THE FORMAL DESIGN AND ANALYSIS OF
DISTRIBUTED DATA-PROCESSING SYSTEMS
by
D. R. Fitzwater

Computer Sciences Technical Report #295

March 1977

THE FORMAL DESIGN AND ANALYSIS OF
DISTRIBUTED DATA-PROCESSING SYSTEMS *
by

D. R. Fitzwater

ABSTRACT

The research proposal is to support the development
of the "science" behind software engineering in order to
ensure required system properties, to compare current soft-
ware engineering techniques, to develop specification for
new design and analysis tools, and to demonstrate the prac-
ticality of the "science".

A hierarchical design schema will be developed within
which formal representations and analyses can be defined
and the required solutions can be found. Since "worst-case"
problems are generally impossible to solve, sufficient design
laws or constraints will be developed to ensure solvability

of the critical problems.

*Sponsored by the Ballistic Missile Defense Systems Cormand, Contracts
Office, BMDSC-CRS, P.O. Box 1500, Huntsville, AL 35807, under Contract
No. DASG60-76-C-0080.

Report CSTR 295

THE FORMAL DESIGN AND ANALYSIS OF
DISTRIBUTED DATA-PROCESSING SYSTEMS

D. R. Fitzwater
University of Wisconsin
Computer Sciences Dept.
1210 W. Dayton St.
Madison, Wisc. 53706

March 1977
Final Report for Period 1 July 1976 - 15 March 1977

Distribution limited to U.S. Government Agencies only, Test and
BEvaluation, 17 Sept. 75.

Prepared for

BALLISTTIC MISSILE DEFENSE SYSTEMS COMMAND

Ballistic Missile Defense Advanced Technology Center
Contracts Office, BMDSC-CRS

P. 0. Box 1500

Huntsville, Alabama 35807

DIR ONR BRD

Room 286

536 South Clark Street
Chicago, Illinois 60605

TARLE OF CONTENTS

Introduction

1.1 Background...... ceesannne s e s ecssastaseanaans ceoassan 4
1.2 Specifications.....eeeececesecnnanns cecaee ceeeaees 29
1.3 Development ProcessesS...... ceececsecennon sesssensnn 42
Requirement Specification

2.0 Background..soseesssoscosss . ce e e eaes .51
2.1 IntroductionN.e.eeceeeecceacns Ch s ae s ees b2
2.2 Initialization....iieeiioecocencsnncanccacscascss R 3]
2.3 Decomposition/Integration........ cesecsssansanaaes 79
2.4 Partitioning.....ceceecccssceasccass Cececcaesesoas 85
2.5 Primitive Elaboration........... ceeessaseane e «.o..89
2.6 PReguirements Process SUMMALY..cesoes csseons e eeea92
Functional Process Specifications

3.1 Introduction..... Ceeeceoanes cesaenaen ceceneeeee «...94
3.2 System SpecificationsS.....ceeeeececeascons ceceenas 98
3.3 Functional NotatioN.ioeeseeeereencocconcocaans cee.a103
3.4 Interaction Specifications....c.co... cesereen s . 185
3.5 System Complex Specifications......eeeeeeeeeesa..115
3.6 SUMMArY.seoessesnse cesuesoseenaseun et e essecaane ee...118
Real-time Processes

4.1 Definitions...... e ceneenaes ceeesasen cteass e 120

Characterization of a Real-time Process

Cluster....ceceeeses Gt e eesesescresenasnes esessseesl2]
Path BOUNdS..iieeetirnenconcscnnnns P e 14
Attaining the Time BoUNAS ...t eieeeeeeenreroennnns 133
Constraints for Rate Independence...... e erseeenn 137
Non-real-time Testing........ crnesenn S Y
Meeting Performance ReguirementS........... cesaee 142
ConclusionS...coevecens Chereensans P X |

Distributed Data Processing Systems

5.1

The

Introduction....ceeeveoeeeeenns s et eseeseanens .154
System Decomposition/Integration.....ceeeeececces 156

Design Constraints of Network ExampleS...........1l67

Brief Overview of the Network Design............ 170
Generality..ieeeeeaoas e et esessessesatsasennan .e..180
SUMMALY e evseesnasns s heesesessssese et e e ennns .181

Design Schema

Introduction........... Ceeeaaen et sttseecceasoans 183
Design ProcesSeS....cceseosss D X
Design StepS..ceeeessnesss Gt e s rsecssssstsoeaen e 186

Decomposition, Optimization, and

Integration.eeeeeceoneess ceseeceansaseansansssasslB7
System Integration.....eveeeevereanos Ceecenneas e 194
Design Process SumMary........ cre e cresensasal95

7. Conclusions

7.1 SUMMALY.sconoacesssoanssasns cereecsacesosoase oo nana 187
7.2 Evaluation....... ceeseurs s ceeecetenaaoen ce e senan .197
7.3 Final Report.c.seeesce. ces e et s esscsnass o esaans .197
7.4 Future WOrK.....eieoonvesesocnooenness cieesoanonn 197
7.5 Acknowledgements....... cesnsen b eeecasesaseannsns .s 208

Appendix A - Functional Process Specifications............209
Appendix B - Conditions on ExchangesS.....cceeeeececenns ...216

Appendix C - Virtual Networks and Operating

SyStemS.ioessennas e e se s saseesaasseenaseen e 237
Appendix D - Example of a Functional Specification........ 283
IndeXeeeeasnn ceessannne et sesecesscscassesasesaossenc s ...305

THE FCRMAL DESIGN AND ANALYSIS OF

DISTRIRUTED DATA PROCESSING SYSTEMS

1. INTRODUCTION

1.1 PRackground

This final report ©presents a summary of the current
status of work under Contract DASG60-76-C-0080 with the
Department of Defense, Army, Huntsville, Alabama. The
intent of this report is to document the results of the
review of the current state-of-the-art critical problems,
development of a "top-~down" approach, and proposals for more
detailed solutions.

All of the results here must be considered as
preliminary and subject to change and elaboration as this
work proceeds. The problems are complex and certainty of
results comes (if then) only when the study is completed

with respect to a set of properties.

1.1.1 Problem Area

Experience has shown that the specification, design,
implementation, and development of complex real-time weapons
systems, such as ballistic missile defense systems, are very
expensive, difficult to test adeqguately, slow to develop and

deploy, and difficult to adapt to changing reguirements

Sponsored by The United States Army under Contract No.
DASG6A-76-C-0080

[DaV77]. The introduction of distributed data processing
concepts potentially complicates these problems even more.
No development of science or design and testing tools will
make such development automatic or simple. The engineering
decisions will remain complex and dependent on experience
and analysis. As in all other engineering fields, the
development of a science of design, however incomplete, can
be very valuable in guiding engineering decisions, analyzing
consequences, providing design laws sufficient to guarantee
some desirable system invariancies, and in avoiding "worst
case" type designs, thus making possible more powerful

analysis tools.

1.1.1.1 Critical Issues

There are many critical issues 1in the process of
developing and deploying a major system. We cannot hope to
address directly most of them. Rather, we must address some
of them in a way that minimally constrains potential
solutions to the others. If we <can't solve all of the
problems (and we can't), we mustn't prevent others from
doing their best on unsolved problems while exploiting our
results on those problems we have attacked. We will look
first at the problems of making and testing engineering
decisions with the goal of making the development process

more manageable and engineering decisions more testable at

[DaVv77] Davis, Carl G., and Vick, Charles R. "The Software
Development System," IEEE Transactions on Software
Engineering, January 1977.

5

earlier stages of development. We believe that a relatively
minor investment in better models, design laws, and testing
tools will have a large payoff in both the resources
involved 1in development, in speeding up the deployment, and
in improving the adaptability of the resulting system
IDrk76]. The final validation of this belief will rest on
use of the processes developed in this work.

We will first give an informal characterization of a
development process. A formal specification of a particular
set of desirable development processes 1is one of the
intermediate goals of this work. We will start with a very
general concept and gradually develop it into a formal and
practical scheme for system development.

If the development is to be formalized, the current
state of the development must be well defined at the
beginning and at least at the end. The passage from one
well-defined state to the next will be called a step of the
process. Most useful development processes will proceed via
many successive intermediate well-defined states. Of course
there may not exist any algorithm for carrying out a given
process step, and most development processes are not
guaranteed to succeed, given arbitrary originating
reguirements. Thus the development process is similar to

ordinary discrete processes, except that its steps may not

[DrK76] Dreyfus, J.M., and Karacsony, P.J. "The Preliminary
Design as a Key to Successful Software Development,"
Proceedings of the 2nd International Conference of
Software Development, San Francisco, California
(October 1976), p. 206.

6

be effective (i.e., there is no automatic way to carry out a
given step), as is shown in Figure 1. Development processes
may be decomposed into independent oOr interacting processes,
just as can discrete processes. Indeed the most general
model of development processes is just that of digital
processes. The notions of ngyell-defined state" and of

"interaction” must be formalized.

W.D.S. W.D.S. W.D.S.
|
STEP
| & \

STEP W.D.S. STED STEP
w}{s STEP i Eg
Lot W.D.S. W.D.S.

\ ngp

sTEP & > W.D.S.

\p INTERACTION
W.D.S. W.D.S. STEP STEP

s INTERACTION |
| STEP < > - ~

STEP d/ SIRTERACTIOX

\D W.D.S. \V /
W.D.5. W.D.E. W.D.S.

STE?\\5§ ///gTEP
4
W.D.S

Figure 1. An interacting set of digital processes with
interacting and non-interacting steps. The
process is effective if each step is effective.

W.D.S. represents nwell-defined state.”
0f course many digital processes do not model a
desirable {(or even feasible) development process; Wwe must

still sort through our models to find those with desirable

properties.

We can identify at least the following wvprocesses

involved in a system development process:

. Reguirements (of the designed system)

. Design (of the specification of the system)

. Implementation (of the specified system)

. Evolution (changes in reguirements or implementa-

tion design during operation)

. Operation (of the implemented system).
Each process has its own unique reguirements for kinds of
engineering decisions, of analysis, and of testability.
However, all of these processes have much in common, and a
general model with properties useful to all of them can be
developed. At that high 1level of abstraction, all such
results can be used for any of the above processes. In
developing such an abstraction, we must find requirements
for all such processes. Finding these reguirements becomes
a "meta-process" itself.

We will address the relevant critical issues arising

from the processes above in the order given. Thus, this
report will be most concerned with the top two processes and

the "meta-process”.

1.1.1.2 The Reguirements Process

The requirements process starts with some (possibly
incomplete, vague, and informal) originating requirements
for a system that approximates the desired system, and

finishes when the modified and elaborated recuirements have

been encoded (in a form suitable for the subsequent design
process) and tested (to the satisfaction of the system
engineers and the "customer"). The steps in the require-
ments process are of three types: the elaboration of
requirements for an approximating system, the modification
of requirements to those for a better approximation of the
desired system, and the decomposition of the overall desired
system into more manageable subsystems. There are critical
issues involved with both the starting point and the ending

point as well as for each type of step in the process.

1.1.1.2.1 At least the following critical issues are
involved in the starting and ending points of the
reguirements process:

What should be required?

e.g., Behavior in real world being affected by system,
Behavior at interface of real world and system
Functional structure of system

. What attributes should be constrained?

e.g., Which are bound by requirements?

Which are strongly coupled (engineering decisions
can be made independently within a parametric
range)?

. How should reqguirements be encoded?

e.g., To enable the testing of the requirements

To enable the design of the required system

To maximize applicability of tools and analysis

To check for consistency, completeness, etc.
To ensure that designed system is testable with
respect to reguirements.
Under worst case conditions, none of the above guestions
have satisfactory answers, so we must find design laws for

requirements that make satisfactory answers possible.

1.1.1.2.2 At least the following are involved in a
decomposition step:
Decompose into what parts?
e.g., Abstractions
Sub~systems
Levels
. How can reguirements be allocated and tested?
e.g., Testable in part
Testable only on collection of parts
Coupling between engineering decisions between
parts
. How can parts be integrated?
e.g., At completion of which process (reguirements,
design, implementation, etc.)
At which stage of elaboration
With minimal teéting during integration
The decomposition must consider the subsequent integration
and must make integration possible while maximizing the

probability that reguirements will be met.

10

1.1.1.2.3 At least the following are involved in a "better
approximation" step:
. How good an approximation is it? (It should satisfy
customer.)
e.g., How to test behavior of reguired system
How to compare with desired behaviors
How to compare two approximating systems
How can deficiences of approximation be corrected?
e.g., Given analysis data, what are deficiencies?
Should we change reguirements or the desired
system?
What can we chahge to correct deficiency?
what is impact of change on other require-
ments?
How can the impact of change be determined?
e.g., Either desired system or approximating sys-
tem may change
What other requirements are impacted?
Which need to be changed?
Which need to be retested?
What is the traceability of reguirements and
interactions?
Since the question of "...better approximation to what?"
must remain formally unanswered (or we would just change our
starting point to an earlier form of requirement), we can
not hope to use formal correctness proof techniques on

originating reguirements. Consequently we can only maximize

11

the analysis information available to the customer and

system engineers.

1.1.1.2.4 At least the following are involved in an elabor-
ation of requirements step:
. Which process is constrained by the reguirement?
e.g., Reguirements
Design
Implementation
Etc.
. What type of testing is reguired?
e.g., Stochastic
Analytical
Simulation
Operational
Etc.
. How can reguirements be elaborated to a testable
level?
e.g., Which parts to elaborate
How to elaborate only part
Minimal design exploration
It 1is clear that, for a system engineer, the nature of this
type of step is essentially the same as for later design
steps on the resulting requirement specification. Thus
there <can be no gualitative dividing line between
requirements specification and design specification

processes. If possible, the reguirements process must be

12

carried far enough in design to satisfy the system engineers
(and the customer) that regquirements are satisfactory and
can be met.

The issues involved in requirement specifications are
here addressed in gquite general and imprecise terms Jjust to
indicate the scope of the problems. We will elaborate on
many of these issues in a more formal way after we introduce

the appropriate models and tools.

1.1.1.3 Design Process

The design process "starts" with some encoding of the
requirements (satisfactory to the customer and systems
engineer) and completes with the production of some encoding
which meets design requirements and 1is suitable for
implementation designers. Reguirements may have been
decomposed into relatively independent design requirements.
There are six types of design steps: change of
requirements, the elaboration of design decisions, the
optimization of the specification, the decomposition into
more manageable parts, the integration of the decomposed
parts, and the interaction with other design processes.
There are critical issues associated with both the initial
design reguirements and the resulting implementation

specifications, as well as the design steps.

13

1.1.1.3.1 At least the following critical issues are
involved in the starting and ending points of the design
process:
. Is the state of design well defined?
e.g., Is it consistent, complete, unambiguous, and
testable?
. Is it suitable as input to subseguent development
processes?
e.g., Can we decode information needed for develop-
ment step?
Can the development process steps be carried
out?
Can we decide if they have been carried out?
We can not hope to give algorithms for development’
processes, but we can at least insist that the current state
of a development process be well-defined and that we can

decide when a given step has been carried out.

1.1.1.3.2 At least the following are involved in the inter-
action process step:
. How can decomposed systems be integrated into one
system?
e.g9., Are both simply connected by interactions?
Does one interpretively simulate the other?
Is one translated into process of the other?
. Is the integrated system well-defined?
e.g., Is it consistent, complete, unambiguous, and

14

testable?
. Does integration preserve designed properties?
e.g., If separate systems are "correct", 1is the
integration "correct"?
Is it at least probable that individual des-
ign decisions remain valid?
Since we will control, as part of our formal methods, the
types of decompositions, we can hope to resolve these issues

with algorithms for integration.

1.1.1.3.4 At least the following are involved in a decompo-
sition step:
. Are the decomposed systems well-defined?
e.g., Are they consistent, complete, unambiguous,
and testable?
. Can they be integrated?
e.g., Can issues above be resolved?
. Can associated non-decomposable reguirements be
tested?
e.g., For consistency during decomposed design pro-
cesses.
For satisfaction after integration step.
There may exist some requirements that can not be decomposed

and can only be tested at system integration time.

1.1.1.3.5 At least the following are involved in an optimi-

zation step:

15

. What are invariancies characterizing an eguivalence
class?
e.g., What must be preserved?
. What property of members of the eguivalence <class
is to be optimized?
e.g., Given two equivalent members, which is pre-
ferred?
. Is it decidable if a proposed member is better than
the currently designed member?
e.g., Can we guit an optimization step because we
are ahead?
We may be able to reguire more of some specific optimization
steps. 1In general, we can not reguire less and know when

the steps can be considered completed.

1.1.1.3.6 At least the following are involved in a design
elaboration step:
. Is the result a well-defined system?
e.g., Is it consistenﬁ, complete, unambiguous, and
testable?
. Does it preserve validity of previous tests?
e.g., Does validity of this system imply validity
of previous system?
. What design decisions are made?
e.g., Elaboration encodes design decision in more
detailed structures.

. To what reguirements are design decisions traced?

16

Ideally,

e.g., What tests must be carried out on result of
step to verify and validate decisions?
How can the design be elaborated to a testable level?
e.g., Which parts to elaborate
How to elaborate only part
Minimal implementation

all design decisions should be testable at the

completion of the design step.

1.1.1.3.7

At least the following are involved in a "change

in requirements" step:

What originated the change?

e.g., Design decisions
Changes in an originating reguirement
Correction of error

Wwhat is the change?

e.g., How defined?
How testable?

What is impact of change?

e.g., Local to step
Local to design
Local to subsystem

Should change be made?

e.g., Is cure worse than disease?
Are there alternatives?

How can change be made?

e.g., With minimal impact on current and completed

17

design processes
Changes will occur. We must deal with them effectively and
with minimal impact.

The design process ends when the designer has produced
well-defined specifications for the systems that will
collectively meet design process requirements and that can
plausibly be implemented. This may require exploratory
development beyond the design process prior to producing the
final design. Thus we can not hope to draw neat formal
lines between the various parts of the development process,
but will leave decisions such as where dividing lines should
be drawn for a given project to the manager who should make

them.

1.1.1.4 Computer Sciences

It is clear that the computer sciences are potentially
as useful to system developers as physics and mathematics
are to engineers. Little of this potentiality has been
realized 1in practice because of the complexity of current
systems and because of some unigue problems in scientific
systems research.

The areas in computer sciences have developed only
recently from application efforts in many disciplines. As a
result computer sciences departments in each university have
been created in differing administrative frameworks and with
a wide variety of emphasis on areas of specialization. This

is not surprising for a science that is so new and so

18

potentially wuseful to society, as well as to the university
community itself. Although there is general agreement that
the area, as an academic discipline, exists quite apart from
the many applications of computers to problem solving, it is
only beginning to justify the wuse of "sciences” in its
title.

There seems to be general agreement that the area of
"systems" is at the heart of computer sciences. There is
little agreement on what constitutes the systems area. It
is clear that a substantial body of knowledge concerning the
design, specification, implementation, measurement, and
control of digital systems has been developed. Such
knowledge 1is potentially wuseful in providing tools and
application systems for all users of computers.

Because of the current lack of a consensus on the
nature and standards of this new area of "systems", some
special problems have arisen in exploiting regsearch
contributions in this area. Perhaps an analogy will clarify
the problem. A mathematician may study artificial universes
with a formal rigor that carries its own justification. A
physicist may study our real universe without hope of formal
rigor, and may justify his studies by the insights and
control of natural phenomena. An engineer may use both
mathematical and physical tools in designing applications
useful to society, and may justify them by that usefulness.
Computer sciences has analogs to each of the above areas.

For the mathematician we have the "foundations" area, which

19

is concerned with problems of formal systems. For the
physicist we have a developing science of the design of
artificial systems, which is concerned with technology-
-independent system universes too complex to have been
formalized. For the engineer we have the implementation of
systems in given technologies. We can distinguish both
hardware and software engineering as subfields of systems
engineering.

The justification of the foundations area is much the
same as for mathematics, and the Jjustification of the
engineering areas is as usual. The system area, however,
suffers from a serious problem in finding its justification.
Because the system universes are artificial, we can not say
(as does physics) that any insight or control into that
universe is justified. Physics has a unigue, self-justify-
ing universe. The system research does not. Neither can
such work be justified as mathematics, since the artificial
system universes being studied are too complex (so far) to
be formalized. The system researcher has a double burden.
He must not only justify his solution to a problem, he must
also justify the universe within which it is a solution.

Most of the contempory systems research has been
carried out in the context of different, local, universes --
the locally available computer system. Bach such system
defines a set of constraints which creates many problems
local to that system. This localization has fragmented

system research into rather 1isolated wuser groups. The

20

probems and solutions of one group are of littlg direct use
or interest to other such groups. The informed, interested
peer group to such system researchers may be very small
indeed, perhaps including only 1local coworkers. These
isolated efforts significantly contribute a more abstract
(machine-independent) system universe within which a
substantial community of workers may produce broadly
applicable results. A universe 1is neither <created nor
justified in a day or by a few applications.

The complexity of reguirements for contemporary and
future system developments is so great that there is serious
guestion of how to deal with it. 1Indeed, the principal
result of computer sciences today is to demonstrate how
impossible worst-case development processes are to specify
and carry out. That is not much. We can not deal with
worst-case complexity. One of the major reasons
contemporary system engineers have not resolved the critical
issues mentioned previously is that, in terms of arbitrary
systems requirements, the critical issues have no solution.
The dominant aspect is that we don't have to succeed very
well to make the research worthwhile. The current costs and
performance of requirements processes have enormous impact
on development projects and life cycle costs. Even minor
improvements that prevent errors or detect them earlier can
have major implications.

The following are some very basic and obvious

postulates which are often, nevertheless, ignored.

21

1. Don't work with either arbitrary specifications or
arbitrary systems. In the worst case our problems are all
intrinisically unsolvable. Ry imposing constraints we can
restrict the domain to solvable problems.

2. Don't try to do anything that can't be done.
Obviously you can't succeed that way.

3. Define the problem so that it can be solved.

4, Make it simple and testable as to whether the
problem has been solved. If the problem is not simple, it
won't be solved. If the possible solution is not testable,
it cannot be shown whether or not the problem is solved.

We can use an evolutionary approach by embedding our
new, more formal methodology in the current methodology,
thus ensuring that we do not lose ground or add managerial
constraints. This makes pilecemeal changes possible and
profitable.

We can accept, if necessary, guite severe rules that
will constrain the designed system to have reqguired
properties. Not only must BRMD systems work, it must also be
possible to show that they work. This requirement forces us
to simplify both the system design and the development
process in order to make it testable. We cannot use an
untestable methodology.

A practical methodology must not be computationally
explosive. Most forms of analysis of complex systems are
intrinsically explosive in complexity. Thus we must not use
such complex procedures. We can only use relatively simple

22

procedures. We must develop and test reguirements in a way
that is not theoretically complex.

We can choose the encoding of design decisions in the
development process state so as to make it easy to decode
them in later analysis. The designer may still use a
high-level application-type language. We will work with the
translator output.

By "spending" some of the potential raw computing power
of distributed data processing systems, we c¢an hope to
obtain the reguired simplicity while still meeting
performance requirements. "Shoe-horning" our design into a
restricted centralized processor will only increase
complexity.

We resolve these issues if we accept the above
postulates, but at the risk of restricting the system domain
to trivial systems. A major goal of this work is to show
that we don't really lose anything essential from our system
domain by accepting these postulates. Unfortunately, much
work remains to be done before we reach this goal.
Surprisingly, our major hope of reaching this goal rests on
the complexity of the applications.

Our major task is to learn how to deal with complexity
and size of systems and reduce them to manageable forms.
- There are two essentially different kinds of complexity we
must deal with. The first is the intrinsic complexity of
the attributes and relations of an object itself. The

second 1is the extrinsic complexity of the attributes and

23

relations of a specification of the object. Both types of
complexity are formidable.

The intrinsic complexity of a BMD system is so great
that we can deal with it only by accepting simplifying
constraints on the design of the system itself. The
guestions of what constraints to accept and how to meet
performance requirements are dominant issues. 1In addition
we must be able to decide if the constraints are in fact
being met by the design decisions for the BMD system. The
required simplicity can make the solution of the otherwise
impossible problems relatively easy.

Thus our major problems are extrinsic (that of how to
define the problem structures and processes) rather than
intrinsic (that of finding a solution to the defined
problems). We can't possibly use most of the sophisticated
analysis technigues because of combinatoric computational
complexities in large complex systems. If we define our
problems correctly, the solutions are not hard. We may balk
a bit at some of the resulting design laws, but this will
serve as a motivation for developing better design laws and
better deVelopment processes.,

In effect, we must approach the development process not
as a mathematician (the complexity is too great for analytic
solutions) but as a physical scientist interested in system
invariancies. We can develop a hierarchical approach that
will ensure the most basic and essential design properties

and provide the foundation for future elaboration.

24

The formulation of such design laws provides a common
basis for surveying, comparing, and evaluating current and
proposed methodologies. Indeed, the most immediate impact
of this study will 1lie in such critical evaluation and
identification of potential improvements of high payoff.
Ultimately, the system restrictions should make possible the
creation of new development processes and tools applicable
within that restricted domain. These aspects make such a
research program into a winnable game. We may not solve all

the problems but we can solve a useful set of them.

1.1.2 Objectives

The objectives of this proposal are to develop the

following hierarchical approaches:
. to develop the "science" of design behind software
engineering,
. to demonstrate the practicality of the science,
to compare current software engineering approaches,
. to develop specifications for new design and anal-
ysis tools.

In order to reach these objectives, it is necessary to
develop design schemata, reguired system properties, and
formal models. Each of these areas will, of course, reguire
cycles of study and elaboration into hierarchies of greater
depth. No one area could be completed without commensurate

studies on the others. A significant amount of work in at

25

least the following areas will be reguired to meet the

objectives above.

1.1.2.1 Design Schemata

The design process itself must be formalized to provide
a framework within which problems can be studied and solved.
The goal is to allow maximum factorization of the design
process itself into independent designs, while providing a
suitable level in the design schema for making all required
decisions. For each design, a suitable design schema should
encompass the functional, process, and implementation design
problems. The formalization of such a schema reguires the
creation of system universe models within which decisions

and laws may be defined.

1.1.2.2 Reguired Properties

Some properties of a particular system are valid only
for that system and must be ensured by means appropriate to
that system. Many reguired properties seriously impacting
the possibility of achieving per formance, integrity,
evolution, and design automation can be identified and used
to drive the creation of design laws and models. The
hierarchical classification of these properties is essential
for designers to select the 1level of the design laws
appropriate to each design step. The certification of

real-time systems alone requires a substantial number of

26

reguired properties to be present. Debugging can only

display errors, rather than show that there are no errors.

1.1.2.3 Formal Models

Fach hierarchical design schema applied to a factored
design problem will require an appropriate model and formal
system for representing design laws and decisions.

It is «clear that the design problems are insoluble in
terms of unconstrained models. We must find the reasons for
such impossible solutions and "pass" effective design laws
sufficient to make them soluble. Ultimately, such laws will
be incorporated in high-level design and analysis languages
in order to free the designer from unnecessary details, and
to ensure consistency.

The models and design laws should be sufficient to
allow algorithmic analysis of design, to show presence of
required properties, to allow creation of useful tools and
techniques for design optimization at each 1level and for
translation to the next level, and to reduce computational
complexity of design, analysis, and transformation tools to

practicality.

1.1.3 Research Plan

There are five major problems that must be addressed

as a set:

. What are development process reguirements in

general?

27

. What hierarchy of system properties should be
established?
. What sufficient design laws are needed to support
the hierarchy?
. What development process can best incorporate the
design laws?
What encoding of the state of a development process
should be used?

To limit the scope of the current work in a "top-down"
fashion, we will restrict the hierarchy of system properties
to be studied here to only a few, most basic ones relevant
to critical issues of real-time, distributed data processing
systems. We will treat the development process by first
considering reguirements specification and then design
processes. After completion of this restricted study of the
above set of problems, we will have a basis from which to
address the remaining objectives. At that point we will
develop a research plan to extend the relevant hierarchy of
properties, to extend study to later stages of the
development processes, to compare potential system
engineering approaches, to develop specifications for new
design and analysis tools, and to assess potential payoff
for the results.

Because of the tight coupling between the potential
solutions to the above problems, we cannot solve them 1in
order. We will instead develop approximate solutions to

each and iterate until all are consistent. This iteration

28

is not completed as yet so current results must be
tentative. We will do this first for the reguirement
specification process. Even so, we must less formally
explore subseqguent development process stages to assess the
validity of reguirements methodology. In effect we are in a
development process for developing development processes.

We will develop a model for the requirements process in
section 2, and a model with a detailed instance of a formal
specification of the state of a development process will be
presented in section 3. A brief characterization of
real-time data-processing systems from the point of view of
requirements specifications and relevant properties will be
given in section 4. A similar treatment of distributed data
processing systems is given in section 5.

With the previous results in hand, we will then turn
our attention to the design process in section 6. Our
current conclusions and plans for remaining work on this
current contract will be discussed in section 7.

Of course, results from these later sections will have
to be fed back into the reguirements methodology and used to
critically compare current methodologies. This has not been
carried out as vyet because we first needed the firmer

foundation provided by this report.

1.2 ©Specifications

1.2.1 Introduction

29

Prior to focusing on the objectives of this work, we
must introduce and structure a domain of discourse large
enough to contain all systems, procedures, processes, and
interfaces of interest to us. It is important that we do
this without prejudicing subseguent design decisions for our
development methodology. Such an extrinsic structure is
clearly not unique, and is justified only as a sufficient
framework for developing and discussing this wofk.
Modifications, elaborations, and evolution of this
descriptive framework are to be expected in 1light of

subsequent work.

1.2.2 Specification Levels
1.2.2.1 Introduction

We will first identify and define several kinds of
"things" we will need to discuss. We will order them (as
levels) by their degree of abstraction. One

level of abstraction is lower than another if it contains

all of the information (and more) of the other. The highest
level of abstraction thus encodes the least number of design
decisions. We are not here critically evaluating these
levels for our purpose. That will come later. We are only
defining and ordering them here. We will first draw a
distinction between a specification and a description.

A specification of a "thing" defines all of its

attributes and their values that are of interest. Any

30

"thing" having those attributes and values is considered to
be one of the specified "things".

A description of a "thing" defines some of its

attributes and their values. Any "thing" having those
attributes and values may (but need not) be considered one
of the specified "things". A description may be missing the
definition of some attributes and/or values which are

important and may contain some that are not important.

1.2.2.2 Interfaces

A collection of interacting systems may be
characterized, with respect to their interactions, by
specifying their interface. 2n interface can be defined by
a relation between all system outputs to all system inputs
for the entire collection of interacting systems. BRoth the
domain and the range of an interface relation are
potentially infinite sets of ©potentially infinite time
sequences of messages.

The most abstract level of specification of anything is
an interface, since no internal structure of the interacting
entities is defined by the interface specification. A
formal treatment of interface relations and some results on
various forms of relaxed equivalence have been made by P.Z.

Smith [Smi76].

[Smi76] Smith, P. Z., Functional Eguivalence of Parallel
Processes, PhD Thesis, University of Wisconsin,
1976.

Even 1in theory, interface specifications are difficult
if not impossible to encode in a finite and wusable manner.
In practice, they are so impractical as to be irrelevant in
all but very special circumstances. However interface
descriptions of many kinds have been used in development

processes and have played an important role.

1.2.2.3 Processes

The concept of process is central to most of this work.
Many kinds of processes have been defined including
continuous, stochastic, and discrete processes. We will
include continuous processes only via the specifications of
their simulations as stochastic or discrete processes. We
will use stochastic processes to model dynamic properties of
our discrete specifications and will define them when
appropriate for our methodology.

A discrete process 1is a possibly infinite set of

possibly infinite sequences of states. Each sequence of

states 1s a computation of the process. A process step is

the transition from a state in a computation to the

successor state in that computation. A state space defines

the set of all possible states of a process.

A discrete process is deterministic if and only if the

immediate successor state of each state is unigque. If any
one of a set of states may be the immediate successor state
of some state, then the discrete process is

nondeterministic.

32

Any discrete process of interest to us may be specified
by a state space, a set of initial states, and a state

successor relation. A state successor relation can generate

a computation of the process by its application first to an
initial state and then successively to its previous results.
A computation of a discrete process can thus be interpreted
as a time sequence of states. Each state occurs at some
time prior to a successor state. The most recently produced

state is the current state of the computation (or process).

One source of non-determinism arises from potential
interactions between discrete processes whose computations
occur asynchronously in time. A cluster of discrete
processes 1is a set of potentially interacting discrete
processes. The nature of the interactions of the contained
discrete processes can be defined by asynchronously applied
relations on the whole cluster. We will develop a formal
treatment of clusters in a later section and discuss a
number of relevant results.

A discrete process is a lower level abstraction than is
an interface, since some additional <constraints on the
computations have been specified beyond those implicit in an
interface specification. An interface specification does
not, for example, constrain the state space or the sequence
of steps of the ©process,. However, the concepts of
"variable" and of "assignment of value" to variables are not
specified at the process level. States literally represent

the arguments of the state successor function; the only

33

replacement specified is the substitution of the entire

successor state for the current state of the process.

1.2.2.4 Procedures and Interpreters

We can go further in decreasing abstraction by
introducing the concepts of variable and assignment,
encoding them as procedures and address spaces over which
names of variables can be decoded. A procedure may be used
to generate a computation by using it to define an initial
state of an interpreting process. A conventional
programmable digital system can be initialized to contain a
procedure and carry out the computations of the interpreting
process. The state successor function of the interpreting
process thus defines the semantics of the procedure while
the form of the encoding in the interpreting process . state
defines the syntax of the procedure. The set of variable
values defined in the current state of the interpreting

process defines the current procedure state.

1.2.3. Encodings
1.2.3.1 Introduction

Another dimension to explore in specifications is that
of the encoding of the specifications. This is &also a
critical area since wultimately we must be able to analyse
our developed specifications. Because we cannot decode

arbitrary encodings, subsequent analysis may become

34

impossible wunless we carefully encode so as to allow

decoding.

1.2.3.2 Encoding Complexity
The two basic ways to encode information are in the
structure of an object, and in the values of attributes of

the object. The object structure is an explicit part of the

object that is invariant to a set of transformations of the
object. Encoding in structure thus makes decoding explicit
and relatively easy. Encoding in values is implicit since
decoding requires a study of the interpreting process.
Because this value decoding is so intrinsically complex, in
general we must avoid value encoding of any information we
must subsequently recover from that encoding. For example,
optimization should always be defined as a structural
transformation rather than as value transformations. A
corollary is that processes rather than procedures should be
optimized since the process structure of the former has been
translated into values in the latter. Our encoding must

thus provide a very rich set of structures.

1.2.3.3 Formality

An informal specification is a contradiction in terms,
(really a description at best), and may neither ©precisely
specify attribute values nor even specify which attributes

are of interest. Formal gquestions of completeness and

35

consistency of both the informal specifications and the
things being specified have no formal or precise answer.
Informal specifications are like value encoding in that
only an interpreting process can decode them. Recause
specifications in English require an interpreter of English
(a2 human being) to decode them, we can not automate such
interpretations. In addition, it is wvery difficult to
specify precisely in English, where ambiguity and context
sensitivity are the rule rather than the exception. Another
informal specification is the thing being specified. The
thing literally but informally specifies itself since it
does not specify which attributes and values are of
interest. In the limit, all things are unigquely themselves
and do not specify any other thing. 1In a degenerate sense
we can treat the literal thing as our 1last (and informal)
specification of the state of our development process.

A formal specification will precisely specify both

attributes and values of the thing being specified. Whether
a thing is a formal specification or not is decideable. An

effective specification 1is a formal specification that can

be interpreted to display the attributes and values of the
thing being specified. An effective specification may thus
be tested for completeness and consistency of the thing

being specified.

36

1.2.3.4 Functional Specifications
1.2.3.4.1 Introduction

We will use the word "function" to denote a
mathematical function in this work. While a

nondeterministic function is more precisely a relation, it

will be convenient to use the wungualified "function" as
being either deterministic or non-deterministic depending on
whether its range elements are values or sets of values.

The concept of function, defined and extensively
studied by mathematicians, is a standard form for encoding
formal information. Functions may be defined implicitly,

explicitly, or as primitives.

1.2.3.4.2 Implicit

Implicitly (axiomatically or by inference) defined
functions may be studied by either an interpretation of the
definition or as a solution to the defining axioms or
inference. Such functions thus provide 1little or no
explicit structure for encoding. It may not be possible to
even decide if there 1is such a function from implicit

definition.

1.2.3.4.3 Explicit
Explicitly defined functions may be studied for their
structure as well as their value. The structure may be

encoded as various forms of synthesis of more primitive

37

functions. We can bring most of mathematics to bear on the

specification problems by using this encoding.

1.2.3.4.4 Primitive Functions

Primitive functions may be undefined, described, or

defined implicitly. The primitive may be undefined either
because the specification is incomplete or Dbecause any
function will formally meet the specification. A
description of a primitive function may be interpreted as
constraining the choice of functions to be used in defining
the primitive. Thus ultimately, explicitly defined
functions rest on implicitly defined, informally described,

or undefined primitives.

