-
ample of the sacrifice of readability to convenience in
writing programs using powerful operations.

A  programming language contributes to readability if
its syntax is reflective of the operations it denoctes. Ab-
breviations and defaults produce obscure programs, not sim-
ple ones. Complex operations should not occur without indi-
cation in the syntax. Syntactic constructs that look nearly
alike should not denote vastly different operations. Final~-
ly, it is necessary to be aware that humans and computers do
not process complicated syntactic structures by the sane
mechanisms. The fact that some syntactic construct is unam-
biguous to a parser is not a guarantee that 1t is readable
by a human. Readability has been a high-priority considera-
tion in the design of TELOS. The dependence of Al program
development on experimentation and modification requires

that programs be very readable.
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Compilability and Efficiency

For a language to be of any practical use at all, it
must be possible to implement all of its features. This re-
quires that at least some thought be given to implementation
during the design phase. It is further desirable that the
compilation task be as simple as possible, in order to mini-
mize the complexity of the compiler. Simplicity of compila-
tion is achieved through minimizing the amount of context
necessary to parse constructs successfully. The use of the
same operators and punctuation for different purposes should
thus be minimized. Finally, fast compilation makes debug-
ging more economical by limiting the cost of recompilation
of a program when it is being tested and amended.

It is also important that a language be designed to al-
low the generation of efficient object code. Wirth goes so
far as to recommend [Wir74] that the mere fact that a fea-
ture is costly to implement might be a reason to exclude it
from a language. It is often stated that as machines become
faster and cheaper, efficiency becomes 1less important.
Hoare argues [Hoa73], however, that it will always be better
to use a machine more efficiently, no matter how fast it is.
He further argues against reliance on optimizing compilers,
principally because so few reliable ones exist for languages
other than FORTRAN.

The number of features included in TELOS will certainly

increase the complexity of a compiler but, in general, the
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features are syntactically independent of one another,
(This reduces one kind of compiler complexity but introduces
more syntactic constructs.) Efficiency has not been ignored,
but it has not been an overriding concern. Wirth's sugges-
tion for exclusion is considered to be overly restrictive.
One of the most important efficiency considerations in TELOS
is that the cost associated with any particular feature not
be borne by programs that do not use that feature, i.e.,
features should be designed (and implemented) so that they

do not involve a general overhead cost.

Security

Security is an often-overlooked aspect of language de-
sign. It 1is of 1little use for a language to include re-
strictions that are not enforceable. Restrictions that are
ignored by compilers because of their costliness are equally
useless. Features should be designed so that a compiler can
check as much as possible during compilation. Required
run-time checks should be kept to a minimum and elaborate
run-time checking should be avoided so that checking will
not be turned off in production runs because of its cost.

ALGOL 68 is an example of a language that requires
costly and elaborate run-time checks to guarantee security
[Tho77]. Even PASCAL, which can mbstly be checked at
compile=time, 1includes some features that require rather

complex run-time checks [FL77]. Since security makes an im-
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portant contribution to ease of debugging, the features of
TELOS have been designed with considerable attention paid to
security consideratons. As much checking as possible is de-
signed to be done at compile~time, e.g., the use of

multi-type variables only within a typecase statement.

While these goals generally support one another, there
are also some conflicts. The most obvious conflict is be-
tween simplicity and minimality on one hand and some aspects
of programming effectiveness on the other. For example, the
inclusion of extensive features to facilitate abstraction
certainly complicates a language. Such trade-offs are the

essential challenge of language design.

The Design of TELOS

Since TELOS is intended for use as an Al programming
language, it 1is necessary to consider how the requirements
of AI programming interact with the goals discussed above.
As outlined in the introductory chapter, Al programming re-
quires capabilities for specifying and manipulating complex
environment structures, for specifying and manipulating
structurally complex and variable data objects, for
experimenting with control strategies, and for building mod-
els 1incrementally. The data base and context mechanisms of
TELOS are meant to fulfill the first of these requirements.

A number of features, particularly capsules and the standard
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routines that operate on pointer closures, are motivated to-
ward the second. Overseers are intended to facilitate
control-regime definition capabilities, aided by the event
mechanism. Incremental model building is served primarily
by the modular compilation capability, but also by such
things as multi-type pointers and routine references, as
will be seen below.

Another major concern is the problem of managing the
complexity of AI programs. This concern becomes even more
crucial as AI research progresses to challenge increasingly
difficult problems.

In view of these requirements, the design of TELOS em-
phasizes some of the design goals from the previous chapter
at the expense of others. Programming effectiveness re-
ceives primary emphasis. Readability is considered impor-
tant, due to the highly experimental, evolutionary nature of
AT programming based on iterative modification and extension
of programs, Ease of debugging is important for the same
reasons, along with the security of implementation necessary
to achieve it. Reasonably fast compilation is important for
incremental model building, and run-time efficiency must
certainly be considered since it was among the main short-
comings of earlier AI languages that have resulted in theilr

limited use.
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Simplicity and minimality, while not ignored, are de-
liberately de-emphasized, particularly where they would con-

flict with the goal of programming effectiveness.

Resolution of Design Goal Conflicts

Considering the trade-offs among design goals more ex-
plicitly, the foremost is between programming effectiveness
and minimality. The abstraction capabilities provided by
capsules and overseers are costly in terms of added complex-
ity of +the language. An extreme emphasis on minimality
would probably have resulted in their exclusion from TELOS.
However, the usefulness of abstraction for the management of
program complexity is such that the contribution of these
features to programming effectiveness makes them well worth
their price.

Constructors are an example of emphasis on readability
at the expense of minimality. The capability to describe in
a pictorial manner (and thus create) structured objects or
patterns to match structured objects increases readability
(and writeability as well). Again, the feature makes the
language no more powerful, since use of New and a series of
assignment statements can accomplish the same task. 1In this
case, the contributions to readability and writeability are
seen to outweigh the considerations of minimality.

