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ABSTRACT

Some simple ideas are presented which make stationary points of
inequality and equality constrained optimization problems equivalent to
unconstrained solutions of a system of nonlinear equations. These ideas
generalize the methods of unconstrained or augmented Lagrangians. A
parametrically superlinearly convergent class of algorithms that includes
that of Powell and Hestenes is proposed.

We shall consider in this paper the problem
minimize f{x), subject to g(x) £ 0 (1)

where f:R" + R and g:Rn +~ R" . For the sake of simplicity we have
excluded equality constraints which can be handled by minor modifications
of the methods described here. We shall be concerned with stationary
points of (1), that is points x 1in R" which, for some u e R | satisfy
the Kuhn-Tucker conditions

vf(x) + vg(x)u = 0 (2a)
ug(x) = 0, g(x) £ 0, u 0 (2b)

where vf(x) 1is the gradient of f at x and vg(x) is the n xm
Jacobian of g at x . We cbserve immediately that if the conditions (2b)
can be replaced by an equivalent system of m equations without an
increase in the number of variables then the Kuhn-Tucxer conditions be-
come equivalent to a system of n +m equations in n + m unknowns.

That this can be done follows from the following simpie but key lemma

which was first proved in [9, Temma 2.7]

1. Lemma Let y ¢ R, g e Rand let 6 be an injective function from R
into R (that is 6(a) = a(b) implies a = b) with 8(0) = 0. Then

yg=0,9s0,yz0% 0(gty), -06(y) =0
6(z) ifzz0
where e(z)+ =
0 if z <0
gty 2 0, gty = ¥ g=0, y=20
Proof  6(g+y), - 6(y) = 0= or e or
gty < 0, y =0 g<0, y=0

+yg=0,9s50,y20. QED

The following theorem, a generalization of [9, theorem 2.57, establishes
the equivalence of the Kuhn-Tucker conditions to a system of n +m
equations in n + m unknowns.

2. Theorem: Let 8 be an injective function from R into R with
8(0) = 0, and let ¢ be a strictly increasing surjective function from
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R into R (that is ¢ maps R onto R ) with ¢(0) = 0. Then for any
a>0

vf(x) + vg(x)u = 0 us=o(y;) vf(x)+ ¢ ¢lag;(x)+y:),vg:(x)=0
<————,_.—____——-—_.___.—:_.>
ug(x)=0,9(x)=0,uz0/ §=T,....m \6(ag;(x)*ty;),-8(y;)=0
j=l,...,m

Proof: By lemma 1 and ¢(agj(x)+yj)+ = ¢(yj)+ = ¢(yj) = for gj(x) =0

u
J

and  ¢(og;(x)4yy), = $(og;(x)), = 0= ¢ly;) = uy for g;(x) < 0. QED
If we let a8(z) = ¢(z) = z then equations (3) become the gradient of
Rockafellar's augmented Lagrangian [12] which has been intensively
jnvestigated recently (1,2,6,9]. Unfortunately equations (3) are not
differentiable globally if 8'(0) # 0 as is the case for Rockafellar's
Lagrangian, although they are differentiable near a solution (X,y) if we
assume that strict complementarity holds, that is 9j+1gj(§)1>0,j=1,...,m.

In [9] by using ue(z)=¢(z)=!zﬁz, t >0, equations (3) become differentiable
globally. However the Jacobian of (3) becomes singular at the solution

if there are inactive constrants. This difficulty was avoided in [9]

by further augmenting the Lagrangian. We propose another way here to make
the equations (3) differentiable globally while maintaining nonsingularity
of the Jacobian by symmetrizing the last m equations of (3) with respect
to gj(x) and yi - This will have the advantage over [9] in that the

ingenious method of Powell [117and Hestenes [8] can be extended to in-
équalities while still maintaining global differentiability and a rate
of convergence that is faster than any linear rate. We first symmetrize
lemma 1 by interchanging the roles of g and vy and exploiting the
antisymmetry of o .

3 lemma Let ye R, geR and let 6 bea strictly increasingodd
function from R into R with 6(0) = 0. Then

yg9=0,9<0,yz0< o(lgty]) +e(g) -oly) =0.