1.2.4 Applications
1.2.4.1 Introduction

We have been careful to distinguish between a
specification and the thing being specified. There 1is
another important distinction to be made -- that between the
thing being specified and what it is interpreted (e.g., by
the specifier) as representing. While our formal
specification methodology is independent of such
interpretations, our development ©process is not. Three
important interpretations of a specification are as a

problem, as a solution, and as an implementation.

38

1.2.4.2 Problem Specification

Development processes fregquently are carried out with
an informal problem description that prevents any precise
determination of whether a solution to the problem has been
found. Although our methodology must support such
development processes, 1t can not exploit such informal
knowledge of the problem in optimizing and testing design
decisions. The development of the problem specification
will include much of both the system design-and requirements
engineering effort, and thus must be addressed by our
methodology. A control system problem specification must
define the required behavior of the things being controlled.

Each level of formal specifications, as discussed
previously, may be used to define the problem. A level so
abstract that no one can discover if a solution exists or
what the solution might be, may be unsuitable for starting a
particular development process. The problem specification
will more likely be started at a high level and developed to
a low level of abstraction as more detail of the problem is
encoded. A brief description of a problem at each of the
levels is given below.

An interface-level problem specification might define a
threat (a set of attacking missiles) and a defense (a set of
interceptor missiles) as a time series of interactions
between them. The problem would be to find and implement
such observation and control systems as to cause the

interface specifications to be met. The often~used

39

scenarios, if presented as formal specifications, would be
an example of such an interface-level problem specification.

A process-level problem specification might define the
required movements of threat and defense missiles as
interacting discrete processes as in a "real world" model.
The elaboration of their state successor functions and their
interactions defines the requirements of the problem. It is
at this 1level that many of the basic system design
trade~-offs, in terms of problem parameters, are made or
delimited. The process specifications should be effective
so that the consequences of such trade-offs on problem
behavior can be explored. Differential and algebraic
equations can be used in an effective functional
specification of the reguired "real world" processes.

A procedure-and-interpreter-level problem specification
might define a "real world" simulator (interpreter), and
define each threat and defense missile as a procedure that
carries out the reguired behavior. Such procedures do not
necessarily solve the problem since they can be written with
perfect knowledge and control of events in the real world,
and thus may not model an implementable reality.

A problem specification may be developed through
several levels of abstraction. Requirements are now
expressed in terms of the formal specifications. As their
relationships and design trade-offs are then implicit in the

specifications, they can be addressed by our methodolgy.

40

1.2.4.3 Solution Specifications

The results of a given phase constitute a "problem"
specification for the next phase of the development process.
The solution specification thus becomes the implementers'
problem. Indeed, for simple problems implementers may
accept the problem specification aﬁd create a solution
without any formally recognizable solution development
phase. Given the problem, some might successfully just
start writing the programs that solve it. However, because
of the complexity of both potential design trade-offs and
the solution processes, discovering the suitable processes
based on valid real-world assumptions (e.g., imperfect
knowledge of the threat) may require a significant phase
itself. A solution phase must develop a sufficient level of
detail in the required processes as to both satisfy the
problem specifications and be feasible to implement.
Solution specifications could be at any level of
abstraction, but will normally result in a process— or
procedure-level specification because it must show that it
does solve the problem. Such a demonstration at the
interface level would be very difficult. The suitability of
a solution for implementation is also easier to assess as we
go to lower levels of abstraction. 1In practice, the end of
the solution phase will almost certainly be some form of

process specification.

41

1.2.4.4 Implementation Specification

An implementation consists of procedures and their
agssociated interpreters that together generate the
computations of the solution processes. Their design may
involve both software and hardware design decisions. The
implementation phase accepts the solution process specifica-
tions and produces the implementation specifications.
Clearly there may be subsequent phases of construction,
operation, etc. However, we will not be much concerned with
those phases here.

An implementation specification could be at any level
of abstraction, but will normally be at the procedure/-
interpreter-level. An implementation specification must be
testable for both correctly supporting the solution
processes and meeting performance criteria. It is only at
the procedure/interpreter level that metrics for many
(interpreter) resources can be established. Many of the
required attribute values are not defined until that level,

and thus performance can only be forecast at higher levels.

1.3 Development Processes

1.3.1 Introduction

There are a number of distinctly different processes
involved in a BMD system development. The three major
processes of interest are the specification, evolution, and
management processes, in that order. The development of

methodologies to support such processes must also occur in

42

that order. We can not provide an automatable methodology
without a precise model for specifications. We can not
develop specification processes without a methodology to
carry out process steps. We can not define evolution
processes except in the context of specification processes.
Management processes should be developed in the context of
both specification and evolution processes so as to make the
management feasible and well-defined. All such processes,
however, have some common aspects that we will discuss 1in
this section. These include the concepts of discrete

processes, methodologies, and phases.

1.3.2 Discrete Processes

A discrete process is a sequence of well-defined states

produced by the application of some process step procedure.
The procedure need not in general be automated, algorithmic,
effective, or well-defined. The minimal constraints on a
discrete ©process are that the states be formally
well-defined, and that there be a formal test for the
completion of each potential step of the process. The
primitive components of a well-defined state may be as
high-level and abstract as desired.

The specification of the state of a process may take
any of the forms discussed in the previous section. These
forms are by no means equivalent for our purposes. For
example, suppose we wished to validate a state

specification. This might be done by computation with

43

procedural specifications, by stochastic simulation with
process specifications, or by analysis with axiomatic
specifications. For a given process, axiomatic and
interface validation may bhe impossible, functional
validation may be insufficient, and procedural computations
may be impractical. Clearly, we must be prepared to accept
severe constraints on the specification methodology.

We must define (in order to deal with complexity) at
least the following types of process steps:

.Initialization step

The initial state of a process is created by the
initialization procedure without a process state
input.

.Decomposition step

When the attributes of a process state are loosely
coupled with respect to process design decisions,
a state may be factored into initial states for
independent design processes.

.Integration step

The states resulting from the decomposed processes
are integrated into a single initial state for the
subseguent steps.

.Interaction step

When the process state attributes are partially
coupled with respect to process design decisions,

then a decomposition step may produce design

44

processes that must interact during some of their
steps.

.Partitioning step

The process state may be factored into interacting
components whose individual operations are but
loosely coupled via the component interactions.

.Transformation step

The primitive structures and values of the state
are transformed.

The most essential property of these processes is that
they can model the computations of a system, the evolution
of a system, the development of a system, and the specifica-
tion of a system. By developing our methodology in this
context we may hope to apply elements of it to many

different processes.

1.3.3 Phases

A phase of a process is characterized by the following

properties of the terminal state of that phase:

.The required tests can be carried out by the phase
"contractor"™ and validated independently. The
work is not done until the tests above are passed.
Thus the phase must produce input suitable to the
testing methodology.

.The specified system satisfies the "customer" of the
phase. This implies that the specification is

testable for specified axiomatic invariancies,

45

behaviors, functional properties, procedures, and
implementations as required to satisfy the
customer that the phase has been completed, and
that a system meeting the specification can be
built.

.The specified system satisfies the "contractor" of the
next phase. This implies that the specification
is testable for its suitability as input to the
following phase (i.e., the contractor can
plausible carry out the next phase).

Any section of the development process for which a
suitable testing methodology can be developed is a potential
phase. Not all potential phases are necessarily
cost-effective because o0f the expense of testing. The
management of the development process may still require the
potential phase testing in order to measure progress.
Ideally, our development process will be testable at each
step, so that any desired section may be made a phase by
management decree. We would thus free management to manage
without unnecessary constraints from the methodology. In
particular, Military Standard documents could be produced at
any desired point, and phase definitions can be adjusted as
reguired by management.

We will postulate the sectioning of the development
process into requirements, design, implementation, and
operational phases. This implies that we must also develop

an appropriate methodology for testing each phase, in

46

addition to the methodology for developing the steps of that
phase. This postulate 1is not trivial and makes the
reqguirements process into a phase of the development cycle.
Some system developers will claim that the problem is
inherently so complex that the required phase testing cannot
be done. Indeed, some system requirements may not be
testable short of operational wuse, thus requiring some
judgement risk at intermediate phases. We will accept this
postulate as a basis for research because of the importance
of the requirements phase.

The nature of the tests for each phase requires
procedures which forecast the results of subsequent phases.
These forecasting procedures may be carried out as speciali-
zed forms of the subseguent phases that exploit the
methodology of those phases. Thus the methodology of each
phase may be partially included in that of the previous
phase. The allocation of personnel trained in the methodol-
ogy of a given phase to previous phases is simply a
management decision. Management could train personnel more

broadly if desired.

1.3.4 Methodologies

A methodology can be defined as a set of procedures,
rules, and tools that support a family of processes. The
procedures are used as steps of the process. The tools are
used to <carry out the various procedures. The rules are

used to decide which steps should be carried out.

47

The rules will encode experiences as to good step
seguences and constraints reguired to ensure certain
properties of the process results. In the 1limit, these
rules can be axioms, validated by theory and practice, which
are sufficient to ensure some required properties.

The procedures encode possibly non-discrete or
non-observable operations which will lead to the subsequent
state. In the limit these procedures may incorporate a set
of decisions sufficient to eliminate need for further rules.

The tools encode effective (i.e., automatable)
operations that are part of a methodology procedure.

For some processes, a theory can be developed that
allows a sufficient set of axioms to be exploited in a tool
for automatically carrying out the process. We cannot hope
to do this for all processes, but experience has shown that
even partial theories can have a powerful impact on
methodologies and are well worth developing and validating.

The design of the methodology of a phase is subject to
constraints from the subsequent phases. These constraints
arise primarily because subseqguent tests may not otherwise
be possible. System complexities are normally so great that
arbitrary (worst case) systems are not testable for required
behavior. We must accept constraints on the domain of
system solutions as well as constraints on the way they are
specified as the price of being able to decide that the

reguirements have been met.

48

The acceptance of
implied by the
previous section.

can certainly look for

the methodology. If
partially useful, it
currently.

If our developed methodology is to be used,

1. not constrain use
developers may
inadeguate,

2. not unnecessarily
methodology, and

3. include tools to

on the development
Because the complexity

will be able to find

constraints. Our

probably not even

properties, and so we must not complicate

addressing the other
issue,
"point

discover it.

respect to some properties.

extended

theory.

methodology will

at

at least we must not interfere.

We can find a

methodologies

such constraints (however severe) 1is

acceptance of the postulated phases of the

Given a set of sufficient constraints, we

ways to relax them in order to extend

the resulting methodology is only

may still be the best we can do

it must:
of any other procedures that
choose when our methodology 1is
constrain evolution of the

measure the impact of the methodology
process.

of our problem is so impressive, we

"solutions" only if we obey the above

not at first (and

last) address all reguired system

the problems of

issues. If we can't help on a given

If there is only a

solution" to the methodology, we will probably never

methodology that works with

Then we can evolve improved and
experience, and

by experiments,

49

With sufficient experience we may evolve theories that
will allow us to eliminate parts of the methodology and

automate more of the process.

50

2. REQUIREMENTS SPECIFICATIONS

2.0 Background

The BMDATC has 1long recognized the crucial role of
systems developmnt methodology in meeting the requirements
of BMD applications. A substantial program to develop a
current state-of-the-art methodology has been carried out to
produce a baseline methodology. However, the lack of a
sufficient science of design in general and of reguirements
on the specification of system requirements in particular
has impaired attempts to evaluate the results of such
programs in order to guide future methodology developments
and applications.

The enormous expense and the slow development time of
BMD applications make it impractical to track changes in
threats, missions, and technology at the operational level.
We would obtain enormous cost benefits and significantly
shorten deployment time, when such deployment is decided, if
such changes could be analyzed at the requirements level.
However, while requirement specifications consisting of
large informally specified documents may be testable for
some properties, they do not provide a sufficient basis on
which to judge whether the required systems can be designed,
will behave properly, will be feasible to build, and will

fulfill the mission.

Data processing systems reguirements have frequently

been specified by default, i.e., they should control so as

51

to fulfill the mission. How can we use such default
reguirements (or what alternatives can we propose) to
develop formal requirements which are suitable to data
processing system design? Further, how can we use the
potential of distributed data processing throughput to get
the simplicity regquired to enable us to test each phase of
development? These and other guestions reguire a much more
fundamental and scientific study of the critical problems
involved in extending the current methodology in
requirements specifications.

We need a model for requirements development processes
in order to identify the needs and mutual constraints on the
related methodologies. The rudiments of such a model are

developed in the following subsections.

2.1 Introduction

The development of requirements is usually an
intrinsically complex problem that may never be solved even
in principle. We can not present nor hope to develop the
requirements development process. Moreover, since there may
be no complete solution, we can not even develop a uniquely
best methodology for supporting the development of

requirements.

2.1.1 Purpose
We can develop a reseach plan for the extension and

improvement of current methodologies, and characterize the

52

natures of the proposed changes and their .potential impact
on the problems of BMD methodology. We will first discuss
some methodology concepts. The current BMD methodology
requirements have been summarized by Davis and Vick [DaVv77],
a portion of which is quoted here.

"The results from previously mentioned BMD
developments and other large scale weapons systems
experience resulted in the identification in the early
197@'s of the following set of characteristics which a
software development approach for BMD must have. ...
The required characteristics include:

.Data Processing Description Capability. The system
must allow for inclusion of data ©processing
limitations early in the development. This must
include the means for assessment of data
processing induced system limitations (e.g.,
processing delays and inaccuracies) as well as the
ability to provide accurate estimation of the data
processing hardware requirements, and support
tradeoffs between alternative approaches.

.Requirements Orientation. Requirements approaches
must be developed which insure means for stating
the required processing without inclusion of
unwarranted design detail; insure unambiguous
communication of intent; provide a means to
validate requirements; insure their feasibility;
and be responsive to the invariable change.

.Design. The software design process must provide a
means for earlier error detection, rapid
modification, and designed-in reliability. The
approach must insure the production of a highly
reliable modular product which will minimize the
life cycle costs.

.Automation. The system must possess as much
automation as possible in every phase of software
development. The aids should be such that they
provide maximum utilization of the thoroughness of
the computer to eliminate many sources of human
error.

.Management. The system must consist of well defined
phases containing intermediate milestones which
provide for measurements and evaluation of
progress. Techniques must be devised which allow

[Dav77] Davis, c. G., and Vvick, C.R., "The Software
Development System," IEEE Transactions on Software
Engineering, January 1977.

53

a priori costing and scheduling based upon a
defined, structured approach to development.
.Testing. The system must provide means for the
allocation of performance to the data processing
subsystem, the refinement of that allocation and
improved means for the testing, verification and
validation of that performance as an integral part

of the development cycle.

.Structured Decomposition and Development. There must
be allocation and improved means for the testing,
verification and a technology which forces the
problem to be stated and structured at a high
level, analyzed at that level and then allows the
developer to proceed with the addition of detail
in an orderly, defined and measurable fashion.
This must proceed from early system definition
through code delivery in a traceable and flexible
manner. This technology must assure maximum
designed-in reliability in the development cycle."

These requirements, however valid, give wus no immediate

handle on how to develop a methodology to meet them.

2.1.2 Research Plan

We will now describe a statement of work for a research
program to address the reguirements methodology issues.
This current work only partially addresses the reguired

tasks and should be considered as an exploratory effort.

2.1.2.1 Objectives

OQur major goal 1is to create a methodology that will
support the tracking of threat, mission, and technology
changes at the requirements level while still providing
confidence in the behavior, feasibility, and effectiveness
of the required system.

It is expected that this program will involve a five

year effort. The high risk involved must be balanced by

54

potentially high payoffs and early conceptual development
and validation.

The general form of a reqguirements methodology research
process can be described by the following steps:

. Identify critical BMD development problems

. Identify potential requirements methodology

improvements

. Assess impact of improvements on critical problems

. Select high payoff improvements

. Develop research plans (requirements)

. Develop acceptance test plans (for research results)

. Carry out planned research and tests

. Evaluate actual impact

. Extend "production" methodology.

The short-term program will be a one-year effort that
should develop the concepts, theories, and principles
required for development process methodology extensions with
a potentially high impact on critical BMD problems.

A set of critical BMDuproblems that can plausibly be
addressed via methodology extensions will be defined
precisely. Potential methodology extensions will be
identified and assessed for impact on the critical problems.
We are more interested in solutions to problems (even if
high risk programs are reqguired) than in mere amelioration
of some problem symptoms. The research reguired to define
problems, methodology extensions, and sufficient conditions

under which the defined methodology extensions will solve

55

the defined critical problems will be carried far enough to
produce plausible development and acceptance plans for the
selected methodology extensions.

Sufficient exploratory work on the methodology
extensions will be carried out to support the plausibility
of the resulting methodology proposals.

It should be recognized that a significant part of the
methodology extension problem is extrinsic and lies in the
structuring of both problem and solution definitions so that
useful sufficient conditions can be found. The first year's
work should be the key to the entire program and should
result in a plausible assessment of the benefits of the

subsequent program.

2.1.2.2 Reqguirements
The following tasks should produce the following
documentation:
. Critical BMD problem definitions
. Methodology extension definitions
. Problem impact and payoff assessment
. Design principles and sufficient conditions such
that each extension can be developed and will have
the desired payoff
. Development plan for each extension

. Acceptance test plan for each extension

H

56

The methodology extensions proposed and evaluated
should be relevant to the axiomatic and reguirements phases

previously described.

2.1.2.2.1 Task 1: Identify Critical BMD Development
Problems

Describe a sufficient model for the BMD development
process within which the <c¢ritical BRMD problems can be
specified formally and precisely. This task will require
development of both system and specification formalisms
suitable for the remaining tasks. Sufficient conditions
will be developed such that it is possible to decide if a
proposed solution solves the problem. These conditions will
be used as laws for subseguent tasks.

The BMD problem areas studied will extend over the
entire development process and will include (but not be
limited to) the following aspects:

. Design trade-offs

. Specifications

. Evolution of specifications

. Measurements and analysis of specified systems

. Forecasting performance

. Testing performance and readiness

57

2.1.2.2.2 Task 2: Identify Potential Methodology
Extensions

The current state of the art should be wused as a
baseline for improvements. This task should find the limits
on our current knowledge and assess their impact on
development methodology. Research required to relay these
limits should be carried out and evaluated in terms of the
potential new methodology extensions based on the new

knowledge.

2.1.2.2.3 Task 3: Assess Impact of Extensions on Critical
Problems

This analysis should, for each proposed extension,
identify the BMD problems addressed, show the relevance of
the extension to solving the problem, and assess the
potential payoff. The high payoff extensions should be
pursued in the remaining tasks, even if high risk research
programs will be required. The requirements in the
methodology extension in order to provide the high payoff

should be identified.

2.1.2.2.4 Task 4: Develop Research Plans

Research plans to develop the potential methodology
extensions will be developed and elaborated to meet the
short term objectives in Section 2.1.2.1. These plans must

contain a specification of the reguirements to be met by the

58

proposed effort, and a plausible approach to meeting themn,

as well as estimates of the resources required.

2.1.2.2.5 Task 5: Develop Acceptance Test Plans

The plans of Section 2.1.2.2.4 should be testable, and
tested, for <consistency with the design laws and
requirements developed in the previous tasks. An acceptance

test plan to decide its success must be developed.

2.1.2.3 Industrial Rase

The appropriate bidders for such basic research will
presumably come from universities or other non-profit
research organizations. The intent is to award three
contracts to maximize the scope of the concepts to be
considered, and to facilitate the <collaboration of the
contractors. Since many potential research contractors may
be unfamiliar with current BMD system engineering
methodology, the government should provide the services of
such a systems engineer at workshops and technical direction

meetings.

2.1.3 Reguirements Processes

We «can now specialize our discrete processes and
methodologies for requirements processes. This
specialization will give us a more structured process for
specifically studying BMD problems. Unfortunately, we will

encounter many requirements issues that must be resolved

59

prior to BMD specialization. This 1is because in many
important aspects, the BMD requirements process raises the
most severe cases of problems that appear in a 1less severe
(but still unresolved) form in many other systems
developments.

The states in the requirements process will be

interpreted as requirements specifications.

2.1.3.1 Minimal Reguirements Processes

The actual step seguences selected by reguirements
designers are sensitive to the methodology, the
organizations, the contracts, the system being developed,
the technology, and almost everything else, including
personal idiosyncracies of various managers. Experience
with a methodology on a class of problems may later lead to
acceptance of rules constraining such sensitivities, but we
must first address the methodology problem.

The requirements process can not be considered in
isolation from the remainder of the development process,
since constraints arise from all phases of development. Not
all problems can be solved in the requirements phase, but
many can only become solvable in 1later phases 1if the

reqguirement specifications are suitably constrained.

2.1.3.2 Concept Formulation
The initialization step of the reguirements phase is

potentially the most important and complex step of the

60

entire development process. It is also the most complex
step for a methodology and hard to automate. Even people

have difficulty in carrying out this step.

2.1.3.3 Reguirements Testing

The purpose of a requirements specification is to
encode requirement design decisions in a testable way. Thus
the primary source of specification design constraints lies
in the tests required. Given an arbitrary test, we can not
even in principle create specifications that can be shown to
pass the test. Thus we must choose our specification
representation so as to maximize the accessibility of
encoded information and allow the broadest possible domain
for testing. The requirements designers must either adapt
their requirements process to the tests in our methodology,
invent new ones, or fake it and have faith, hope, and
charity. We can divide such tests into tests of the
specification itself and tests of the system being
specified. This corresponds to the usual concepts of

syntactic and semantic testing.

2.1.3.3.1 Specification Tests (Syntactic)

Syntactic tests are made on the form of a specification
and are not sensitive to the meaning of the primitive
concepts encoded in that specification. In order to be
testable the specifications must have at least the following

properties.

61

. Formal
The tests must be well-defined and the results
decidable in order to automate test and
procedures.
. Complete
They do specify a requirements process state.

. Unambiguous
The question "what 1is specified?" is decidable
down to the level of the primitive concepts.

. Consistent

Given an ideal technology, there could exist a
system satisfying the specifications.

Effective
There are procedures for the tests that can be
carried out.

. Practical

The tests can be made with practical amounts of
test resources.

This list is not complete and the division of tests
into specification and system tests is not precise. Many
tests may fall in both areas.

The reguirements methodology will incorporate a
potentially large set of rules which, if followed, will
ensure that the specified system will have certain desired
or required properties. One of the more effective ways to
exploit and test these rules 1is to encode the resulting

design decisions in the form (rather than the content) of

62

the specification, so that specification (syntactic) testing
will suffice. There exists an enormous body of information
and set of automated tools for such testing. Our

specification representation must facilitate such encoding.

2.1.3.3.2 System Tests (Semantic)

Semantic tests of specifications involve the meaning of
the primitive concepts of the specification. Thus some
interpretation of the specification is required to carry out
the test. This interpretation must also be formal,
complete, unambiguous, consistent, effective, and practical
if such tests are to be part of our methodology.

For the development process, it 1is sufficient and
convenient to define the states procedurally in the form of
a language-parsing procedure and a -grammar. It is this
"state language" whose syntax and semantics are being tested
by our methodology. We are not here much concerned with the
syntax of such a language (in the current state of the art
there are few constraints on parsing), but we are concerned
with the interpretation of its semantics.

The state language semantics must be interpretable as
specifying a set of interacting digital systems. For our
purposes only the functional specification 1is suitable.
Axiomatic specifications will not be effectively inter-
pretable. 1Interface specifications cannot be practically
interpretable. Procedural or implementational

specifications are too elaborate and detailed and are only

63

obtained at the end of the developmental process.
Functional specifications, however, have many very useful
properties including mathematical analysis and multi-level
abstractions. Indeed, such functional specifications can be
used throughout the specification development process.

We will interpret such functional semantics as
specifying a system by defining the computational processes
of that system. This is sufficient for testing of
specifications since the interpretation is effective. We
have not foreclosed our methodology from specifying
non-data-processing systems since the semantically specified
system may be a digital model of the required system. We
have implied that we can (and must) functionally specify
asynchronously interacting parallel processes. At least one
way has been described [Fit76].

The functional specification of the system must be
effective in the sense that, given the specification, we may
interpret it to provide any observations of the system
process to the level of the primitive functions of the
specification. This interpretation process provides the
basis for semantic testing of the specification.

However great the complexity of a function definition,
mathematics has already defined its interpretation as a

mapping of values. Primitive functions simply have

[Fit76] Fitzwater, D. R., "The Formal Design and Analysis
of Distributed Data Processing Systems," University
of Wisconsin Computer Science Department, Report
CSTR 279, October 1976.

64

non-functional specifications of which value in the domain
goes to which wvalue in the range. Thus, we cannot
functionally test primitive functions except for gquestions
of domain and range.

We can use a variety of interpretations of a primitive
that will simulate the behavior of that primitive to the
desired detail: these interpretations include procedural
approximations, symbolic execution, operations on sets of
values, and stochastic mappings. Indeed, a functional
specification is as intrinsically analysable as any
specification could be.

The observed behavior or analysis results can be
compared with the requirements of the axiomatic model. With
a detailed axiomatic model, substantial automation of the

semantic tests may be carried out.

2.1.3.3.3 Forecasting

In addition to testing the behavior of the specified
system, we must be able to forecast the feasibility of the
requirements. This implies that both the customer and the
next phase contractor must be satisfied that the
requirements (including performance) can be met during
subsequent development phases. Of course, no forecasting
methodology is going to be totally accurate, so iteration
between phases (however unfortunate and costly) cannot be
absolutely prevented. However, our methodology may reduce
the cost of such iteration and may be wusable by the

65

current-phase contractors. The formalization of the
specifications plays an important role in tracing and
changing requirements as discussed in the next section.

Forecasting procedures for data processing systems are
not well developed. The most powerful current technigue is
hard-earned experience in similar systems. Indeed, if one
can manage an evolutionary approach (a seguence of similar
but evolving developments), such previous experience may be
the best possible forecasting method.

By using a relatively homogeneous methodology through-
out the development process, we can allow the requirements
process to explore critical issues down through design and
implementation phases as needed to satisfy the reqguirements
test phase. Full scale or complete developments may not be

needed.

2.1.3.3.4 Validation and Verification

The validation and verification methodology now simply
contains the testing tools reqguired for the development
process. There may be real reasons (management decision) to
have independent V & V contractors, and they may either
carry out the testing process of each development phase
together or do it redundantly and independently for
confidence. These are all management decisions with little
impact on the testing methodology. The primary impact is an

enhanced need to use the formalized specification as a

66

communication medium so that such management decisions are

feasible, and so the required behavior is defined.

2.1.3.4 Changes

Changes in requirements during the development process
are a serious problem that our methodology must address.
Changes may arise during all development phases due to
changes in mission or technology, correction of errors,
discovery of unpredicted consequences of previous decisions,
or the use of an evolutionary methodology.

The management of change is an important aspect of the
development process, and can become gquite complex while
juggling schedules, resources, system requirements, etc.
This problem is formidable when the system being changed is
not precisely specified. Our methodology may be able to
minimize the impact of changes arising from all but mission
and technology changes by making them a well-defined part of
the development process. Since we can determine precisely
what 1is changed and what is affected by that change, our
entire methodology may assist in testing and implementing
the change. With substantial automation of development
procedures and analysis of specifications made possible by
our formalization of specifications, fewer errors and more
prediction may occur and make earlier changes feasible. The
time required to assess change impact and to carry it out

may be drastically shortened.

67

If we accept methodology constraints required to
support evolutionary processes for each development phase
(including the operational one), we can develop a methodol-
ogy for change that may make evolution the normal
development process. The practicality of such a methodology
is strongly dependent on the formalization of sufficient
attributes of the functional specification. We need to find
something like the Taylor series expansion about a point to
simplify the step of evolving a new system from an old.
Much research needs to be done in this area. Simple
"modularity" 1is not enough. We must control both the
structural and the dynamic aspects of changes 1in our
evolutionary processes. Evolution at the requirements level
is a very attractive concept for BMD systems, but will
require a substantial and trustworthy methodology built on
possibly severe system constraints to achieve the reguired

simplicity.

2.1.3.5 Language

The current state of the art in 1language design is
guite advanced and is not, itself, either a serious problem
or a research topic for requirements methodology. The
problem is semantic (what to say) rather than syntactic (how
it 1is expressed) since a translator can provide the user
with his desired forms of expression while producing from
them the appropriate results. Conseguently, we can develop

our methodology without consideration of language

68

constraints. We can then develop the appropriate languages
for defining states and procedures while incorporating the
current rules without unduly stressing language development
methodology. Languages and translators thus become develop-
ment projects in the context of a given methodology. In the
absence of a methodology, language and translator
development becomes non-critical and premature. Require-
ments methodology must drive language design rather than thé

other way around.

2.2 Initialization

The initial system concepts will inevitably be
informally (possibly inconsistently and certainly
incompletely) specified. Informal procedures may be used to
test and elaborate such specifications. The only assistance
our methodology could provide would lie in computations, ad
hoc simulations, management of a data base, document
generation, and change control (in short, all of the
services that are currently supplied in one form or
another). Clearly, current methodologies can be exploited
more than they have been, and can always be improved with
experience. These things can and are being done in
developmental programs and in the context of particular
applications.

Our methodology can provide further assistance only at
the cost of precisely specifying the initial requirements

state so that our methodology is then applicable. The

69

precisely specified state might of course be only an
approximation to the desired state. At least, the
methodology for the subsequent reguirements process will
support the exploration of the implications of concept
decisions. We would thus expect substantial iteration of at
least the earlier steps of the regquirements process.

So far we have not specialized our approach to
distinguish between system and subsystem level reguirements.
If the initial application of our methodology 1is at the
subsystem level and it has not been previously applied at
the system level, then the above initialization procedures
are still relevant. If the system-level requirements were
developed with our methodology, then by definition the
suitable subsystem requirements initial state will be part

of the system-level requirements specification.

2.2.1 Problem Phase

The leap from the informal problem specifications to
the formal requirements initial state is an approximation.
We can postulate a problem development phase to partially
bridge this large gap. The terminal state of the problem
phase becomes a more precise and formalized specification of
the original informal starting specifications.

First of all the input to the requirements process --
that vague, informal idea of "desired behavior" -- must be
formalized to the level where it can be tested. This can

involve having an axiomatic specification, i.e., a model of

70

the real world in which axioms describe the behavior of
objects in the real world. These axioms can be mathematical
equations based on "perfect knowledge" of all the relevant
variables in the system. For example, the new position and
velocity of an interceptor may be dependent on its previous
position and velocity, and on the position and velocity of
the threat missile it is seeking, combined with invariencies
such as the laws of physics, the physical characteristics of
the wmissile, etc. The axioms must be elaborated to the
level of detail where they can be tested to determine 1if
they produce the desired behavior. If they do not, either
the idea of the desired behavior must be modified, or the
axioms must be modified so that they approximate more
closely the desired behavior.

It is up to the user to determine how much or how
little he wishes to put into this axiomatic problem
specification. If the entire "desired behavior" can be
modelled by the axioms, then the testing of the effective
model of the BMD system can be highly automated. On the
other hand, if the user wishes to leave the "desired
behavior" as a totally informal notion, then there can be
less help 1in automatic testing, checking for consistency,
etc.

First the inputs and outputs of the axiomatic-world
process must be defined. The input will be the user's ideas
of the desired behavior of the objects in the real world --

vague, informal, incomplete, ©possibly inconsistent or

71

infeasible; for conciseness, this notion will be called a
"cloud". The output of this process will be a set of axioms
which describe the desired behavior of objects, and which
are precise, formal, consistent, and as complete as the user

wants to make them.

There are three procedures:

GEN-AX-SET: CLOUD --> AXIOM-SET
This procedure generates a testable axiom set which is
consistent with the cloud and the real-world laws.

ELAB-AX-SET: CLOUD x AXIOM-SET --> AXIOM-SET
This procedure generates a new axiom set which is a
testable elaboration of the input axiom set, consistent
with the input axiom set, the cloud, and the real-world
laws.

IMPROVE-CLOUD: CLOUD --> CLOQUD
This procedure elaborates or changes the input cloud to

create a new cloud.

Figure 2 1is an example of a process built from these
three procedures to generate an axiom set from a cloud.

The extent to which "perfect knowledge" can simplify
the axiomatic specification for BMD systems is speculative.
If this could be done in sufficient detail, the addition of
a particular threat might allow systematic validation of the
ideal system specifications and still earlier feedback in

the concept formulation phase. Such a specification could

72

— GEN-AX-SET }— — __
- é\ ~ -
7 h
/ \\. —_—
/77 1 axiom sET
/7 -
/ /
/
[/
YES
CLOUD <SUFFICIENT? STOP
N
\ o\
NO \ \YES ELAEORATE

MORE?

IMPROVE-
CLOUD

Figure 2: An example process to generate an axiom
set from a cloud. The solid lines show control
flow; the dashed lines show data flow.

73

also be used to develop a measure of error and a standard of

comparison for increased automation of testing.

2.2.2 Requirements Phase

The starting point for a reguirements process must
inevitably be some informal, incomplete, and possibly incon-
sistent desired behavior for a system. The requirements
process must produce a well-defined, complete, consistent,
unambiguous, and testable set of system requirements which
ensure that system behavior will be satisfactory to the
customer and that the reguired system can plausibly be
designed and implemented. The resulting reguirements
specification must also be suitable for the remainder of the
developmental process.

The BMD system does not exist in a vacuum. Its whole
purpose in being is to monitor the external environment and,
under certain ¢circumstances (the detection of threat
missiles), to take actions to alter it (to fire and maneuver
interceptors to destroy the incoming missiles). The
environment thus not only affects the BMD system, but also
is affected by it, so that a kind of feedback loop exists.
Thus in order to test the desired behavior of the system,
there must be a closed way of characterizing the physical
world system as well as the BMD system, and also the
coupling between them.

The specification of a closed system includes the

"environment"” with which all interactions take place. An

74

open system may include an interface specification to the
environment but does not include that environment. An open
system is not testable without a specification of an
environmental driver, and premature partitioning of a system
design to provide such interfaces can introduce serious and
artificial problems.

The requirements specification must be testable. This
may be done either by specifying the system, interface, and
driver or by simply specifying the closed system that
includes the environment. Both options must be possible.
However, we can maximize the scope of our formal technigues
if the formal regquirements approximation is the closed
system. The partitioning of the closed system into system,
interface, and driver could be done subseguently in a formal
way 1f desired. Such a partitioning may not always be
feasible or desirable, particularly at the initial informal
level. The closed system specification is a complete and
consistent specification whereas the open system, interface,
and driver specification (informally arrived at) need be
neither complete nor consistent -- and undetectably so in
the worst case. We will, therefore, start our formal
specification as that of a closed system.

Reqguirements elaboration can thus take place jointly in
the environment and system models with a homogeneous
technigue. We can ‘"design" and test the detailed
environment at the same time and in the same manner as the

system interacting with the environment.

75

The axiomatic model of the world (formally or
informally specified by the previous axiomatic phase) can be
approximated by an effective model of the world containing
two systems, the physical world system and the (BMD) system
being designed, with specified interactions linking the two.
In our example, the BMD system would send (to the physical
world system) radar signals and receive radar returns, and
also send interceptor commands based on its interpretation
of the radar returns. In this model, the interceptor
process in the physical world system would be a function of
the interceptor's previous position and velocity, and of the
interceptor command, which is based on the BMD system's
imperfect knowledge of the missile's position and velocity
(derived from the interpretation of the radar returns). The
difference between the effective specification (based on
imperfect knowledge) and the axiomatic specification (based
on perfect knowledge) can be taken as a measure of the error
in the system.

Now we can specify some general procedures which can be
used to build a process which c¢reates the effective
specification of the physical world system and the BMD

system.
GEN-SYS: CLOUD x AXIOM-SET --> PHYS-WORLD SYS x PMD-SYS

This procedure takes the axiomatic specification and

the current cloud as input, and generates the effective

76

specification of the ©physical world system and the RMD

system consistent with the input and with real-world laws.

ELAB-BMD: BMD-SYS --> BMD-SYS

This procedure elaborates the specification of the BMD
system using decomposition and integration (both formal and
informal), partitioning, etc., to produce a new

specification of the BMD system.

FEASIBLE-BMD: BMD-SYS x BMD-SYS --> BMD-SYS

This procedure receives as input a current
specification of a RMD system and a proposed new
specification. The output of the procedure is the new
(proposed) specification if it is feasible, and the original
one otherwise. Determining feasibility may involve
developing a design and elaborating different aspects of it
to arbitrary depths. Figure 3 shows an example process that
can be built using these procedures.

The difference between the initial and final
requirements specification state lies only in the 1level of
approximation to the axiomatic specifications and in the
level of elaboration required for testability. The form of
the specification does not change. 1Indeed, with "perfect"
designers the initial specification might also be the last.
Reguirements specification will thus consist of an axiom set
and an effective model containing a physical world system

and a control system.