Ease of debugging tends to suffer with the inclusion of

such complex control structures as conditional interrupts
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(demons) and suspendable processes. The event mechanisn,
used to implement conditional interrupts (via signal events)
and control transfers from processes (via suspend events),
allows the inclusion of these control structures but pro-
vides a programmer with a means of keeping them under con-
trol. Using the event mechanism for these purposes 1is not
as simple as such alternatives as global declaration of de-
mons and more primitive process control transfers. It  has
the advantages of keeping the scope of event handlers limit-
ed (for efficiency) and very well-defined by the program
text (for ease of debugging and readability). Once again
the goal of simplicity suffers.

The inclusion of a built-in data base mechanism in
TELOS 1is motivated by the goals of efficiency and program-
ming effectiveness. Since a data base mechanism is required
by many AI applications, especially given the shift in AI
paradigms in the last ten years [Fei77], inclusion of the
mechanism which relieves programmers of the necessity of
building their own has been deemed important for TELOS.
(The tools to do so are available, principally the capsule
mechanism and the Match function, though implementing the
required associative references with these tools would be no
simple task for each programmer who had to do it). The in=-
dexing mechanism 1is made more efficient by allowing
compile-time specification of indexing information (in type

declarations). Thus, while the data base routines provide



127
capabilities at a higher level than other operators and rou-
tines 1in TELOS, their inclusion can be seen to enhance pro-
gramming effectiveness and to allow a more efficient imple-
mentation of an important tool for AI programming.

The modular compilation features of TELOS, again a step
away from minimality, provide support for incremental model
building (programming effectiveness) and help minimize con-
pilation costs. Separation of the implementation of rou-
tines and capsules from the specification of their external
characteristics provides a way to significantly reduce re-
compilation costs during debugging or extension of a pro-
gram. Further, program modularity is improved by allowing a
collection of routines to have access to statically allocat-
ed data structures not declared as "absolutely" global vari-

ables.
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CHAPTER 5

Analysis of Individual TELOS Features

Capsules

Since abstraction has been a major focus of the preced-
ing discussion, those features of TELOS that provide such
capabilities will be the first considered. The capsule def-
inition mechanism is provided to enable the creation of data
abstractions. That is, a data type and the operators that
may manipulate it are defined as a capsule type. (Type
parameterization in effect allows the definition of a set of
such types in a single specification.) Capsules are related
to CLU clusters [Lis76] and ALPHARD forms [WLS76], but are
different in a number of details. The separation of a
capsule definition into two parts emphasizes the nature of
the abstraction. Such separation is similarly pronounced in
ALPHARD and LIS [IF76]. The capsule specification part de-
fines the external properties of a capsule type. This defi-
nition strictly delineates the interaction between objects
of the capsule type and other parts of the program. A rou-
tine using such objects need be concerned with no other de-
tails of the capsule, nor need a programmer writing such a
routine - or reading it.

Capsule operations are named by

{capsule type identifier> §$ <capsule routine identifier>
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For any capsule operation that requires an instance of the
capsule as a parameter (as all probably will, since there is
no automatic association of routines with particular in-
stances, as in SIMULA 67 [DMN70]), the explicit presence of
the capsule type name is redundant. However, it does im-
prove readability by making clear the type of operand (or
operands) required. It also simplifies compilation of the
routine call, since the particular routine being called can
always be recognized without reference to the actual parame-
ters.

Capsule routine operands are required to be explicit,
among other reasons, in order to eliminate any syntactic bi-
as toward unary operators on capsule objects. SIMULA 67
class attributes which happen to be procedures or functions
have access to an implicit parameter, an instance of the
class of which they are attributes. This instance 1is pro-
vided by the routine name syntax. If such a routine is to
operate also on a second instance (for example, to perform a
comparison), it must be provided as a normal parameter. A
similar TELOS capsule routine will have both objects provid-
ed as explicit parameters. This also results in a clear
distinction in TELOS between capsule routines, which are as-
sociated with a capsule type, and exported capsule header
variables, which are referenced as part of a particular in-

stance of a capsule type. There is thus no "uniform refer-
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ence" problem [GMT4] in TELOS, since capsule routines and
header variables are distinct entities.

Among the items that may be exported from capsules are
types. When the type is structured so as to have nameable
components (or operations, if the type is a capsule), these
names are not automatically exported. Only those which ap-
pear within a parenthesized ‘"exports" 1list following the
type or subordiAéte capsule name may be used outside of the
capsule body. The list capsule exemplified 1in Appendix A
illustrates the wutility of exporting some but not all de-
tails of a type defined within a capsule. This exporting

mechanism Dborrows from ideas in EUCLID [LHLMP77]. By ex-

porting only the information field of the record type cell,

routines outside of the capsule are allowed direct reference
to items of the list. This enables efficient and convenient
referencing and changing of list item content while reserv-
ing for the appropriate capsule routines the altering of
list structure. These capsule routines need (and have) ac-
cess to the structure-defining pointer fields contained in
cell, which are not exported.

The power of the capsule mechanism is enhanced further
by the ability to define capsules within capsules. Advan-
tages of partial exportation like those just discussed are
available for capsule type definitions as well as for sim-
pler type definitions, e.g., record definitions. It is also

possible for any number of instances of a subcapsule to ref-
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erence a sSingle instance of an outer capsule. This allows
sharing of data between the subcapsule instances, providing
a capability similar to common data structures of ALPHARD
forms [WLS76], but in a more powerful manner since any num-
ber of distinct instances of the outer capsule, and thus of
the shared data, may exist. Subcapsule definitions also
provide a means of defining capsule operators that may oper-
ate on more than one capsule type. However, this capability
as provided in TELOS does not have the symmetry that might
be desired, since the definition of one of the capsule types
must be subordinate to the other.

A minor syntactic extension to PASCAL provides for con-
venient referencing of capsule components, such as a cell
from the 1list <capsule example. The consideration of a
{function designator> as a <variable> rather than as a <fac-
tor> allows a function call to start a variable qualifica-
tion as an identifier can. Thus, if a function returns a
pointer, it is syntactically legal to immediately
dereference the pointer; that is, <function designator>-> is
a legal <referenced variable>. Since TELOS allows any as-
signable type to be returned as a function value, other
qualifications of the result of a function are also possi-
ble. If a function returns a record, for example, a compo=-
nent reference to a field of that record is allowed using

<{function designator>.<field identifier>
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Use of assignment statement syntax in connection with
capsule variables and capsule components enhances readabili-
ty by making data flow easier to follow. For capsule varia-
bles this is accomplished by compiling the assignment as a
call to a procedure in the capsule named Assign. Partial
exporting of capsule component types, as discussed above for
the list example, provides direct assignment to capsule com-
ponents.