Proof: If we let h = -g, then it is sufficient to establish that
yh=0,hz0 yz0 = 8(lh-y]) -8(h) -06(y) =0

() Either y =0 or h=0. If y=0, then 8(lh-y|) - 8(h) - 8(y)
= o(|h]) - 8(h) = 0. If h=0 a similar argument goes through
wich h and y interchanged.

(<) (a) To show that h z 0, assume the contrary that h < 0 . Then
8(|y-h|) = o(h) +a(y) < 8(y), from which it follows that

(hY

0=
y>0 and y > |y-h| =y -h . The last inequality contradicts
h<0.

(b) To show that y z 0, interchange the roles of 'y and h 1. (a).

(c) To show that yh = 0, assume the contrary that y > 0 and
h>0. Without loss of generality assume that h z y , then
6(|h-y|) = 8(h-y) < 8(h) < 8(h) + 6(y). This contradicts
e(|h-y|) - e(h) - 8(y) = 0. QED.

The following equivalence theorem follows from lemma 3 in the same
way as theorem 2 foliowed from lemma 1.



4  Theorem Let ® be a strictly increasing odd function from R into

R with 8(0) = and 1et ¢ be a strictly increasing surjective function
from R into R wwth ¢ (0 Then for any a >0
v (x)+vg(x)u=0 X5Y,0) =V (x)+ D $(ag(x)+y ;) ,g5(x)=0
3= (4)
ug(x)=0 x,¥5a)6 (Jag; (x)+y ;| )+8(ag;(x))-0(y4)=0
j=1,...,m

and uy @(yj),J Toeuosm,
Again note that if we set 208(z) = #(z) = z then equations (4)
become the gradient of Rockafellar's Lagrangian. However we shall be con-
cerned here mainly with functions 6 and ¢ such that 6'(0) = ¢'(0)= 0
in order that equations (4) be globally differentiable. The key to
computational algorithms for solving (4) is the nonsingularity and the

L]<Xa.V9OL)
structure of its Jacobian at the solution. Let L(x,y,a) = =0
L2(x,y,a)
denote the m + n equations (4) and let (i ?) be a solution of (4) at
which strict complementarity holds, y +[g x)|>0,3=1,....,m. If ¢ and
6 are differentiable on R with der1vat1ves that vanish at the origin
only, and if f and g are differentiable at x , then
gt O _ _ ' _ . _ _ ‘1
[V-” (X9U)+ L oad (.yi)" V91(X)¢'(y1) 0
iel .
_ T (iel)
- Vg (X)vg;(x) ]
VL(K.Ya) = |a(e' (7,)+6' (0))vg, ()T 0 0(5)
(iel)
0 0 -6" (-ag; (%))-8" (0)
(ied) -~
- - 0 m
where uj = ¢(yj)5j=1,,.,,m,L (x,u)=f(x)+ = ujgj(x), the classical Lagrangian,
5=1
{Jlg )=0} and J = {Jng X)<0}. It follows that by Debreu's theorem

[4] (wh1ch states that N + oMM s positive definite for o 2 a for some

a >0 if xNx >0 for Mx =20 and_ x # 0), by strict complementarity,
and by second order sufficiency at (x,u) [5] that the upper left n xn
submatrix of (5) which we denote by V]L](x y,a) is positive definite for

o 2 @ for some a > 0 . This together with the Tinear independence of
vg;(X), i eI and -0 (-ag, (x)) -8'(0) <0, ied , insure the

nonsvngu]ar1ty of VL(X,Y, a) Henceforth we shall assume in the paper
that strict complementarity, second order sufficiency and linear inde-
pendence of the gradients of the active constraints hold at (X,u).