77

// \\
g N
e N\
7
- CLOUD \\
GENERATE AXIOM) __ "“ \
SET FROM CLOUD N PHY-WORLD-5YS |
PROCESS N
- \ N]
YES \ / /
/
oy
/" /| AXIOM-SET
/
GEN-SYS
NO
<
~
> BMD-SYS §5<T\\\
A\ \
~ SUFFICIENT? \ |
S
oy
- /// /
VES ELAB-BMD —_— //j;
—
o
ELABORATION? ~
A\ e
— ~
FEASIBLE-
BMD

Figure 3: An example process for creating the
effective specification of the physical
world and BMD systems.

78

2.3 Decomposition/Integration

2.3.1 Requirements Decomposition

At any phase of the development process, it may be
feasible to factor the development process into relatively
independent processes that are subsequently integrated.
There are two basic forms of such factorization which we
call decomposition and partitioning. Partitioning tech-
nigques will be discussed in the next section.

A system may be decomposed into a set of its
abstractions, each abstraction being a specification of a
subset of the system attributes and values. The entire set
thus completely specifies the system. Each member of the
set completely specifies an abstraction of the entire system
and 1is, therefore, testable for reguirements. Two such
abstractions may have overlapping attributes, with the
design responsibility either shared or delegated to one of
them.

Each decomposed system abstraction now initializes a
development process of its own with possibly interacting
steps. At some stage the set of elaborated specifications
of each system abstraction must be integrated into a single

system specification.

2.3.2 Informal Decompostion /Integration
A large system development will have many attributes
that are only very loosely coupled, for example, the

physical site design and the data processing design. Design

79

decisions local to different design processes are not
sensitively coupled and, within predesignated limits, may be
made quite independently. Thus some forms of decomposition
can be carried out at the earliest stages, thus factoring
the development process into independent processes until the
corresponding system integration occurs.

The earliest possible point of decomposition is in the
informal originating requirements as shown in Figure 4a. We
can decompose into closed systems by identifying tightly
coupled subsets of attributes that are only loosely coupled
with other subsets. Then by partitioning the attributes we
can specify a closed system approximation for each attribute
subset. The decomposition of a closed system is thus into a
set of closed systems, each representing the original system
from a different viewpoint.

The number of such decomposed systems is clearly
application-dependent and sensitive to the identification of
loosely coupled =subsets of attributes. Some, such as
physical site systems, logistic systems, logical systems,
etc. are clearly loosely coupled since, within predeter-
mined limits, design decisions are essentially independent.
Those limits can be built into the reguirements for each
decomposed system. The application of our development
process may now be made independently (and tested in-
dependently as well).

There may be some originating reguirements that can not

be analyzed for attribute coupling that prevent such

80

——--—0~—--—~

/ ORIGINATING' \
[REQUIREMENTS |
N (Informal) //\
// o T \
AN
/ - . € \
éﬁf’ INFORMAL DECOMPOSITION'\
/omﬁﬁﬁﬁﬁé\ SRIGTRATING ™
{ REQUIREMEKTS Y { REQUIREMENTS
THIS SYSTEM

\ THIS SYSTEM /
. (Informal_) / “ (Informal) y
——— i e e e e mmn e &5

1
! ... (
Q/ FORMAL APPROXIMATION \[/

REQ. SPECIFICATION REQ. SPECIFICATION

(Y SN

d/ DEVELOPMENTAL PROCESS \L
SYSTEM SYSTEM
/

~ ’

- ... y
_ \SYSTEM INTEGRATION /

e

INTEGRATED SYSTEM

(a) INFORMAL DECOMPOSITION/INTEGRATION

REQ. SPECIFICATION

. . .

FORMAL DECOMPOSITION

REQ. SPECIFICATION REQ. SPECIFICATION

DEVELOPMENTAL PROCESS
SYSTEM " SYSTEM

. - .

FORMAL INTEGRATION
INTEGRATED SYSTEM

(b) FORMAL DECOMPOSITION/INTEGRATION

FIG. 4: System decomposition/integration. Solid lines represent
formally defined entities. Dashed lines represent
informally defined entities

81

decompositions. Since the originating reguirements are not
usually unigue expressions, perhaps one can find a better
set of requirements which can be decomposed. 1In any case,
some non-decomposable reguirements may still remain. These
requirements thus can only be tested on the resulting
integrated system. If such a requirement is tightly coupled
to attributes scattered across the decomposed system, then
the decomposition itself is probably ill-advised since
system integration may produce expensive test failures.
Perhaps one can find another eguivalent set of originating
requirements that can be more completely decomposed.

We can minimize the risk caused by non-decomposable
requirements by carrying the separate development processes
only far enough so that integration at that level (perhaps a
different level for each system, or even within each system)
makes the non-decomposable reguirement testable. We must
then deal with multi-level abstract system integration and
testing in our requirements process.

Another serious problem arises from the informal nature
of these decompositions. The subseguent integration must
also be informal. Since there is no formal characterization
of how they were taken apart, we are unlikely to formalize
how they are put back together. 1In any event only ad hoc
technigues can be used. Note that if a formal decomposition
can be made as in Figure 4b, this problem can be avoided by

doing it that way.

82

2.3.3 Formal Decomposition/Integration

A formal reguirements specification can be decomposed
in the same way as informal decomposition, except that the
decomposition can be formally characterized and the
possibility of subseguent formal integration can be tested a
priori. The essential difference between formal and
informal decomposition 1lies in the formal specification of
the system being decomposed in the former case. We can thus
precisely characterize the decomposition (even if we have no
effective procedure for carrying it out) and establish
sufficient conditions to ensure the <correctness of the
decomposition. PRoth the decomposition and the integration
may be substantially aided by design automation tools.
Indeed, we can accept sufficient design laws on the form of
the decomposition to ensure that integration can be done and
tested automatically. We should still support integration
at many levels of design detail to minimize risk from
non-decomposable regquirements.

An example of a possible data processing system
decomposition and integration is given in Figure 5.

In this case we can develop translators and translator
writing systems to aid the integration of the decomposed
systems.

This type of decomposition may be very powerful in
isolating the effects of changes to one of the decomposed
systems. Similarly, because of the loose coupling between

such systems (or they would not be decomposed), some of the

83

D.P. SUB-SYSTEM REQ. SPEC.

|
FORMAT, DECOMPOSITIOS\\\\\\\\

)

HARDWARE REQ. SPEC. OP. SYS. REQ. SPEC. APPLICATION REQ. SPEC.
DEVELOPMENTAL DEVELOPMENTAL DEVELOPMENTAL
PROCESS PROCESS PROCESS
INTERPRETATION
VIRTUAL MACHINE SPEC.
INTERPRETATION \
VIRTUAL MACHINE SPEC. DEVELOPMENTAL
A PROCESS
\/ TRANSLATION PROCEDURE SPEC.
PHYSICAL MACHINE SPEC. DEVELOPMENTAL
PROCESS
ji TRANSLATION N4
PROCEDURE SPEC.
IMPLEMENTATTION
PROCESS
MACHINE

FIG. 5: An example of formal system decomposition/integration. The
effective property of each formal specification ensures that
the specified system is in a form interpretable by a
formally universal interpreter (the simulating system).
Translation (compilation) steps may improve efficiency of
the testing of resulting implementation. The example
developmental process does not exhaust all possibilities
but is intended as an illustration.

84

components may be directly usable in other applications, or
easily adaptable to changes in an application.

Because of the <c¢ritical nature of some performance
requirements and the extreme difficulty of meeting them,
there must be some "egscape mechanism” that allows
application system designers to require direct hardware
implementation of some application algorithms. Thus some
need for interactions between development processes may
exist and should be supported. Such interactions can be

well-defined steps of the development process.

2.4 Partitioning

2.4.1 PRequirements Partitioning

So far we have not looked at the required internal
structure of a single, formal system reguirement specifica-
tion. We have discussed and justified the wuse of closed
system specifications on the basis of testability and
closure. Thus we implicitly assume there exist at least two
interacting systems to be specified, the environment and the
environment-manipulating system. The requirements process
may, of course, reguire elaboration of both systems to reach
an acceptable level of testability. Our formal
specifications of a system must be able to reguire a set of
interacting systems with a formal specification, not only of
the systems, but also of their interactions. At any phase
of the development process it may be desireable to partition

the logical processes into closely coupled clusters, or

85

nodes. The remaining steps of the development processes can
then independently (or nearly so) elaborate the design of
each node, maintaining the inter-node interactions as design
invariancies. The partitioning of logical functions among
the nodes does not necessarily imply the same partitioning
of physical systems in the implementation. This point 1is

illustrated in Figure 6.

2.4.2 Partitioned Testing

The 1logical partitioning of Figure 6 involves only a
part of the formal reguirements. For our purposes, we can
factor system requirements into the following:

Performance: how well must the system work?

. Resources: what kind and how many can the system

use?

. Logical: what functions must the system support?

We are disregarding here the valid need for similar
reguirements on the requirements process itself, and we are
not formalizing the testing of those reguirements. This 1is
a potentially important exception, and the need for better
management tools for the developmental process is recogniz-
able. We feel that formalizing the development process and
the testing of developing systems are essential first steps
in solving management problems.

The testability of a partitioned logical reguirement
specification is still dependent on the existence of the

other 1logical specifications since only then do we have a

86

OML WHLSAS TYOISAHA
S~

§5d00¥d NOILVLNEAITIWNI Mﬂ

#0n WILSAS TYALIIA

WELSAS TYNALYIA uHy.

\ﬂ

SSEO0Ud SS8ED0dd
TYLNEWAOTIAHA TYINTRAOTIAHA

I W

*DEdS T0Md ,H, *t TDUdS 0HEd €.

L/

WY ¥0d IVHL OL
YYTIIWIS SESSIOOUA
TYINIHIOTIAHA
INIQNIIEANT
/N
“DHds 0Td TYDID0T GHHLO
AN

!
*0HdS INFWZIINOMI WHLSAS TYREOLC

SNILVYNIDI¥NQ

putuoryrTiazed szusweatnbex TeotboT o "9HIA
ANO WHLSAS T¥OISAHd
~
¢Wmam%m TYALEIA
NOILYIDHELNI
T¥IID0T
WALSAS TYVALIIA u¥a
AN
S5ES0Ed
A<BZMEMOAM>MQ
*DdEdS *0d9 TY0IN0T Y, WELSAS
N
sox NOIL
~TI0g¥ I CYOIAYHEL
SIACTANT GHIISHd
SAANIVLIEO JOIAVHEE dMYISEA ST OoN 3M NVD oN IONYHO S9X
N IM dTIN0HS
sox ON
XITAWOD
WALSAS NO HIGYLSHEL ST . . ,
YOIAVHAE JTIISHA TILNA oonamszwmmmw
NOILYOIJIDEdS HLYIOEY T oy AT
h/ HACUARWI
A
"DEdS - 0md TY0I90T ¥ WALSAS C— N
/1
AN oN
| o\ \/
ONINOILILIY, SINTHTEIN0TL AM

87

testable closure. We can use for this purpose the currently
most suitable of the other specifications in the partitioned
set. If the performance and resource reguirements are
loosely coupled, we could use formal decomposition instead,
and make the testing even more factored and localized as in
Figure 4, but that would not be a partitioning step.

We must thus assume that performance and resource
requirements are not practically decomposable into
relatively independent requirements for each system in the
partitioned set. Any attempted decomposition would run into
"the reqguirements allocation problem" which in these terms
is insoluble. Thus we won't try to solve it, but we don't
need to in order to carry out the requirements process of

Figure 6.

2.4.3 Parametric Partitioning

We may be able to do even better if we can develop
parametric logical specifications for each member of the
partitioned set. We can then use the decomposition and
integration steps of Figure 7. All testing can now be done
independently within parametric ranges.

Each of the decomposed systems 1is a system complex
representing the entire system and 1is thus a testable
entity. Interactions between the decomposed reguirements
processes are now required only when parameter ranges must

be exceeded to meet specifications, and when the partitioned

88

FORMAL REQ. SPEC.

DECOMPOSITION BY

REPLICATION
PARAMETRIC "A"™ REQ. SPEC. PARAMETRIC "A"™ REQ. SPEC.
PARAMETRIC "Z" REQ. SPEC. PARAMETRIC "2" REQ. SPEC.
i |

DEVELOPMENTAL DEVELOPMENTAIL

PROCESS FOR "AY PROCESS FOR "Z*"

IN CONTEXT OF IN CONTEXT OF

PARAMETER RANGES PARAMETER RANGES

FOR OT%E?S FOR OTHERS
SYSTEM "A" LOGICAL REQ. SPEC. . . . SYSTEM "2" LOGICAL REQ. SP=C.

< P
INTEGRATION BY COLLECTING INTO SYSTEM COMPLEX
TESTED AGAINST FORMAL REQ. SPEC. (AT TOP OF FIGURE)

FORMAL REQ. SPEC. (IN PARTITIONED FORM)

Figure 7. Parametric partitioning.

systems are integrated by collecting them into a system

complex.

2.5 Primitive Elaboration

2.5.1 PFunctional Specifications

We will assume that the formal reqgquirements
specification will be defined using a functional formalism
designed to provide a sufficiently geﬁeral model for all

systems of interest. This does not constrain the level of

89

the specifications. There previously was no such model
available, primarily because of the need to functionally
model asynchronous interactions which was not met in
available models. We have developed such a model and it is
described in section 3. 1In this section we will ignore the
requirements for formal interactions, although after section
3 they can be dealt with without change in the discussion
presented here.

The initial formal reguirements specifications will use
rather high-level primitive functions in precisely specify-
ing the system. Primitive functions are axiomatically
defined or are informally characterized (e.g., 1in English
descriptions). Each such initial primitive may eventually
be elaborated by the development process into many processes
or procedures spread over an entire network of implemented
(physical) systems. The initial definition is thus as some

mathematical expression of the high-level primitives.

2.5.2 Level of Detail

The level of formally defined detail (primitives are
only informally defined) may not be sufficient to formally
encode all of the originating reguirements or to formally
test against the originating requirements. The required
elaboration of detail is obtained, as shown by Figure 8a, by
formally defining the high-level primitives in terms of
lower level ones, thus formally encoding in the defining

expressions at least part of what was previously encoded

20

F(le) = Pl(PZ(P3(X)’ P4(Y))r fS(X)IY)

Pl(x,y,Z) = Ql(Qz(x),Q3(y),Z) e Ps(x) = Q3(Q2(x).x)

(a) Function Definition Tree

LOGICAL REQ. SPEC.
(FUNCTIONS OFlPRIMITIVES Pi)

FOR EACH i!DEFINE Pi AS

SOME FUNCTION OF A LOWER
LEVEL (MORE DETAILED SET
OF PRIMITIVES Qj)

LOGICAL REQ. SPEC.
(FUNCTIONS OF PRIMITIVES Qi)

(b) Primitive Elaboration Step

1t

te

LOGICAL REQ SPEC. F(o) = U Fi(Ui)

DEVELOPMENTAL (Fi ARE SYSTEM FUNCTIONS
ROCESO AND oy ARE STATE COMPONENTS)

ith VIRTUAL MACHINE SPEC. G\p,d) £ VIRTUAL MACH (p,d)

(p is PROGRAM and d is DATA
DEVLLOPD NTAL for VIRTUAL MACHINE)
PhOCESS

i

i

jth PHYSICAL MA(,HINE
PROCESS SPEC. (p,d)) (p is PROGRAM and d is
DATA for VIRTUAL MACHINE)

(¢} Levels of Primitive Elaboration

FIG. 8: Elaboration of a Functional Specification

91

H(p,d) £ PHYSICAL MACH (COMPILE

informally in English. This results in an elaboration step
as shown in Figure 8b.

The degree of such elaboration increases as we move
along the development process. The reguirements process
ends when all requirements have been formally encoded and
tested for suitability. Figure 8c describes some possible
intermediate states in the development process. The virtual
systems are used (as discussed in section 5) to factor the
development process and are defined by some interpretation
function (processor) operating on a pair of program and data
(system state) to define a computation of the wvirtual (not
physical, but 1logical) machine. Eventually the virtual
machine programs and data may be compiled to implementation
(physical) machine initializations. This design process is

further described in section 6.

2.6 PReqguirements Process Summary

The informal originating requirements must be encoded
formally in some functional specification whose behavior
approximates that of the desired system. The behavior must
be testable and, if unsatisfactory, either the originating
regquirements or the formal functional specification must be
changed to improve the degree of approximation. The level
of detail formally encoded may need to be elaborated prior
to testing. We have described a model for both problem and
requirements development. The reguirements process ends

when the current originating regquirements are formally

92

encoded and the specified system has satisfactory behavior.
This may have required partial completion of the remainder
of the development process.

We have identified several types of reguirements
process steps (e.g., approximation, decomposition,
integration, partitioning and elaboration) and discussed the
issues involved in their formalization.

We have studied the issues of formal testability and
have described an approach to their resolution by the
formal, functional, effective gspecification of the
requirements for closed systems.

We have identified a number of important properties a
formal system specification must have in general, and laid a
foundation for the subseqguent work in section 3. Other
reguired properties will be developed, after the formalism
is established, as design laws which ensure that the tools
and tests discussed in this section can actually be
provided. Further design laws will be derived from studies

described by the remaining sections.

93

3. FUNCTIONAL PROCESS SPECIFICATIONS

3.1 Introduction

Given some informal requirements for a system, we wish
to encode them in a formal specification. We must be able
to verify that a formal specification corresponds to
required behavior. For this verification we must be able to
observe the formal specification's behavior, which entails
the ability to observe the well-defined states and
interactions of the specified systems. We may think of
these well-defined actions as state transitions of a digital
process, and the well-defined interactions as interface
transitions. The state transitions c¢an be defined as
algorithms (possibly nondeterministic) for the successor
state.

Many required systems have behavior which is nafurally
factored into the behaviors of several components,
particularly for geographically distributed processing.
However, these components are required to communicate and
coordinate behavior via some form of interactions--the state
of one component has an effect on the state of the other
component. It is also important that these interactions may
occur asynchronously, as the indispensibility of interrupts
has shown. We must have a formal model for such interacting

systems.

94

3.1.1 Basis for Functional Specification

From the goals for modelling system behavior and for
observing and verifying specified behavior, we have the
concepts of state, algorithmic state transition, and
interacting component processes of a system. Our formalism
begins with these concepts and develops accordingly the
goals and properties reguired for a specification formalism.
What should a functional process specification look
like? There 1is a generally accepted concensus that a
process can be defined by a set I of process states and a
(possibly nondeterministic) successor function £f. The
application of £ to a process state 0 to produce a successor
process state 0¢' is known as a process step. When we wish
to specify a more complex process in which internally
asynchronous or independent transitions occur, there is no
longer a consensus, and more work is needed. Pamamoor thy
and So [Ram76] have said that a functional process
specification should be "(1) comprehensible, (2) unambigu-
ous, (3) verifiable, and (4) machine processable”. These
goals are certainly justified by the need for a reguirement
methodology: (1), (2), and (3) are needed for correctly and
’consistently formalizing functional requirements, (2) and
(3) are needed for correctly developing and implementing

specifications, and (4) is needed for accuracy, for the

[Ram76] Ramamoorthy, C.V. and S0, H.H., "Survey of
Principles and Technigques of Software Reguirements and
Specifications", Department of Electrical Engineering and
Computer Sciences, University of California, Rerkeley, 1976.

95

volume of the work, and for simulation testing. These goals
may be met by a formalism based on a mathematical notation
of functions and sets which has been subject to constraints
which gquarantee (3) and (4) and which allow sufficient
expressive power for (1).

A further goal of formal requirement specifications is
to ensure properties which we desire the specified system
transitions to have, such as: algorithmic implication
(computations terminate without blocking), the ability to
test real-time systems by non-real-time simulation, and the
ability to model any characteristics of a real system by our
specifications (completeness from 2.1.3.3). In general, a
specification should be such that each of a set of relevant
properties is either guaranteed by the form of the
specification, or is efficiently decidable from the
specification. Furthermore, a specification should be
efficient in the sense that we should be able to 1limit the
information in a specification to that necessary to ensure
these properties or their efficient decidability. We would
also 1like our specification formalism to allow expansion of
this goal as useful new properties are discovered and
included in the relevant set (for example, properties
relating to the evolutionary development of existing
systems) .

Use of a functional notation has many nice properties.
Specifications based on mathematical function notation allow

concentrating on relevant areas of a system and hiding the

96

rest within primitive functions; this 1is the high level
property mentioned in section 2.1.3.3. Such specifications
also permit guaranteeing properties or their easy decidabil-
ity by axiomatic constraints on function combinations, using
much of what 1is already known about function behavior.
Simple primitives for interactions may be inserted into the
formalism of mathematical functions gquite naturally, and
these interaction primitives may also be handled by
axiomatic <constraints. Such a formalism also ensures the
consistency and unambiguity of a specification if only

minimal care is taken.

3.1.2 Properties of a Specification
In Jjustifying the mathematical form of a functional
process specification we have made reference to desirable
properties for a specfication as well as to more general
goals in the development of functional specifications. The
properties include:
(1) observable and verifiable behavior of a
specification.
(2) generality for asynchronously interacting
processes.
(3) algorithmic implication (all state transitions
will complete).
(4) testability =-- particularly of real-time

distributed processes by simulation.

97

(5) completeness of specification with respect to
characteristics of reguired system.

(6) ability to superimpose development and evolution-
ary processes on the specification formalism.

(7) ability to concentrate only on areas of the system
relevant to desired analysis, 1leaving low-level
details within primitives.

(8) consistency and unambiguity of specification.

In addition to these properties there are two mentioned

in section 2.1.3.3:

(9) effective decidability of behavior of a system
specification.

(12) traceability of the impact of changes in a

system specification.

The decidability of behavior must be in terms of
analyzing asynchronous interactions, which will be discussed
later. Tracing the impact of changes depends upon the
change being local to an area of the specification, which in
turn depends upon a correct design decision in factoring the

specification.

3.2 System Specifications

We start our discussion of formal specifications by
introducing some basic definitions. (A more rigorous and
complete treatment is given in Appendix A.) We also discuss

graphical representation of processes.

98

Definition. A value space V is a set of values v which are

not here further defined.

Definition. A state component 03 is a subset of a value
space Vi.

Definition. A state component space Zi is the power set of

V..
1

Definition. A state space I is a product

Zl X 27 Xeoeo X Zm of state component spaces, i.e.
0 € L if and only if o = (01,02,...,0m) where o, € Zi ,
i=1,2,...,m.

Definition. A ©process 1is a pair (I,f) where I is a state

space and f is a possible nondeterministic state
successor function. The state successor function f may

possibly be decomposed into component successor

functions £, where the f, are set functions. A

component successor function fi may possibly be further

decomposed into value successor functions fij where the

fij are not set valued functions but are value space
valued functions. Note that either the fi or the fij
may be nondeterministic. The definitions of the

function decompositions are developed in the next

section.
A computation of a process (X,f) is a sequence oo,cl,
02,...,01,... such that o' € I (i > 0), and 9 is an

initial state of the computation. Thus a process and an

initial state define a computation.

99

3.2.1 State and Interaction Graphs

Here we will consider two graphical representations of
a process and argue for the superiority of one. Suppose
that we have a successor relation f which we wish to
decompose into simpler relations. Since only finite
specifications of f are useful, writing a different relation
for each single state will fail if there is an infinite
number of states. The solution is to gather states into a
finite number of eguivalence classes and write a separate
successor relation for each class.

If the equivalence classes are represented as nodes of
a graph and the successor relations as arcs, the result is

known as a state graph. The corresponding state successor

relation can then be defined as a finite state machine.
State graphs may be useful for forming specifications, even
for small systems, only as long as the designer has a single
locus of control transitions. However, state graphs unfor-
tunately have complexity problems. Consider a process which
is the composition of two loosely coupled processes P and 0.
As P cycles through m state equivalence classes and Q cycles
through n state eguivalence classes, the composite process
will be cycling through a state graph of mn nodes. For each
of the m possible values of component P, there will be a
different variant of the component successor relation for Q.
Also, we lose our conceptual picture of the separate

subprocesses by forcing a coupling that does not exist.

100

A state of the composite process could be represented
as having two state components, one giving the state of P
and the other giving the state of 0. This indicates a
better way to graph the composite process: the graph will

basically be the union of the state graph for subprocesses P

and Q. We will encode interactions between state
transitions of P and Q via touching arcs. (See figure 9 for
an example.) This kind of graph will be called an

interaction graph.

The interaction graph is a better characterization of
what 1is going on in the <composite process, and is much
simpler, especially when m and n are large and P and Q are
loosely coupled. The state graph explicitly encodes
information that the interaction graph only implicitly
encodes, such as the fact that PlQ2 and P3Q2 are unreachable
in figure 9, for instance. However, this information is
irrelevant to the problem of specifying £. If that
information 1is relevant to some analysis, it may either be
obtained by studying computations via the interaction graph

or it could not have been obtained in the first place.

3.2.2 State Successor Function Decomposition and Process
Graphs

The decomposition of a state successor function f into

component successor functions can be represented by a

process graph. Each node of the graph represents a state

component space and each arc represents a component

101

(a) state graph (b) interaction graph

Figure 9: State and interaction graphs of a process
consisting of two loosely coupled subprocesses P and
Q. The state space of P is partltloned into Pl Poy
and P3; while the state space of 0 is partitioned into
Ql and 0s. Intuitively, Q waits in state Q until P
reaches P and then they can proceed lndependentlv
back to t%e waiting states Pl and 01.

successor function fi‘ The arc is drawn from the component
spaces 1in the domain of fi to the component spaces in the

range of fi. For example, suppose we have the state

successor function £f:% > I where L= Zl X 22 X 23 X 24.

Suppose further that £ can be decomposed into component

successor functions fl, f2, f3 given by:

102

Then f can be represented by the process graph in figure 14.

3.3 Functional Notation

3.3.1 Primitive Functions

The fi and fij in a functional specification may be
left as primitives or may be decomposed into lower level
primitives. The functional specification must be based on
primitive functions of the designer's choosing. These
primitive functions may be arbitrarily simple or arbitrarily
complex. The more complex the primitives are, the simpler
the resulting specifications structure will be, and the less
help the designer will receive in analyzing it. The
primitive functions must of course obey the design laws, in
order to ensure the overall specification properties which
the designer desires. The ability to select these

primitives freely lets the designer avoid the formalism if

he wishes. He may elect to define f as a primitive, in

103

Figure 10: A process graph with component selector
functions. Note that we Jjust indicate domains and
ranges.

which case there are no restrictions on it. Neither, of

course, will he receive much help in analyzing it.

3.3.2 Operations on Functions

We must now decide what basic operations on functions
we must have in creating the functional specification
structure. Inspired by recursive function theory we will
use a few primitive functions and the operations of
composition, primitive recursion, and selection. The

operation of function composition must be included; with it

104

we decompose f into the fi’ the fi into £ and high level

ij
primitives into lower level primitives. We include the
operation of primitive recursion because it gives us the

capability for bounded iteration. Finally we use the

operation of function selection, which 1is defined as

follows: select(py:gy, P,:d,, ey pk_l:gk_l,true:g&

evaluates to the wvalue of the first 9; such that <N
evaluates to true (the pi are predicates which evaluate to
true or false). This selector function gives us a model of
control.

It is worth noting that the basic form of a component
function is that of a tree of nested functions with
primitives as leaves. This form is established by the
composition schema. Recursion and selection do not alter
the tree form of the structure which is finally evaluated,
but only delay its binding until evaluation time. Recursion
finally expands to a fixed depth nesting, and selection
simply reduces to the selected subtree.

At this point we can model any primitive recursive
state successor function for a single system. We now need
to introduce a functional model for interactions to deal

with multiple interacting systems.

3.4 Interaction Specifications

3.4.1 Exchange Functions
We now define a class of primitive functions which will

allow the designer to-specify interactions. These exchange

105

functions have the unigue property that under certain
conditions they will exchange values of arguments with a
matching exchange function elsewhere in the specification.
The exchange of arguments between a pair of matching
exchange functions is accomplished by having each of them
evaluate to the argument of the other. Exchange functions
are labelled with subscripts and only exchange functions
with the same 1label <can match. The set of exchange
functions with a given subscript is referred to as a class.

The three exchange functions XC, XA, XS are defined as

follows:

XCi(a) = B if there 1is an outstanding XCi(B) or
XAi(B) which has been waiting for a matching
exchange function,

or
if this XCi(u) has been waiting for a matching
exchange function and an XCi(B), XAi(B), or XSi(B)
is evaluated.

XAi(a) = B if there is an outstanding XCi(B) which
has been waiting for a matching exchange function
to be evaluated,

or

if this XAi(a) has been waiting for a matching
exchange function and an XCi(B) or XSi(B) is

evaluated.

106

Xsi(a) = B if there 1is an outstanding XCi(s) or
XAi(B) which has been waiting for a matching
exchange function to be evaluated, and

= o otherwise.

3.4.2 Evaluation

Any state successor function can be defined by a
definition tree as shown in Figure 1la and automatically
transformed into a corresponding precedence graph as shown
in Figure 1lb. The precedence graph simply displays the
constraints on possible evaluation sequences. The use of
exchange functions imposes additional (and potentially
incompatible) synchronization constraints and allows values
to be exchanged.

The exchange functions can be analyzed as normal
(possibly nondeterministic) functions in their local
context while still providing a high level (non-procedural)
model for asynchronous interactions in process
specifications of internally and externally asynchronous
processes.

An internally asynchronous interaction could be defined
as matching exchanges between component successor functions.
An externally asynchronous interaction could be defined as
matching exchanges between state successor functions (each
defining an independent system). Thus all interface
interactions are modelled directly and homogeneously by our

functional specifications.

107

(b)

(c)

= gs(gl(x),g4 (92 X),g3 x)))

//

g, £ h; (h,(2),h,(2))
I\
h2 h

e

h

1 C, (XC, (Z)) 95(2) = XC, (XC, (2))

32/§C :

1 %5y XC, %G,

(a) A definition tree for f£(X) = 95 (gl (X),g4 (g2 (X),g3 x))).

The functions 94,g5,hl,h ,h3,XC1,XC are primitives.

2 2

The precedence graph for £(X) in terms of g,-

XCl XC2
AT T
qu XCl
\g/

A blocked precedence graph for g4(XCl(XC2(A)),XCZ(XCl(B)));

control cannot pass the first XCl,XC2 functions.

Figure ll: Use of exchanges in a function.

108

Using an immediate exchange, XS, we can also model what
we will call unsynchronized systems as containing only XS
type inter-system interactions. Such systems, which never
wait on any interactions, are essential for many real-time
systems and for modelling the environmental system or real,
physical world. 2An XS function cannot be allowed in an
intra-system interaction since there cannot be sufficient
constraints in a precendence graph to ever force its instan-
taneous matching with another exchange (creating blockage
problems). Such use cannot be allowed.

As illustrated above, the enormous generality of
functional interaction specification comes at the price of
some new design laws governing the use of exchanges.
Arbitrary usage can lead to inter~ or intra-system deadlocks
(as must be true for any general interaction model). An
example of an intra-system deadlock is given in Figure 1lc
when no other exchanges of those classes are present.
However it is possible to place restrictions on the form of
the specification such that no process will be blocked in
this way. Each restriction will correspond to a design law
which must be followed in order to guarantee completion.

Such restrictions are given in Appendix B.

3.4.3 Simple Examples

A few trivial examples may help explain the use of

exchanges.

109

We could define a pair of interacting systems by state
successor functions £ and f' as given in Figure 12a. 1In
this example the evaluation of f' 1is delayed until the
exchange XC1 has been completed by a subseguent evaluation
of XSl in f£. Thus the evaluation of f is not so
constrained, since XSl will exchange with itself in order to
continue without delay. £f' could thus be interpreted as a
system synchronized to the system £, that uses values from f
in its own computations. The system f could be interpreted
as a simple real~-time clock that goes on with its cycling
(ticking) without delays or synchronizations with another
system. A sketch of the computations of f and f' is given
in Figure 12a.

As a second example, f and f' can be defined as in
Figure 12b. In this example f£' is synchronized as before.
The system £ can now be consisdered to «c¢ycle through
evaluations of a2(x) unless an XC1 is outstanding. 1In that
case, the value of XS1 will be T and the function al(x) will
be evaluated instead. The system f could thus be described
as having been interrupted by system f', to perform function
ay.
3.4.4 A Spooling Example

We present here a functional specification of a
spooling system. The spooling system will be divided into a
set of asynchronous processes, each with its own state space

and successor function. From our intuitive knowledge of

110

XS, :
£(0) = 1 :
XS,)
* XCl
£(1) = 2 /’”‘7’ .
: / £'(x) = g(x,2)
Q
Xul :
‘ XC
£(2) = 3 £ (& =Yy (x,3)
a ;
£(3) = ¢ I
a :
£(4) = 5)

(2) Real time clock example
fezaz f£(x) = First(suc(x),xsl(x))
£lizez £'(x) 2 g(x,xcy (0))

Where first (x,y) = x and
suc(x) = x+1 and

z is the set of integers.

FIG. 12 :

111

"
>

|

o]
e s o o o0 s (Do o«

£ (x)

£(x)

(b) . Interrupt system

fi2+2 f(x)E(XSl(F):al(g),T:az(a))

flez »z £'(x) = g(x.xcy (D))

Where T = True and F £ False

and z is the set of integers.

Simple Exchange Examples

what spooling system means we know that the following
subsystems can be and should be asynchronous (therefore
minimizing implementation constraints).

a.) input from real world model (PWI)

b.) card reader (CR)

c.) input gqueue (IQ)

d.) output gueue (0Q)

e.) line printer (LP)

f.) output to real world (RWO)

We include a model of the external world so that no
external interaction is required.

System Specification:

The states of all systems are vectors of elements from
the value space V, which is the set of all job records.
Fach vector represents a bounded gueue, where the rightmost
element is the head of the gueue and the leftmost non-null
element is its tail. The null element in V will be denoted
by #a. Let Z be the state component space of the value

v

space V. Let Z$ be (zél) % o.. My ey be the

v O'O,X
initial state of ©process X. Then we have the following

state spaces and initial states:

Tt = By 9o, gwr = (Opree+r Op)
Zer = %19 =200 T e T I

9,crR ~%0,10 - 90,00 = 90,rp = (#.9,0,0)
Zrio = Ly o6 puo = (€/0:9,0)

The Oi's represent all the jobs that move through the

spooling system in a day. Each job starts in the gqueue

112

990, RWI and is passed along the pipeline until it ends up 1in
the state of RWO. The intermediate queues of the pipeline
must be bounded to allow us to specify this system. Here
the bound has been arbitrarily set at four.

Jobs are passed along the pipeline according to the
following scheme: for every step taken by a process, it
produces one element and passes it to the next by means of
an XA. Also in every step it executes four XS's to receive
elements from the preceding system in the pipeline. This
allows the queues to grow and shrink independently, within
the size bound of four.

The following state successor functions use these
primitive functions and macros :

p; = the projection function which returns the value of the
ith argument.

card-to-data = convert card image to data image.

interpret = process some data.

data-to-print = convert data to print.

¢ 1if v is the null value, otherwise in-val

in-val (v,0)
returns a new vector formed by inserting the value v in
the rightmost null position of the vector 0 (i.e., add
v to the tail of gueue o).

is-null (g) = TRUE, if the leftmost element of the vector o
is null (i.e., there is room for another value at the
tail of the queue ¢); = FALSE, otherwise.

rs(0) = the vector 0 of values right shifted one place, with

the vacated leftmost place filled in with the null

113

element (i.e., the element at the head of the gueue is
removed) .

H($1,$2) = SELECT (is-null (S$1):

in—val(XS$2(O),$l); true: $1)

H($1,$2) 1is a macro of two arguments defining a
function which takes a vector of four elements and returns
an updated vector. The updated vector is formed by taking
the result of an XS and placing it in the leftmost null
position of the original vector. If the original vector has
no room, or 1if the XS returns a null result, then the
function returns the original vector. In other words H
updates the queue if possible by adding a new element at the
tail of the gueue.

G($1,82) = H(H(H(H(rs(s1),$2),82),$2)

G($1,52) 1is a macro defining a function which takes a
gueue and updates it by removing the element at the head of
the gueue and filling in the gueue with the results of as
many XS's as yield non-null results. $1 1is the aqueue
argument and $2 is the class of the XS function.

RWI successor function:

flo) = p2(SELECT(Gm # 0 XAa(Om)rEEES : 0, rs(o))
CR successor function:

fo) = pZ(SELECT(o4 # 0 XAb (card—to—data(o4)),

true : 2), G(o,a))

IQ0 successor function:
f(o) = pz(SELECT(o4 #] : XAC(interpret(o4)),

true : @), G(o,c)

114

00 successor function:
f(g) = pZ(SELECT(g4 £ 0 XAd(data—to—print(g4)),
true : 0), G(o,c))
LP successor function:
flo) = PZ(SELECT(O4 # 0 XAe(o4,§£Eg= 2), G(g,d))
RWO successor function:

f(o) = in—val(XCe(ﬂ),d)

3.5 System Complex Specifications

3.5.1 System Specification Domain

Our specification restricts the class of solutions and
implementations we will accept for the system complex. 1In
particular, the type of functional process specifications we
have defined requires that there are observable c¢losed
states which processes and their components must pass
through. These states, which are needed for verification
and testing, are generated by the constraints on events
(function evaluation) which bind the synchrony of these
events. However we may defer decisions about synchrony or
asynchrony until their proper context by including the
relevant events within a single process step, or |if
necessary by placing the events 1in different processes.
Thus we may generate observable closed states at the levels
where they are needed and defer other synchronizations. The
necessity for placing events in different processes may

arise from an unsynchronized components system (e.g., the

115

physical world) or when there is no functional requirement
for the relative rates of occurrences of those events, or no
such requirement in the present design context. If relative
rate requirements exist we may be able to include the events
within one process, where desired properties are more easily
ensured or decided. The flexibility which our functional
specifications provide with respect to observed closed
states and binding of synchrony 1is itself a desirable
property.