The construction of an actual parameter array from an
indefinite number of parameter values (separated from fixed
parameters by a semicolon) is particularly intended for use
with capsules. It can provide a variable number of parame-
ters to a capsule constructor function, such as the one in
the list capsule example. Together with the transformation
of values available to construct arrays of pointers or ar-
rays of patterns, parameter array construction enables the
specification of powerful capsule pattern operations. Since
capsules may include matchroutines that interpret such pa-
rameter arrays in any way a programmer wishes, it is easy to
specify such possibilities as SNOBOL-type pattern matching
[GPPT1] that includes backtracking over candidate struc-
tures.

The capsule body provides an implementation for the
routines defined in the specification part. This separates
implementation details from the definition of the external

properties of the capsule and also enables effective use of
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the modular compilation features of TELOS 1in association
with capsules. A capsule implementation may be altered and
recompiled without requiring recompilation of any routines
that use the capsule.

Thus the capsule mechanism contributes to programming
effectiveness by providing an abstraction capability, by
separating interface specifications from implementation de-
tails, and by localizing the effect of program changes. The
type parameterization of capsules contributes to this
localization by allowing a single definition for type gener-
ators, like lists and stacks, whose properties are independ-
ent of their component object types (which must be specified

before a specific type is fully defined).

Coroutines, Processes and Overseers

Many of the problem-solving strategies used in Al pro-
gramming, particularly those which involve the creation of
alternative states of the data base through use of contexts,
are most easily implemented when the language provides the
ability to suspend a computation and possibly resume it lat-
er. To provide this capability, the mechanisms to create
processes from coroutines and suspend them using suspend
events are included in TELOS. (SAIL [Van73] and QLISP
[Wil76] are examples of other languages designed for AI pro-
gramming which provide a somewhat different but similarly

motivated process capability.) Coroutines are distinguished
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from procedures mainly to promote ease of debugging.
Coroutine activations are referred to as processes to denote
that they may exist in a suspended state, awaiting later
reactivation. There are no capabilities for parallel execu-
tion of processes, éut pseudo-parallel execution may be pro-
grammed as an overseer. By restricting the ability to cause
suspend events only to coroutines (and routines defined
within them), the effect of a suspend event becomes obvious
from the program text - a process for which the coroutine is
the archetype 1is suspended by the event. If any procedure
could be executed as a process and thus any procedure could
cause a suspension, it would not be possible to know from
the text if a procedure causing a suspend event had itself
been wused to create a process or if it had been called by
the process archetype procedure (perhaps through a number of
intermediate routines). Since TELOS does not allow proce-
dures to be executed as processes nor coroutines to directly
call other coroutines, this source of confusion is eliminat-
ed.

The overseer is introduced to encapsulate the details
of process creation and manipulation used to implement a
particular problem-solving strategy. Overseers are intended
to provide control abstractions for procesg’control regimes
in much the same way that capsules provide data
abstractions. The creation of processes is a capability re-

served for overseers (except for the case of processes at-
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tached to capsules, which have a different use, as described
below). Using processes and the data context mechanism, an
overseer may implement a backtracking mechanism like that of
PLANNER [Hew72], a best-first search strategy (see Appendix
B) or any control regime tailored to a particular problen.
The overseer truly does encapsulate the details of such a
regime. It exerts complete control over the processes it
creates, since they may only pass control to one another by
going through the overseer. Overseers are allowed to cause
suspend events, along with coroutines, for the purpose of
constructing multi-level control structures through recur-
sive use of overseers. That is, a process being controlled
by a given overseer may invoke an overseer (perhaps the giv-
en one) in its problem-solving attempts, or an overseer may
call itself recursively.

The second use of processes is to obtain a generator
capability. Use of the Step suspend event by a coroutine
allows its wuse in the special iteration statement provided
for this purpose. The point of this capability is again ab-
straction. By putting in a coroutine the mechanism for de-
termining the next value on which to iterate, it is separat-
ed from the body of the iteration. Similar capabilities are
provided in ALPHARD and CLU [see SWL77 and LSAS77]. Reada-
bility is enhanced by separating these different aspects of
an 1iterative algorithm, and programming effectiveness is

served by localizing the details of constructing or finding




the '"next" operand object apart from the details of the op-
eration performed on each object produced. Allowing any
routine to use the step statement does not violate the re-
strictions necessary to keep the use of processes as easy to
debug as possible, since suspend events other than Step and
EOP in a coroutine cause an error event if the coroutine is
used in a step statement.

The final use of processes is their attachment to in-
stances of capsule types for purposes of generating succes-
sive states of a data structure. For this purpose, any rou-
tine within a capsule may create a process, but it may only
be attached to an instance of the capsule type and only rou-
tines within the capsule may manipulate it. (A similar ca-
pability is available in SIMULA 67, through use of DETACH in
a class body [see DMN70].) Since the idea of successive
states of a data structure is analogous to the idea of suc-
cessive states of a process, allowing a process to be at-
tached to a capsule enables an intuitively natural and effi-
cient implementation of the generation of states of the
capsule data structure, particularly when the next state may
depend in a complex way on how previous states have been
generated, This will provide a more readable and efficient
mechanism for determining how the next state is to be gener-
ated than requiring that an explicit determination be made

from values in the structure.
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Events

The event mechanism is another feature that plays mul-
tiple important roles. The use of suspend events to effect
process suspension can improve the readability of
process-overseer interaction through the use of event param-
eters for communication. In conjunction with the attachment
of a process to a particular overseer or capsule instance,
the wuse of suspend events and their parameters for process
control and communication will help to make programs using
processes more understandable and easier to debug. If the
alternate approach had been taken, providing only a simple
suspend primitive (as in SIMULA 67 or 2.PAK [MelT4], for ex-
ample), communication would have to be by less distinct
means. Requiring a list of event handlers as part of the
statement that invokes a process makes explicit the expected
suspension states.