An immediate algorithm for solving (4) would be a Newton or quasi-
Newton algorithm [10,3] which would be locally superlinearly convergent
if azo for some a > 0 . A concrete realization of (4) to be solved by
such methods can be obtained by setting

8(z) = 9(2) = 5 2|z|, 9'(2) = ¢'(2) = |2 (6)

Note that 6'(0) = ¢'(0) = 0 and hence equations (4) are globally
differentiable. Probably a more interesting and effective method would be
the following one which is an asymptotic Newton method in the y-space and
which for a specific 6(z) and ¢(z) becomes the extension to inequalities
of Powell's method [11] .

5. Algorithm Choose o > O, yO ¢ ™ and x0 ¢ R" such that
L](xo,yo,a) = (0. Llet (xi,yi) determine (x1+],yi+]) as follows:
(a) Determine K1+ such that L](xi+],yi) =0, If 1 ds not
unique, take a closest xi+], in some norm, to xi .

41 X SRR
() ¥ =yt el T,
Note that this algorithm becomes Powell's algorithm extended to inequalities
if we take 2a6(z) = ¢(z) = z. However we shall propose another choice
for o6(z) and ¢(z) to use in algorithm 5 which will make L(x,y,a)
differentiable globally. Before doing that however, we consider the Tocal
convergence of algorithm 5 and its rate of convergence under the sim-
simplifying assumption that x1+] is unique in step (a) of the algorithm.
(The non-unique case can be handled in a manner similar to that in
[9, theorem 4.10].) Let ¢ and 6 be continuously difterentiable on R
and let f and g be twice continuously differentiable in a neighborhood
of X . Then by the implicit function theorem, for y' sufficiently close
to y and a za > 0, algorithm 5 is equivalent to
- . : .
y =yt e ley )y (7)

where e is a differentiable function from R" into RM satisfying
L](e(y),y,a) = 0 for all y 1in a neighborhood of y . Consider now the
mapping G(y) = y + aLZ(e(y),y,a) underlying the iteration (7). By using
V]L1(§,§,a)Ve(i) + VZL](i,y,a) = 0 and (5) we obtain that

VG(Y) = I + a¥qL,(X,y,a)ve(y) + av,l,(X,y,0)

[ - a(v]LZ(isysa)v]L](i,yaa)-]vzl—](i:y’a) - szz(;(s;/sOL))

a(6' (3;)+6' (0))79; (%) 07, L 0%, )+ N
: Vg (%) (' (7,99, ()1 vg ()" (7))
= = *
0 e'(-agd(i))m'(o)J




where 8‘(&1) +8'(0) denotes a diagonal matrix with diagonal elements
9'(y1) +8'(0), i ¢ I. Similarly ¢'(§I) and e'(—agd(i)) +6'(0) are
also diagonal matrices. The matrix VQI(Q) has as its columns

Vgi(i), i ¢ I. We now make use of the following extremely useful lemma

which can be considered a key lemma for obtaining convergence rate results
for unconstrained Lagrangians. In a lemma in [11] Powell proved a related
result by using determinants.

6 Lemma Let C(a) = BT(A+BQ(a)BTY]B where B is a given n xm matrix
of rank m , A is an n x n matrix, Q(a) is a differentiable m xm
matrix function on R and A + BQ(a)BT is positive definite fora 2 & for
some a . Then C(a) = (Q(a)+K)™! for some constant m x m matrix K

and all o 2 a .

Proof. Recall that the formula for differentiating the inverse of a matrix

-1
is given by ggé%l——~= - C(a)'] g%égl-C(a)'] . Hence from the definition

of C(a) we have that

-1 1
dla) . pT(arao(a)s’) 822sT(mrma(e)sT) 8 = - clo)¥Fiea)

-1
Hence dcc(jg) - dgéo‘) and C(o)™' = Q(a) + K.  QED

By using this lemma in the last expression for VG(y) we obtain

a6 (7,)+6"(0)) (00" (7)+) 0" (3) 0
VG(y) =1 - @ ) (7)
0 8" (-ag,(%))+6' (0)

If 206(z) = ¢(z) = z , as in Powell's method, then

(aI+K)-] 0
ve(y) =1 - a . I = (7a)
o

Hence for sufficiently large o, p(VG(y)) = 2_%£ﬂ_

where p(vG(¥)) is the spectral radius'of VG(y). Hence by Ostrowski's
point of attraction theorem [10, theorem10.1.3] and [10,10.1.4] the sequence
{y1} is locally convergent to y and the root convergence factor
: 1
Ry’ = timswp Iy -3t s L
e

As o -~ o this factor approaches zero and hence we have parametric root-
superlinear convergence, the parameter being o of course.