Our process specification formalism is capable of
specifying a large range of systems in a natural way. Its
constructs reflect the ways we think about the systems under
consideration, subject to the derived constraints which
guarantee desirable properties of system behavior. Our
functional framework lends itself to analysis of axiomatic
constraints, vyet within that framework we express the
breaking of a state into components, the distinction between
operations on sets and operations on values, and the
decomposition of functions by the operators necessary for
primitive recursive functions (composition, selection, and
primitive recursion). Furthermore within the functional
framework we express three primitive types of interaction,
XS, XA, and XC. With these exchange functions we can
express a wide variety of interactions. It 1is also
important that we can express a wide variety of constraints
on these exchange functions in order to ensure the

non-blocking properties of asynchronous interactions; it is

116

not unreasonable to say that asynchronous interactions
create many of the problems in large distributed real-time
systems. There 1is no generally accepted model of all
asynchronous interactions, as there 1is of recursive
functions, so it is difficult to claim that our exchange
functions are completely general. However, they are
adeqguate to model asynchronous and real-time interactions of

existing computer systems.

3.5.2 Simulation and Testing

Good functional specifications allow simulation testing
which is consistent and complete with respect to the
behavior of the specified system. Our functional
specifications can automatically be interpreted as a
simulation model of the specified systems. Our formalism
allows the stochastic simulation of both functional
evaluations and relative occurrence times of events even
without formal specification of primitive functions. A
complete procedural model may also be generated when
procedures for primitive functions are supplied. Simulating
a functional specification is relatively easy, and can be
done formally. The direct use of the functional
specifications as the testable model prevents erroneous
assumptions or obsolete models from invalidating the
testing.

A very useful property, but one which can be ensured

only by correct decisions in stating reqguirements, is the

117

local testability of other properties of the specification.
That is, we wish to be able to ensure or decide desirable
properties by considering small portions of the total system
specification. Finding axiomatic constraints which have an
effect on this local testability would be an important area

of future work.

3.6 Summary

The formalism for functional process specifications
must allow analyses for the properties needed by the
requirements methodology. Furthermore, these properties are
motivated by the specific types of systems required, that is
real~-time distributed data-processing systems. Some of
these properties are listed in sections 2.1.2 and 3.1.2.
Others are developed in following sections. In the case of
certain properties, for example algorithmic implication and
boundedness, we have indicated how the analysis of a
functional specification may be carried out. Certain
properties will be satisfied only if correct decisions are
made in developing specifications; these include the
locality of testing and the traceability of the impact of
changes on the specification. Some of the properties are
guaranteed by the definition of the formalism, for example
generality and the ability to use high level primitives.

The high level (informally specified) primitives are
especially important for the design process methodology, as

discussed in section 2.5. High level primitives make it

118

possible to factor requirements testing into well-defined,
manageable steps. Primitive elaboration also constitutes a
well-defined design step, and allows design decisions to be
made in a local context.

The formalism we have defined allows the formal
development of a requirements methodology for real-time
distributed data-processing system. We have begun an
analysis of properties of the formalism and have indicated
areas needing further analysis. Although more design laws
will be imposed, the functional formalism developed here
seems a very suitable basis for identifying, studying, and
solving the remaining problems.

We can now give useful formal functional specifications
of networks (interacting complexes) of real-time systems and
their real world environment. This can be done for any
stage of the development process from reguirements to imple-
mentation. Further, we may use the same functional
formalism to study and define developmental process

themselves.

119

4, REAL-TIME PROCESSES
We now have a formal way to define interacting
processes. Thus we can address the questions of what a

real-time process is, and how it can be tested.

4.1 Definitions: the following are some working

definitions we will use.

A free-running process is one which has no interprocess

XC or XA interactions. It is a process which, by its very
nature, cannot wait for other processes, i.e., it does not
wait. It will continue to run as the real-time clock runs:
the missiles will continue their £flight even if the
data-processing system is deadlocked; the radar signals will
move through the air regardless of who is listening. These
processes will have only XS interactions.

A process which has an XC/XA interaction with another

process is synchronized with that process. Such a process

cannot be independently clocked or measured. If both
processes have XC/XA interactions, they are mutually
synchronized.

A cluster of processes consists of two or more
processes that interact with each other.

The rate of a system is the time for the execution of
one system step. The rate need not, and often will not, be

constant from step to step. We will also use the rate of

120

the process to mean the rate of the system which implements

that process.

4.2 Characterization of a Real-Time Process Cluster

4.2.1 Definition

A real-time process cluster is one which must produce a

correct response to a stimulus within a given amount of time
[PhB76] [Hec76].

The designer of the process cluster must specify the
stimulus, the response, and the time. The stimulus will
presumably be the completion of a synchronizing interaction
with an inherently free-running process. (If the process
were not inherently free-running, one could simply have it
synchronized with the appropriate process, and the need for
the respoﬁse "in a given amount of time" would be
eliminated.) The response will be the execution of any
function designated by the designer. This could be the
occurrence of an interaction sending control information to
the free-running process, or the decision as to whether or
not to execute that interaction, or being ready to receive

another stimulus, etc. The time bound may be absolute

[PhB76] Phillips, Jorge V., and Bredt, Thomas H., "Design
and Verification of Real-Time Systems", Proceedings
of the 2nd International Software FEngineering
Conference, San Francisco, California (October 1976),
pr. 124.

[Hec76] Hecht, H., "Fault-Tolerant Software for Real-Time
Applications," ACM Computing Surveys, December 1976,
pp. 391-408.

121

(e.g., 100 milliseconds) or non-absolute (e.g., 1064 milli-
seconds at least 80% of the time). See section 4.2.6.

There are three critical aspects to the response:

1. It must be a "correct” response.

2. It must be logically deliverable in time.

3. It must be physically deliverable in time.

The first reguirement, that of the response being
"correct”, is not unigue to real-time ©process clusters.
This idea will be developed more fully later. The second
requirement is necessary but not sufficient for the third.
The first and second are properties of the functional
specification; the third is a property of its implementa-
tion.

Thus it 1is the notion of a time bound (logical and
physical) that seems to differentiate real-time from non-
real-time process clusters. Yet it is not the existence of
a time bound that makes a cluster real-time; it 1is the

requirement of a time bound for proper functioning of the

cluster;

The proof that a required time bound will be met must
be followed from the functional specification of the
application process cluster through the virtual and physical
operating systems and finally to the hardware system which
implements the application process cluster. The properties
needed to prove that the time bound will be achieved must be
preserved as the process cluster is translated through these

levels.

122

Numerous studies comfirm the fact that the later a
design error is found and corrected, the more costly it is
[DrK76]. Because of this, testing should be done at the
earliest stage feasible. Thus, although some testing must
be delayed until the implementation stage, the 1logical
specification of the process cluster rather than the
implementation should be testable for behavior. Because of
the importance of early testing, in this section we will in
general concentrate on proving properties of the application

process cluster.

4,2.2 1Interactions with Free-Running Processes

In many real-time process clusters, the response to a
stimulus from a free-running process is an interaction which
affects the future states of that process. For example, the
responses might be to change the setting of some variable in
a nuclear reactor, or to maneuver an interceptor aimed at an
incoming missile. The time bounding is important because
these processes are free-running and therefore do not wait.
If the response takes too long, it may be too late to keep
the reactor from exploding or the missile from reaching its
target. In general, the response will have an effect on
this free-running process by changing its otherwise
predetermined course of action, and this change will affect
the next stimulus this process initiates. Thus a kind of

feedback loop is established.

123

As another, more specific example, consider a
free-running process containing the representations of the
airplanes in a given air space, interacting with a process
cluster which functions as the air traffic controller. The
airplanes will broadcast to the controller their position,
altitude, speed, and direction. They will continue to fly
and thus change the values of these variables according to a
predetermined course. However, a message from the
controller to change altitude, speed, etc., will result in
(probably) different changes in value, and these will become
new stimuli for the controller.

Because the free-running process will continue to run,
not only the content but also the timing of the response is
important. For example, the commands from the controller to
two potentially colliding airplanes to climb and dive
respectively are useless if they arrive after the two planes
have met in midair. Thus the time bound can be due to the
very nature of the non-synchronizing way the free-running
process interacts with the process cluster. A&n on-line
interactive airline reservations systems would not be
considered real-time by this definition, but the air-traffic
controller would be.

Alternatively, a time bound could be reguired even 1if
the response would not directly affect the free-running
process. For example, in a real-time monitoring process the
desired response might be the 1logging and analysis of a

stimulus, and getting ready to receive the next stimulus.

124

While the time between stimuli received would have no effect
on the free-running process being monitored, the designer
might decide that 1if the times were more than 100
milliseconds apart, the monitor would not reflect the
monitored process as accurately as necessary. Then he could

impose a time-bound reguirement.

4.2.3 Logical and Physical Time Bounds

Note that the time-bound reguirement is both logical
and physical. The existence of a bound 1is a logical
characteristic of the 1logical processes; the actual time
bound is a physical characteristic of the implementation.
Thus a process cluster could be shown to be logically
correct and bounded, but could have a physical time bound
which would be in practice physically impossible to achieve.
Thus the 1logical bounding 1is necessary (if not bounded,
there is no minimum evaluation speed sufficient to meet
requirements) but not sufficient. 1In this section we will
concentrate on the logical time bound, but it should be
remembered that implementation contraints may later force

redesign of a system which is logically correct.

4.,2.4 Vvirtual Implementation

Let us distinguish between two levels of the
implementation which we will call the virtual implementation
and the physical implementation. The virtual implementation

has a unlimited supply of processors and of space.

125

Therefore competition for these resources does not exist.
Performance could be predicted based solely on the number of
times each primitive would be executed (either as worst case
or based upon a distribution function, perhaps with
correlations to other distribution functions), and on the
time required for the execution of those primitives in the
given implementation. The maximally parallel execution of
these primitives would essentially give us the best possible
time for a given implementation, with no interference
because of competition for resources. The specification can
then be tested for behavior in the wvirtual implementation.
If the virtual implementation is not fast enough to produce
the desired behavior, then either a new specification or a
new implementation must be employed, since the best case of

this specification's implementation is not adeguate.

4.2.5 Physical Implementation

If the desired behavior 1is produced in the wvirtual
implementation, then the physical implementation must be
analyzed. It is here that the loading, i.e., the effect of
competition which was abstracted out of the wvirtual
implementation, is analyzed for its effect on the
performance. While the analysis of the virtual
implementation would require only the frequencies of the
primitives wused, the physical implementation analysis would
also take into account the correlations between freguencies

of primitives, as these correlations would affect the

126

resource utilizations. The aim would be either to find the
maximum loading at which the desired performance could be
achieved for the specific physical implementation, or
alternatively to find the physical implementation required
so that a given loading would meet the prerformance
reguirements (i.e., the number of processors and the amount
of space required so that the physical implementation would
yield the same behavior as the virtual implementation). If
neither of these is satisfactory, (e.g., 1if the physical
implementation is fixed or too limited and the maximum
loading permitted is expected to be exceeded), then if the
loading rises above the maximal level at which the desired
performance can be achieved, perhaps a different
specification could be employed, where a degraded mode of
operation is specified. This degraded specification would
presumably have decreased freguencies and perhaps different
correlations, resulting in a higher maximum loading
permissible. (If the maximum loading is not higher, this
specification should obviously be abandoned, as its
performance would be no better and its behavior degraded
from the original specification.) Perhaps several levels of
"graceful degradation” would have to be specified to aliow
the performance reguirements to be met by the expected
levels of loading. Then an upgraded implementation (for
example, with another processor or additional space) would
presumably only increase the maximum loading at which the

given specification would give the desired behavior.

127

However, the analysis might show no increase, indicating
that the added power is not at the bottleneck, and thus that
the money for such an "improvement" could be more profitably

spent elsewhere.

4,2.6 Absolute vs. Non-Absolute Time Bounds

We have been discussing a time bound here as though it
were an absolute time bound. It is true that one would
often prefer the time bound to be absolute. Yet one could
alternatively specify the probability (or distribution
function) that a given time bound will be reached. This
could give the designer considerably more freedom than an
absolute bound, since he would not have to solve the worst
case. For example, worst-case allocation of resources may
not be required; a very good heuristic may be used in nplace
of an expensive algorithm. Yet the additional flexibility
also imposes certain constraints:

1) The probabilities must be figured accurately and
reliably.

2) One must be able to know when the time bound has
been exceeded.

3) One must specify appropriate recovery action to be
taken if the time bound has been exceeded. The "recovery"
could be simply notifying someone of the situation, or it
could be an intricate procedure to continue as best as

possible. (See [Hec76] for a similar approach.)

128

There may be certain times when a bound must be
absolute: it must be attained 166#% of the time. For
example, one may be willing to pay any price necessary to
keep a nuclear reactor from blowing up: expensive
algorithms rather than efficient heuristics, extra hardware
so that worst-case allocation is possible -- even abandoning
the project if the money or current technology is not
sufficient to ©provide a guarantee. Yet often to make any
design practical or even technically feasible, one must
accept a certain amount of risk. For example, one may be
forced to accept a <certain probability of "leakage" of

offensive missiles that will not be intercepted.

4,2.7 Defining Time Bounds

A relevant way to logically express the time bound
reguired for the response to reach the free-running process
is in terms of the number of steps of the free-running
process. For example, the response may be required within n
steps from the stimulus. (If the minimum time for the
execution of a process step of the free-running process is
known, this could also be expressed as time. Section 4.4.1
discusses some of the problems of dealing with rates.) For
the sake of simplicity, assume that only one process
computes the response, and say that this process takes at
most m of its process steps to do so. (Section 4.3
addresses some problems of proving this bound of m steps.)

Then the ratio of the rates of the synchronized process to

129

the free-running process must be at least m/n, i.e., the
synchronized process must take at least m steps to each n
steps that the free-running process takes. If the
free-running process could wait, it could simply synchronize
and wait for the other process to complete its m steps.
However, if it must be free-running and therefore

unsynchronizable, then the rate-ratio bound must be imposed.

4.3 Path Bounds

No rate can be proved to be fast enough to meet a time
bound if the path from the stimulus to the response cannot
be proved to be bounded. To do so, one must first of all be
able to define that path, and then to prove that the path is
bounded. Obviously, the complexity of the path will
determine the ease with which this <can be done. The
following classification of kinds of paths is in order of

increasing complexity.

4.3.1 1Intraprocess Intrastep Paths

If the response to the stimulus is produced in the same
process step in which the stimulus was received, then we
know that +the response path is bounded, if the state
successor function is bounded. (Note that the path could be
bounded even if the state successor function, while
algorithmic, is not bounded, but the proof of boundedness
would reqguire additional analysis.) Our formal functional

specification makes it easy to decide if a function is

130

bounded, since building functions by using only the
operations of composition, primitive recursion, and bounded
subtree selection will intrinsically give a bounded
function. Our formalism provides sufficient (though not
necessary) conditions for boundedness; if interprocess
exchanges are not used the formalism can thus be considered
as a design tool for proof of boundedness on this level.
The use of interprocess exchanges would require additional

analysis.

4.3.2 Intraprocess Interstep Paths

Interstep but intraprocess computations, however, are
not intrinsically bounded or even algorithmic; these
properties must be proved to exist. A simple path without
loops and without interactions would easily be proved to be
bounded. However, the existence of loops would reguire an
analysis for a bounding on the loop. Yet even the discovery
of such a loop 1is not a trivial matter. For example, in
bounded subtree selection, the first predicate could be used
as a loop-exit condition, where its corresponding value
could be the response or could trigger the response in some
other function. Alternatively, the third predicate might
indicate loop exit, in which case the negation of the first
two predicates as well as affirmation of the third would be
required for loop exit. These loop-exit conditions, as
simple or as complex as they may be, could be used as

induction wvariables. The wvalue of the induction variable

131

would cause the loop to be exited at a given point, namely
when that variable takes on a certain value or range of
values. If it can be proved that a traversal of the loop
brings this variable closer to the exiting value, then by
induction one can prove that the loop is bounded.

One may want to have design laws to control the
complexity of the induction variable, as well as to make the
induction variable easier to identify. If automatic
discovery of the loop and its exiting conditions proves to
be too difficult or too computationally complex, the
designer may have to specify the loop and exit conditions,
perhaps using automatic verification of the specified paths

as a design tool.

4.3,3 Interprocess Paths

When the path involves interprocess interaction, more
complexities are involved, for now at least part of the
whole process cluster must be analyzed. For example, if our
original process does an interprocess XCi, it will wait
until some other process does an interprocess XSi, XCi, or
XAi, unless an interprocess XCi or XAi is already
outstanding. One must prove that if the latter is not true,
then some other process will execute an interprocess Xsi,
XCi, or XAi within a bounded amount of time. The levels may
go deeper, of course: the interprocess XSi from process A
may not be executed until an XC, 1is satisfied by an

J
interaction from process B, etc. For the purposes of this

132

interprocess interaction analysis, we can form precedence
graph abstractions of the processes 1in which only the
interprocess interactions are relevant. A design law
requiring that intraprocess exchanges have different indices
from interprocess exchanges would allow such an abstraction
to be made. The designer could then work with these
abstractions to determine if a given interaction would
always complete, i.e., would be mated with another
interaction, within a bounded amount of time. See Appendix

B for further information on such mating theorems.

4,.3.4 Others

We also have other options as designers. The case 2)
specification may be given instead as a case 1), with
initial to final state step occurring in only one state
successor function evaluation. Some case 3) specifications
may also be given with interactions between free-running
processes as similar "single step" synchronized process
specifications. Much more work will be reguired on this

topic.

4.4 Attaining the Time Rounds

4.4.1 Specific Ratios vs. Lower Bounds on Ratios of PRates
Systems need to be robust with respect to their

implementations, so that changing the rates of prccessors

will not cause unforeseeable and unwanted behavior in the

system. If the correct behavior of interacting processes is

133

dependent on the ratio of the rates of the systems
implementing them, a number of problems arise. First is the
problem of defining what the rates are, especially since
they «can vary from time to time. The rates may be affected
not only by the specific computations taking place but also
by competition for resources and by the resource allocation
algorithms which resolve the conflicts created by this
competition. Thus if the correct behavior of unsynchronized
processes relies on specific rate constraints, one must not
only somehow define these ever-changing phenomena but also
somehow achieve them. Even 1f this can be done, any
perturbations in one system could radically change the
behavior of the process cluster, which would then not be
very stable or robust. However, if the processes are
synchronized, then the implementer would only need to meet
performance bounds. Any implementation that would exceed
these bounds would also be acceptable, =Yo] that
perturbations, as long as they left the performance above a
minimum level, would not affect the desired behavior of the
process cluster. A lower bound on this ratio of rates is
obviously the only solution possible if the process cluster
must endure and evolve over time; maintaining let alone
achieving a specific. ratio of rates would be highly

impractical if not impossible.

134

4.4,2 Performance Graphs

What is needed 1is essentially a graph of the
performance based on the rates of the systems involved. For
the purposes of this analysis, the only relevant aspect of
the performance 1is whether or not the behavior is
acceptable; thus the 1line marking the boundary between
acceptable and unacceptable behavior is what is important.
Its intersection with the performance curve defines the
permissable operating regions. Just knowing some
characteristics of the boundary can be very useful, even if
the exact location of that boundary 1is not known. For
example, if acceptable behavior constitutes discontinuous
points rather than a smooth surface, then finding
appropriate rates for the systems will be difficult at best,
and the behavior would be very unstable with respect to any

perturbations in rates.

4.4.,3 A Simple Example

As the simplest example possible, consider a single
synchronized process which interacts with the free-running
process. Assume that the rate of this free-running process
is fixed, determined by physical factors in the real world
(e.g., the force of gravity, or the speed of light). ©Now if
the exact performance boundary is known, then the minimal
rate at which the synchronized process must be run can be
determined. This could result in the cheapest

implementation which would give acceptable behavior.

135

However, suppose that the exact location of the
performance boundary between acceptable and unacceptable
behavior 1is not known, but it is known that the boundary is
monotonically increasing with respect to the rate of the
synchronized process. Then a working system could be
upgraded (i.e., 1its rate increased), and the resulting
faster system would also be a working system. This would
mean that, provided a given minimal rate was achieved, the
process cluster would be rate-independent. This would be
expected with only a single synchronized process. Its only
synchronizing interactions could be expected to be the
receipt of the stimulus from and the sending of the response
to the free-running process, as the?e are no other processes
to interact with. (If there were an intermediate
interaction, one could simply break the stimulus-response in
two, where the new response to the original stimulus, and
the new stimulus for the original response, would be this
intermediate interaction). Thus for a given stimulus, the
same response will always be produced in the same number of
process steps. The rate at which the process is being run
affects only the number of steps the free-running process
will take between sending the stimulus and receipt of the
response. The value and therefore the "correctness" of the
response computed 1in the synchronized process is not
affected by the rate of that synchronized process; only the
timing is. Once the rate is sufficient so that the response

is delivered "in time," any faster rates will also be "in

136

time." Thus any single synchronized ©process could be

considered rate-~independent.

4.4.4 A Complex Example

Now consider the case where rather than a single
synchronized process there is a synchronized process
cluster. We can informally characterize the rate of this
process cluster by the rate at which responses are given to
the stimuli produced by the free-running system. As with
the single process, the process cluster is rate-independent
in that if a response is "in time" at a given rate, then it
is also "in time" at a faster rate. However, unlike the
single process case, the actual response may vary as the
rates of the individual systems implementing the process

cluster vary.

4.5 Constraints for Rate-Independence

4.5.1 Strict Rate-independence

What constraints must be followed so that a given
process in the cluster would be rate-independent in the
strictest sense of the word (i.e., increasing the rate of
the system implementing the process would only increase --
or not affect at all -- the rate of the cluster)?

Constraint: All interprocess interactions must be

predetermined with respect both to which process it will
exchange with and to the message to be exchanged. This

effectively eliminates the nondeterminism that can be

137

associated with interactions. The only variable left is the
amount of time that this process or the other would wait for
the exchange to be paired. If the now faster process
previously had to wait for the other process, it will simply
have to wait longer, but the elapsed time will be the same,
since the other process is the bottleneck. If the other
process had to wait before, then it will not have to wait as
long (or perhaps not at all) for the now faster process, so
the elapsed time will be less, and so the rate of the
process cluster will be increased.

What are conditions sufficient to meet the above
constraint?

1.) The process must not send or receive any X¥S's.
Obviously, the content of the XS messages could change as
the rate increased.

2.) There <can be only one possible candidate for
matching an exchange. This preserves the determinism. This
could be enforced by having only one other exchange with the
same index, or by having all the other exchanges with the
same index in the different branches of a subtree selector.

3.) Ensuring that the message to be exchanged is
deterministic is more difficult. For instance, the process
receiving a predetermined message from the potentially
rate-independent process could use the time at which that
message was received (which would vary with the rate) to
decide what other message should be sent. Thus the second

message would not be deterministic but rather would be

138

determined by the rate of the process. To prevent this
nondeterminism, the receiving process must also be
rate-independent, i.e., have only XC exchanges with a single
match and deterministic messages. This effectively means

that the cluster cannot contain any free-running processes.

4.5.2 More General Pate-Independence

The above constraint would be easy to enforce, and does
ensure the strictest kind of rate-independence, but it
eliminates all interesting real-time process clusters. Let
us relax the meaning of rate independence to mean that
increasing the rate of some system in the complex will 1)
not decrease the rate of the complex, and 2) the response
will still be <correct. This permits the nondeterminism
which was disallowed previously. The price of the
nondeterminism, however, is that all possible paths must be
examined to ensure that they produce the desired behavior.

The nondeterminism of which exchanges would be matched
could probably be analyzed reasonably efficiently if the
designer 1is judicious 1in introducing such nondeterminism.
However, analysis of the specific messages exchanged could
lead to computationally explosive analysis of value
correlations. We need to find design laws which are not
overly restrictive but which allow efficient analysis to be
done. Such design laws would eliminate worst-case process

clusters but not most clusters of interest.

139

4.6 Non-Real-Time Testing

Simulation is one of the chief means of testing large
complex process clusters. Since the actual timing is so
important in real-time processes, they have traditionally
been tested by real-time simulation. However, the real-time
environment which must be simulated may get so complex that
it can no longer be computed in real time. One would then
want to do non-real-time testing, knowing that a successful
test in a "slowed-down" real-time environment would imply a
successful test in a real-time environment running at normal
real-time speeds. What constraints on the processes are
necessary so that such non-real-time testing will be valid?

First we must establish the level of the process being
tested. Presumably prior analysis of the functional
specifications affirmed that the stimulus-response path is
bounded. Knowing that the path is deterministic and bounded
independent of the relative speeds of systems already is
very useful; it also means that real-time tests need only to
look at path times and correlations. The simulation tests
would be run on the actual implementation, since that is the
level at which physical timing measures are meaningful. The
difference between real-time and non-real-time testing is
the speed at which the stimuli enter, i.e., the interarrival
times. At the functional 1level this speed may not be
relevant; it may have been abstracted out. If there are
functional performance dependencies, they can of course be

tested in a non-real-time way. However, at the actual

140

physical implementation level, the interarrival times do
affect the actual times for path traversal. Thus a virtual
operafing system with an infinite number of wvirtual
resources would show no effect, but a physical operating
system with a bounded number of resources would impose
inter-performance dependencies and thus different timings.
The relevant factors for determining the effect of the
timing include the number of virtual resources needed, the
number of physical resources available, and the resource
management policy which couples the two. Given these three
factors, if one could prove that the rate of path traversal
was not affected (or how much it was affected) by the number
of paths being traversed (i.e., by the number of stimuli
being processed at one time), then non-real-time testing
should produce the same results as real-time testing.
Perhaps analysis could also show the point at which
non-real-time testing is no longer reliable for a given
resource management policy (increasing the number of virtual
resources required or decreasing the number of physical
resources available «could push a system past the threshold
of reliable non-real-time testing). Such analyses would
also give measures for evaluating different resource
management policies. In the 1limit of 1light loading,
physical resource contention has minimal effect. 1In this
case the only real-time testing reguired is to find maximum
loadings for given path performances. All other testing

could be done non-real-time.

141

Note that this analysis relies on the proof that the
rate of path traversal is not affected by the number of
paths being traversed. Currently, there are no design laws
which would make such a proof possible, nor even any strong
indications that such design laws do exist in a form which
is not overly-constraining. This is simply one possible
approach to the problem.

Another approach involves taking measurements to
determine path correlation. Thus one could measure the
performance times on each path as a function of the stimulus
freguency. Then one could determine the effect on perfor-
mance when paths are coupled; this would show the effects of
contention. From this data one could develop a model for
the coupling between paths. This model could then be used
to extend the results of non-real-time simulation testing to
expectations of real-time testing results. Only real-time

experiments to measure such correlations would be required.

4.7 Meeting Performance Reguirements

4.7.1 Forecasting Performances Early

The only place one can really determine whether or not
a given application process meets its performance
requirements is in its final implementation, where it has
been integrated into a virtual operating system, a physical
operating system, and finally into the hardware. However,
discovering so late in the design cycle that a given design

will not meet the performance requirements means very costly

142

and time-consuming redesign. One would like to be able to
proceed with a design with some level of confidence that
this design could meet performance requirements, and with
design decisions being made so as to further enhance the
prqbability of meeting the reguirements. wWwhile the final
determination could only be made at the end of the design
cycle, a methodology which could provide some such
confidence and criteria for design decisions could eliminate
some (hopefully most) unacceptable designs early in their

design cycle, thus saving the investment of time and money.

4,7.2 Forecasting at the Application Process Level

The forecasting of the eventual performance of the
application process is based on the precedence graph of its
functions. The time needed to traverse this graph of
functions 1is the time for one process step. This time is
determined by the longest path through the graph, which in
turn is determined by the time needed to execute each
function.

A crude, worst-case approximation of this time for a
function's execution would be the time needed for each
primitive's execution, multiplied by the number of
executions (either expected or mean value, or maximum) of
each primitive required in the execution of that function.
This would be the time for serial executions of all
primitives, and parallel executions, as we shall discuss

later, can improve this total time. Unless these relative

143

execution times of the wvarious primitives are known,
however, a vector of the ifrequency of primitives must be
kept, with one frequency value for each primitive. For
example, if a function reguired three executions of
primitive A, no executions of B, and ten of C, its fregquency
vector would be (3, #, 1#) assuming that only these three
are the only primitives available. The total frequency for
all primitives can be useful only if the frequency of each
primitive is weighted by its relative execution time before
being summed. For example, if primitive 2 reguired 20 units
of time, primitive B 50 units, and primitive C 34 units,
then the freguency vector (3, @, 1#) could be replaced by
the single wvalue 28 X 3 + 30 X 1A = 360. However, since
these values are not known at this time, the entire
frequency vector must be kept.

However, a simple vector may not contain enough
information, because of alternative branches which may be
selected in bounded subtree selection. Each branch could bhe
analyzed independently, resulting in a tree of vectors
resembling the specification tree rather than a simple
vector. Perhaps knowledge or hypotheses about the
probability of taking each branch could be used to weight
the frequency vector so that a weighted average could be
used to approximate the tree of vectors. Either the
expected value or maximum value of the iteration variable of
a primitive recursive specification must be used,

introducing another source of variation.

144

Regardless of how accurate the freguency vector may be,
it does not reflect the best performance that would be
possible with increased parallelism. If two primitives can
be executed in parallel, then the execution of the slower
primitive can be overlapped by the execution of the faster
primitive, and thus would not be a factor in the time to
complete the process step. There are two kinds of
parallelism possible. The first kind arises when two (or
more) different primitives use different resources and have
no precedence constraints. (Obviously, any primitive which
must precede another primitive cannot be executed in
parallel with it.) Besides the already-present precedence
graph, this requires knowledge of the resources used by each
primitive. However, this parallelism comes "free": it is
available on the barest hardware system possible.

The other kind of parallelism reguires duplicate
resources for parallel execution of primitives which have no
precedence constraints. These may be different primitives
or different executions of the same primitive. A fairly
simple characterization of the latter case would be a
companion vector to each freguency vector, containing some
indication of the amount of parallelism possible for each
primitive. Each value in the parallelism vector could be
the number or percentage of each primitive which can be
executed in parallel, where a low degree of parallelism
would indicate that additional processors for those

primitives could cause little improvement. However, a high

145

degree of possible parallelism in a given primitive would
not necessarily mean that additional processors would
increase the speed of the function's execution, because that
primitive might not be the limiting factor for the execution
time.

Finding the limiting factors requires both the
precedence graph of the primitives of the function, which is
known, and also the relative times for the execution of each
primitive, which we will call the time vector. The values
of this time vector, however, are not determined until the
actual implementation of the process in hardware. Yet one
could make an estimate -~ a hypothesized time vector. Rased
on this hypothesized time vector, one could determine the
limiting path in the execution of each function, and the
limiting path of all the functions of the process. Thus the
hypothesized time vector <could be used to forecast the
performance of the process to see 1if it would meet the
performance requirements. A forecasted performance much
better than that reguired would create a high level of
confidence that the performance reguirements could actually
be achieved, 1if the hypothesized time vector is reasonably
close to the actual time vector finally derived. Perhaps
several hypothesized time vectors could be analyzed, to
produce a range of execution times for key primitives.

This analysis of the maximally parallel execution
forecasts the optimum performance in an infinite-resource

system. The final optimization of the application process

146

into an optimum procedure requires knowledge of the actual
time vector of the primitives' execution times, not just the
hypothesized time vector. We must now go down to the
hardware system and back up before this final optimization

and translation is made.

4.7.3 The Design Phase of the Design Cycle

Figure 13 shows these design and optimization phases of
the design cycle.

A design for which the analysis forecasts acceptable
performance is feasible only in the context of the
assumptions made. In order to enhance the probabilities of
these assumptions being correct, the hypothesized time
vector can be given as a performance reguirement to the
virtual operating system process. The frequency vector and
parallelism information can also be given to the virtual
operating system process as information which may be
relevant in certain design decisions.

Going from the virtual operating system to the system
which implements it involves a similar method. From the
performance reguirements passed down from the application
process, and from the specification of the virtual operating
system process itself, can be derived the performance
requirements for the virtual operating system process, which
will in turn be passed on to the physical operating system
process. Similarly, these performance requirements for the

virtual operating system along with the specification of the

147

-oT0ko ubtsep oy3z Jo seoseyd uoriezTurido pue ubissq

TINAIO0dd
Tdd¥ ddZIWILAO

i

SSHO0Yd DOITIddY |

N
0

HIZINTLAO

A

¥

:

030®A SWT3} 1
sks do 3I1TA I -

| HAIISAS d0O LIIA

] I

t

§8d@D0dd SAS 4O

|

SSED0Yd WHLSAS
qydo TYNLdIA

1¢T 2anbTg

m T0309A SWTI H T
sks do sAuyd I

¥dd0 TIY¥OISAHA

TJIIA QHZIWILAO ﬁ
f | WALSXS 4O SAHA |
. I0309A
Wt
SSHDO¥d SAS dO oTEMpIRY
SAHd HZIWILJO] y
R
ssopoad sis WHLSXS
ssepoxd do sAyd xoz AU YMQYYH
As do 3aTA 03J sjubx jx°
ssoooxd Tdde S ;
103 sjuwubx gasad zog sjwba gasd _,
/ > N SsTD0¥d
mmw% _ SSHOOUd WHLSAS HIVMAIVH

148

AMmmHgHmmmm)/
S

osmEH0mMm&\w ON

i

I0309A SWT3 /
pozTsoyujzodiy \

SSHED0dd
NOILYOITdd¥Y

physical operating system process determine the performance
requirements for the physical operating system process.
From these and the hardware process comes the hardware
system, where the final hardware time vector is determined.

This ends the design phase of the design cycle.

4.7.4 The Optimization Phase of the Design Cycle

The hardware time vector now available supplies the
information needed for optimization of the physical
operating system process. From this optimized process the
physical operating system 1s developed, vyielding the
vhysical operating system time vector, one level higher than
the hardware time vector. Similarly, this time vector,
coupled with the virtual operating system process, yields
the optimized virtual operating system process, the virtual
operating system, and the virtual operating system time
vector. Now that the actual time vector is available, the
application process can finally be optimized and then
translated to a procedure. This ends the optimization

phase.

4.7.5 The Integration Phase of the Design Cycle

Figure 14 shows the integration phase of the design
cycle. The procedure is now integrated into the virtual
operating system, providing the initial states of the system
which will interpret it. The maximally parallel process,

which is the optimum for the infinite-resource system, must

149

N OPTIMIZED APPL
o PROCEDURE
[VIRT OP SYSTEM|
initialization

y

INFINITE RESOURCE
INTEG VIRT OP S5YS

T . PHYSICAL BOUNDED RESOURCE
N OP SYSTEM SYSTEM PROCEDURE
VIRTUAL OPERATING
SYSTEM PROCEDURE
HARDWARE e e s
SYSTEM initialization]
¥
INTEGRATED
PHYS OP SYSTEM
¥
PHYSICAL OP
SYS PROCEDURE
integration
L]
INTEGRATED

HARDWARE SYS

implementation

OPERATIONAL SYSTEM

Figure 14: The integration phase of the design cycle.

150

now be shoe-horned into the optimum bounded-resource system.
Here there are two cases: one in which the resources
available are already fixed, and the problem is finding a
system which meets the resource constraints and whose time
is satisfactory; and one in which the problem is finding the
system which meets the time constraints with minimal
resources.

The first case corresponds to shoe-horning a system
onto a currently available machine. Here there is no
advantage in using fewer resources than are available, but
it is impossible to use more. (This ignores any differences
in the difficulty and thus time of scheduling with increased
loading. This also ignores any constraints on the use of
the resources to allow for future growth, but these
constraints could be defined by specifying fewer resources
than were actually available. For example, if only 50% of
180 XK of core may be used, one could simply specify that
only, say, 52 K of core is available.) In this situation it
would be advantageous to double the amount of a resource
used (if that extra were available) in order to save a small
amount of time or to free a different resource for which the
demand exceeded the supply. The time for a process step
would be computed similarly to the infinite-resource system,
except that serialization would be forced not only by
precedence constraints but also by resource constraints.
Any place at which a resource is underutilized would be a

potential place for optimization.

151

The second case reflects the situation in which the
hardware has not been specified. Here trade-offs among the
different kinds of resources must be considered. The cost
of adding a given resource would be balanced by a greater
savings on another resource, or could be justified by
additional parallelism resulting in a savings of time. This
case is more complex than the others, because the cost of
the resources as well as the time is being minimized.