Signal events are included in TELOS to implement condi-
tional interrupt (demon) mechanisms., This is a capability
which, like process specification and control, is hard to
use efficiently and understandably if sufficient controls
are not provided by the programming language. Allowing
event handlers to be activated only for an explicit scope
contributes to such controls. Even allowing some dynamic
activation and deactivation of handlers (with Enable and
Disable) can be accomplished without causing unmanageable

complications (such as can result from PL/1 ON Conditions
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[Mac77]), since this can be done only within handlers, re-
stricting the scope of dynamically activated handlers to
that of the handler in which they are activated, and thus
making this scope Jjust as visible as that of non-dynamic
handlers. Allowing a group of related handlers to be bound
together as a parameterizable team can be used to make han-
dler associations explicit and to eliminate tedious repeti-
tion of similar handler definitions.

Entry and exit signal events are an important part of
the features of TELOS that provide the demon capability.
This capability is oriented toward triggering event handlers
(demons) on actions defined in terms of routine calls and
exits. The TELOS design represents a compromise between the
full generality of watching for actions like assignment to
particular variables (which is prohibitively expensive) and
the minimality which would require a programmer to code ex-
plicit routine calls at every point where a monitor invoca-
tion might be needed (which brings back the involvement with
details that demons relieve). The design of the event mech-
anism has been much influenced by the desire to avoid any
significant expense for programs that do not use events.
Checking for the presence of an enabled event handler can be
added to routine entry and exit code without a significant
increase 1in overhead. More specialized events can be de-
fined by a programmer, but an explicit use of an event

statement is necessary to make them occur.
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Given the existence of the event mechanisms for suspend

and signal events, adding escape events for program-detected
error conditions (or other non-standard exit conditions)
provides a considerable improvement in error handling over

PASCAL (among other things, providing user control of this

¥
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error handling) while adding little complexity to the 1
guage. Escape events are distinctly different from signal
events because there can be no resumption of the computation
that causes an escape event. As a result, no allowance uneed
be made for such a possibility. The informational nature of
signal events presents a very different case, where the pos-
sibility of resumption is assumed and there even need not be
any handler active for an event. If no handler 1is active,
resumption is automatic (i.e., the event occurrence has no
effect).

Since handlers can often use more information than sim-
ply that some event has occurred, events may have parameters
in a manner completely equivalent to routine parameters.
There 1is particular use for Var parameters in signal event
handlers that return control to the interrupted computation.
The parameters of a suspend event provide for the explicit
communication ‘Ychannels" between an overseer and a process
it is controlling as described above. Finally, the inclu=-
sion of the routine parameters in exit events allows for a

convenient implementation of exit functions [Tei75]. This
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can be done by attaching a handler for a routine exit event
directly to a call of the routine.

Type specifications are required on data base routine
entry and exit events to take advantage of the natural type
segmentation of the data base. If such specification were
not required on data base routine events, it would be neces-
sary for handlers meant for maintaining data base consisten-
cy‘ and integrity to check their applicability, perhaps by
pattern match, every time a data base routine was called.
With type segmentation, it is necessary to invoke only those
handlers that operate on the type of object stored or
changed by the data base routine.

The new form of <compound statement> included in TELOS

(BeginX <statement list> Except <handler list> End) for the

attachment of a set of event handlers has utility in imple-
menting control structures such as structured exits or a
situation case statement [ZahT4]. The particular syntax
used, including use of BeginX in place of Begin, is for the
purpose of readability. It is necessary to make it clear
that there are some handlers active for the statement, but
putting them before the statement list for which they are
active would misleadingly place the main emphasis on the
handlers. The resolution is to provide BeginX to indicate
that the compound statement is of this special type and to

separate the handlers from the statements with Except, indi-
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cating that occurrence of one of the events is a non-stan-
dard flow of control.

In their various uses, events provide improved reada-
bility, ease of debugging and programming effectiveness.
The work of Goodenough [Goo75] was a major influence on this

part of TELOS.

The Data Base

Among the principal reasons for the inclusion of the
data base mechanism in TELOS are its general utility for AI
programming and the efficiency gains that can come from its
implementation as part of the language. This latter point
is particularly important given the high degree of interac-
tion among the data base constructs, contexts and
matchroutines. The context-dependent values of data base
objects can be implemented efficiently [HLTZ77], but the im-
plementation must be done in conjunction with the implemen-
tation of the data base. It would not be possible to effi-
ciently add the context mechanism of TELOS on top of a pre-
viously existing, non-context-structured data base represen-
tation. The indexing specifications that are part of type
definitions allow compile-time processing of information
that would otherwise have to be handled at run-time. The
indexing part of a matchroutine is, of course, completely

directed toward providing more efficient associative re-
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trieval by limiting the number of objects that must be fully
examined by the matchroutine.

The fact that a data base object may take on different
values for different contexts is a departure from previous
AI languages, in which an object was either present or ab-
sent (or perhaps unspecified) in any particular context (see
particularly QLISP [Wil76] and CONNIVER [MS72]). One point
of the TELOS version of data base objects is to minimize the
cost of updating indexing information when only a limited
part of an object 1is changed (using the Change procedure
rather than a simple assignment). It is less expensive to
specify that only some part of the object is to be changed
than to first delete the object and then to replace it with
a slightly different one.

Another innovation of TELOS is the capability to refer-
ence objects 1in the data base using special pointers. (It
is necessary that such a capability exist to make
multi-valued objects usable.) Having avallable a
non-associative reference into the data base allows explicit
cross-~referencing among data base objects, removes the ne-
cessity of reaching data base objects only via expensive as-
sociative retrieval, and removes the requirement of always
copying objects when they are found in the data base by an
associative search function.

Data base component pointers are available in order to

provide efficient reference into data base objects. Unlike
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data base object pointers, which are context relative, a
component pointer references a component of a particular DBO
vqlue (that is, the value the DBO has for some specific con-
text). Thus component pointers are much like working space
pointers, differing in that they may not be used to alter
the objects they reference by direct assignment. (The pro-
cedure Change must be used to make changes in data base ob-
Jjects, since such changes might require updating the index-
ing information used for associative referencing.)