We propose now another rea]izdtion of algorithm 5 based on thehf0110w1ng
following functions



2ol g 2.2 LT zs—l
o 2 - o o ="y
Y2 1 oy . 1
8(z) = 7 2| z| if fz] < 7 » 8 (z) = lz] if 1d <7 (9)
z 1 if z2 1 L if z ;-l
o 2 2 a o o
a
Note that 6'(0) = 0 and that for sufficiently large but finite a ,
l-g min 9j and l’§ min (-ag.(X)). Hence for o Tlarge enough
6 . o . J
Jel Jed
6'(7.) =+ for j el
e (10)
- 1
Ve -
8'( ugJ(x)) 3 for jed
Substitution of (8) to (10) in (7) gives
~ | -1
-1- 7 g - -1 K h
(ay +K) yq 0 I - (14 ) 0
ve(y) =1 - a =
0 L 0 0
B a.d b -

where 91 is a diagonal matrix with diagonal elements yi , 1 ¢ I. Hence

2 17,7kl

for sufficiently large o , p(VG(Y)) < and again as in the

= a
extended Powell method, we havea locally convergent sequence {yT} with
parametric root-superlinear convergence.

For concreteness we spell out algorithm 5 when the functions (8) and
(9) are used.

7 Algorithm  Choose o > 0, yO ¢ ™ and x% ¢ " such that
m 2 .
Vf(xo) + %- ) (ag-(x0)+y.0) Vg-(xo) = 0. Let (x',y') determine
PR ity
(X1+]sy1+]) as follows:
, i+1 i#1, .1 i+
(a) Determine x such that Vvf(x ) + R (agj(x ) +
j=1
. 2 .
i i+1, _
Y; )+V9j(x ) =0
or
™)+ L T g ey = min £00 ¢ b E (ag (x4 )
6o joq % il 0 b 5oq 03



i+ . . . i+ i .
If x is not unique find a closest x 1 to x' in some norm.

i+ - aly: )

i+]
) - 6y

‘4 . .
(b) y.'] ] = y_1 + Ci./e(!ug‘](x +‘yJ1]) + G(O’QJ(X

\:]
j=1,....my where g is given by (9)

Note that in step (a) of algorithm (7) the function to be minimized is
twice globally differentiable in x . This is unlike the function to be
minimized in the extension of Powell's method which is
m
f(x) +-£a z (agj(x)+yj)i and which is not twice differentiable globally.
=1
A possible difficulty in our proposed method is that as o = © the function
8 (z) of (9) approaches the zero function. This however is also true of

Powell's function 6(z) = §%~. Another realization of algorithm 5 which for

large enough a gives (7a), the same VG(y) as Powell's method, is obtained
from 6(z) of (9) and ¢(z) = ab(z).

In conclusion we state that the celebrated complementarity problem
[7] of finding an s in RY¥ satisfying

sF(s) =0 F(s) < 0 sz 0 (11)

HA

where F:R%¥> RY is, by Temma 3 equivalent, to solving the system of
equations '

0([F;(s)*s;]) +e(Fy(s)) -6(s;) =0 i=1,...,2 (12)

where 8 1is any strictly increasing odd function from R into R with
6(0) = 0. In particular if we take o(z) = z|z|, equations (12) become

(Fi(s)+s9)°

It can be shown that the Jacobian of (13) evaluated at_a solution s
which satisfies the strict complementarity condition s, + IF1(§)] > 0,

tFAs)Fi(s)] = syfsy] =0 i =1,....8 (13)

i=1,...,8%, is nonsingular provided that the Jacobian VF(s) has non-
singular principal minors. This will be discussed elsewhere in more detail.
Note that equations (13) are globally differentiable if F(s) is globally
differentiable.
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