In the 1limit this second case of the bounded-resource
system reduces to the infinite-resource system, where enough
resources have been added to be able to exploit all possible
parallelism.

Do we really need to find the optimum bounded-resource
system? The answer is no: we only need a system which is
good enough to meet the time constraints imposed by the
designer (and the cost constraints, in the second case).
Any system which can be shoe~horned into the available
machine and provide the required response time is adequate;
there is no need for additional optimization to further
reduce the time.

Similarly, when building a machine by adding resources,
once the required time bound has been met, there is no need
to increase the cost by adding resources to increase the
speed.

From the bounded resource virtual operating system one
can develop the procedures which the physical operating

system will interpret. This procedure then is used to

152

initialize the physical operating system. Similarly, the
physical operating system is translated into a procedure
which is integrated into the hardware system. The hardware
system 1is finally implemented in the operational system.
This is the end of the integration phase and of the entire
design cycle. At this point the application process is
actually represented by a program running on a physical

processor with given resources.

4.8 Conclusions

Our functional specification of interacting process
clusters can be used to formulate real-time system problems
and to test proposed design laws which would make specified
systems testable. 2 significant part of the logical testing
for correctness and boundedness can be carried out prior to
real-time testing in order to simplify the required
real-time testing. Some desirable properties of resource
management have been identified. Only the briefest sketch
of the dynamic models that must be developed has been given.
A substantial amount of work remains to be done to complete
this study and to demonstrate the practicality and
usefulness of the design laws. Some further work on
mappings between application processes, virtual operating

systems, and physical operating systems is discussed in the

next section.

153

5. DISTRIBUTED DATA PROCESSING SYSTEMS

The requirements specification process was discussed in
Section 2. Here we will further develop that section's
ideas concerning system (and reguirements) decomposition/-
integration, in the context of the design of a distributed
data processing system, and present an example of a distrib-
uted system design. It should be noted that the system
example presented in this section was designed before many
of the concepts discussed in Sfection 2 were formalized and
in fact served as a motivating force for some of that work.
Thus the purpose of the inclusion of this example in this
document is not to claim that this is the "best" distributed
data processing system but rather to illustrate the effect
of some of the ideas of Section 2 on a particular design

process.

5.1 Introduction

Distributed data processing systems encounter problems
which are unigue among computing systems. Not only are the
problems common to large scale computing systems present,
such as the effective use of system facilities by the users
of the system and software redevelopment in response to
changing technology, but also the problems created by an
often very large <class of wusers with widely differing
application needs. Problems also arise from the desire of

users of a network to communicate with each other to an

154

extent not found in conventional systems, in order to gain
information or share resources. With the added probability
of errant or malicious processes, it seems that the
conventional centralized operating system is inadeguate.
Thus the network designer 1is forced to look toward a
decentralization of the network operating system in order to
solve his problem.

This section will develop ideas about functional
reguirements specifications and their design process which
may be wused in solving these problems of distributed data
processing system design. Design decisions involving
decomposition and integration must be based not only on
functional reguirements, but must also reflect resource and
performance requirements optimization. This section will
also discuss an example of such a dJdecentralized network
system which was originally presented in [¥ra73]. The
discussion will deal with both the design process and the
design itself. Section 5.2 will develop system decomposi-
tion/integration ideas. Section 5.3 will discuss the design
process of the network example to illustrate some of the
system decomposition/integration ideas. Also in Section 5.3
will be discussed the design constraints postulated prior to
the design and their effects on system decomposition/-

integration. Section 5.4 gives a brief description of the

[Kra73] Kramer, John F., A General Structure for
Uncooperative Processes Distributed over a System
Network. Ph.D. Thesis, University of Wisconsin,
Madison, 1973.

155

network itself and discusses some design decisions as they
relate to Section 5.3. 2 more complete presentation of the
design of the network is presented in Appendix C. Section
5.5 will deal with the generality of the resulting network,

and Section 5.6 will summarize the discussion of Section 5.

5.2 BSystem Decomposition/Integration

Clearly, in order for the design process to be
manageable, it must be decomposed in such a way that most
decisions can be made locally, based on data available
within a local area of the developing system specification.
As discussed in Section 2, decomposing the design process
may be done by identifying the "tightly coupled" attributes
of the system and factoring the system with respect to them.
In order to avoid the reqguirements allocation problem, a
system must be factored into subsystems in such a way as to
allow the functional (logical), resource, and performance
requirements to also be factored over the subsystems. It is
also necessary that design decisions affecting reguirements
allocation be made at those points in the design ©process
when there is sufficient data on which to base them, and
that the effects of these decisions be displayed to the
designer.

The design process develops a functional specification
of the application which is consistent with and motivated by

the functional reguirements. There is also a specification

of hardware which is consistent with the resource

156

reguirements, and a mapping of the functional specification
onto the hardware specification which, combined with the
hardware performance parameters, must be consistent with the
performance reguirements. The mapping from functional
specification to hardware may itself need a complex
functional specification, which is factored in the system in
the form of a virtual orerating system specification. We
say virtual because many of its components are abstractions
of the physical resources of the hardware specification;
these abstractions are virtual resources. Thus it is
natural to factor the system into application system,
virtual operating system, and hardware system specifica-
tions, along with mappings from application to operating
systems, and from operating to hardware systems. This
achieves a natural factoring of the concerns of the
designers:

1) In the application system specification the state
domains and the state transition functions are
problem oriented, and are guided by the functional
reguirements.

2) In the operating system specification the state
domains reflect abstract resource types and the
state transition functions reflect resource use and
access methods, and are guided by functional and
resource requirements.

3) In the hardware system specification the state

domains reflect physical resources and the state

157

transition functions reflect the logic and
interconnection of physical resources, and are
guided by resource and performance reguirements.

4) The mappings from application to operating to

hardware systems specifications reflect resource
(virtual and physical) wuse and sharing, allow
behavior and performance effects of sharing to be
displayed to application and operating systems
designers, and are guided by interactions of
reguirements.

Thus we have a start on avoiding the reguirements allocation

problem.

We have defined a formal notation for system specifica-
tion in Section 3 but we have no formalism developed for
resource mappings between system specifications. Thus we
should get some idea of what they look like.

A system specification is a set of interacting
processes containing state spaces and state successor
functions which are elaborated into state components, more
primitive state transition functions, and intermediate state
domain and range sets for the primitive functions. 1In terms
of resources these logical structures need storage types for
state spaces and function domains and ranges, and they need
processor tvpes for primitive function evaluation.
Primitive exchange functions need channel-processor-type
resources. There must also be some type of control in the

resource specification into which we may map the precedence

158

constraints of the primitive functions, the synchronization
of exchange primitive functions, and additional precedence
constraints needed to avoid resource conflicts generated by
shared resource mapping. These resources and control may
themselves be encoded by our notation for functional
specifications, and the resource mapping is then from one
system specification to another. These mappings may be
accomplished with a wide variety of structures. The
mappings may be dynamic, with changes bound either to
actions (function evaluations) in the domain (logical system
specification) or in the range (resource system specifica-
tion) of the resource mapping. There is also a spectrum of
how dynamic the mappings to each type of resource may be;
references to a logical structure may always be mapped to
the same resource structure or they may reqguire a
computation of which resource structure they map to. When
the resources are core and an instruction execution
processor, this spectrum corresponds roughly to that from
compilation to interpretation. Also different mapping
structures may be employed for different resource types, for
different logical components mapping to the same resource
type, and for different granularity of a resource type.
These differences in resource mapping structures occur
because decisions about them are made at different points in
the design process. Thus a resource mapping is a varied
structure which reflects the overall design process. These

remarks apply to both the mapping from application to

159

operating system specification and from operating to
hardware system specification.

The decomposition of the system specification may be
continued by identifying "tightly coupled” attributes within
the functional reguirements and splitting the functional
specifications into 1local areas which are developed
separately. If this splitting is done in a "top down"
manner during the design process, we may develop a natural
correspondence between local areas of application,
operating, and hardware systems based on the mappings
between these systems. This is the decentralized processing
idea; a group of similar or cooperating application
processes are served by an operating subsystem which in turn
is implemented on a hardware subsystem, and the designs of
application, operating, and hardware subsystems have been
coordinated. In order for this type of decomposition to
yield more efficient design steps and ease the problems of
subsequent integration steps, it must be built into the
design methodology. This can be illustrated with the
example in Figure 15. Starting at the original system
specification the design process may go as follows:

Step 1) Elaborate application system into three
subsystems, with decisions based on the functional
reguirements.

Step 2) Elaborate operating system into three
subsystems and elaborate mapping from application to

operating systems, with decisions based on types of

160

Original System

System Spec.

Specification

\

Application Application

System Spec. Elaboration /
/
\

Mapping Mapping
Elaboration
v
Operating

\
Operating
Elaboration

/

\
Mapping
Elaboration

/

Mapping
Hardware Hardware
System Spec. Elaboration .

/

New System
Specification

Application

Subsystems

Appl. 1 |¢=->{ Appl. 2 [¢ -3 Appl. 3

\

Operating
\ L % &Subsystems
Op. 1 |e-30p < -3 0p. 3
Hardware
VY Subsystems

Hard. 1 |¢ -2 Hard.

2 € -3 Hard. 3

Figure 15. Dotted arrows represent subsystem interactions, solid arrows
represent mappings of a specification at cne level onto a
specification below.
process decomposing the system specification in a "top down"
fashion.

16l

This example illustrates the design

resources needed by application subsystems and on types
available in resource reguirements.

Step 3) Elaborate hardware system into three subsystems
and elaborate mapping from operating to hardware systems,
with decisions based on resource and performance
reguirements.

Step 4) The -elaborated operating system and mappings
introduce new resource-sharing effects in the form of added
precedence constraints in application system behavior and in
the form of performance changes. These effects must be
calculated and displayed to the appropriate designers,
allowing them to return to steps 1), 2), or 23) to alter
design decisions; it may be necessary to make an alteration
in order to meet functional and performance reguirements, or
it may be possible to make further optimizations of resource
sharing.

The decomposition of design achieved here serves to
separate further design steps for the new subsystems, and
most interactions of these design steps will occur between a
subsystem and the subsystem(s) below, into which it is
mapped.

The type of design step indicated in step 4) above is
important for system integration, which can account for a

very large percentage of total system design effort [Ste76].

[Ste76] Stephenson, W. E., "An 2nalysis of the Resources
Used 1in the SAFEGUARD System Software Development,"”
Proc. 2nd International Conf. on Software Eng.
San Francisco, 1976.

162

The effects of resource mapping decisions must be display-
able to and controllable by the appropriate designers.
These effects include added precedence constraints affecting
behavior and changes to performance; if these effects are
not controlled at the appropriate point 1in the design
process they will make system integration very difficult,
perhaps necessitating returning to the appropriate point in
the design process and redoing the design. The display and
control of these effects can be computationally infeasible
if arbitrary resource mappings are allowed, so we need to
find constraints on the mappings which ensure that display
and control are possible.

Displaying the effects of resource mapping will be
easier if the mapping is predictable. For example it is
difficult during design to see the effect of a paging scheme
on an application system because it is hard to predict
whether at a given time an address will be in core or on
disc. However with an application-controlled overlay scheme
we can say much more about the behavior the system will have
because we can predict where logical addresses will be at
points in the computation. Motivated by this example we may
find a number of canonical structures for mappings from
application to operating systems which make it possible to
predict, at a given point in a functional (logical) computa-
tion, which resource a functional domain is mapped onto. 1In
these structures, changes in the resource mappings would be

bound to points in the logical computation, and scheduling

163

necessary to avoid resource conflicts would be bound
directly to the logical computation. We refer to these

structures as functionally bound mappings. This idea also

applies to mappings from operating to hardware systems.
With these functionally bound mappings, processes in the
lower level specification are slaved to processes in the
higher level. However there may be processes in the lower
level which are not controlled from above; Ehese may
complicate the task of displaying effects of resource
sharing. For example in an application-controlled overlay
scheme, logical addresses may be mapped into virtual core
but there may be an independent operating system process
which controls mapping of virtual core into a combination of
physical core and physical disc. Thus in order to display
and control effects of resource mapping, we need canonical
structures for operating and hardware systems
specifications. These structures do not necessarily need to
be as restrictive as functionally bound mappings, but they
must allow some control over resource mapping at the func-
tional (logical) 1level, even if this control is implicit.
For example we may allow a paging scheme mapping if the
application designer has adeguate tools to control his
"working set" and "hit rate". A primary criterion for the
canonical structures is their ability to ease system
integration by display and control of the effects of
resource sharing, and functionally bound mappings are the

baseline for this criterion.

164

Estimates of system performance are made by starting
with hardware performance parameters, going back through the
mapping to operating system functions and estimating their
performance, then going back through the mapping to
application system functions and estimating their perfor-
mance. This way it may be difficult to get a good estimate,
depending on the resource mapping structures and on the
complexity of application and operating system functions.
However we may be able to approach performance estimation by
a combination of simulation testing and reasonable resource
mapping structures. These reasonable structures must have a
monotone decreasing performance when demands for resources
increase; in fact we might ask for performance to be a
convex function of resource demand, with performance zero at
infinite resource demand. Then, given a system with
resource sharing, we could do a number of simulations in
order to display to the designer some bounds on performance
as a function of system load parameters. These ideas are
discussed more in section 4. They suggest useful criteria
for canonical resource mapping structures.

We have seen in connection with Figure 15 that we can
decompose the design process and make decisions in local
contexts. However there are nonlocal optimization and
integration steps which must be accommodated by the design
process. For example, several local areas may discover in
elaborating their resources that there are points in their

computations when not all their resources are needed. For

165

them to share these resources reguires nonlocal optimiza-

tion, with nonlocal effects. Decisions about these effects

must be made by an authority not present in the local design
areas. Thus when the design is decomposed we must specify
an authority which can execute design steps making nonlocal
decisions to avoid integration problems. Furthermore the
decisions of these design steps will be reflected in
canonical resource mapping structures which interact with
the structures of local specification areas.

Further development of these ideas must be done in a
more formal context. We need to:

1) Find a formal notation for specifying resource mappings
between system specifications.

2) Find algorithms and methods for displaving precedence
and performance effects of specified resource mappings.

3) Find canonical specifications for resource mappings for
which the algorithms and methods above can provide
useful information.

4) Find canonical specifications for operating and hardware
system processes for which we can usefully display
their precedence and performance effects on the
application system.

5) Discover which of these canonical structures are
reasonable in the sense that performance is a monotone
decreasing function of resource demand.

6) Incorporate these formal tools into design steps for

inclusion in the developing formal design methodology.

166

5.3 Design Constraints of Network Example

A key motivation of the network example is avoiding the
reguirements allocation problem by factoring the system in
such a way that the functional (logical), resource, and
performance reqguirements may be factored over the
subsystems. To ensure such a requirement factoring, Kramer
decomposes the operating system into two operating systems,
the wvirtual operating system and the physical operating
system. He now can present to the applications designer an
abstraction of the system in which the designer sees only
the virtual operating system and can specify his processes
in terms of virtual resources and virtual operating system
primitives, without any concern for the hardware implementa-
tion of the system. Similarly, the hardware designer's view
of the system is application-independent: his only concern
is to implement the physical operating system. The physical
operating system designer's problem is now also clearly
defined. He must map the wvirtual resources onto the
physical resources. Since all three designers have nearly
independent views of the system, minimal constraints are
placed on them in their desire to optimize their subsystems
to their own performance, resource or logical requirements.

The method of specification which the applications
designer uses to specify his processes can be that which was
described in Section 3. The same is true for specifying the

virtual operating system operations. An example of this

167

type of specification for the Kramer network system
functions is given in Appendix D.

The system integration phase can occur when the
applications designer has specified his processes in terms
of virtual operating system procedures which can then be
compiled or translated into physical operating system
procedures. The physical operating system procedures can
then be compiled or translated into machine code which can
be executed. This process 1is illustrated in Figure 4 of
Section 2. It is not clear at this point whether system
integration must take place in this manner or whether
something on the order of a purely functional specification
of the application process can be "compiled" into some
specification of the physical operating system.

Even though a comparatively large amount of freedom has
been given to the individual designers to optimize their own
subsystem, there is no guarantee that all the requirements
will be met on system integration, which <creates the
possibility of a design feedback loop.

Once Kramer has established the factorization of the
system, he postulates the following design constraints:

A. Network Communication

"The designed network must consist of a set of
interacting, bounded, programmable, digital
computer systems with well-defined processes, and
be open to communication with foreign systems

having undefined processes."

168

B. Responsibility factorization
"Responsibility for meeting the postulated design
constraints and any design decisions must be
factored between the network, implementation, and
process designers.”

C. Authority
Each designer must have sufficient authority to
define the effects, on the processes running in
the network, of the interactions for which that
designer has been delegated responsibility."

D. Delegation
"Although processes must be permitted to delegate
to other processes their authority to control
process interactions, the delegating process
always retains the responsibility for that inter-
action and the authority to control the process to
which it was delegated.”

E. Modification
"The network definition must provide for
modification of its definition. The design must
provide sufficient constraints to be able to
delegate safely to process managers all modifica-
tion decisions and authority to control the
effects of such decisions on the processes.”

The design constraints fall into two categories:

(1) Those constraints which ensure some desired

network <characteristics: constraints A, D, and E.

169

Constraint A requires that the network integrity must be
maintained in terms of its own processes and its inter-
actions with foreign processes. Constraint D requires that
no design decision is made which arbitrarily centralizes
authority, thus ensuring a maximally decentralized network.
Constraint E provides a means for network evolution to meet
future needs.

(2) Those constraints whose only purpose 1is to
preserve the decomposition obtained at the beginning of the
design ©process: constraints B and C. Constraint B states
that each subsystem designer will have the responsibility to
meet the other design constraints as they apply to his
subsystem, and constraint C reguires that each subsystem
designer will in fact have the authority to do this. 2As an
example, it would be a violation of the decomposition if the
applications designer could specify as part of his
application exactly how the virtual memory he used was to be
mapped onto physical memory, as this is under the realm of
the operating systems designer. Consequently this action

also violates constraint C.

5.4 Brief Overview of the Network Design

This section will present a condensed version of the
design of the network presented in Appendix D, after which
some of the design decisions will be discussed in terms of

the design constraints presented earlier.

170

5.4.1 System Structures
If the design constraints stated in Section 5.2 are to
be useful, some formal definitions are necessary. A digital

system 1is composed of two parts, a system processor and a

system state. Operators are applied by the system processor

to define a new system state or to construct messages for
transmission to other system states in a set of digital
systems. The execution of a system processor occurs in two
distinct phases. Given an initial system state, the
processor evaluates all operators which apply and produces a
new local system state. Each operator can be executed in
parallel and without side effects on the other operators
being executed. The local system state is then updated by
any messages from other system processors, and the local
interpretation cycle begins again. This seguence 1is called

a system step and transforms the system state into its

successor state. This discrete seguence of states is called

a digital computation. A set of digital computations

represents a digital process. The interpretation cycle of

each system in a set of interacting digital systems is
independent and asynchronous. All inter-system communica-
tion will be defined in terms of asynchronous message
transmission with any desired synchronization explicitly
carried out by the cooperating digital processes. Messages
will be received, after a finite delay, in the same order as
they were transmitted by a given system. Some particular

digital systems are defined as network systems, and a set of

171

such systems as a network. There is a universal simulator
of such sets of digital systems. Thus the system
specification is already in a form that can be studied and
tested. There are no physical implementation constraints on
how many network systems may be implemented on a single
physical system or on how many physical systems are used for
a network or network system.

The network system states are defined as a set of
elements. Fach element can be interpreted as the state of a
synchronously interacting process component of the overall
system process. All system state information and all system
computations are based on these system process elements.
Network system operators are constrained so that at most one
operator will modify a given system state element in a given
interpretation step.

Although we wish our system processors to be
well-defined with respect to their operations on the system
state, we desire also to permit them to communicate with
systems outside of the formally defined networks which are
not well-defined. Such systems are called foreign systems
and are not constrained in their internal structure by the
network designers, except for a communication conventions
they must use if they wish to interact with a network
system. Certain elements of the system state are
housekeeping processes that manage inter- and intra-system
interactions. These elements contain system state

information and are neither explicitly transformed by

172

application programs not transportable between systems in
the network. Those elements of the state that are
explicitly programmed, transformed, and moved from system to
system will be called network (i.e., user) processes. A
network process step consists of a cycle of three system
process steps or phases. Two of the system phases are used
for housekeeping functions and will be described later.
Operators applied during phase two of a network process step
will be called system subprocessors; their effect is local
to that network process state. The complexity of a given
network process step is therefore defined by the correspond-
ing subprocessor. The process state defines the current
address space of the process. Figure 1 in Appendix C is an
informal characterization of one network system.

In review, a foreign system is not characterized (or
constrained) except as a source or destination of messages.
A network system 1is composed of a system processor and a
system state. A system processor is composed of a set of
operators, some of which are subprocessors. The system
state is composed of system housekeeping elements and system
elements interpreted as network (user) process states. A
network consists of an intercommunicating set of such

systems and foreign systems.

5.4.2 Network System Interactions
The mechanism for inter-system communication selected

here 1is gquite similar to the notion of a hierarchical

173

interrupt system. In phase one, the system processor
determines which subprocessors (if any) should be applied to
each network process state in that system and delivers the
appropriate messages (if any) to an interface buffer in each
network process state. In phase two, the system processor
applies the selcted subprocessors to the selected network
process states thus causing them to wundergo a network
process step. In phase three, the system processor performs
the nonlocal services requested (if any) by messages left in
the interface buffer by a subprocessor. Nonlocal operations
are those which have side effects external to a network
process state. Messages may be received by the system
processor in all phases and are buffered until their
delivery in some subsequent system phase one.

The system processor must be able to recognize, in any
network process state, which subprocessor to apply in phase
two, and each subprocessor must be able to recognize its own
state information component in that network process state.
For these purposes, each network process state will contain
one or more objects called control points. 2Although control
points are used for a variety of ©purposes, only those
aspects affecting subprocessor application will be described
here. A control point roughly corresponds to an interrupt
level in conventional systems.

All control points in a network process state are
ordered by priority within that state. Each control point

has an ordered set of channel terminations and buffers

174

associated with it in the system state elements for the
receipt of messages. Depending upon the status of the
control point buffers and also the status of the control
point within a process state itself, messages may or may not
be received by the buffers, and the control point may or may
not be eligible for subprocessor allocation during a
subsequent phase two. The details of message delivery are
covered in Appendix C. The highest priority control point
candidate present in a network process state will be made
active, and the pending message, if any, will be placed in
the process interface buffer.

During phase two, the appropriate subprocessors are
applied to network process states containing the active
control points selected during phase one. At most one
subprocessor is applied to a given process state during any
phase two step. Although many process states in a given
system may be reguesting the same subprocessor, they each
have it applied in parallel during phase two. Whether they
are really serviced in sequence or in parallel is an
implementation decision that affects only the duration of
phase two since no interprocess interactions in this network
system can occur until phase two has completed. All
processes containing active control points will have
subprocessors applied prior to the end of phase two.

Each‘subprocessor transforms only the network process
state to which it is being applied. The applied

subprocessor thus defines the successor network process

175

state. If a system service 1is requested (a nonlocal
transformation), the subprocessor will complete its network
process step leaving a message requesting the service in the
local interface huffer for subseguent phase three
processing. Note that network processes in the same system

will proceed in synchronous parallel with each other, each

completing one process step in each system cycle. Network

processes 1in different systems will run asynchronously

parallel.
During phase three all reguests for nonlocal services

which were left in the interface buffer are acted upon.

There are four types of these services: message
transmission, resource transmission, process state
transmission, and system modification. Phase three ends

when all such services have been completed and the interface
buffers are cleared.

If the interface buffer contains a request for message
transmission, the associated message 1is removed from the
buffer and ‘"broadcast" to all systems but addressed to a
particular control point buffer. The system containing the
control point (destination) buffer will receive it; other
systems will ignore the broadcast. See Figure 2 in Appendix
C. The message has a network standard format and is
represented as a string over a network standard character
set.

Although messages broadcast during phase three are

subject to unspecified transmission delays (unless messages

176

are intra-system), the order of transmission between any two
systems 1is preserved in perception. In the receiving
system, messages are placed in channel termination buffers
and used to update control point buffers during every phase.
As far as network processes are concerned, message
transmission is transparent to system boundaries, and
network processes may cooperatively move from system to
system without losing communication or restricting their
interactions.

A network process defines the local environment and
address space for subprocessor transfromations. The
interface buffer serves to factor the subprocessor
transformations which are 1local to the process state from
the system processor services which have effects outside of
the process state. A process state will contain one or more
control points, the status of which may be modified during
system phase one as a result of control points in
interprocess communication. Control points also serve to
delimit uniguely a portion of the network process state,

called an expression state. Within this portion of the

process state the designers of the corresponding
subprocessor are responsible for defining both the
representations and the transformations which that
subprocessor will carry out on those representations. All
of the state information required for a subprocessor to
continue a computation must be part of any corresponding

expression state. A network process state thus contains an

177

interface buffer, a set of expression states and one or more
control points.

Many freedoms are given to the network process designer
involving complex process interactions, including manners in
which to deal with uncooperative processes and to exploit
known instances of cooperation. These are detailed more
fully in BAppendix C. In short, a single network process is
capable of supporting all computations that can be carried
out on a conventional single-processor, multiprogramming
system.

There is a subprocessor, called GP (General

Programmable), in every network system. The GP expression

state can be programmed, in the network system language, to
provide on request all network services. GP expression
states thus can specify invariant computations despite
movement of the containing network process. The network
system language thus plays many roles such as the following:
a) The network job control language.
b) The network high level "machine" language.
c) The network implementation language for operating
"gsystems".
d) The base language for definitional extension via
source language macros or compilers.
e) The base language for evolutionary augmentation.
f) The system invariant computation language.
The problem of deciding when a given interaction is

improper can only be resolved by another process aware of

178

the interactions. The system can not resolve conflicting
clains of one process with respect to the behavior of
another process since such resolution may reguire intimate
knowledge of the specific applications. In order to
guarantee resolution there must be a responsible " authority
who can control and manage interactions between the warring
parties. Our system imposes a hierarchy of uniquely
designated responsible authorities in the form of a network
process tree, as in Figure 4 in Appendix C, to make such an
arbitration. All authority rests initially in the root of
the tree. Although delegation to a child process is
allowed, each root of a subtree remains responsible to its
parent for the interactions of the processes in that
sub-tree. An uncooperative root of a subtree will still be
accountable to its parent process. To insure this
accountability the network provides another subprocessor,

the A0 (Accountable Object) subprocessor. The details of AO

are available in Appendix C.

The process tree can both grow, by creating new
"leaves", and shrink, by destroying "leaves". An existing
process may move, as permitted by the parental authority, to
any network system known to that parent. Thus both the
process tree and its distribution over the network systems
can change dynamically as a result of process computations.
Since these are intrinsically non-local operations, the GP
sub-processor can only reguest them. The responsibility for

carrying them out has been delegated to a PR (Process

179

Receive) process and its corresponding PP subprocessor.
Each non-foreign network system will contain one of each.
The GP reqguests for such service thus take the form of
messages to the local (to the network system) PR process.
Process birth and death and further details of the PP

sub-processor are available in Appendix C.

5.4.3 Design Decisions

As was indicated in Section 5.2, allowing applications
designers the ability to specify their processes 1in a
hardware independent manner accrues many advantages.
Hardware changes are allowed to take ©place without the
necessity for rewriting applications, allowing a consistant
virtual "machine" throughout the network which permits a
process to move from one system to another to exploit
special hardware features. Perhaps more important from a
design standpoint, the network remains clearly factored into
the subsystems described in Section 5.3, allowing for local

optimization to take place at all levels.

5.5 Generality

The system postulated in 5.3 and described in 5.4 seems
general enough for a large variety of applications and, with
the ability for self-modification, it would seem it could
meet future needs. In addition to the generality it does
allow for specialization in terms of special ©purpose

hardware systems.

180

The design process and the resulting network seem to
indicate that many of the problems inherent in a distributed
data processing system can be dealt with effectively in a

decentralized network operating system environment.

5.6 Summary

The design process of the Kramer system could be

summarized as follows:

1) Decompose the system into subsystems over which
the reguirements can be factored. This
necessitates the division of the operating system
into a virtual operating system and a physical
operating system.

2) Postulate design constraints so that subseguent

design decisions in all sub-systems will
a) preserve the external reguirements, i.e.,
well-definedness, provision for evolution, and
decentralization.
b) preserve the decomposition obtained in 1.

3) Develop the design or specification of the
subsystems to the point where integration can take
place, i.e., the translation of application
processes into virtual operating system processes
and again into hardware processes, as illustrated
in Figure 4 of Section 2.

Once again, to the extent that (1) is accomplished without

side effects, (2) will be correspondingly easier. This

181

design process allows for local optimization of subsystems
as well as local testability, in the sense that application
processes can be tested on a "virtual" machine independent
of implementation, and the mapping of virtual resources onto
physical resources can be tested in the absence of
particular application constraints.

Our functional specifications can describe the
resulting "Kramer Systems” and processes. The need for
decomposition into application (again decomposed if needed),
virtual operating, and physical operating systems lead to
additional "good design"” principles for reqguirements
specification, i.e., state requirements in terms of such

models.

182

6. THE DESIGN SCHEMA

6.1 Introduction

In this section we deal with the methodology of system
design primarily in the context of the formalism developed
in the previous sections. We are interested in a general
strategy, more formally a design schema, to be realized as
an advanced set of tools for the systems designer. Our
development of this strategy is intended to be as unbiased
as possible with respect to the particular aims of a given
designer or to the ultimate application of the systems which
he specifies. Further, we want to restrict ourselves to
design technigues which maximize the possibility of local
analysis and testing of system modules throughout the course
of a top-down system definition. Thus our purpose here will
be to explore those properties which we are already prepared
to require of the proposed design package in order to

identify the directions of future research in this area.

6.2 Design Processes

A key concept in this discussion is that of the design
process, which is the second state in the development,
process. In the most general sense we can define a design
process as a Seguence of analyses, decisions, and
commitments (all design steps) which start with a formal
requirements specification and lead to a formal system

specification implementation. As discussed in section 2,

183

there is substantial overlap between the reguirements
process (which may also carry out part of a design process)
and the design process itself. Much of the discussion of
the formal requirements process steps in section 2 is
directly applicable to this section. Obviously there are
many design processes which can lead to a single product,
and many products which can satisfy a given set of system
requirements. Moreover we may characterize these design
processes grossly in terms of such factors as cost, total
human effort expended, and success of the product in meeting
reguirements. However, it becomes apparent that we must
find it difficult indeed to model a design process after the
fact if the sequence of analyses and decisions mentioned
above 1s ©poorly structured, for example, as with decisions
made by the designer with an uncertain or imprecisely stated
impact on future decisions. We could (and in current
practice usally do) have design decisions which are recorded
only as informal statements or which are presented in no
tangible artifact at all. Furthermore, given poorly
structured design technigues, if we choose to restrict the
evolution of design processes 1in order to control some
function of the contingencies of the design steps (such as
cost or time incurred in executing the product software),
then we face an even more complex problem.

Since our goal is in fact to provide design laws which
will allow us to satisfy system requirements, we are

inevitably 1led by the arguments of the preceding paragraph

184

to demand that steps in the design process step can be
determined by criteria imposed by the design laws and
systems requirements. Viewed in this respect the design
process shares features with the computational processes
described in earlier sections. In particular, we have
functional specifications as the states of the design
process, transitions between these well-defined states
(carried out by the designer-aided digital computations),
and finally possible interactions between asynchronous
design processes.

The major difference between design processes and the
processes specified in section 3, apart from the difference
in state values, 1is that in the former processes, state
transitions (design steps) cannot be guaranteed to be
algorithmic (finite) or bounded in computation time. This
inability to bound computation time results from the
potentially complex nature of many design steps, for which
no effective procedures exist. Further, human designers can
carry out design steps that no machine can do and are not
absolutely required to succeed. A simple illustration would
be an optimization step in which a design procedure may
search in vain for an impossible optimization specified by
functional requirements. Thus the need for human
intervention in design steps makes a definition of these
step procedures by strict mathematical algorithms unattain-
able. We summarize by saying that well-defined process

steps, the termination of which can be decided, are a

185

minimally acceptable framework for the conceptual and

practical formalization of intended design laws.

6.3 Design Steps

Some new features which we wish to impose on design
processes can best be introduced by first giving a review of
the types of design steps which might occur within these
processes. This cursory review is not meant to imply that
to carry out a design step is a trivial matter. On the
contrary, a great deal of design and computational effort
may be involved. We have discussed already in section 2 the
decomposition and integration of functional specifications
and corresponding design processes; these will be elaborated
in section 6.4. In the ©preceding paragraph we also
mentioned briefly optimization steps, to be treated more
fully in section 6.4. Interactions with other design
processes, at the intermediate steps of a design process,
must also be included to compensate for prior decompositions
into loosely coupled requirements. The binding step corres-
ponds roughly to implementation of some entity in terms of
another, as in the binding of control to a particular
seqguence or 1in replacing a function by a procedure. In
summary we have the following kinds of steps:

. Decomposition: factoring specifications

Integration: composing specifications
. Optimization: finding a better specification

. Interaction: inter-design-process communication

186

. Binding: encoding a design decision by elaboration of

detail.

We will require that our formal representation of
processes and systems reguirements be amenable to several
types of analysis in conjunction with each of the kinds of
steps above. In particular we want to know whether the
design step is able to meet the reguirements under the
constraints imposed by previous design decisions. We also
want to be able to subject the system to simulation or other
investigation in order to proceed intelligently with further
decisions. However, in the event that a design step fails,
we must be prepared to perform it again with a new set of
parameters, or if that fails, to retreat to some earlier
design step, repeat it with new parameters and move forward
again. Finally, it is apparent that if design step computa-
tions, analyses, and simulations are mechanized then much of
the cost and time required in systems design can be reduced.
Also we can minimize the introduction of errors and maximize

the ability to detect errors.

6.4 Decomposition, Optimization, Integration

In this section we will provide a seqguence of design
steps which might typically be applied to a simple
functional specification in order to reduce it eventually to
a set of procedures for evaluating the function originally
defined. First, by way of example we will deal with a

single expression which consists entirely of primitive

187

functions other than exchange functions, thus remaining at a
single 1level of abstraction and ignoring for the moment the
more complex issue of asynchronous interactions. The latter
subject will then be approached within the scope of a set of
design tools dealing with exchange functions. The three
types of design steps which we now treat involve
decomposition, optimization, and integration. Decomposition
of functional specifications into modules (where we leave
modules undefined for present purposes) is based here upon
the ability to perform different component computations of
expression evaluation in parallel, a key factor in subse-
guent optimization operations. Figure 16 shows the computa-
tional precedence graph for a particular expression
consisting entirely of primitive functions. This graph
indicates that evaluation of a parent node awaits the
evaluation of its decendent nodes, and that the descendent
nodes of a given parent may be evaluated in parallel. An

unsophisticated approach toward creating system modules

| f |

SIS
AN

Figure 16. Precedence graph for the expression
f(g(h(a,b),g(c,d)),h(c,d),f(g(a,b),9(c,d),g(a,b)))

188

(that is, toward creating a new set of functional
specifications which reflect the potential for computational
parallelism) is to assign a module to each node in the
precedence graph. In the formalism of preceding sections,
this would correspond to modelling the state successor
function applicable to the expression of interest by an
interacting complex of degenerate system state successor
functions. (A more sophisticated decomposition approach
might involve a recursive procedure which could be applied
to the expression 1in several states. The development of
such an approach is a topic for further research.) We have
thus described the decomposition process which comprises the
first design step of Figure 17.

Our first type of optimization design step exploits
computational parallelism in a simple way. It constitutes
the second design step of Figure 17. For the sake of
illustration let us assume that we are concerned with the
evaluation of the expression f(g(a,b),g(c,d),g(a,b)), a
subexpression of the one in Figure 16. Since the first and
third arguments of the function £ are identical, we only
need to evaluate one argument and save the resulting value
so that the same computation does not have to be performed
for the other argument. Whether -this optimization, or any
other type to be discussed below, will in fact be performed
depends on the functional requirements, since the
optimization may increase the computation time unacceptably.

In the above example, however, the added complexity of

189

saving the result would generally be exceeded by the cost of

performing the evaluation twice.

formal systems specifications

formal systems specifications of a maximally
parallel complex of modules

y

optimized specifications based upon elimination
of identical functions with identical
arguments

J

optimized specifications based upon elimination
of separate processors for each evaluation
of a function

optimized specifications based upon time or
space multiplexing of asynchronous
processes

virtual systems for running virtual processes

procedures and data bases

Figure 17. Steps in an elementary design process.

The same expression which we used above also serves as
an example for a second and subseguent type of optimization,
namely elimination of separate processors for identical
functions with different arguments, as g(a,b) and g(c¢,d) for
the function f above. Here the savings in the number of
processors needed for the computation is somewhat offset by
the complication introduced in the state space as well as by

some loss of parallelism. Presumably this optimization

190

could be carried out mechanically, and the result could be
demonstrated, again mechanically, to fulfill the functional
requirements. This is an example of how analyses interact
with functional requirements and design laws in determining
the outcome of a design step.