The ReadOnly parameter mode is necessary for passing
objects referenced by data base component pointers as param-
eters. That is, components referenced by DBCP's cannot be
passed as Var parameters, since this might result in an at-
tempt to change a data base object illegally. In fact,
ReadOnly parameters have a general utility. This parameter
mode combines the efficiency of Var parameters (only an ad-
dress need be provided to a called routine) with the securi-
ty of value parameters (the routine may make no changes to
the object provided as an actual parameter).

The patterns used for associative referencing are based
on matchroutines for two principal reasons. The first 1is
that such a mechanism makes it unnecessary for the language
to include a wide variety of pattern matching primitives,
keeping the language simpler. Only the single function
Match is provided, which applies matchroutines to candidate

objects. Three type-generic matchroutines (MatchValue,
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MatchAny and MatchObject) are available for use by Match,
along with programmer-defined matchroutines. The second
reason is that dynamically created structures, such as can
be defined by capsules, are best matched procedurally rather
than by picturing (although facilities are provided to ena-
ble a programmer to specify in capsule definitions quite
useful kinds of pattern "picturing"). The interactions of
the index part of a matchroutine with the associative re-
trieval routines also gives +the capability of procedural
specification of search restrictions (in contrast to only
statically supplied information being available with a com-

pletely non-procedural pattern picturing mechanism).

Contexts

An important point about the context mechanism in TELOS
is that no new contexts are created implicitly and thus the
current context of a routine never changes without an ex-
plicit programmer request. The automatic context creation
and switching that appears in PLANNER and FUZZY can result
in unnecessary overhead and may require effort on the part
of a programmer to avoid the results of the built-in mecha-
nisms when some other result is desired. Elimination of au-
tomatic context creation enables a programmer to minimigze
the total number of contexts created during a program execu-

tion. This 1is a basic assumption of the efficient context
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implementation described in [HLTZ77], designed for wuse in
the implementation of TELOS.

Elimination of automatic context switching is a result
of the elimination of such things as automatic context crea-
tion upon routine entry. If no contexts are explicitly cre-
ated in a program, the entire execdution of the program will
take place 1in the original context that exists when execu-
tion begins. (The initial value of CurrentContext referenc-
es this context.) The incontext statement is used to switch
execution of a routine to a new context. The only other way
the execution context can change is when a process is in-
voked, since the execution context is part of the informa-
tion saved when a process suspends. A directly called rou-
tine (a procedure, function or overseer) always begins exe-
cution in the context in which the calling routine was exe-
cuting.

Protection is another important aspect of the context
mechanism. A routine may reference only contexts which it
can name and no standard routines are provided to find names
of any ancestors of a context. Thus if a routine has access
to no context reference variables or parameters, it may name
only its initial CurrentContext and any descendants of that
context. This protection allows an overseer complete con-
trol over the interaction between processes it controls, as
far as the data base and relative variables are concerned.

If each process is created in a separate context and is giv-
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en no information about other contexts, relative isolation
is possible. Conversely, if a set of processes execute in a
shared context or can all name some commonly known context,
interaction via the data base may freely occur. In general,
a routine may protect its CurrentContext from a routine it
calls by creating a descendant context and calling the rou-
tine in this descendant (using InContext).

The incontext statement makes context changes visible
from the program text. Execution is switched to a different
context for a clearly delimited scope. This makes a program
significantly more readable than 1is the case if context
switching is unrelated to program structure (as can be the
case in CONNIVER and QLISP).

The execution context provides an implicit context in
which all relative variables and data base object pointers
are evaluated and it is also the context in which associa-
tive retrieval takes place. It is possible to cause rela-
tive variables or DBOP's to be evaluated in some other con-
text without using an incontext statement. Such evaluation
can be specified using

{context reference>.<{variable>
where <variable> 1is a relative variable or a DBOP. This
form of reference is useful when only a few references to a
context are needed, thus avoiding the (small) overhead in-
volved in a context change. It also allows references to

more than one context within a single statement. Having the
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context reference prefix available to direct evaluation to a
specific context guarantees that the incontext mechanism re-
sults in no loss of generality.

Relative variables are available for several purposes.
They provide mainly for use of the context mechanism for ap-
plications where associative referencing may not be needed
or desired (for example, because of its cost). They are al-
so useful in conjunction with the use of the data base as a
world model. In such a case, contexts may represent tenta-
tive modifications of the model and the relative variables
are useful for recording descriptions of the modifications.
It is for this reason that relative variable values for dif-
ferent contexts are independent of each other.

One important context routine is Finalize. It 1is used
to cause some tentative modifications of the data base, rep-
resented by some particular node in the context tree, to be
made "final" in some ancestor of that node, which then has
all of its descendant contexts deleted (to avoid possible
race conditions). This is, of course, a relatively complex
and specialized operation, but one which is difficult for a
programmer to implement and which is required by the "tenta-
tive modification" interpretation of contexts. The inclu-
sion of a context-relative data base and the provision of
such operations as Finalize in TELOS are crucial to use of
the language for AI applications that make use of large, dy-

namic knowledge bases.
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Arrays
The extensions to PASCAL array type definitions in
TELOS are aimed mainly toward programming effectiveness con-
siderations. They are influenced by a number of proposals
for such extensions, but mainly by [Pok76]. The mechanisms
that allow differently sized arrays with the same component
type to be used as actual parameters corresponding to a sin-
gle formal parameter of a routine are meant to remedy one of
the main shortcomings of PASCAL [see HabTi4]. Allowing the
creation of dynamically sized arrays with New provides a
useful capability without affecting the static-size property
of variables in PASCAL (a property highly conducive to pro-
gram run-time efficiency). This 1s an example of a clean
extension of a PASCAL feature, not adding to the cost of
programs that do not use dynamically sized arrays. The heap
is an obvious place from which to allocate such dynamic ob-
jects. The ability to create such dynamic arrays is impor-
tant in AI programming, with its heavy use of dynamically
varying structures. Recompilation whenever a
differently-sized array 1s needed is not an acceptable al-

ternative.