We can include two subsequent types of optimization in
our design strategy. Rriefly, one is the storing of results
of identical computations (in the object system) in one
location for later wuse (by the object system). This
necessitates the use of file managers and 1library managers
in the system, which could be introduced in an automated way
as part of the design step, thus avoiding additional
responsibility on the part of the designer. The next
optimization, potentially the most complex to carry out, is
the combination of asynchronous parallel systems into a
single system through time multiplexing or space multi-
plexing. (This type of step 1is «clearly a kind of
integration step also. However, integration steps 1in
general need not be optimization steps.) The motivation for
this last kind of optimization is obvious when we recall
that functional specifications were initially factored into
the maximally parallel form. This form is in general an
unrealistic model for any but the simplest of systems
because of the great expense of implementing such a system.
The tasks entailed in automatic methods for accomplishing
this system composition, based upon the formalism developed

so far, is a subject for further study. Finally, we mention

191

briefly the last two steps of the design process of Figure
17. These are the c¢reation of virtual systems for the
optimized system specifications and the creation of
procedures and data bases within these virtual systems.
These two steps thus complete the entire process of
transforming the original functional specifications into
procedures operating in virtual address spaces. However, we
have not indicated how the procedures and data bases are to
be mapped onto the physical hardware, since our design
process is concerned with the logical part of reguirements
specifications.

We now address the gquestion of how user-defined
exchange functions are to be treated in the framework of our
design schema. We have two main concerns with respect to
exchange functions and the associated asynchronous inter-
actions which they determine. One is the detectioon and
prevention of 1logical blockage, i.e., deadlock situations.
The other is the possibility of integrating into single
systems those interacting systems which have been defined by
independent functional specifications. This subject is
treated in section 6.5.

The subject of logical blockage is discussed
extensively elsewhere in the text, especially in Appendix B,
where sufficient but not necessary cénditions for prevention
of logical blockage are derived with respect to functional
specifications. The primary motivation for introducing

allowed (see Appendix B) specifications is to avoid the

192

computational complexity of deciding in the general case
whether or not a particular functional specification is
subject to deadlock. Thus allowed specifications define a
significant subset of all unblocked sets of interacting
processes. Yet it is not difficult to devise fairly simple
examples of specifications which do not introduce deadlock
but which on the other hand are not allowed specifications.
Since the latter specifications may be of interest to the
systems designer we will propose the following set of
flexible design tools for dealing with exchange functions.
We assume that a designer wishes to test his functional
specifications for the possibility of deadlock. First, if
the specifications are found algorithmically to be "allowed"
then the task is accomplished. Bowever, if the
specifications are not "allowed" then the designer can be
gueried whether or not the specifications should be tested
exhaustively for blockage, a procedure which is feasible
only in cases where relatively few exchange functions are
involved. Next, 1f the specifications are found to be
unblocked, then the designer may be satisfied or he may ask
that the specifications be converted via an eguivalence
transformation to allowed specifications. On the other hand
if the specifications define blocked processes, then the
design tools should present to the designer some possible
transformation operations for preventing blockage, namely by
permitting a set of asynchronous interactions restricted

with respect to the interactions associated with the

193

original specifications. The latter transformations are
clearly not edquivalence transformations, and there may be
many possible choices among them which can prevent blockage.
Of course, it is possible that the designer may wish to make
more comprehensive changes to his functional specifications
and check them again for blockage by the design process just

described above.

6.5 System Integration

We now introduce a type of integration design step
which is possible only in functional specifications which
define processes that interact via exchanges. Specifically,
we are interested in detecting processes which by virtue of
their specifications must interact in locked step fashion as
described in the beginning of section 4. (Note that
integration steps discussed previously have been intrasystem
and that the type now discussed is intersystem.) A necessary
and sufficient condition for locked step interaction can be
specified very briefly as follows. If we have a set of
functional specifications which define a set P of
asynchronously interacting processes, then we <can <consider
the set S of all subsets of P which are themselves
unblocked. Any group of processes T which for every
intersection of pairs of members of S is either wholly
contained in that intersection or wholly excluded from that
intersection constitutes a set of processes in locked step.

Intuitively, no member of T belongs to an unblocked process

194

in S which does not also contain the other members of T.
Thus the processes of T must proceed with a fixed ratio of
system steps. (Further detail and examples will be provided
in a subsequent report.)

It is of interest to note that intersections and unions
of members of the set S above may in general be blocked or
unblocked. However, in those fuctional specifications for
which all exchange interactions are deterministic (as
described in section 4) all intersections and unions of
members of S8 are also unblocked and hence in S. Note,
however, that this is a very restricted type of interaction.
(These topics will also be expanded in a subsequent report.)
The main inference which can be drawn from the above remarks
is that in general we cannot integrate unblocked sets of
processes to form larger unblocked sets of processes but
must perform for the larger system the analytical design
steps dealing with exchange functions previously discussed

in section 6.4.

6.6 Design Process Summary

Our main purpose in this section has been to show that
well-defined design steps could minimize the time, cost, and
error susceptibility associated with systems design. We
have also tried to show that automation of design steps
could relieve the systems designer of tedious responsibil-
ities by providing detailed analytical information at each

step in the design, of <course with the possibility of

195

iterating steps, and by providing feedback on the
conseguences of design decisions made interactively by the
designer. We have seen many parallels between the formal
reguirements process steps of section 2 and the design
process steps of this section. This similarity results from
the fact that the design processes which we have discussed
are the 1logical component of the reqguirements process. We
have also mentioned several gquestions which must be
addressed in future research as we attempt to elaborate and
formalize the process steps of the design schema further.
In particular we shall develop design tools which deal with
exchange functions in order to cope with the difficulties of
characterizing the ©possible behaviors of asynchronously

interacting processes.

196

7. CONCLUSIONS

The preliminary study described in this report provides
a conceptual framework within which a research program to
address many of the critical issues can be developed with a

reasonable confidence of success.

7.1 Summary

We have identified a variety of different processes
(each with its special constraints and associated design
laws and transformations), an initial hierarchy of system
properties (each based on aspects of real-time and
distributed systems), and a formal functional specification
system (meeting the constraints arising from the processes
and system properties). A preliminary exploration of how to
use these concepts in the design and analysis of distributed
real-time systems opened up some new and highly relevant

research areas.

7.2 Evaluation

The probability of success in meeting research
objectives of this contract has been increased to a
satisfactory level, and the plausibility of this approach
has been substantially supported. There do not currently
appear to be any potentially fatal weaknesses in this
approach. It does not address all relevant issues in the

design, but those that are addressed are significant and of

197

potentially very high payoff in terms of cost, time,
reliability, and testability. There is reason to believe
that extension of BRMD problems to distributed real-time
systems can be brought wunder intellectual control and

effective management.

7.3 Final PReport

This final report extends the results reported in a
previous special report and presents them in a more formally
integrated way. We have not tried to extend our results
beyond the requirements of the design processes or to new
system properties. We have completed our survey of the
issues, critical problems and their potential solutions for
the processes and properties introduced in this report. A
more global reseach plan for addressing theses issues was

presented in section 2.

7.4 Future Work

We plan to continue work on a modified contract beyond
that described in this final report. A research proposal

for this future work is given in this section.

7.4.1 Introduction

A brief review of the background for the continuation

of this work may help.

198

7.4.1.1 Current Status

We are currently working under Army PResearch Contract
DASG-60-76-C-0@#80 with the Rallistic Missile Defense
Advanced Technology Center, Huntsville, Alabama. These
problems have been addressed in that contract.

A brief summary of the current status of this work is

given below.
Development process. A discrete process model has
been developed.

. Requirements specification. A top-down derivation
of some essential reguirements on requirements
specification has been developed. Some typical and
critical steps have been identified as candidates
for methodology improvements.

. Formal specifications. A formal functional
specification language and interpretation has been
developed. This formalism allows specification of
asychronously interacting systems and processes at
varying levels of abstraction and appears to be a
suitable vehicle for developing our methodology.

. Design Process. Some critical steps have been
identified and a top level characterization of the
process has been obtained. The crucial aspect is
"most local" testability of design decisions.

. Critical properties of specifications. 1In addition
to the usual properties of a specification itself,

we have explored some additional properties reqguired

199

of the specified system. The most basic of these is
that the systems in the complex do run and complete
their process steps and can be shown to do so at the
specification level (i.e., the guestion of whether
the specifications really specify a system complex).
Preliminary design laws to ensure this behavior and
its testability have been developed.

. Top-down methodology development. An approach to
the development of a suitable methodology and design

science has been explored.

7.4.1.2 Objectives

The long term objectives of this research (see section
1) are reasonably clear and need little interpretation. The
major problem lies in quantifying such goals and measuring
progress toward them.

The short term objectives are designed to build on our
previous results and extend the domain of the specified
system properties testable at the specification level, to

critical problems identified by the previous work.

7.4.1.2.1 Define DDP Design Theories

The design process that accepts abstract functional
specifications and produces DDP process specifiations must
be elaborated to provide the basis for the specification of
methodology tools to support it. This study must be top

down and systematic with respect to the selected properties.

200

This objective must be met prior to tool development and
prototype demonstrations required in the long term

objectives.

7.4.1.2.2 Define Critical Real-Time Properties
Performance testing and prediction are a vital part of
the development methodology. We must find design laws that
will enable us to model, analyse and predict performances
from specifications. We must also find design laws that
simplify the reguired real-time performance testing process

for DDP systems.

7.4.1.2.3 Conduct Reguirements Analysis

We plan to extend current studies of reguirements
specifications process and its associated methodology, and
develop specifications for tools and reguirement specifica-
tions. The resulting specifications should be suitable for

input to the design process discussed above.

7.4.1.2.4 Define Evolutionary Processes

Changes at requirements, design, implementation, and
operational levels are inevitable. If we design for change,
we may decrease its impact and increase the domain of
feasible changes. Evolutionary processes that will support
such changes at each of these levels must be designed.
Again, the necessary price will be accepting sufficient

design laws to allow evolutionary process models to be used.

201

7.4.1.2.5 Identify Potential BMD Payoffs

Plausible arguments must be developed to support
estimates of BMD payoffs. The important impacts of
developing methodology on the developments of real-time DDP

systems must be identified.

7.4.1.3 Research Requirements

The previous work on contract DASG-60-76-C-#880 will be
continued and extended to real-time systems. 1In each of the
areas discussed below, critical issues will be identified
and potential solutions developed in the context of the
previous work. In each area, the critical comparison with
other representative state-of-the-art methodologies will be
made, and the potential impact of this work on Rallistic

Missile Defense problems will be identified.

7.4.1.3.1 PDistributed Data Processing Design

The contractor will develop procedures useful for
transforming data processing subsystem reguirement
specifications into process specifications for a network of
virtual, high level, machine-independent systems. The
specifications and procedures should be suitable for
designers to encode and analyse functional assignments to
nodes and to processes within a node.

This design process will include system decomposition

and integration steps as well as canonical generation of

202

both control and data structures. Functional analysis and

simulation procedures are also reguired.

7.4.1.3.2 PReal-Time Systems

The contractor will identify critical properties for
real-time systems that, if present, will decrease required
real-time testing and increase the =scope of effective
testing against reguirements. Sufficient conditions on the
development process to ensure these critical properties in
the resulting design, and corresponding design laws to make
them effective will be developed. Tools for applying the
required analysis and testing will be specified.

Dynamic models suitable for either analysis or simula-
tion must be developed, and design laws sufficient to make

the models applicable must be developed.

7.4.1.3.3 Evolutionary Processes

The contractor will identify critical specification
properties that, if present, will 1limit the impact of
evolving reguirements or design changes. Sufficient
conditions on the development process to ensure these
critical properties in the resulting specifications, and the
corresponding design laws to make them effective will be
developed. Tools for applying the reguired analysis and

testing will be specified.

203

Meeting this requirement will involve a formalization
of such evolutionary processes and a careful structuring of

interactions in the evolving system.

7.4.1.3.4 PRequirements Analysis

The contractor will assess the impact on the data
processing subsystem requirement specification of the
properties and conditions developed above. The contractor
will specify development guidelines and analysis tools
sufficient to ensure these properties and conditions.

EBach system property reguired by the development
methodology may generate design laws or guidelines for any
previous stage of the development process. Some of these

will even have implications on reguirement specifications.

7.4.2 Overall Approach

The general approach described by the previous contract
reports will be followed in this research work and appears
to be a satisfactory basis for this work. BRecause of the
complex nature of this research, details of the approach
must be produced, tested, and elaborated during the work.
We can identify some of the required tasks discussed below.

Undoubtedly others will also be reguired.

7.4.2.1 Formal Specifications
The formal functional specifications previously

developed must be extended as reguired to support the other

204

tasks. This work will produce a specification language and
procedures for analysis and simulation of the specified
systems.

Since the formal specifications form the representation
medium for encoding reguirements and design decisions, we
must study equivalence relations as a foundation for
optimization of the design process. More relaxed sufficient
conditions for algorithmic implication will be developed and
extended to characterize more dgeneral system complexes.
Formal functional simulational procedures must be developed
that allow study of the behavior of specified systems at any

level of abstraction.

7.4.2.2 Distributed Data Processesing Design
Both static and dynamic models for system decomposi-
tion/integration will be developed to support performance
impact analysis of proposed design decisions. Procedures
for encoding control and data structure design decisions
and their organization into a formal automatable
methodology and reguirements for such tools will be

developed.

7.4.2.3 Real-Time Systems

There appear to be three aspects to this task. The
first 1is the analysis of critical reflex paths in a
specified system to demonstrate that they are bounded and

provide a model of performance coupling with other paths.

205

The second is to simplify the performance surface (e.g., to
ensure that it is convex) and thus simplify real-time
testing. The third is to find sufficient design laws to
minimize the required real-time testing. We plan to pursue

all three possibilities.

7.4.2.4 Evolutionary Processes

This 1is a relatively unexplored area and the critical
issues must be identified. Our formal specification
methodology will allow us to define a domain of evolutionary
processes. We will then develop sufficient conditions such
that the changes can be analyzed, controlled, and automated
with minimal and predictable impact on the remainder of
specifications. The model for virtual networks involved in
DDP design will also be required to define potentially

reachable evolved systems.

7.4.2.5 Reguirements Analysis

The regquirements methodology based on our formal
specifications will be elaborated and a small (hand-worked)
example will be developed as an illustration and as a source
of experience with methodology. Additional analysis and

simulation tools will be specified.
7.4.3 Critical Issues
The following are some of the critical issues to be

addressed.

206

7.4.3.1

7.4.3.2

7.4.3.3

Distributed Data Processing
Eguivalence. What are equivalence classes? “Which
members are optimal with respect to performance
requirements?
Distributed data and control models. How suitable
are the proposed virtual networks? What canonical
structures are sufficient?
Decomposition/integration models. The decomposition
into application and virtual operating systems
results in coupling functional paths via resource
contention. The virtual (and physical) operating
systems must make such contention analysable.
Functional simulation. What technigues are

applicable and how can they be exploited?

Real-Time Systems
Conditions for path flow analysis and prediction for
boundedness and performance.
Resource mapping and contention resolution proper-
ties required for simple performance surfaces.
Interaction conditions that minimize, localize, and

simplify real-time testing.
Evolutionary Processes

Definition of domain of evolutionary processes.

Localization and delegation of design decisions.

207

. Specification analysis of reguired process
invariances.

. What are reguired process invariances?

7.3.4 Reguirements Analysis
. How to develop example prior to development of
methodology tools.

. How to compare with current methodologies.

7.5 Acknowlegements

The author gratefully acknowleges the assistance of
many colleagues, former students and present students in
developing the concepts in this report. It is not feasible
to mention them all here. I do explicitly acknowlege the
many valuable discussions and contributions of Prof. Pamela
Zzave at the University of Maryland. My research assistants
at the University of Wisconsin have, of course, been of
substantial assistance in preparing this report and are John
Compton, Bill Hibbard, Cynthia Hintz, Manfred Klopprogge,

James Maki, and Wolfgang Weber.

208

APPENDIX A - FUNCTIONAL PROCESS SPECIFICATIONS

The functional notation which we use for specifying

processes is given by the following series of definitions.

Definition: A value space V is an unspecified primitive set.

We use Vi =V for i =1,2,...,n.

Definition: A state component space zi = P(Vi) is the power

set of V., and a state component o; E zi is a subset of v, -

Definition: A state space) = X.

—i=1zi is a cross product of

state component spaces, and a state o ¢ Z is an n-tuple

(o 2,...,on) of state components.

19

Definition: A process is a pair (),f), where) is a state

space and £ is a (non-deterministic) state successor function

which produces a state ¢' when applied to a state o.

f is much like a relation on) x) except its output o'
may depend on interactions with other processes. In the non-
interacting case f would be a relation on | x }. 1In either

case we need to define some notation for specifying £f.

Definition: f is specified by an m-tuple (gl,gz,...,gm) where

g.

;= (Di’Ri’fi) with Dy/Ry _ {1,2,...,n} and fi is a

(hon-deterministic) component successor function with domain

X Xk and range ,X Zk. f is specified by (gl,gz,...,gm) as
keDi keRi

- 209 -

follows: f(Gl,az,...,on) = (ci,oé,...,cg) where

0! = lit;imPi(fj((oK)KeDj))~ Pi(fj((oK)KsDj

)) represents the
projection of fj((OK)KeDj) onto zi if i e Rj' and is the empty

set ¢ if i ¢ Rj.

Definition: A component successor fi may be specified by an

L-tuple (fil’fiz""'fiz) of value successor functions where
fi. has domain Z Vk and range X Vk. fi is specified as

J KeD, KER,

i i
- . = '
follows: fl((OK)KeDi) (OK)KeRi where for each K ¢ Ri'
o, = U (U PK(fi'(Z)))° Similar to the previous
1<j<k ze X Og J
SeDi

definition, PK(fij(Z)) represents the projection of fij(Z) onto

\Y% Note Ze X o, is a tuple (2) g p. With Zg e o \%

K SED. S Di 5 S — 'S

i
We have defined ways of decomposing a state successor £
of a process (),f) into component successors fi, which are set
functions, and if desired into value successors fij' which are
element functions. The fi and fij in a specification may be
left as primitives or may be decomposed into trees of lower

level primitives by operations of composition, subtree selection,

and primitive recursion.

Definition: A function f may be specified as a composition

f(x) = h(gl(x),gz(x),...,gk(x)) where domain f = domain g,

1 < i<k, range £ = range h, and domain h = X range g, .
i

1<i<k

- 210 -

This may be applied with non-deterministic functions, and for

f in a decomposition tree of an fi or an fij'

Definition: A function f may be specified by subtree selection

£(x) = (g (x):h;(x),g9,(x):h, (%) yoeergy_q (x)shy 4 (%) rhy (%))
where domain f = domain 9; = domain hi' 1 <i <k, range f =
range hi' 1 <i<k, and {true, false}l = range g5 1l <i <k-1.
This specification models a flow of control which, in terms of

if-then-else, is

f(x) = if gl(x) then hl(x) else
if gz(x) then hz(x) else

if gk_l(x) then h, ,(x) else hy ().

This may be applied with non-deterministic functions, and for

f in a decomposition tree of an fi or an fij'

Definition: A function f may be specified by primitive
recursion if its domain can be expressed as S x D where S is
ordered by n: 8 - N, N = the positive integers. Then f is
specified as f(s,y) = if n(S) > 1 then h(s,y,f(m(s),y)) else gly)
where m: S + S, n(m(s)) = n(8) - 1 if n(s) > 1, range f =

range g = range h, domain g = D, and domain h = S8 x D x range f.
This may be applied with non-deterministic functions if the

restriction on m is obeyed, and for f in a decomposition tree

- 211 -

of an fi or an fij with the proper ordering on component spaces
and value spaces.

The idea of the value successor function may be applied
more generally. A component successor function may be decom-
posed by the operations of composition, subtree selection, and
primitive recursion. The primitives into which it is so decom-
posed may themselves be functions whose domain and range are
spaces of sets, similar to component successor functions.

These primitive functions may themselves be decomposed into
value functions. More precisely if g: X SK + X Ty is a

KeD KeR
function occurring in the decomposition of a component successor,
with S = P(Vy), T

be decomposed into an 2-tuple (91’92""’91) where gj has domain

g = P(VK) defined as power sets, then g may

X V., and range X V,,. g is decomposed as follows: g((o,)) =
Z g — 'K K
KeD KeR
(o)) where for each K ¢ R, o0, = U (U P,(g.(2))). P
K"KeR K liji% ze X 0 K73
SeD
is a projection operator as defined previously.

KeD

K
s

The notation developed for component successors and value
successors is rather cumbersome and a clearer notation is useful.
For example a state successor function f: 21 X 1o % L1z > Ly % L,

may be composed of £ £ £ and £, as:

ll 2! 3! 4

£ 1y < Iy xly3 v iy xlyxis s

Fh
w
~1
N
X
~1
S
+
~1
|._l
X
~1
N

- 212 -

Following this would be decompositions of the fi. For the
component successor fl we could specify value successors fll

and £ as:

12

f..: V., xV, =V

1t 1 V2 T
ool v
le' 1 % V2 + Vy

The operations of composition, subtree selection, and
primitive recursion allow us to decompose the fi and fij into
lower level primitives. These primitives may express any
functional relationship which we do not wish to further
decompose. To express interaction we have three primitive
exchange function types XA, XC and XS. Their evaluations must
synchronize with one another, so evaluation control and
precedence must be discussed. Evaluating a state successor
function £ causes each component successor fi to be evaluated
once, which in turn causes value successors fij' if they were
specified, to be evaluated some number of times, possibly zero.
In function composition the functions g5 must all be evaluated
before the function h is, in order to produce values for h's
arguments. In subtree selection some 95 and hi may not be
evaluated, and the order of evaluation of those evaluated is
constrained by the if-then-else expression. In primitive
recursion the function h is evaluated some number of times,
possibly zero, and the order of evaluation is given by the

generated composition tree and the if-then-else expressions.

- 213 -

These are the only constraints on evaluation without exchanges.
However any evaluation of an exchange must pair with the
evaluation of some exchange with the same subscript, according
to the following constraints. An XCi may pair with an XC,
XA,y Or X5,. An XA, may pair with an XC; or Xsi' An XS, may
pair with an XCi or XAi, except that an evaluation of an XSi
may pair with itself. An evaluation of neither an XC, nor an
XA, may pair with itself. Thus an evaluation of an XC, or an
XA, must wait for the evaluation of another exchange with the
same subscript and of the allowed type, but an XSi evaluation
may palir with itself and evaluate immediately (XS:.L is called
an immediate exchange). Every exchange has one argument; when
evaluations of exchanges are paired, the output value of one
exchange is the argument of the other. An XSi which pairs with
itself thus evaluates to its own argument value.

Within a single process specification different instances
of the same function may be optimized to be evaluated together
if they have identical specifications of their arguments. That
is a single evaluation produces a value for all instances
indicated; the indication is done by giving the instances equal
superscripts. With the same superscript the instances are no
longer regarded as distinct, particularly in the case of exchanges.

For example if a process specification contains

-..f(Xrg(Y))--.f(XIg(Y))--.

- 214 -

then these two instances will be evaluated separately, but if

we add superscripts

(1] (1]

(x,9(y)) ... (x,9(y)) ...

then one evaluation will supply the value of both instances.
Notice they have identical arguments, which is necessary.

With exchange functions if we consider
£(XC, (3),XC, (B) ,XC, (B))

then any of these exchanges could pair with any other but if we

add superscripts
sxel @) xetH @) xe) @)

then the first two are considered as one and must pair with
XCl(B); the first two both evaluate to B and Xcl(B) evaluates

to A.

- 215 -

APPENDIX B - CONDITIONS ON EXCHANGES

Given an arbitrary specification of a set of interacting
processes, it is possible that a computation of these processes
may reach a point where several processes cannot proceed,

defined as follows:

Definition: Given a functional specification of a set of
processes which have gone through a sequence of computation,
a process is blocked by an exchange in that process if no
matching exchange can be evaluated for any continuation of the
computation. This situation, commonly called deadlock, cannot
be allowed to develop. We must find sufficient constraints on
our functional specifications ensuring that processes are never
blocked by exchanges.

Given an arbitrary specification, there is no algorithm
for deciding if its processes can ever become blocked. This
is because exchange evaluations may be dependent on the values
in the process states. Even if we consider a view of computa-
tion which is value independent (that is control may flow in
any way which is consistent with the definitions of the control
structures), the algorithm for deciding if processes can ever
become blocked is combinatorially infeasible. However the
problem may be attacked by separately considering different

types of interactions and their own typical ways of blocking

- 216 -

processes. Different types of interactions involve distinctions
in intraprocess versus interprocess, XS-XC versus XC-XC versus
XC~XA, and exchanges which are always evaluated versus exchanges
in subtree selectors versus exchanges in value successor. With
regard to the last distinction we will make an assumption of
value independence; as long as a process is not blocked it
must take each alternative in a subtree selection sometime
again, and value successor functions must sometime again have
at least one value on which to evaluate. By sometime again we
mean that after any point in the computation it must occur at
some time in the future.

In order to discuss types of interactions we need the

following definition.

Definition: An exchange class is named by an integer index and
includes all exchanges in a specification which have that index.
XCi has index i. Examples elsewhere in this report use mnemonic
indexes like XMESSAGEi, but here we allow only integers.

Now let us look at a single process P which has a state

successor function of the form
£ (XC4(XC, (XCy (1)) ,XCy (XC4(XCq (0)))

Graphically this is

- 217 -

jcz Xf3
XCl XCl

The lowest level functions are evaluated first, the two XCl's,
and they may match with each other. However then one XC2 and
one XC3 are waiting to evaluate, but since they each must
precede the other's possible matching pair, neither can
evaluate and process P is blocked. This type of blocking may
be avoided with a constraint that if an intréprocess exchange
XCi must precede an intraprocess exchange XCj then i < j. As
a part of our divide and conquer strategy for deadlock we also
separate intraprocess exchange classes from interprocess
exchange classes. That is, if an exchange class has members
in more than one process, then within one process that class
has exactly one of the following: (a) no members, (b) one XC,
(c) one or more XS, (d) one or more XA. Furthermore, intra-
process interactions involving XS and XA exchanges usually
cause blocking, so that intraprocess exchange classes contain
only XC's, and each process cycle must evaluate an even number

of them. An example of intraprocess XS blocking is:

P - f
XSl XSl XCl XCl

- 218 -

If one XS matches itself and the other XS matches an XC, the

other XC waits forever. Intraprocess XA may block:

P - f

I

XAl XAl XCl XCl

If the XC's match them both XA's wait forever.
Next let us look at interprocess interactions which

involve XS and two processes Pl and Pé:

A A
XSl XC2 XCl st

If both XSl and st match themselves, then both XCl and XC2

wait forever. Antoehr example is:
Plkf\ P2 -—/g\
XSl XC2 XCl XC2

Here we need to consider a sequence of actions:

(1) XSl matches with itself

(2) XC2 of Pl matches XC2 of P2 (and Pl starts another

cycle)
(3) XSl matches with itself.
At this point XC2 of Pl and XCl of P, both wait forever. These

types of blocking may be avoided by an ordering on the processes

- 219 -

of a specification. That is if T is the set of processes and

It the positive integers then there is a mapping LEVEL: T - It
such that interactions of XSK in Pl with XCK or XAK in P2 may
exist only if LEVEL (P;) < LEVEL(P,) and interactions of exchange
classes which have no XS members may exist only between processes
at the same LEVEL. Note that this definition of LEVEL makes a
distinction between exchange classes which have at least one

XS member and classes with no XS members; this distinction is
another example of our divide and conguer strategy. This dis-
tinction also introduces a hierarchy to a specification; the
processes are separated into levels and the levels are ordered
to make up the specification.

Next we must look at interactions between processes in the
same level. These are the interprocess exchange classes which
have no XS members. The exchanges here restrict the relative
rates of the processes involved and may lead to inconsistent
restrictions. An example of this type of blocking is given by:

Pl —/f P2 - g
N /\
XCl XA2 XA2 XCl XC2

The Xl class makes Pl and P2 cycle at the same rate but the X2
class makes P2 cycle at twice the rate of Pl' We may think of
the blockage occurring because processes Py and P, are connected

by two exchange classes, forming a loop. We want to separate

- 220 -

interactions involving loops, which may generate rate
inconsistencies, from other interactions within levels. To do
this, given a specific level, form a graph. Its nodes are
proce;ses in that level and interprocéss exchange classes which
involve processes in that level and which have no XS members.
An arc connects a process node and an exchange class node only
if that exchange class has a member in that process. Given this
graph we separate the processes into cliques as follows; given
an exchange class X and two processes Pl and P2 both with arcs
to X (i.e., containing members of X),rprocesses Pl and P2 are
in the same clique if there is another path #rom Pl to P2 not
containing X. Cliques are the smallest sets of processes

consistent with this condition. An example of how this is

applied will help:

-5 Pz"Tz 3‘/3\ 4"/4\
L XA, XA, XC, XA, XC

These four processes are in the same level and assume exchange
classes Xl and x2 have no members in other processes. There
are nodes for the processes and exchange classes and arcs

between them as follows:

- 221 -

Now X. has arcs to both P,y and P, and there is a path from P,

2
to P, not containing Xo1 namely P3-X1~P4, SO P3 and p, are in
the sgme clique. A similar analysis with Xy and all pairs of
processes requires only P3 and P4 to be in the same clique, so
the cliques are {Pl}, {Pz}, and {P3,P4}. Note this corresponds
to our idea of loop, as the only loop in the above graph
involves P3 and P4. Thus each level, as a set of processes, is
broken into a disjoint union of cliques. The interactions
within cligues involve loops while the intralevel interactions
between cliques do not involve loops. Cliques add another
element to the hierarchy of process grouping which goes from
process to clique to level to whole specification, each
properly contained in the next.

Being loopless, the interactions between cligues do not
cause much trouble; there is only one restriction required. If
Xy is an exchange class without XS members, that is an intra-
level class, and has members in two or more cliques then within
a single clique Xy may not have both XC and XA members. This
restriction will be needed in the proof of the theorem about

nonblocking later. The following example illustrates blocking

when the above restriction is not obeyed:

Pl'fl Pz'fz P3"?3
xlc?_ chl XA,
XC, xa,

- 222 -

This specification clearly is blocked. The cliques are {P3}
and {Pl,P2}. The intralevel interclique exchange class X2 has

an XC, in P, and an XA, in P,, both in the clique {Pl,Pz}. In

2 2
the formal definition later which summarizes all this, the
definition of cligue is given differently. Here we have shown
how to construct the cliques from a specification but later we
merely give conditions which cliques must obey. The definitions
are equivalent.

Interactions within cliques include loops and are difficult
to analyze. The general analysis is combinatorially infeasible,
so we must find conditions on exchange usage within cliques
which ensure that blocking cannot occur. We have been separat-
ing the types of interactions and considering them separately.
With cligues this process is somewhat different; we find

different types of cliques which do not block. Specifically

so far we have two types of cliques, pair cliques and sparse

cligques. With both types intraclique exchange classes may only
contain XC exchanges. In a pair clique the idea is that these
exchanges may only involve two processes so that these exchanges
always match the same partner. In a sparse clique the idea is
that any set of N intraclique exchange classes must involve at
least N+1 processes. Then, assuming those processes are blocked,
two must be blocked by the same exchange class, which is
impossible. In a pair cligue we also need another condition

similar to our condition on intraprocess exchanges. This is

because a pair clique behaves like a single process. The
condition is that if XCi and XCj are intraprocess exchanges or
intraclique exchanges and if XC, must precede XC, in some
process in a pair clique then i < j.

The following is an example of a pair clique:

XfG jgé\\\ Xf4 XC6 jcz Xfé\\\xcz
XC5 XCl XC4 XC3 XCl XC2 XC2

The intraprocess exchange classes X2 and X5 each have an even
number of members. Each interprocess exchange class Xl' X3,

X4, and X6' has one member in each of two processes. And
whenever an exchange XCi preceeds an exchange XCj we have i < j.
The clique {Pl,Pz,P3} will behave much like a single process.

The following is an example of a sparse clique:

Py - Tl Py - Tz Py - T3 Py - 5y
Xrl sz jc3 XCl
XC2 XC3 XCl

Here each exchange class has members in at least two processes,
each pair of classes involves at least three processes, and the
three classes X0 Xy and X3 involve all four processes. The

processes cannot become blocked.

The strange kind of trouble which may occur in a clique is
shown by an example, which is in a sense the simplest clique

which is neither a pair clique nor a sparse clique:

b /fi : / fz\ P3/]I%\
XCl XC2 XC2 XC3 XCl XC2 XC3

Consider this sequence of actions:

(1) XC., in Pl matches XC2 in P

2

(2) XCl in Pl matches Xcl in P (Pl cycles)
(3) XC3 in P2 matches XC3 in P3 (P2 cycles)
(4) XC2 in Pl matches XC2 in P

Now Pl’ P and P, are blocked by XC;, XC and XC, respectively.

2! 3 3!

The result of all this has been to separate interactions
into five distinct types and to find conditions on each type
which ensure that blocking cannot occur. Each exchange class
belongs to one and only one type. The types, along with the
names they have in the formal definition below, are

(1) E, - intraprocess classes.

(2) E2 - interlevel classes.

(3) E3 - intralevel interclique classes.

(4) Ey and Eg - intraclique interprocess classes; E, are
in pair cliques, E; are in sparse cliques.

In dealing with each type of exchange one general idea has

motivated the restrictions we put on the exchange classes; that

is the idea of an order relation. The intraprocess exchange
classes are ordered according to their precedence. The exchange
classes involving XS interactions set up an ordering of processes
into levels. Within levels the interclique exchange classes
may not form any loops; essentially this is a partial ordering
of the cliques. And within pair cliques the intraclique
classes and the intraprocess classes must be ordered together
according to precedence. This all bears a relation to the more
common notion of ordering resources in a deadlock avoidance
scheme.

We can now combine our restrictions on exchangés in a

formal definition.

Definition: A specification of interacting processes is an
allowed specification if the set E of exchange classes in the
specification may be broken into a disjoint union

E=E UV E,V E3 U E, U ES such that the following conditions
are obeyed:

(1) The specification contains the set T of processes and
the set E of exchange classes.

(2) As long as a process is not blocked it must take each
alternatives in a subtree selection sometime again,
and value successor functions must sometime again
have at least one value on which to evaluate.

(3) If K e El’ K is an intraprocess class and has members

in only one process. All its members are XCK, and

- 226 -

(4)

(5)

each process cycle must evaluate an even number of
distinct members in the process, independent of which
subtree selections are made. None of K's members may
occur in value successor functions or in primitive
recursion specifications. If K,% ¢ E; are in the same

process and if some XC., is constrained to precede

K

some XC then R < 2.

Q,’
If Ke E - El’ K is an interprocess exchange class and
has members in at least two processes. For each
process P € T in which K has members, exactly one of

the following occurs

(a) P contains exactly one XCK

(b) P contains one or more XAK

(¢) P contains one or more XSK'

No XCK may occur in a value successor function or in

a primitive recursion specification.

K eE, if K has an XSK member. There is a mapping

LEVEL: T - I+, 1t = the positive integers, such that
(a) if there is K ¢ E2 with a member XSK in Py and a

member XCK or XAK in P, then LEVEL(Pl) < LEVEL(Pz).
(b) if there is K ¢ E3 u E4 u E5 with a member XCK

or XAK in Pl and a member XCK or XA, in P2, then

K
LEVEL(Pl) = LEVEL(PZ).

Note that a class in E3 U E4 U E5

only in processes with the same LEVEL.

may have members

(6) If K e E3, K is an interclique class and contains at

least one XCK, no XSK, and zero or more XAK. Let

T, = {PeT: LEVEL(P) = &}. T, is a disjoint union
. _ .,

of cliques le, Tz = uj=1TZj where m depends on %.

In a clique T there may not be both XC, and XA,.

23 X K
K must have members in at least two cliques. There

may not be loops of interclique classes. That is,

there may not be cliques Ql’Qz""’Q 17 where

n’Qn+

n>2andQ =0 and classes Kl,KZ;...,Kn e E,

n+l’
such that Ki has members in Qi and Qi+l for
i=1,...,n. A clique is either a sparse clique or
a pair clique.

(7) K ¢ E4 has one member XCK in each of two processes,
both in the same pair clique. The XCK may not occur
in subtree selection. If K,% ¢ El U E4 and if some
XCK is constrained to procede some XCZ’ then k < &.

(8) K ¢ E5 has members XCK in all processes in the same
sparse clique Q. If there are distinct Pl'PZ""’Pm e Q
and distinct Kl'K2""'Km e Eg such that Ki has a
member in Pi for i = 1,...,m, then there is a K,
1<i<m and P e Q- {P,P,,...,P } such that K,
has a member in P.

The definition of an allowed specification seems fairly

complex. However the idea is to break a specification into a

hierarchy of process, clique, and level, and to put conditions

- 228 -

on an exchange interaction that depend on its place in the

hierarchy. Thus El is intraprocess, E2

intralevel intracligue, E4 and E5 are intraclique interprocess.

Furthermore, the definition of allowed specification may be

is interlevel, E3 is

expanded in the future by expanding the hierarchy or by chang-
ing the conditions on a type of interaction. In particular it
will probably be fruitful to add more types of cliques in
addition to pair cliques and sparse cliques. Figure 1 illus-
trates the hierarchical system. Exchange classes are identified
by lines connecting possible exchange matchings. State
successor functions are assumed to be consistent with an allowed
specification. Note Q1 and Q2 are pair cliques and Q3 is a
sparse clique. Cliques Q4 to Q8 are single processes.

The proof of the theorem below has the following outline:

I) assume an allowed specification is blocked, and may

not be further blocked

II) in the lowest blocked level no process is blocked
by an exchange in an E, class

ITI) in that level every blocked process is blocked by an
exchange in an E; U E4 u Eg class

IV) in that level every clique with a blocked process
has a process blocked by an exchange in an E3 class; proved
first for sparse cliques then for pair cliques.

V) in that level each E, class with an exchange block-

ing a process must have all its members in cliques with a

blocked process

LEVEL=3

LEVEL=2

LEVEL =1

Figure 1

Circles are processes, cliques are labeled Q1 to Q8, and levels
are separated by horizontal lines. Lines representing exchange

class interactions are labeled by their type E, to E.. No

2 5
intraprocess classes (El) are shown.

- 230 -

VI) the looplessness of Eg connections between cligues
makes the above impossible, so by contradiction the allowed
specification cannot be blocked.

The labels of the outline correspond to the labels of
paragraphs of the proof.
Theorem: In a computation of an allowed specification, no

process can become blocked by exchanges.

Proof:

I) Assume that we have an allowed specification with
processes T and exchange classes E which is blocked. Let
B < T be the set of blocked processes. We may assume that no
process in T-B can become blocked (B is maximal) and that no
further evaluation is possible in any process in B. If either
of these assumptions is false, continue running the computation
until it is true. Let 2 = min{LEVEL(P): P e B} and M =
{P ¢ B: LEVEL(P) = #}. We say a process P £ M is blocked at

an exchange X, (XC, XA, or XS) if a possible next evaluation

K

for P is XK and there can never be a match for XK'

ITI) If K ¢ E2 and P € M, then P cannot be blocked at any

X Clearly P cannot be blocked at any XSK’ which could match

K"

with itself. If P is blocked at an XCp or XA then by condi-

KI
tion (5) there is an XSK at a lower level in some process P',

the minimality of % implies P' must not be blocked, and by

condition (2) P' must evaluate XSK sometime to match with the

given XCy or XAK in P. Thus P € M cannot be blocked by any XK

where K ¢ E2, so P £ M are only blocked by XK’ K e El u E3 U E4 U ES'

IIT) TIf some P € M is only blocked by XCK for which K ¢ El'

then let m be the minimum index for which some XCm blocks P.

If any XC is constrained to antecede some XCK blocking P, then

K < m by condition (3), but m is minimal so all the XCm elther
have been evaluated or are blocking P. But there are an even
number of distinct XCm by condition (3), so there must be an
even number blocking P and they can evaluate. Thus each P ¢ M
with K ¢ E

is blocked by at least one X E, u B

3Y ®a 5°
IV) Say Q is a cligue such that M n Q is not empty. Let

K

R =M~n Q, the processes of Q which are blocked. Now assume

that P ¢ R and P blocked by X, implies K ¢ E,, that is no

3’
processes of R are blocked by interclique exchanges. We will

show a contradiction. If Q is sparse clique then our assump-

tion implies each P € R is blocked by at least one XCr with

K e E;. Say R = {Pl,Pz,...,Pn}. If P, and Pj’ i# 3, are
both blocked by the same XCK, then they can match and are not

blocked. So there are distinct K K,r+++sK € Eg such that P,

1’ 5

is blocked by XCK , and by condition (8) there is some Ki and
i

P e Q - R such that Ki has a member in P. But P is not blocked

so will, by condition (2), evaluate XC sometime which can

K.

i

match with XCK in Pi. Thus Pi is not blocked, a contradiction.
i

Now if Q is a pair cligue, then our assumption implies each

P ¢ R is blocked by at least one XCy with K ¢ E Let

4°

F = {K ¢ E4: K has a member in Q}. K €& F has one member in

each of two processes and those two XC,'s must always match

K
each other. Let dK = the number of times the XCK'S have been

matched. Let 4 = min{dK: K ¢ F}, and let m = min{K ¢ F: dK = d}.

That is XCm is one with minimal dm’ and among those has minimal
m. We can assume that those P € Q - R have computed enough so

1 and P2‘

Each of Py and P, is blocked by at least one XCys K & F. Now

if XCm has already been evaluated in the current cycle of Pl’

that m has its members in two blocked processes, P

then the XCy blocking Py has been evaluated one less time and
dK =d, -1 against our definition of m. So XCy is unevaluated

in the current cycle of P, and likewise P2. Also if XCK, K e F,

1
is unevaluated in Pl or P2, then dK = dm so m < K by the
definition of m. Now by our assumption at the beginning of
this paragraph, P, or P, blocked by Xe => K e El u E4. Thus
if XC, does not block Py (oxr P2), then XC, must be preceded

in Py (or Pz) by some XCpr K € Eq U E,y which implies K < m by
condition (7). However XCp unevaluated in Py (or P2) and

K € E4 imply, by above remarks, that X ¢ El. So if XCm does
not block Py (or PZ)’ then it is preceded by some XCK, K e E,
which blocks Py (oxr P2). Say XCj is the intraprocess exchange
of smallest index which blocks Py (oxr Pz). But there are no
XC;, i ¢ E; U E,, blocking P, (or Py) and no XC,, i e E; and

i <3j <K <m blocking P; (or P,), so XCj must be able to

match with another XCj in Py (or Pz), as the process has an

- 233 -

even number of distinct XCj. This is a contradiction and thus
Py and P, are blocked by XCp .+ in which case the Xcm's may
match with each other, a contradiction. Thus in this paragraph
we have a contradiction for Q both a sparse clique and a pair

clique, and our assumption that P ¢ R and P blocked by XK

implies K ¢ E, must be false. So for each clique Q with
R=0n M# ¢ there is a process for P € R which is blocked by

some XK’ K ¢ E3.

V) Let Ql""’Qn be the cliques for which Qi n M# ¢.
A Qi has at least one process, which is blocked by at least
one member of Ki where Ki > E3 is an interclique exchange class.
Now Ki cannot have any members in a clique Q such that
QN M= ¢, since then some P ¢ Q, not blocked, would contain

an XKi. If it is an XCKi it must sometime be evaluated and
may match with XKi in Q- If it is XAKi,
evaluated and find a matching XCK. in another unblocked process,
and that XCK. may match with XK. in Qi. Thus each class Ki has
members onlylin the Qj’ j o= l,ZT...,n.

it must sometime be

VI) Now let Kl’KZ""’Km be those K & E, with members

3
only in the Qj’ j=1,2,...,n. Say K, has members in a;
distinct Qj' Then, because of the no loop part of condition

(6), it can be shown that

Also say for Ki there are bi different Qj which contain a

process blocked by some member of Ki' Then, since each Qj has

at least one process blocked by some member of a Ki’ we get

Combining our two results here, we get

m-1 >

(ai - bi).

[=

i=1

Now by their definition a;, - bi is a non-negative integer, so

for some j, 1 < j < m, as - bj = 0. That is each clique con-
taining a member of Kj has a process which is blocked by a mem-
ber of Kj. Now since no cligue contains both XCK and XAK ;

J]

Kj has members in at least two cliques, and Kj has at least one
clique with XCy [all by condition (6)], there must be two

J
processes in different cliques which are blocked by X_ 's that

K
can match. This contradicts our assumption that there]were
processes which were blocked and proves the theorem. B

Almost all the statements in the definition of allowed
specification are needed for this theorem although sometimes
their use in the proof was implicit.

If the definition of allowed specification is expanded in

the ways mentioned earlier, it is fairly clear where changes

must be made in the proof. It should be possible to use these

- 235 -

ideas in the analysis of boundedness for real-time requirements.
Also the hierarchical structure can give an orderly way to map
a specification into a more developed specification, where for
example processes are mapped into cliques, cliques into sets

of cliques or levels, and levels into sets of levels. It is
easy to see ways of mapping processes into pair cliques and
some non-deterministic processes into sparse cliques. There

is great potential for developing this work.

APPENDIX C — VIRTUAL NETWORKS AND OPERATING SYSTEMS

The decomposition of a distributed data processing system into appli-
cation systems, virtual operating systems, physical operating systems, and
hardware systems seems essential to our developmental processes. A great
deal of previous work on this problem has strengthened this belief. An
introduction to some of this work is given in the draft manuscript in-
cluded in this appendix. Further details may be found in [Kr 73] and
[Co 75].

The work reported here was prior to the developmental of the present
formal functional specifications and has not been reconsidered in this
new context. It does serve to explore the virtual system issues, and so

is included here.

[kr 73] Kramer, John F., A General Structure for Uncooperative Processes
Distributed over a System Network. Ph.D. Thesis, University of
Wisconsin, Madison, 1973.

[Co 75] Cowan, George, Jr., Management of Resources in a Potentially Hostile

Environment (Logical and Physical). Ph.D. Thesis, University of
Wisconsin, Madison, 1975.

THE ARCHITECTURE OF A MACHINE INDEPENDENT
NETWORK OPERATING SYSTEM FOR HIERARCHIAL
DELEGATION OF AUTHORITY

JOHN F. KRAMER, JR.
United States Navy
and

DONALD R. FITZWATER
University of Wisconsin, Madison

ABSTRACT: Networks of digital computer systems are in use today and
there is little doubt that their numbers will continue to grow. If
these endeavors are to avoid the traps that befell many of the third
generation computer operating systems, a practical solution to the
problems of system manageability, application generality and process
portability must be found. This article presents a set of postulated
design constraints, and a network design derived from them, which is
a practical solution to these problems. Through a clear factoriza-
tion of the management responsibilities involved in a network, the
design presented is able to permit both the implementers and the
users of the network to optimize the management of their own resources
with respect to their own criteria.

Key Words and Phrases: network, system, operating system,
portability, processes, processor, cooperative processes, process
communication.

This research was supported in part by the United States Navy

under the Doctoral Study Program. Authors' addresses: John F. Kramer,

- 238 -

Jr., 3-M Officer, Nimitz (CVAN 68) Precommissioning Unit, Newport News,
Va. 23607; Donald R. Fitzwater, Department of Computer Sciences,

1210 West Dayton, University of Wisconsin, Madison, Wi 53706.

- 239 -

OUTLINE

Introduction---management breakdown
A. Centralized

B. Decentralized

C. Resource factorization
Postulated Design Constraints

A. Network

B. Responsibility

Authority

o O

Delegation

E. Modification
Systems Structures

A. Level of Interpretation
B. Digital Systems
C. System Processes
D. Network Processes
System Interactions
A. Phase One

B. Phase Two

C. Phase Three

D. Message Delivery
Network Processes

A. Network Process State

- 240 -

1. Interface Buffer
2. Control Points
3. Expression States

4. Environment

5. Intra-process Transformation

Network System Language
1. GP

2. Roles

3. Type Conversions

4. Multi-Lingual
Process Tree

1. Conflict Resolution
2. Unique Authority

3. Birth and Death
Process Movement

1. Need For

2. Transmission

3. Reliability

4, Translation

Resource Management

A.
B.

Resources
Design Requirements
AO

Control of Interactions

- 241 -

7. Operating Systems
A. Implementation
1. Goals
2. Machine Dependent
3. Language Effective
4. Cooperation
B. Network
1. Goals
2. Machine Independent
3. Language for Application Independent of Machine
4. Non-cooperation
5. Authority---properly nested
C. Common Subprocessor
8. User Freedoms
A. Designate Process Control
B. Standard Interface
C. Complex Process Structures
D. Control Point

E. Modification and Evolution

- 242 -

1. Introduction

The emergence of computer networks has underscored the problems

associated with the design of general purpose computer systems. Con-
temporary operating systems are prima facie evidence that in spite of
nearly prohibitive investments, operating systems rarely remain in an
error free state, rarely are exploited easily by users and rarely free
the users from having to re-develop their application software to
adapt a new computer. The enormous costs of systems today are caused
in part by merely elaborating on the concept of centralized management
of resources in a master/slave mode with Tittle interaction between

“slaves." This design concept was developed, and worked well, for
early batch processing systems. In order to prevent chaotic conflicts
between users due to hardware resource demands, operating system de-
signers were forced to usurp most resource management decisions and
become "masters."

If users are not allowed to manage resources to fit their diverse
needs then the operating systems must attempt to do so for them. A
proliferation of options and compromises emerge which rarely satisfy
the knowledgeable user and significantly constrain applications. A
network only enlarges the community of interacting users and points
up the facility of continuing this ad hoc trend. It is not realistic
to expect operating system designers to continue to make all of the

management decisions in an efficient fashion while the diversity and

complexity of user demands continues to grow.

- 243 -

In conventional systems, resources are usually managed by isolating
each job or run and allowing it to interact solely with the operating
system. Since only the processes of the operating system can directly
interact, with sufficient care they can be managed to behave coopera-
tively with respect to resource demands. As soon as users are permitted
to employ interacting processes using shared information, such coopera-
tion can no Tonger be assumed or guaranteed. Processes may become un-
cooperative through malice, error, or lack of facilities for coopera-
tion. Much of the capacity of systems today is spent managing user-
specified, unreliable processes. This is the "last straw" which causes
conventional operating system designs to bog down. The work reported
here is part of a detailed design study found in (8). This paper
describes primarily the nature of the resulting network. Only sugges-
tions of the justifications for the decisions made are presented here.

Decentralized management capabilities must be provided in a viable
general purpose network so that each involved manager can exercise
sufficient authority to meet that manager's goal. The partitioning of
overall management responsibilities must be carefully done so as to
prevent insoluble managerial conflicts. A "top down" design technique
as used for this network design can guarantee such a partitioning with
minimal constraints on the policies of each manager. We can clearly
distinguish three kinds of management:

1) Implementation managers are responsible for the operation

of a physical node in the network. This includes the support

~ 244 -

of virtual systems in a virtual network and the mapping of
virtual resources onto physical resources via physical "oper-
ating system" processes. Aside from physical communication
protocols, each physical node may be designed, implemented,
and managed independently. Management goals might be maximum
investment returns or node utilization.

2) Network managers are responsible for the formal specification
and evolution of the virtual network as well as the initial
virtual network operating processes. The virtual network
serves as the interface between the implementation managers
and the virtual process managers. Management goals include
the maximal delegation of responsibility (and correspondingly
factored authority) to the other managers.

3) Process managers are responsible for the specification and
operations of the virtual processes via virtual system pro-
grams. Management goals include the creation of suitable
virtual "operating system" processes as well as "application
system" processes.

We are not here concerned with implementation management decisions,
and will use unqualified "network," "system," and "process" to refer
to their virtual counterparts.

The recognition of these three kinds of management is required for

effective management decentralization. We also obtain a substantial

amount. of freedom to exploit changes in implementation technology

while preserving our investment in application processes. As an
additional benefit, our application processes can become portable
over the network since they can be expressed in terms of (virtual)
network programs. These programs may be interpreted by hardware,
micro programs, or normal programs, thus playing the role of ma;
chine independent, network "job control" programs. The compilation
of subsets of the network system language to machine dependent "typed
values" (with virtually inaccessible representations) will allow cur-
rent jobs (e.g., Fortran programs) to run with normal efficiency,
while allowing inter-process interactions over the entire network
when desired. We are here primarily describing the resulting net-
work design itself although much more could be said about implementa-
tion and application designs.

The network design itself is hierarchically structured with
corresponding processor and process design decisions. For example,
a processor component may require a particular process state component
structure. Equally important, the process of network design is also
hierarchically structured, in a "top down" manner. Each level in the
design hierarchy has the goal of making only necessary (or non-con-
troversial) design decisions so as to defer to later design levels all
other decisions. This technique results in a cleanly structured net-
work that delegates maximum freedom (through invariant network prop-

erties) for other managers to do their job.

2. Postulated Design Constraints

In view of the previous arguments, and others as detailed in (8),

we postulate the following set of network design constraints to form

a basis for further design decisions. Many other useful constraints

may be derived from these but there is not space here to discuss them.

A.

Network Communication

"The designed network must consist of a set of interacting,
bounded, programmable, digital computer systems with well-
defined processes, and be open to communication with foreign
systems having undefined processes.”

Responsibility factorization

"Responsibility for meeting the postulated design constraints
and any design decisions must be factored between the network,
implementation, and process designers."”

Authority

"Each designer must have sufficient authority to define the
effects, on the processes running in the network, of the
interactions for which that designer has been delegated
responsibility."

Delegation

"Although processes must be permitted to delegate to other
processes their authority to control process interactions,

the delegating process always retains the responsibility

for that interaction and the authority to control the process
to which it was delegated."

E. Modification
"The network definition must provide for modification of its
definition. The design must provide sufficient constraints
to be able to delegate safely to process managers all modifica-
tion decisions and authority to control the effects of such

decisions on the processes.”

3. System Structures
In addition to not depending on the hardware/software of today,
we must formally define our system structures so that each implementer
of a node in the network can test the implementation (i.e., there is
at least a standard, correct specification). The logical structures
which make up the network described here are formally defined in (8)
using the technique defined in (6). This technique involes an effec-
tive network specification which allows a test of hypothesis about
specified system behavior. For the purposes of this paper we will
use informal, hopefully intuitive, notions of these system structures.
In general it is solely a matter of interpretation which determines
whether a set of information physically represented in a computer sys-
tem is data, program, processor, or system and is not an intrinsic
property of the information itself. Since we must first choose a

Tevel and consistently describe structures from that Tevel we must pro-

- 248 -

vide a few definitions. A natural choice for this paper is the network
definition level since this serves as the partitioning interface be-
tween network users and implementation programmers. For the postu-
Tated design constraints presented above to be effective, a general
model of digital systems and processes must be defined.

A digital system is composed of two parts, a system processor

and a system state. A system processor is invariant to the processes

which it interprets and contains a set of operators on the system state.
These operators are applied by the system processor to define a new
system state or to construct messages for transmission to other sys-
tem states in a set of digital systems. The execution of a system
processor occurs in two distinct phases. Given an initial system state,
the processor evaluates all operators which apply and produces a new
Tocal system state. Each operator can be executed in parallel and
without side effects on the other operators being executed. The Tocal
system state is then updated by any messages from other system pro-
cessors and the local interpretation cycle begins again. This sequence
is called a system step and transforms the system state into a successor

state. This discrete sequence of states is called a digital computation.

A set of digital computations represents a digital process. The inter-

pretation cycle of each system in a set of interacting digital systems
is independent and asynchronous. A1l inter-system communication will
be defined in terms of asynchronous message transmission with any de-

sired synchronization explicitly carried out by the cooperating digital

- 245 -

processes. Messages will be received, after a finite delay, in the
same order as they were transmitted by a given system. We will define
some particular digital systems as network systems, and a set of such
systems as a network. Note that such sets of digital systems could
model ordinary computers at several levels of abstraction from one
(quite abstracted) system to a network of "flip flop" and "gate" digi-
tal systems. There is a universal simulator of such sets of digital
systems. Thus the system specification is already in a form that can
be studied and tested. We do not require physical implementation con-
straints on how many networks or network systems may be implemented

on a single physical system or on how many physical systems are used
for a network or network system.

Our network system states are defined as a set of elements. Each
element can be interpreted as the state of a synchronously interacting
process component of the overall system process. A1l system state
information and all system computations are based on these system pro-
cess elements. We will constrain our network system operators so that
at most one operator will modify a given system state element in a
given interpretation step. This not only prevents true race condi-
tions from arising but also avoids the thorny question of how to merge
several modifications of a given system process element into a well
defined successor element. With this design constraint we are free
to define our operators as any total function of the corresponding

state elements, producing a new state element.

- 250 -

Although we wish our system processors to be well-defined with
respect to their operations on the system state, we desire also to
permit them to communicate with systems outside of the formally
defined networks which are not well-defined. Such systems are called
foreign systems and are not constrained in their internal structure
by the network designers except for communication conventions they
must use if they wish to interact with a network systems. Such
systems can be thought of as sources and sinks for messagés. Certain
elements of the system state are housekeeping processes that manage
inter- and intra-system interactions. These elements contain system
state information and are neither explicitly transformed by applica-
tion programs nor transportable between systems in the network. Those
elements of the state that are explicitly programmed, transformed, and
moved from system to system will be called network (i.e., user) pro-
cesses. A network process step consists of a cycle of three system
process steps or phases. Two of the system phases are used for house-
keeping fﬁnctions and will be described later. Operators applied
during phase two of a network process step will be called system sub-
processors and their effect is Tocal to that network process state.
The complexity of a given network process step is therefore defined by
the corresponding subprocessor. The process state defines the current
address space of the process.

It is not feasible to present here the detailed arguments and jus-

tifications for this network design. We will refer the interested

- 251 -

reader to (1) and subsequent reports in preparation. We will attempt
to describe the major network system structures in the following sec-
tion. Figure 1 is an informal characterization of one network system.
In review, a foreign system is not characterized (or constrained)
except as a source or destination of messages. A network system is
composed of a system processor and a system state. A system processor
is composed of a set of operators, some of which are subprocessors.
The system state is composed of system housekeeping elements and sys-
tem elements interpreted as network (user) process states. A network
consists of an inter-communicating set of such systems and foreign

systems.

3

System

Process

Elements Network (user)
Process States

Network

System—~\\‘ﬁﬁ_

Sub~processors
System = P

Processor-\\\\\\

A

v

Figure 1: An informal characterization of a network system.

4, Network System Interactions

Inter-system interaction mechanisms are inherently non-local in
nature, which means that the responsibility for their design falls to
the network designers. The mechanism selected here is quite similar
to the notion of a hierarchical interrupt system. In phase one the
system processor determines which sub-processors (if any) should be
applied to each network process state in that system and delivers the
appropriate messages (if any) to an interface buffer in each network
process state. In phase two the system processor applies the selected
sub-processors to the selected network process states thus causing
them to undergo a network process step. In phase three the system
processor performs the non-local services requested (if any) by mess-
ages left in the interface buffer by a sub-processor. Non-local
operations are those which have side effects external to a network
process state. Messages may be received by the system processor in
all phases and are buffered until their delivery in some subsequent
system phase one.

The system processor must be able to recognize, in any network
process state, which sub-processor to apply in phase two and each sub-
processor must be able to recognize its own state information compo-
nent in that network process state. For these purposes, each network
process state will contain one or more objects called control points.

Although control points are used for a variety of purposes, only those

- 253 -

aspects affecting sub-processor application will be described here.
A'contro1 point roughly corresponds to an interrupt level in conven-
tional systems.

A11 control points in a network process state are ordered by
priority within that state. Each control point has an ordered set
of channel terminations and buffers associated with it in the system
state elements for the receipt of messages (not just an interrupt
bit). Control point buffers may be armed or disarmed, and if disarmed,
do not accept new messages. Control points may be enabled or disabled
and active or inactive. When disabled, no further processing of pend-
ing messages in the control point buffers occurs. While active a
control point is a candidate to have a subprocessor allocated to it
and further messages remain pending in the control point buffers. When
a control is inactive but enabled and has a message pending, it is con-
sidered as a candidate for message delivery, conversion to active state
and subsequent subprocessor application. The highest priority control
point candidate present in a network process state, will be made active
and the pending message will be placed in the process interface buffer.
Two methods of message delivery are provided depending on a message-
handling status bit. Either the first message in the ordered control
point buffers is delivered or an ordered concatenation of all messages
for that control point is delivered. Message overwrite occurs if a
message arrives at an armed buffer with a previously undelivered mes-

sage in it. This may be avoided if desired by programming processes

- 254 -

so they use appropriate synchronizing messages

During phase two the appropriate subprocessors are applied to net-
work process states containing the active control points selected
during phase one. At most one subprocessor is applied to a given
process state during any phase two step. Although many process states
in a given system may be requesting the same subprocessor, they each
have it applied in parallel during phase two. Whether they are really
serviced in sequence or in parallel is an implementation decision that
affects only the duration of phase two since no inter-process inter-
actions in this network system can occur until phase two has completed.
A11 processes containing active control points will have sub-processors
applied prior to the end of phase two.

Each sub-processor transforms only the network process state to
which it is being applied. The applied sub-processor thus defines the
successor network process state. If a system service is requested (a
non-local transformation), the sub-processor will complete its network
process step leaving a message, requesting the service, in the Tocal
interface buffer for subsequent phase three processing. Note that

network processes in the same system will proceed in synchronous paral-

1el with each other, each completing one process step in each system

cycle. Network processes in different systems will run asynchronously

parallel.

During phase three all requests for non-local services which were

left in the interface buffer are acted upon. There are four types of

- 255 -

these services, message transmission, resource transmission, process
state transmission, and system modification. Phase three ends when
all such services have been completed and the interface buffers are
cleared.

I[f the interface buffer contains a request for message transmission,
the associated message is removed from the buffer and "broadcast" to
all systems but addressed to a particular control point buffer. The
system containing the control point (destination) buffer will receive
it; other systems will ignore the broadcast. Remember that a control
point may have several destination buffers associated with it and that
they are maintained as system state elements. Implementers, of course,
are free to keep records of which system a control point resides in to
permit them to transmit to only one system if they so desire. The re-
lationship of these network system state elements is shown in Figure 2.
The message has a network standard format and is represented as a string

over a network standard character set.

- 256 -

"Figure 2:

Receiving L
Channel
Termination

Control
Point
Buffers

Transmitted
Messages <

GP Control
Point

Intra-system message paths. The integers labeling

communication transitions identify the system phase of
that transition. GP is the sub-processor that interprets
the network system language. <GPES> contains GP state
information. The system step to transfer channel termin-
ation message to the corresponding control point buffers
can be bypassed for messages arriving, at end of phase 3,

if they are to be delivered on the next phase 1.

- 257 -

Although messages broadcast during phase three are subject to
unspecified transmission delays (unless messages are intra-system),
the order of transmission between any two systems is preserved in
perception. In the receiving system, messages are placed in channel
termination buffers and used to update control point buffers during
every phase. A new message for a given buffer will overwrite the
current contents (if any) of that buffer. If the destination control
point is disarmed, the message will not be received at all. Figure 3
gives some examples of message interactions. In Figure 3 process A
sends a message to process B in another system. B responds with a

message for A. Process C sends a message to process D in the same

system.

Finite
Asynchronous
Delays

Figure 3: Interprocess Message Paths.
' The Integer Labeling Communication Transitions.
Identify The System Phase of that Transition.
The Letters Identify Network Process States.

Note that the direct mechanism provided for interaction between
processes involves message transmission from a network process state
to some control point in a network process state. By controlling the
access to destination control point names, network processes can be
arbitrarily isolated so that uncooperative behavior effects can be
localized. In addition, as far as network processes are concerned,
message transmission is transparent to system boundaries and network
processes may cooperatively move from system to system without Tlosing

communication or restricting their interactions.

5. Network Processes

Since non-local transformation services must be provided by the
system processor rather than by subprocessors, the system processor
designer must create some standard structures in each network process
state which remain invariant to all sub-processor transformations.

The interface buffer is just one example of such structures. Subsequent
decisions by other designers must obey such constraints on network pro-
cess state structures. Decisions concerning other process state struc-
tures are deferred to sub-processor designers.

A network defines the local environment and address space for sub-
processor transformations. The interface buffer serves to factor the
sub-processor transformations which are local to the process state from
the system processor services which have effects outside of the process
state. A process state will contain one or more control points, the

status of which may be modified during system phase one as a result

- 259 -

of message delivery or in system phase two as a result of the actions
of an applied sub-processor. In addition to the role of control points
in interprocess communication, control points also serve to delimit
uniquely a portion of the network process state, called an expression
state. Within this part of the process state the designers of the
corresponding sub-processor are responsible for defining both the rep-
resentations and the transformations which that sub-processor will
carry out on those representations. A1l of the state information re-
quired for a sub-processor to continue a computation must be part of
any corresponding expression state. A network process state thus con-
tains an interface buffer, a set of expression states and one or more
control points.

By constraining all virtual inter-process interactions to communi-
cations, and providing complete control over communications via re-
stricted access to destination names, the network designers can supply
sufficient mechanisms for application designers to isolate (to the de-
sired extent) uncooperative computations. Having provided for worst
case isolation, the network designers have an equal responsibility to
provide for maximally cooperative computations. With the restriction
that at most one subprocessor will be applied to a given process state
in system phase two, we can permit multiple expression states of mul-
tiple types to interact as desired by their subprocessor designers and
even access and transform structures and values in other expression

states in the same process. We must insist that access and transfor-

- 260 -

mation of a given type expression state by subprocessors of different
type obey the rules established by that given type.

The critical section conflicts that can arise in intra-process
transformations by competing expression states are not (and cannot be)
prevented by network designers who must instead provide sufficient
primitive operators so that any desired cooperative conflict resolu-
tion technique can be used. The network designers do not have to deal
with such intra-process conflict, or guarantee that the conflict will
be resolved, since the process will still be well-defined and any

side effects can be restricted to the process with the conflict. Mul-

tiple expression states in a network process state may be used as cooper-

atively as desired with minimal constraints from network designers.

Within an expression state we can distinguish between explicit
"go to" executions and implicit "fault" conditions. Both forms change
the "instruction counter" values of an expression state under rules
specified by the corresponding sub-processor designer. Both forms
have effects local to the containing expression state.

Similarly we can distinguish between explicit "move control point”
executions and implicit "activate control point" (by internal command
or external message receipt) conditions. Activationshof multiple con-
trol points in a network process state represent a hierarchical in-
terrupt system with the associated expression states serving as in-
terrupt handlers. The movement of control points among expression

- states represent a scheduling operation such as for co-routines, tasks,

- 261 -

Simula "processes", etc. Both of these forms are local to the pro-
cess state.

We can also distinguish explicit and implicit inter-process move-
ments of control points as resources (controlled access objects) as
discussed in a Tater section on resources. An application program thus
has a wide range of structures to use as benefits the application,
assigning potentially uncooperative computations to isolatable network
processes (running either synchronously or asynchronously) and exploit-
ing the advantages of cooperative computations by putting them in a
single process. A network process is capable of supporting all compu-
tations that can be carried out on a conventional single processor,
muitiprogramming system.

There is a sub=processor, called GP, in every network system. The
GP expression state can be programmed, in the network system language,
to provide or request all network services. GP expression states thus
can specify invariant computations despite movement of the containing
network process. The network system language thus plays many roles
such as the following:

a) The network job control language.

b) The network high level "machine" language.

c) The network implementation language for operating "systems".

d) The base language for definitional extension via source lan-

guage macros or compilers.

- 262 -

e) The base language for evolutionary augmentation.

f) The system invariant computation language.

A given programmer may use GP only as a definitionally extendible job
control language, while suppling Fortran programs to a "type conver-
sion" compiler that produces physical node dependent programs just

as he is accustomed to do. The compiler in such a case would produce
an "execute only" type value whose internal structure is virtually in-
accessible. The execution efficiency could thus be unchanged. How-
ever a vastly more general computational environment structure can be
specified for new applications. There is no unique system language
required by the network system design and this design will work with
many language structures. A description of a network system language,
Aminol, is beyond the scope of this discussion. Indeed, Aminol will
allow the definition and introduction of new sub=processors with

their corresponding expression states so that the network system pro-
cessor itself can become multilingual.

As a result of this design, the freedome to create a highly struc-
tured and Tocally managed process, while minimizing the operating sys-
tem interference which is normally required to control side effects on
other processes, can be delegated to application programmers. Although
a process has almost total control over the management of its own op-
erations, some other process must be able to control interactions out-
side a process, even without the cooperation of the process itself, in

order to resolve conflicts.

The problem of deciding when a given interaction is improper can
only be resolved by another process aware of the interactions. The
system cannot resolve conflicting claims of one process with respect
to the behavior of another process since it may require intimate knowl-
edge of the specific applications. In order to guarantee resolution
there must be a responsible authority who can control and manage inter-
actions between the warring parties. Our system imposes a hierarchy
of uniquely designated responsible authorities in the form of a net-
work process tree, as in Figure 4, to make such an arbitration. A1l
authority rests initially in the root of the tree. Although delegation
to a child process is allowed, each root of a sub-tree remains re-
sponsible to its parent for the interactions of the processes in that
sub-tree. An uncooperative root of a sub-tree will still be account-
able to its parent process. One of the responsibilities of the network
designer is to ensure that a cooperative process can restrict inter-
process interactions of its sub-tree of processes.

The Tlines of responsibility in Figure 4 that define the process
tree must have a basis in an ability of each process to control, and
in worst case, isolate and kill, its sub-tree of processes. These con-
trol mechanisms are provided by management of "rights to..." as pro-
tected virtual resources using the facilities of the A0 (accountable
object) sub-processor as discussed below.

The process tree can both grow, by creating new "leaves," and

shrink, by destroying "leaves." An existing process may move, as per-

- 264 -

mitted by the parental authority, to any network system known to that
parent. Thus both the process tree and its distribution over the net-
work systems can change dynamically as a result of process computations.
Since these are intrinsically non-local operations, the GP sub-processor
can only request them. The responsibility for carrying them out has
been delegated to a PR (Process Receive) process and its corresponding
PR sub-processor. Each non-foreign network system will contain one

of each. The GP requests for such service thus take the form of mes-
sages to the local (to the network system) PR process. Process birth
and death are described in Figures 5 and 6.

Processes may be moved from system to system in order to control
parallelism, to exploit specialized system implementations, to access
special sub-processors existing in particular systems, or to carry out
inter-process communications local to one system instead of by inter-
system communications. Accesses to a special data base may be more
efficient in a particular system. Such process state transmission is
inherently an operation not local to one process or one system. When
a process executes the appropriate transmit operator, the request is
placed in the process interface buffer. The destination system is
specified by referencing the name of a process contained in that sys-
tem. Process names are protected objects managed as resources. During
phase 3, the system processor transforms the process state into a
“message" and places it in a buffer for that system's control point.
The somewhat complex chores involved in transmitting and receiving

process states are fulfilled cooperatively by the involved PR sub-pro-

- 265 -

Figure 4:

GP GP

Network process tree lines of authority

Letters in process states identify the processes.
Conflict between process "AAA" and "AB" can only be
resolved by their least common ancestor, process "A".
By definition, no conflict can arise between process
"AA", "AAA", and "AAAA" since each ancestor can

arbitrarily control its descendent.

1Bl

0

8
i
|8

(a) Creation (b) Installation

Figure 5:

Network process birth.

The integers associated with arrows identify system
phases. The transformation between (a) and (b) occurs
in the last system phase 3. Dashed arrow represents
process tree branch. ‘

20 A0 PR

I8

(a) Regquest Sequence (b) Death

Figure 6:

Network process death.

The integers associated with arrows identify system phases.
The "leaf" process is deleted in the last system phase 3.
Dashed arrow represents process tree branch.

- 267 -

cessors. A unique PR process state containing only a PR control point
and PR expression state is included in the system processes of each
non-foreign system in the network. Since we cannot guarantee the
integrity of process states in foreign systems, we do not allow process
states to be either transmitted to or received from foreign systems.

Communication of process states by the PR subprocessor must be
re]iab]é. We must permit an implementation to refuse to receive an
additional process state without damaging the process in the trans-
mitting system. This is done by not destroying the process state in
the sending system until the receiving system acknowledges receipt of
it. If a rejection response is received, the process state is "revived"
in the source system and the original transmission operator in the
revived process is faulted. Process management may then do as they
1like to ameliorate the problem.

The conversion of a process state to a message in the source system
and the inverse operation in the destination system can easily be de-
fined formally in the network. The corresponding operators in an imple-
mentation will of course be implementation dependent translators of the

network defined form.

6. Resource Management
A process may cooperatively transmit any object to another process,
but once the object is in the destination process state it is at the

mercy of that process state. If the transmitting process wishes to

- 268 -

restrict the access, transformation and disposal of the transmitted
object we must provide facilities to guarantee the validity of the
source-imposed constraints even if the destination process is uncoop-
erative. Al1 control of inter-process interactions is based on the
distribution of "rights to..." by the root of a sub-tree. We will
call all such constrained objects resources in the virtual systems,
and delegate the responsibility for enforcing those constraints to
the A0 (accountable object) sub-processor. The AO designers in turn,
delegate all possible responsibility to process management defined
programs, while remaining within the constraints placed on them by
the network designers. There are three services that must remain
with the AO sub-processor: that of reliable (guaranteed cooperative)
communication, that of protecting access controls of a resource, and
that of pre-emptive return of resources from uncooperative sub-trees.
In order to ensure resource constraints, each network process state
will contain a unique AO control point and AO expression state. Thus
resources are passed to guaranteed cooperative A0 expression states
that enforce the constraints whether the process is cooperative or
not. Thus the process tree "Tines of responsibility" are embodied

in cooperative A0 communications and all resources are constrained
to movements over the process tree. We thus prevent any conflicts
of authority 6ver a resource since, for each sub-tree, the root pro-
cess is uniquely responsible. The detailed derivation and design of
the A0 sub-processor and its associated expression state is given in

(3). We will only indicate the nature of the design here.