Multi-type Pointers

Multi-type pointers have a purpose similar to +that of
the array extensions. Multi-type pointers and constructors

of arrays of multi-type pointers provide the flexibility ¢to
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easily specify and build heterogeneous structures, avoiding
the clumsiness (and syntactical messiness) of variants for
this simple case where each variant would have only a single
pointer field. Allowing pointers to reference objects of
any type further provides a capability not available using
variants. The restrictions placed on the use of these
pointers, requiring that the objects they reference only be
accessed within a typecase statement, maintain the advantag-
es of PASCAL's strongly typed pointers. The desired flexi-
bility is attained at a small cost in additional complexity
of the language. Pointers that are unrestricted in what
types they may reference can be an aid in evolutionary pro-
gram development. Use of multi-type pointers and typecase
statements may result in more readable programs than use of

variants for the same purpose.

Parameter Forms

Parameter forms and the references based on them play
an important part in TELOS. Routine references are, of
course, crucial to parameter records. Use of routine refer-
ences as the means for passing routines as parameters is one
way to remedy a significant security problem in PASCAL,
i.e., the lack of specification for formal procedures and

functions. Having process references based on parameter

forms allows overseers to reference the parameters of the

processes they control, while maintaining a type security
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that can be checked at compile time. Parameter forms are
also available to make capsule parameter specifications more
readable. Thus parameter forms, by the classifications they

provide, contribute to several TELOS design goals.

Parameter Records

Parameter records are a feature with several important
uses in TELOS. Matchroutine parameter records are the basis
of the "pattern" mechanism, essential for associative re-
trieval from the data base, but generally available for any
use through the Match function. Allowing patterns to be
represented as programmer-accessible data structures allows
patterns to be incrementally constructed as an alternative

\
to the picturing mechanism provided by pattern constructors,
as well as to be examined and modified dynamically.

A second possible use of parameter records is for the
dynamic construction of "programs." For instance, a progran
may "learn" a task as a structure of routine calls or a
planning program may create plans that are similarly consti-
tuted. This is an important capability if TELOS is to pro=-
vide a viable alternative to LISP-based languages for AI
work. Since programs and data are not interchangeable in
PASCAL, as they are in LISP, parameter records provide a
well-defined mechanism for program construction by programs,

where basic operations are routine calls.
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The final principal anticipated use of parameter re-
cords 1is to enable pattern-directed routine invocation (or
other kinds of generalized routine invocations). The
PatternGet data base routine can be used to find objects
containing references to routines and to set up a parameter
record as part of the match. The parameter record can then
be used to invoke the routine. The separation of finding
the routine reference from dinvoking the routine 1is a
manifestation of the general attempt in TELOS design to pro-
vide more control over such powerful features than has been
provided in previous AI languages (yet no duplicated or oth-
erwise extra work has to be done because of this separa-
tion).

The requirement that Var and ReadOnly parameter record
fields be set through use of the procedure Bind serves to
emphasize the distinction between such fields and value pa-
rameter fields. Value parameter fields may have values
asigned to them like standard fields, while Var and ReadOnly
parameter fields are assigned direct references to objects
as their wvalues by Bind. This distinction is quite neces-
sary for purposes of efficiency and communication of re-
sults.

Parameter records are thus an aid to programming effec-
tiveness on several counts. Their use in this last case to
provide a generalization of a feature widely used in AI pro-

gramming is an example of providing the needed effectiveness
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while at the same time giving the programmer more control.
This can lead to greater program efficiency and ease of de-

bugging.

Constructors

Constructors for structured objects and pattern objects
(matchroutine parameter records) are a feature that enhances
the readability and writeability of programs that deal with
such structures as their primitive objects. AI programs
typically do so; thus this pictorial representation is im-
portant in TELOS, particularly for pattern objects. The
natural usefulness of constructors can be seen in the use of
a similar feature by Wirth in [Wir76]. TELOS constructors
go somewhat further, providing some conversions in the con-
struction of pattern objects and arrays of pointers. These
conversions are 1included because their absence would make
construction of these objects so cumbersome syntactically as
to negate the benefits of having +the constructors in the

first place.

Modular Compilation

The modular compilation features of TELOS are essential
in making the language routine oriented rather than having
it deal only with whole programs. Influences on this part
of TELOS include LIS [IF76] and SUE [CH73]. Particularly in

applications where routines are used as a means of knowledge
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representation, it is important to be able to add (or modi-
fy) one or a few routines without requiring recompilation of
an entire program. In conjunction with the capsule defini-
tion feature, modular compilation allows separation of the
external characteristics of data types and routines from
their wunderlying implementations. This makes experimenta-
tion with various implementations convenient. Modular com-
pilation thus can provide benefits in terms of both compila-

tion efficiency and programming effectiveness.

Pointer Closures

A number of standard routines in TELOS operate on the
entire pointer closure from a designated object. (Recall
that the pointer closure from an object includes all objects
which can be reached by following working space pointers,
starting from the object.) These routines include Store,
Fetch, CopyStructure and DisposeStructure. They operate in
this manner in order to support the use of complex, linked
structures as basic operand objects. Their orientation is
particularly useful for working with structures originating
from capsule header instances.

There are a number of means available for refining the
effect of routines that operate on pointer closures. The
Unstored attribute, which may be associated with a working
space pointer field in a record type declaration, is availa-

ble to limit the extent of a structure entered into the data
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base by Store. (This attribute indicates that neither the
pointer nor the object it points to is to be included in the
data base structure.)

The division of a working space object into several
different data base objects is also possible. This can be
accomplished if pointers that connect the parts of an object
that are to be separate DBO's are Unstored, and "paired" da-
ta base object pointers are included (in the definition of
the record being used in the structure) corresponding to
each of the connecting pointers. A programmer-supplied rou-
tine can traverse the structure, using Store to create a DBO
for each component object in the working space that is to be
stored as an independent DBO and assigning the resulting
DBOP to the DBOP field paired with the pointer to the work-
ing space component object. Such a routine is particularly
appropriate for inclusion within a capsule. A single Fetch
will «copy only a single DBO into the working space, so di-
viding a structure like this when it is entered into the da-

ta base limits the extent of a later retrieval as well.

Syntax

Several new kinds of brackets ([! !], [? 2] and [#* #])
are included in the syntax of TELOS. While adding some syn-
tactic complexity to the language, they are important con-
tributions to readability of the constructs they delimit.