- 269 -

Unblockable communications are guaranteed by assigning the AO con-
trol point in each process state the highest priority in the process.
Guaranteed asynchronous communication is provided by creating A0 re-
ceiver buffers for the parent and for each of the children. In order
to acknowledge message receipt, a set (at least one) of response buffers
are provided in the transmitting process. The number of processes
transmitting an acknowledgement to a particular process is restricted
by requiring that any such transmission uniquely designate a particu-
lar response buffer. Using these features it is possible to define a
communication protocol that will provide the required communication
services for resource management.

The A0 expression state contains a set of resources and each re-
source contains an object and an ordered set of access procedures.

A1l access to the object by programs of the containing process must

be made by the execution of the ordered set of procedures. A process
may create a resource by specifying any object and any access pro-
cedure. AO conventions guaranteed the protection of the resource with-
out constraining process management's resource specification.

The access procedure may allow the allocation of the resource ob-
ject (or a part of it) to a child process, while adding a new access
procedure which must be executed to gain access to the previously
specified access procedure. Thus additional, properly nested, access
constraints may be added during alocation to a child process. Figure

7 presents an example of the resource relationship.

- 270 -

Process management is delegated responsibility for the normal
management, allocation, transformation and return of resources. The
GP sub-processor will include suitable primitive operators for this
purpose. When cooperation breaks down, pre-emptive return via AO
services is required. Since a resource may be fragmented and sub-
allocated in pieces according to the rules and access mechanisms de-
fined by the resource creator, AO only returns the pieces and lets
the owner put them back together.

The transmission of unwanted or spurious messages is an explicit
non-local process interaction which must be controllable. Any trans-
mitting operator is required to have, as an operand, a resource con-

taining a "right to transmit" to a particular control point buffer.

20, {Ry/Ryr
% GP2{<GPEs>}} 4
_X r“

"'"Aol 2 {(Ryr Ry

i..;' {<cpEs>}} J ~ % »R4, {<GPEs>}}

[20,1 By
{ {<GPEs>}}

Figure 7: Interprocess Resource Relationships

- 271 -

The creation and allocation of such permits is under the control of
process management using GP programs. This permits a parent to deny
to a child the ability to interact explicitly with any other process
except that parent or a sub-tree created by that child.

The tree structure is defined by the names (subscripts) of the AO
control points. The AD expression state contains the set of resources
and a GP expression state. A prime on a resource indicates an accessing
program which has been added by other than the resource creator. Since
each accessing program is additive, restrictions may be added but never
removed by a child.

Implicit interaction between processes may occur as a result of
conflicts for a particular set of implementation resources (physical).
These interactions occur as the result of the exhaustion of some bounded
physical resourced used in the representation of process states and must
also be controllable by process management. Although we must not inter-
fere with implementation management, we are entitled to delimit the
scope of competition for such resources and define responsibility for
jts exhausion. By giving a child explicit delegation of a "Timited
competition permit" resource, a parent may restrict the competition of
any child with that parent for such essential resources. When the Timit
of such a physical resource is reached, the effects are constrained to
the sub-tree that was most locally restricted and will appear to the
process as an "inaccessible object" in a process state. Inaccessible

objects play a role similar to end of file marks on a tape drive and

- 272 -

their detection by process management allows explicit programming for
amelioration of the problem of recovery if desired. Competition re-
striction allows a parent freedom from a child's excesses in use of
representational resources.

An example of the use of this restricted competition mechanism
could be the partial control, in demand paging implementations, of re-

placement page selection.

7. Operating Systems

Network design responsibilities have been factored between the
implementation and process managers. This requires a clean factoring
of network resources (e.g., a file) and implementation resources (e.qg.,
a drum) upon which the logical network resources are maintained. Imple-
mentation designers clearly must be delegated responsibility for mapping
network resources onto implementation resources. It is thus necessary
to have two different operating systems, one for the virtual systems,
and another for each of the physical node systems. The current size,
complexity, and unmanageability of contemporary operating systems is
in large part due to trying to meet these diverse goals with one op-
erating system.

Physical operating systems may vary widely from node to node and
may be developed independently subject only to minimum constraints
placed on them by the network designers. Designers of each physical

node can select some utilization function and then manage the physical

- 273 -

resources in a way that optimizes this function. The implementation
programming language used should provide easy exploitation of machine
dependent resources and provide a highly optimized machine dependent
implementation. In addition, at each node programmers may be under

one management and can produce cooperatively structured implementations
by informal, but very hard to enforce, conventions. As long as the im-
plementation can be debugged prior to its productive use in the network,
inadvertent failures of cooperation can be prevented. Highly struc-
tured hierarchical layers of queue networks could be constructed as
cooperative sequential processes and deadlock problems which can not

be cooperatively prevented, can be cured by sacrificing jobs that can
be re-run.

Like the implementers, the network managers (users) may have goals
which very markedly from process to process. The factorization above
makes it possible for each of them to pursue these goals subject only
to minimal constraints placed on them by network designers and net-
work implementers. There is usually some utilization or reliability
function which they are trying to optimize during their management of
user created resources. They need a programming language that pro-
vides for the easy exploitation of machine independent resources and
produces highly optimized (with respect to application measures), but
machine-independent, network processes as distinct from the implementers
who are dealing with machine dependent resources and implementations.

In the design presented here each process is subject to constraints

imposed on it by its parent process. It can be held responsible for
its actions while being free to manage its own affairs. It is possible
to protect other network processes from interactions they do not wish
to experience. Many users need to be able to develop programs simul-
taneously even though they are not all under the same management, and
debugging operations must be able to proceed in the network while it

is up and performing services for other processes. Inadvertent errors,
as well as malicious non-cooperation by one process must not jeopardize
system performance for others. When user program structures are based
on cooperative hierarchies they often either become unpoliceable or
they collapse under the required policing constraints. This indepen-
dence means that deadlock problems cannot be prevented or cured by
reasonable algorithms imposed by the system. What is required instead
are tools and facilities that allow delegation of such decisions to
'process managers who can choose appropriate tactics. In order to allow
such application dependence network and 1mp1ementét10n resources must
be divorced. Although there still exists a "master/slave" mode, each
process can now become the Tocal operating system for itself and its
children, subject only to the authority and constraints of its parent.
This is advantageous since no global, premature, decisions need be made
by a parent because now they can give their children the freedom to
optimize their own operations while still retaining necessary control

over them in case they go astray.

- 275 -

In order for process managers to meet their commitments they need
a high Tevel resource creation and manipulation language. In our
network each system will provide a common subprocessor (GP) to inter-
pret this virtual system language. Conventional and often often unman-
ageable job control languages, with their many options and lack of
general freedoms provide too rudimentary and specialized control of
resources for processes engaged in defining operating environments
for their children. A high level system language for network opera-
ting system implementation is required for this purpose.

Other application languages may be provided either by compilers
producing output for the GP subprocessor or for other specialized sub-
processors. To provide for such compilers, the system language inter-
preted by GP must, of course, be extensible. It must also be augment-
able by implementation adaptions (possibly via micro-programming) if
specific efficiency requirements for specific processes, as well as
general evolutionary processes, are to be permitted.

The design and specification of such a system language has been

substantially completed and will be reported on subsequently. A proto-
type implementation of one complete network system will be completed

in the near future. It should be pointed out that the overall network
structure described here is not dependent on a specific GP design for

its validity.

8. User Freedom

In the previous sections we briefly introduced some of the fea-
tures of the network design. In this section we would like to pre-
sent some of the freedom which these features provide the user. As
can be seen from the design features presented, the network designers
have not constrained in any way the design of user algorithms. The
network is abstracted, both from any particular application of it
and from any particular implementation of it. Different physical
nodes supporting systems in the network, may use different physical
assets to do so, with no concern for the users other than how it
affects the costs of running their processes. The mechanisms in-
voked by a user to cause a subprocessor to be applied to a control
point/expression state pair, or to use interprocess communication ser-
vices are standard in each non-foreign networks system. As a result,
process states may be moved between systems using the services of
the PR process and still be able to run in other systems without
explicit changes to reflect the new system's implementation conven-
tions.

Another important freedom provided by this design is the ability
of a user to construct a single process environment containing mul-
tiple expression states, of different specialized subprocessor types,
which may interact cooperatively. Very few constraints are placed on

the subprocessors applied to such cooperating expression states by the

- 277 -

network design other than the prevention of true race conditions (only
one subprocessor at a time is applied to a process state) and the pre-
vention of a violation of resource integrity (because of A0 design).
Adaptation of user specialized cooperative intra-process interactions
is thus minimally constrained.

Control point communication provides several advantages to the
user. First, since control points are paired with expression states,
the destination of an interprocess communication can be bound to a par-
ticular expression state in a particular process. A sender need not be
aware that a destination control point has been moved to a new process
or that a whole process, containing the destination control point has
been moved to another system. For the implementer, control point commu-
nication permits the maximum freedom to use any method of intersystem
communication desired. The network could easily be implemented on the
ARPANET (2, 4, 7, 9, 10) or on most of the other networks descirbed in
(1) and (5). Since the network design does not tell the implementer
how to handle messages. The interrupt capability provides a signifi-
cant advantage in terms of interprocess interactions. A control point/
expression state can stop processing and go to sleep knowing that lower
priority control points in that process will proceed until the higher
priority control point either receives a message or is designated to
run by a subprocessor operating on one of the other expression states

in that process.

An advantage of using the system/subprocessor and process/control
point/expression state concepts is that it becomes almost trivial to
introduce new subprocessors into the network. The old processes still
run the same while new processes can take advantage of the additions.
The scope of the effects of such introductions will be Timited to the
processes introducing such subprocessors or to processes allocated the
right to use them. Another advantage of providing a common interface
is that it permits a user to move his process to other systems.

In addition to (8), the network design is more completely covered
in (3) and other papers in preparation. It is of course not possible
here to describe all of the aspects of this project. The development
of this design was done with a cleanly factored set of design constraints
which were abstracted without any particular technology or application
in mind. This is one of the more important reasons why the design is
a solution to many problems of manageability of processes in a network,
of application generality, of process portability between systems in
the network, and of network survival between changes in technology.

The design is fully implementable with the worst implementation
being a complete simulation. An implementation currently exists of
a single system, multiple process, and multiple expression state with
multiple control points. The simulation of the functions of inter-
process communication and control performed by the system processor
is a relatively minor problem since the system processor implemented

supports all but inter-system messages. It is not these functions

- 279 -

which create implementation complexities. With the advent of micro-
programming, overhead can be reduced, particularly in the implementation
of subprocessors. As hardware, including firmware, becomes less expen-
sive, the system processor functions of communications and subprocessor
application can be easily implemented in them. Such implementations

of these functions will be able to perform them in the range of several
gate times if desired. The advantage of hard-wiring all subprocessors
is something which should be further investigated. The choice between
microprogrammed or hardwired subprocessors becomes one of balancing
efficiency against flexibility.

Another important aspect of this design, not emphasized here, is
that the network as designed has also been formally defined. It is im-
portant that the more formal properties of any design be investigated.
A formal system provides us with an unambiguous, machine independent
way of defining our results. Without such a system, the design might
not be understandable by either the implementer or the user. Machine
independent definitions are particularly necessary since we are inter-
ested in networks of systems and asynchronous computations. As a re-
sult of the formal definition system used, we get a well-defined con-
cept of process and process step. The use of an interpreter for the
definition system permits the design to be debugged. Analysis of the
system definitions provides valuable insights into the process behaviors
supported by the network.

One area introduced in (8) and to be pursued in subsequent reports

- 280 -

is the possibility of permitting user control over certain modifications
to the network design. This would include modifications of the formal
definition to include new systems, new subprocessors, or even new
operators in current subprocessors. One of the important constraints
on such modifications is the verification that they will not improperly
affect the processes in the network for which the user performing a mod-
ification is not responsible.

This brief introduction into the network design only touches on
the basic structure of the network. The references can provide the
interested reader with a detailed analysis of the design. We are inter-
ested in providing a network of interacting digital computer systems
and structures to support general processes. This design provides user
control over potentially uncooperative processes in a multiprocess com-
putation. This includes the sharing of capabilities and permitting in-
teractions of processes resident in different virtual systems. The

design presented here has, we feel, accomplished these goals.

10.

References

Bell, C. Gordan "More Power by Networking," IEEE Spectrum, Feb.
1974, pp 40-45.

Carr, C. Stephen, Crocker, Stephen D. and Cerf, Vinton G. "HOST-HOST
Communication Protocol in the ARPA Network," Proc. AFIPS SJCC,
1970, Vol. 36, pp 589-597.

Cowan, George Jr. Management of Resources in a Potentially Hostile
Environment (Logical and Physical). Ph.D. Thesis, University
of Wisconsin, Madison.

Crocker, Steven D., Heafner, John F., Metcalfe, Robert M., and
Postel, Jonathan B. "Function-Oriented Protocols for the
ARPA Computer Network," Proc. AFIPS SJCC, 1972, Vol. 40,
pp 271-279.

Farber, David J. '"Networks: An Introduction," Datamation,
April 1972, pp 36-39.

Fitzwater, D. R. and Hintz, C. A. A System for the Formal Definition

of Digital Systems. CS Tech. Report #1471, The University of
Wisconsin Computer Sciences Department, 1971.

Heart, F. E., Kahn, R. E., Ornstein, S. M., Crowther, W. R. and
Walden, D. C. "The Interface Message Processor for the ARPA
Computer Network," Proc. AFIPS SJCC, 1970, Vol. 36, pp 551-567.

Kramer, John F. A General Structure for Uncooperative Processes
Distributed Over a System Network. Ph.D. Thesis, University
of Wisconsin, Madison, 1973.

Ornstein, S. M., Heart, F. E., Crowther, W. R., Rising, H. K.,
Russell, S. B. and Michel, A. "The Terminal IMP for the
ARPA Computer Network," Proc. AFIPS SJCC, 1972, Vol. 40,
pp 243-254.

Roberts, Lawrence G. and Wessler, Barry 0. "Computer Network
Development to Achieve Resource Sharing," Proc. AFIPS SJCC,
1970, pp 543-549.

- 282 -

APPENDIX D

D.1 Introduction

The following is an example of a functional specification
using the notation developed in Section 3. The system speci-
fied is the network described in Section 5, and detailed in
Appendix C. It should be noted that this system was originally
specified using a different formal specification technique,
thus the resulting design may not allow for the cleanest
re-specification using the technique of Section 3.

Two specifications of the system will be presented here.
The first is a high level specification whose functions are
defined in terms of very high level primitives. The second
specification is a more detailed version of the first. The
form of presentation of both specifications is the same.

First, the functions are defined with a short description
accompanying each definition. Following this, the function
definition tree and process graphs are illustrated. And
finally the functions of the specification are summarized in a
table. Preceding both specifications (and should be considered
part of each) is a definition table of the value spaces and

component spaces used in the specification.

D.2 The Specifications

Both specifications consist of two state successor

functions, 'SYS' and 'REAL WORLD'. SYS specifies a single

- 283 -

network system and REALWORLD specifies the rest of the network

as it appears to a single system.

Generally speaking, an application of SYS does the

following:

(1)

(2)

(3)

Makes subprocessor and message buffer selection for
each process state in the system.

Applies the subprocessors, leaving resulting messages
in interface buffers.

Transmits messages.

The REALWORLD system contains a transmitter and a receiver and

a packet of messages which have yet to be delivered for each

system in the network. Roughly it operates as follows:

(1)

(2)

(3)

(4)

All receivers are fired in parallel picking up a
packet (if any) sent from each system.

These packets are merged into one packet with an
arbitrary choice made between messages for the same
destination.

The resulting packet is distributed amongst the
systems updating a packet containing all of the
messages for each of the systems which have yet to
be delivered, new messages for such a packet over-
write old messages with the same destination.

The updated packets are all transmitted in parallel
from the REALWORLD system and any which do not get

delivered form the undelivered packet for that system.

- 284 -

The reader is urged to refer to the function trees and
process graphs and also to the description of network system

interaction in Appendix C.4 when reading the specifications.

D.2.1 Definition of Value Spaces and Component Spaces

VALUE SPACES

Vp z Space of process states

va = Space of message buffers

VIB = Space of interface buffers

Vmessages = Space of messages

{$} = Space containing $

{e} = Space containing €

VE = VPU{$}

V— = VmBu{$}u{€}

VTO. = Values of messages directed to system i
i

VFROMi = Values of messages sent from system i

VNEW = Values of messages in newly arrived packet

(merged from all systems)

N = Number of systems in network

i<N.
t = TRUE, £ = FALSE

Zp = Component space of Vp

ZmB = Component space of va

ZIB Z Component space of VIB

Zmessage Z Component space of Vmessage

- 285 -

™~
Tl
i

Component space of VE

Zﬁﬁ Z Component space of Vﬁﬁ
sys = Is % Inp
ZTO. = Component space of VTO.
i i
ZFROM. = Component space of VFROMi
ZNEW = Component space of VNEW
N
LrEAL = I Lo,
i=1 i
N
(Note: .g Zl = I, X Ly X wee X I)
i=1

D.2.2 High Level Specification
The function tree and process graph for SYS appear in

Figures 1 and 2 for the REALWORLD in Figures 3 and 4.

D.2.2.1 High Level Specification of SYS

(1) sys: ZSYS -+ ZSYS

SYS (o)

sYS

) = SYSl(op,omB

Comment: The state-successor function SYS is
composed of a single component function.

(2) SYSl:Zp X ZmB E: Zp X ZmB

SYSl(cp,O) = Phase 3 (SPl(STATUS(GP,o 1))

mB mB

Comment: SYS., is defined in terms of three component

1
successor functions PHASE 3, SPl and STATUS.

(3) STATUS: Zp X ZmB - Z_}S—; X ZI’T\E—

) = PRIMITIVE

STATUS(op,de

Associated with each process state is at most one message
buffer, which one it is is determined by STATUS. The STATUS
primitive will return pairs of (process state, message buffer)
such that the process state is requesting that message buffer
and the buffer is a buffer for the highest priority control
point in the process state. If a message buffer is not requested
a dummy is returned: ($, message buffer). If a process is
active and has (or wishes) no messages: (process state, €) is
returned, and if a process state is not to have a subprocessor
applied it returns (process state, $). Thus STATUS does the
selection of the appropriate control point expression state in
a given user state for subprocessor allocation, and associates
the appropriate message with the process state. It returns a

dummy pair for unused messages and also for unused process

states.
(4) SP, * 25 X ZEE - Zp X ZmB X ZIB
SPl(OE, 0—=) = SPyq (VE,VE)
(5) SPll: VE X Vﬁﬁ - Vp X VmB X ZIB
SPll(VE' EE) = PRIMITIVE

SPll applies the appropriate subprocessors to the elements

of (05,6), delivering the messages (if any) and leaving

mB

messages in the interface buffer. On dummy pairs SP simply

11
carries forward the process state in (process state, §$) pairs
and the message buffer in ($, message buffer) pairs. The value

function models the parallelism of subprocessor allocation.

(6) Phase 3: Zp x ZmB X ZIB - Zp X ZmB

Phase 3(OP,Gm) = PRIMITIVE

5’718
Phase 3 finishes up the process step by:
(1) Transmitting the messages to external
systems
(2) Receive messages from external systems
(3) Merge received messages with o0ld message

buffers

(4) Merge message buffers with intra-system

messages.
SYS
|
””””””ﬁYSl
\\ ‘\\‘\\\"‘-
PHASE 3 SPl STATUS
SPll

FIG. 1: Function tree for high level specification of SYS

- 288 -

SYS

FIG. 2: Process graph for SYS

D.2.2.2 High Level Specification of Realworld

(1) Realworld: ZREAL - ZREAL
Realworld(oREAL) = Realworldl(cTOl,...,GTON)
N N
(2) Realworld.: Iz -~ I Z
L7 oi=1 05 421 7O
Realworldl(UTOl,...,GTON) = Join (Packetin(),

Trysend (o reee10))
TOl TON

Comment: Realworldl merges the existing packets for

each system with the newly arrived packet.

==
g
+
| =1~
™

(3) Join: I X
NEW ;.9 TO;

)

i

Join(oNEW,oTOl, oy oTON PRIMITIVE

Comment: Join updates each %10 with the messages
i

in ONEW

messages for the same destination.

for the ith system, overwriting old

(4) Packetin: ¢ ~ ZNEW

Packetin() = PRIMITIVE

Comment: Packetin receives a packet from each system
(if one was sent) and coalesces all received

packets into one packet, choosing at most

one message for each destination.

N N
(5) TRYSEND: .g ZTO. - _g ZTO.
i=1 i i=1 i
TRYSEND(GTOl,...,OTON) z PRIMITIVE

Comment: TRYSEND tries to send the accumulative
packet for each system to that system. All
packets are sent in parallel.

REATLWORLD
REALWORLD

1

JOIN PACKETIN TRYSEND

FIG. 3: Function tree for high level specification of REALWORLD.

- 290 -

S s gy

.
REALWORLD,

REALWORLD

FIG. 4: Process graph for REALWORLD.

- 291 -

T I=T T T=T
- oL : "OL ' . .
JATLIWIEL LI = 1 CONISAYUL ausuoauod
N N
. - MEN .
HATLIWIEA 7 + ¢ INTIENOYd ausuodwo)d
Tor =% Tozr =% man
OAILIWTEd I <« T 10 x T iNIOD ausuoduc)
N N N
((O%ps---4OLo)anasxar
N T T =T T =T
(. YNILEMDUAYNIOL = (Ogseees oabvﬂguoimmm Ole 'y « Ol "y : lp1xomTRoY qusuodwos
N N
ZOB HOB T IV Ivdada TvHEd
(D=t o) 'pTaomTEsy = (p)pIIOoMIRDY 7 < 7 pIlaomTesy I0SS200NS 931838
AAILIWIAA mawxmm <« memewxmw ¢ es®rug ausuoduio)
d
HATIINING L0 0 n « EpSn 2 TTag enTRA
d w ., d d d
(A Sy TTas = (FoZo) Tas BT « Eaylr 1 1gs Jusuodwo)
d d .
AATLINIYEd mmwxlw « mex 7 : SALVYILS ausuoduc)
d d d d
AAAmED~ bvaH<Bmvamvm 28®d = Am8b~ bvﬁmww MENX 1 <« mex g "Hmww ausucdwo)
d
AmEb. ovﬁmwm S Amwmbvmww SAS; . S&8; .gzs Iossesong 93838
NOXLINIALA ' DNIddYW ddAd

uoriesTyToadg T®asT UBTH X0 STGeRL uvoTIdUNI €°Z°Z2°d

292

D.2.3 Detailed Specification

Now we want to look at the system in some more detail,

i.e., we decompose some of the functions that were regarded to

be primitive in the high level specifications. The new

function trees for SYS and REALWORLD appear in Figures 5 and 7.

A process graph for the detailed specification of the

component successor function SPy is shown in Figure 6.

D.2.3.1 Detailed Specification of SYS

There are no changes in the higher level functions, for

sake of completeness of this detailed specification they are

repeated here.

(1)

(2)

(3)

SYs: I

SYS

SYS(QSYS)

SYSl: Zp
SYSl(cp,c

STATUS ¢

STATUS (o
)

Comment:

mB

* lgys

)

x ZmB M Zp 8 ZmB

= SYSl(Op'OmB

) = PHASE 3(SPl(STATUS(op,o))

mB
*Img T I X nE

(0__) = PRIMITIVE

mB
The function of STATUS is to pair all
process states with their appropriate
message buffer. There exists at most one

for each process state. There are four

possibilities:

- 293 -

(1) State vp is requesting VB and VB
is a buffer for the highest
priority control point in vp.

(2) State vp is active and not request-
ing any messages, therefore STATUS
returns (vp,e).

(3) State vp is neither active nor has

a message pending, thus STATUS

returns (v_,$).

p
(4) Message Vg 1S requested by no vp,
STATUS returns ($,va)
(4) SPl: 25 X ZI"H-B- > ZP X ZIIIB X ZIB

Comment: In effect SPl will apply the correct sub-
processor (if any) to the process states
and messages (if any) resulting in new
process states, message buffers and
interface buffer values. To model the
parallelism of what is effectively Phase 2
of the system step we will specify SP4 in
terms of four value functions. The SPlj
(L < j < 4) are case distinctions, i.e.,
their Dlj are disjoint and define a parti-
tion of the domain (OE,Gﬁg);

can use subtree selection (as formally

therefore we

defined in Appendix A). We define now:

- 294 -

— R = L]] 1

SPl(cp,omB) = (gp'OmB'OIB)

where

og! = q (U Pk(SPi(X,y))
1<j<4 (x,y)e(oE,oﬁg)

and k ¢ {p,mB,IB}

and

SPi = ((erp/\ermB): SPll’
(xevpl\y = €): SPy,y
(x = $AyeV o): SPya, 8Py 4)

Now let us discuss the four cases:

(5a)

SPll: Vp

XV vV XV
P

mB IB

SPll(vp,va) = PRIMITIVE,

Comment:

SPlZ: Vp
SPlz(vp,e)

Comment:

SPll applies Phase 2 onto a process
state/memory buffer-pair in STATUS 3.1l:
it delivers message VoR' and applies
appropriate subprocessor‘resulting in a
new state and possibly a message in the
interface buffer.

x{e}-+vP X Vg
=z PRIMITIVE,

SP12 applies Phase 2 onto a process with-
out associated message buffer (STATUS 3.2)

in the same way as SPll except no message

is delivered.

- 295 -

(5¢) SP13: {$} x vV + V

mB mB
SP13($,va) = VR’ carries forward unused messages
(5d) SPy,: Vo X {s} ~» Vs
SP14(VP'$) = vp, carries forward unchanged process
states.

Comment: See process graph for SPl, Figure 3.
The subprocessors have been applied so it remains to
specify the message transmission and receival.

(6) Phase 3: Zp X ZmB X ZIB - Zp X ZmB

Phase 3(0p,0 ' O

mB" IB
Comment: Phase 3 merely carries forward the process

states Gp, and updates the message buffers.

(7) UPDATE: ZmB X Zmessages - ZmB

UPDATE (o £z PRIMITIVE

mB’Gmessages)
Comment: Update merges the messages in OB and

Omessages with the provision that ;f they

each have a message for the same destina-
tion only the message in o is kept.
messages
In terms of the network system, UPDATE models the fact
that intra-system communications take precedence over inter-
system communication, since NEWIN will yield OB containing
the message buffers updated by the incoming inter-system
messages and NEWOUT will yield in o all the intra-
messages

system messages produced during phase 2.

- 296 -

) = (UP,UPDATE(NEWIN(OmB),NEWOUT(OIB)))

(8)

(9)

(10)

(11)

(12)

NEWIN: I > ZmB

mB
NEWIN (o o) = Compose(cmB,REC{ hH
Comment: The value of NEWIN is the current message
buffers merged with the incoming external
messages, so that incoming new messages
overwrite old messages.
COMPOSE: I X z > I

mB messages mB

COMPOSE (o) = PRIMITIVE

o
mB’ “messages

Comment: Compose merges the message of o and

mB
o] with o taking precedence.
messages messages
REC: ¢ ~ Zmessages
REC({ }) = XCLOCREC;{ !}

Comment: The i indicates that we are in network
system 1 , XCLOCRECi receives the external
messages.

NEWOUT: I, + zmessages

NEWOUT (0,,) = CONCAT(INSYS(GIB),SEND(OUTSYS(GIB)))

IB

Comment: NEWOUT inspects the interface buffers and
sends the inter-system messages and
carries forward the intra-system messages
with messages for the same destination
concatenated.

CONCAT: ZIB > ZIB

CONCAT(OIB) = PRIMITIVE, concatenates all messages

for the same destination into one

message and carries forward the others.

- 297 -

(13)

(13a)

(14)

(14a)

(15)

INSYS: ZIB - ZIB

INSYS(GIB) = INSYS)

11 V1
Comment: INSYS is specified as a value function.

INSYS selects all the intra-system messages.

INSYSll: VIB > VIB
INSYSll(VIB) = PRIMITIVE,
Comment: Value of INSYSll(VIB) = Vip if vip 1S to

go to a destination in the system and ¢
otherwise.

OUTSYS: ZIB > ZIB

OUTsYS (o.,) = OUTSYS

IB 11 Vyp)
Comment: OUTSYS is specified as a value function.

OUTSYS selects all the inter-system

messages.
OUTSYSll: VIB - VIB
OUTSYSll(VIB) = PRIMITIVE, value is Vi if VIB is to

go to a destination outside the
system, and ¢ otherwise.
SEND: ZIB > ¢

SEND(GIB) = XCLOCSENDi(U)

IB
Comment: SEND transmits the external messages, the i
indicates that our single network system

is the ith system in the network.

SYS

/\\

PHASE 3 STATUS

//\ //\

UPDATE NEWIN NEWOUT

/ \ CONCAT INSYS SEi\ID OUTSYS

COMPOSE
XCLOCSEND

XCLOCREC

FIG. 5: Function tree for detailed specification of SY¥S.

Fig. 6: Process graph for detailed specification of SPl.

- 299 -

D.2.3.2 Detailed Specification of Realworld

(1) REALWORLD: ZREAL - ZREAL

REALWORLD (o) = REALWORLDl(Ol,...,ON)

REAL

(2) REALWORLD, : zTOl x...xZTON+ZTol X ... szh
REALWORLDl(GTOl,...,OTON) = JOIN(PACKETIN(),

TRYSEND(GTOl,...,OTON))

Comment: REALWORLDl is component successor function.

(3) JOIN: ZNEW X ZTO X se. X ZTO - ZTO X wee X X

1 N 1 T0

N

JOIN (o) = PRIMITIVE

NEW' 7O ""’GTON

1

Comment: JOIN updates the Gj from CNEW®

(4) PACKETIN: ¢ » L .o

PACKETIN() = CHOICE (GREC;{ } ,...,GREC { })

Comment: PACKETIN receives messages transmitted
from all systems and merges them into one
packet with at most 1 message/destination.

(5) CHOICE: ZFROMl X s.. X ZFROMN - ZNEW

CHOICE(GFROM ""'OFROMN) = PRIMITIVE

1

Comment: Merge the o with the condition that

FROM.,
J

at most 1 message/destination.

(6) GRECj: o - ZFROMj

GRECj{ } o= XSLOCSENDj{ }

- 300 -

Comment: GRECj{ } receives a packet, (if any)
transmitted from the jth system.

(7) TRYSEND: ZTO. X ca. X ZTO - ZTO X ... X ZTO
i N 1 N

TRYSEND (o) = (GSENDl(GTO Yse..,GSEND, (0))

To,’ """ %mp N 77O

1 N 1
Comment: TRYSEND tries to send the as yet undelivered
packet for each system, to that system.

(8) GSENDi: ZTOi - ZTOi

GSENDi(GTOi) = XSLOCRECi{OTOi}

Comment: GSENDi attempts to send to the ith system.

REALWORLD

REALWORLD

JOIN PACKETIN ’ ' TRYSEND

CHOICE GREC GREC GSEND GSEND

l L) N l .. N

XSLOCSEND XSLOCREC

XSLOCSENDl e N 1.

'XSLOCRECN

FIG. 7: Function definition tree for detailed specification
of REALWORLD.

- 301 -

(((To) sxs100) Gaings

\Amevmwmsza¢uzou =

T
Am-bvaooamz

{ wﬂummuoqox = {{ })oma

AAILIWIYNG

1

({ wumm~maovmmomzoo = ﬁmaovszmz

AAAmHovaoozmz

111

d
~AmaovzH3mzvmamamD~ o)

((

HATLIHTAEG

d
s D)E HASYHA

i
—~
or
~
>

HATLINIYA

HATLIWIYA

wﬁmm~mamm~mﬁmmgﬂﬂmm = ﬂmm

(T

d T _
D) SNLVYLS) *dS) € HUSVHA =

TATLINTEA
a
(T 1%y Tgxg

wam = BAS

NOILINTJAHA

sebessauw q71
sabessou

qur sebessaou T

KER 3 I HSOJWOD

me - me *NIMEN

qur_ sebessau L

L« X I EL¥adn

mex&w “ memewxmw 1¢ ss®eyg
w> - mwwxm> "¢Hmw
m> + mEVxhww nmﬂmm
mH>xm> < ﬁmwxm> :¢l4g
mﬂ>xm> - mﬁ>xm> : Tlag
FaxTrx9y « Boy Sy 1 Tag
oy « My onvrs
Toxdy « Tp,dy 1 Tgyg

Sxs SXS

g - g *84&S

ONIdavW

ausuodiucs
Jusuocdwo)
susuodwo)
ausuodwo)d

ausuodwo)

Jusuodwiod
anTea
snTeA
anTeA
anTeA

susuoduo)

Jusuodwo)

ausuocdwo)d

IOSS®DONng 931v3g

HIAL

uoT3entyTosds paITe3sQ I0F STURL UOTIdUNT £°C-Z°Q

302

N

(¢ %Loyanamso

T

teesuy Od&

0)AaNESD) = (

Z T
oao~...~oaovazmmwma
T T
{ }7aNIsSOCISX = () ‘Omuo
HATLIWING

((YNoman’-+7() Tomus) moromp = NIIm¥OVa

FATIINTEA
N
(¢ OpseesOdpy quasaar
Nogz Tor . 1
U YNIIEIOVA) NIOL = pie-ed o) aTIOMIYHY
N T ,
I
(Ofpseees Olgy Tompomrumy = (TR0 aromTyme

ﬂoq =T
« Y7o IANFSXAEL
N
l~ﬂ T
WOSd, ¢ :Tomun
Toua, =7
« MUSS2 oy impToRD
N

zm2w +« ¢ INIIENOVYAL

7 1 xMN7 inTop
N

21 lQTHOMTYRY
N

FATHOMTYHY

Jusuodwuo)

3usuodwo)d

Jusuodwod

Juauocduoc)

ausuoduio)

ausuodwuo)

Iogseoong s3eag

(&%o) Tanmsootox = (FTo)anas
AATLINTNG

AmevHmemamo = (%1o) sxsino
AAILINTEA

aysasir = (¥Loyszsnt
AATIINIEA

NOILINIAIJ

P « mHm tANES

mH> b me uHHmmeDO
817 « 817 :gxs1n0
I, « 9T, :TTgzeng
817 « %17 :gxent
817 « %Iz :gwonod
SNTaawi

3usuodwo)d
snTea

jusuodwo)d

JUusucduo)

Jusuodwo)

Hd XL

303

T
() "aNESDOTIDX

() "aNESDO0TSX

T
() FominoTox
T
() FomanoTsx
SHONYHOXS
Ton T Yor . T *oz Toz
{ %oy Fomanosx = (%%o) Tanaso 7 « 97 :Tanags 3usuoduo)
NOTLINIZEd BRTaavi HaAL

304

A0 = accountable object

INDEX

asynchronously parallel network processes

blocked process
clique
cloud

cluster of processes

component successor function

composition
computation
current state
deadlock
decomposition step

description

deterministic descrete process

digital computational
digital preccess
discrete process
effective specification
exchange class

exchange function
expression state

formal specification
free running process
frequency vector
function

GP = general programmable
initialization step
initial state
integration step
interacting step
interaction graph

interface

- 305 -

5.4.2
5.4.2

B

B

2.2.1
1.2.2.3; 4.1
3.2; A

A
1.2.2.3; 3.2
1.2,2.3

B

1.3.2
1.2.2.1
1.2.2.3
5.4.1
5.4.1
1.2.2.3; 1.3.2
1.2.3.3

B

3.4.1
5.4.2
1.2.3.3
4.1

4.7.2
1.2.3.4.1
5.4.2
1.3.2

3.2

1.3.2
1.3.2
3.2.1
1.2.2.2

LEVEL: T » I*
methodology

non~deterministic component successor function

non-deterministic discrete process

non~-deterministic function

non~-deterministic state successor function

non-real-time testing
object structure

pair clique

parallel network process
parallelism vector
partitioning step

phase

physical implementation
PR = process receive
primitive function
primitive recursion
procedure state

process

pfocess graph

process step
rate~independence (relaxed)
rate—-independence (strict)
rate of system

real-time process cluster
selection

sparce clique
specification

state

state component

state component space
state graph

state space

- 306 -

B

1.3.4
A
1.2.2.3
1.2.3.4.1
A

4.6
1.2.3.2
B

5.4.2
4.7.2
1.3.2
1.3.3
4.2.5
5.4.2
1.2.3.4.4
A
1.2.2.4
3.2; A
3.2.2
1.2.2.3
4.5.2
4.5.1
4.1
4.2.1
3.3.1
B
1.2.2.1
A

3.2; A
3.2; A
3.2.1
1.2.2.3; A

state successor function
state successor relation
subtree selection

synchronized process

synchronous parallel network process

system processor

system state

system step

time vector
transformation step
value space

value successor function

virtual implementation

- 307 -

1.2.2.3

4.1
5.4.2
5.4.1
5.4.1
5.4.1
4.7.2
1.3.2
3.2; A
3.2; A

4.2.4