To specify constructors and event handler lists using only
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the parentheses or square brackets also used for other pur-
poses would require a reader to distinguish among the sever-
al different bracket meanings on the basis of semantic con=-
text. The special brackets also simplify compilation of the

new constructs.
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CHAPTER 6

TELOS Subsets

Although the original motivation of the design of TELOS
was to create a language for use in artificial intelligence
programming, the resulting language has features that are
useful for a wider range of programming tasks. For some of
these tasks, not all TELOS features are needed, as indeed is
the case for certain specialized kinds of AI programming, so
it is of interest to examine the utility of certain
isolatable subsets of the features of TELOS. Each of the
subsets identified below is designed to a be a coherent ex-
tension to PASCAL and, except in the case of the first, to
some or all of the previous subsets.

The first extension level is a group of mwminor exten-
sions to PASCAL. It includes modular compilation, addition
of an Otherwise clause to the case statement, subpool exten-
sions to the dynamic allocation and de-allocation proce-
dures, array extensions for generalized array parameters and
some run-time determination of array sizes, data object
constructors, and generalized function returns (any assigna-
ble type may be returned and <function designator> consid-
ered a <variable>).

These minor extensions, especially the case statement
and array extensions, improve several features of PASCAL

that have been subjected to frequent criticism [for example,
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see Hab73]. The modular compilation features alleviate the
inconvenience of having to compile all parts of a program in
a single compiler operation, but retain the advantages of
compile-time checking. Constructors and generalized func-
tion returns improve the convenience of using the language
and the readability of programs written in it. The subpool
extensions to the dynamic allocation mechanism simplify
storage reclamation. (Automatic garbage <collection is a
possible alternative to subpools. There are, however, a
number of problems with implementing automatic garbage col-
lection given the features included in PASCAL [see FLT7T7].)

The second extension level, including and significantly
extending the first, centers around several major extensions
to PASCAL. This level includes capsules, escape and signal
events (and teams), multi-type pointers and typecase state-
ments, parameter forms and routine references, and parameter
records. The main thrust of the first extension 1level was
extension and improvement of existing PASCAL features; the
thrust of the second level is to provide a number of new
kinds of constructs.

The inclusion of the event mechanism provides for a
well-structured exception handling <capability, a serious
lack in PASCAL and, for that matter, in other languages
[Goo75]. The by now well-established utility of a data ab-
straction mechanism [see LZ74 and WLS76 and previous discus-

sion] justifies the inclusion of capsules in this subset.
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The rest of the extensions in this group are included for
the general flexibility they provide and because together
they constitute the larger part of the type creation mecha-
nisms in full TELOS and thus are needed as a base for the
later extension levels. (Given the desire to keep each ex-
tension 1level distinct, all of these type definition capa~
bilities must be included in this level.) Routine references
are principally useful at this level to correct the short-
comings of PASCAL with respect to the passing of routines as
parameters.

The third extension level includes two alternative sets
of features. Both include PASCAL and all of the first two
extension levels. The first set at the third level is com-
prised of control abstraction extensons, i.e., overseers and
coroutines, process reference variables, suspend events,
process creation (NewProcess and Clone) and control (Contin-
ue and Terminate), Step events and ForStep, and process at-
tachment to capsules. These process features provide capa-
bilities which enable easy and convenient implementation of
discrete simulation models, multiprocess coroutine regimes,
and pseudo-parallel processing.

The second set at the third level is comprised of data
base extensions, i.e., pattern constructors, matchroutines,
the associatively referencable data base without contexts,
all data base routines except FindContext, data base object

and component pointers, and ReadOnly parameters. The basic
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data base mechanism and the featues that support it (in par-
ticular, the pattern mechanisms needed for associative ref-
erencing) will support the numerous applications that depend
on a conveniently definable and associatively referencabls
data base, but one which does not include the complications
of context-structuring and interaction with processes. Con-
texts are among the more Al-specific features of TELOS and
do add to the cost of the data base implementation. Since
the control abstractions and data base extensions are inde-
pendent of one another and thus are presented as parallel
alternatives at this extension level, it would be possible
to combine them without the inclusion of any additonal fea-
tures.

The fourth and final level of extension, providing the
full set of TELOS features, does bring together the control
abstraction and data base extensions and adds to them the
context features. These include the routines that create
and operate on different data base versions related to each
other in a tree structure, context-relative variables, con-
text reference variables and CurrentContext, the incontext
statement, FindContext, and DBOConflict events. The data
base is more expensive to use with contexts, but provides
the support necessary for applications which need to proceed
by making tentative, reversible changes to the data base

with alternative changes possibly existing simultaneously
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(e.g., AI applications where the data base represents some
kind of cognitive model being used for planning).

This segmentation of TELOS into subsets serves several
purposes. It partitions the features, suggesting stepwise
implementation and suggesting subset implementations includ-
ing only those features needed for a particular application
area. The segmentation also aids in understanding where the
numerous features fit into the total design and how they re-
late to each other. The result is an improved intuition of

the point and power of the whole language.

Summary of Extension Levels

Level 1: Minor extensions to PASCAL
Modular compilation, Otherwise, subpool allocation and
de-allocation, array extensions, object constructors,
generalized function returns.

Level 2: Major extensions to PASCAL
Escape and signal events, teams and BeginX compound
statement; capsules; multi-type pointers, typecase
statement and extended With statement; parameter forms
and routine references; parameter records.

l.evel 3A: Control abstraction extensions
Overseers and coroutines, process reference variables,
suspend events, process creation (NewProcess and Clone)

and control (Continue and Terminate), Step -events and

ForStep, processes attached to capsules.
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Level 3B: Data base extensions
Pattern constructors, matchroutines, data base without
contexts, all data base routines -except FindContext,
data base object and component pointers, ReadOnly pa-
rameters.
Level 4: Context extensions (full TELOS)
Contexts (i.e., tree-structuring of different data base
versions), context routines, FindContext,
context-relative variables, context reference variables
and CurrentContext, incontext statement, DBOConflict

events.




Appendix A

A Capsule Example

The list capsule below illustrates some of the data ab-
straction facilities of TELOS. It defines doubly 1linked
lists, 1lists identified by pointers to their headers. The
control abstraction example in Appendix B illustrates use of

lists so defined.

list = Capsule (comp_type [ := 1)
Exports
cell (item), head, list_ptr, cell_ptr,
comp_array, header_delete;

Type
list_ptr = ->1list; <cell ptr = ->cell;
comp_array = array [1..Maxint] of comp_type;
cell _kinds = (header, component);

cell = Record
pred, succ : cell_ptr;
Case kind : cell _kinds of
{header : empty}
component : (item : comp_type)
End {cell};

Header
head : cell_ptr
End {Structure};

Escape Event header_delete;

Function create : list_ptr;

Function construct (a : comp_array¥*) : list_ptr;

Procedure insert_after (c : cell_ptr;

val : comp_type);

Procedure delete (Var c : cell_ptr);

Function succ_element (c : cell_ptr) : cell ptr;

Function pred_element (¢ : cell_ptr) : cell_ptr;

Coroutine elements (1 : list_ptr; Var ¢ : cell_ptr);
End {list specification};
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Capsule list {body of 1list capsule}

Function create : list_ptr;
Var 1p : list_ptr;
Begin
New (lp);
With 1lp-> Do Begin
New (head, header);
With head-> Do Begin
pred := head;
succe := head
End {With head->}
End {With 1lp->1};
create := 1lp
End {create};

Procedure insert_after (c : cell_ptr;
val : comp_type);

Var
new_cell : cell ptr;
Begin
New (new_cell, component);
new_cell->.item := val;
With ¢-> Do Begin
new_cell->.succ := succ;
new_cell->.pred := c;
sucec->.pred :=z= new_cell;

succe :=z new_cell
End {With c=->}
End {insert_after};

Function construct (a : comp_array*) : list_ptr;
Var

i 1..Maxint;

lp : list_ptr;
Begin

1lp := create;

For i := LoBound(a,1) To HiBound(a,1) Do
insert_after (lp->.head->.pred, alil);
End {construct};

Procedure delete (Var c¢ : cell_ptr);
Begin
If ¢=>.kind = header Then
Escape header_delete

Else
With c¢-> Do Begin
pred->.succ := succ;
suce->.pred := pred
End {With c->};
¢ := Nil

End {delete};




Function succ_element (¢ : cell_ptr) : cell ptr;
Begin
succ_element :=z c¢->.succe

End {succ_element};

Function pred_element (c : cell_ptr) : cell_ptr;
Begin
pred_element := c->.pred

End {pred_element};

Coroutine elements (1 : list_ptr; Var ¢ : cell_ptr);
Begin
¢ := l->.head->.succ;
While c¢=>.kind <> header Do Begin
Suspend Step;
¢ 1= Cc->.SuUcc
End {While}
End {elements}
End; {list body}
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APPENDIX B

A Control Abstraction Example

The overseer attempt specified below is given a task
description and a set of routines (for example, a set deter-
mined by some associative reference) that might beAable to
perform the task. These routines will use the event
step_done to inform the overseer of their estimated progress
(unless they report win or lose). The overseer will win
(report success to its caller) as soon as any of the rou-
tines have done so. It will lose (report failure to its
caller) if all of the routines lose. If neither of these
cases have occurred, it will invoke the routine that last

returned the highest progress estimate.

Type
task_desc = Record
{ description of the job to be performed by
the coroutines provided to the overseer }
End;
task_routine = Coroutine (t : task_desc);
tref = RoutineRef task_routine;
routine_list = list (tref);
routine_list_ptr = routine_list$list_ptr;

Suspend Event step_done (eval : Integer);
Escape Event win;
Escape Event lose;

Overseer attempt (task : task_desc;
try_list : routine_list_ptr);
Type
process_rec = Record
last_eval : Integer;
ctxt : ContextRef;
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p : ProcessRef task_routine
End;
process_list = list (process_rec);

Var
try : routine_list$cell _ptr;
process_cell, best_process
process_list$cell ptr;
plist : process_list$list_ptr;
proc_rec : process_rec;
max_eval : Integer;

Procedure find_max_eval;
Begin
max_eval := 0;
ForStep process_list$elements (plist, process_cell) Do
With process_cell->.item Do
If last_eval > max_eval Then Begin

max_eval := last_eval;
best_process :=z= process_cell
End
End {find_max_eval};

Begin

max_eval := 0; best_process := Nilj;

plist := process_list$create;

process_cell := plist.head;

{ First, create a process corresponding to each
coroutine on the try list and allow it to run to
its first evaluation point}

ForStep routine_list$elements (try_list, try) Do
With proc_rec Do Begin
last_eval := 0;
ctxt := CreateContext (CurrentContext);
Incontext ctxt Do p := NewProcess try (task);
Continue p
Until
step_done : Begin
last_eval := step_done.eval;
process_list$insert_after
(process_cell,proc_rec);
process_cell :=
process_list$succ_element (process_cell);
If last_eval > max_eval Then Begin
best_process := process_cell;
max_eval :=z last_eval End {If};
End {step_done handler};




lose : Begin
Terminate(p); delete(ctxt);
End {lose handler};

win : Begin
Finalize (CurrentContext,ctxt);
Escape win {exit indicating win}
End {win handler}
End { Continue p }
End {With and For};

{ If execution reaches this point, all routines
on the try list have been executed to their first
suspension and none have indicated a win. }

While max_eval > 0 Do Begin
{ Indicate current state to a higher level overseer.}
Suspend step_done (max_eval);

{ Execution continues here when restarted. }
Continue best_process
Until
win : Begin
Finalize (CurrentContext,best_process->.item.ctxt);
Escape win {exit indicating win}
End {win handler};

lose : Begin
process_list$delete (best_process);
find _max_eval
End {lose handler};

step_done : Begin
best_process->.item.last_eval :=
step_done.eval;
If step_done.eval >= max_eval
Then max_eval := step_done.eval
Else find _max_eval
End {step_done handler}
End { Continue best_process }
End { While };

{ If all of the processes indicate "lose",
find _max_eval will find the list empty
and set max_eval to 0. Then the While
loop will terminate and the following
statement will be executed. }

Escape lose

End {attempt};
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