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ADDENDUM TO APPENDIX OF TR 217

The unmodified third-order Adams' method corresponds to the case
METH = 0 replacing line 28 of FDM3 on page 19. The conservative
version corresponds to METH = 1 as shown.

The data used to generate the example given is read in at line

7 of DTEST on page 15. The values were

METHOD = 4
IBIT = 0
ISW = 0
B = 0.5
20 = 0.0
E = 1.32845 (= 2 - 0.67155)

H = 0.050457 638858
HMAX = 4.0366 15087
STEP = 0.0






ABSTRACT

In the integration of the equations of motion
of a system of particles, conventional numerical
methods generate an error in the total energy of the
same order as the truncation error. A simple modifica-
tion of these methods is described, which results in

exact conservation of the energy.






1. Introduction

When applied to the motion of a system of particles,
conventional numerical methods for the integration of
ordinary differential equations only approximately conserve
the total energy of the system. The error in the cal-
culated value of the energy is of the same order as the
truncation error in the velocities. In previous work
[1]-[5], a new class of methods was described, which
maximally conserve the constants of motion. These methods
exactly conserve the total energy and linear momentum,
and conserve the total angular momentum to at least one

higher order than the corresponding conventional methods.

In what follows, our purpose is to show how con-
ventional numerical methods--exemplified by the third-order
Taylor series and Adams' formulae--can be modified so that
exact conservation of energy occurs. This modification
simply involves the introduction of adjustable, multiplica-
tive parameters, whose values are unity for the conventional

case.



2. Equations of Motion

The following is a brief description of the equations

of motion of a system of n particles, interacting
according to a pairwise-additive potential. For more
details, see [1] or [5].

Suppose particle i has mass m; and position

vector

-
r, = <Xi’yi’zi> (2.1)

velocity vector

s dx; dy; dz; 2.2
i dt fdat " dt *

and acceleration

N d2x. dzy. dzz.
_ i i i
ai = 2 T3 T (2.3)
dt dt dt
Newton'’s laws of motion
m;a, = Fi (2.4)

-

-l
relate the accelerations a; to the forces Fi , given
by
P.o= - 090 (2.5)

where ¢ 1is the potential of interaction. It will be
assumed that ¢ has the pairwise-additive form

¢(rl,r2,...,rn) = i§j¢ij(rij) (2.6)

-d
where rij is the magnitude of the vector distance r.

between particles i and j

ij




- -

rij = rj - r; (2.7)

As a consequence of equation (2.6),

F,o= ? P (2.8)
i jél ji
where
- -
Fji = - Fij (2.9a)
-
d¢.i L
= - = 2= (2.9b)
r.. ..
J1 Ji
dqii_i ;13
=a'r.‘ i—“— (2.90)
ij ij
and F.. = 3 if j =i . The introduction of equation

ji
(2.8) into equation (2.4) gives the equations of motion

a ? F (2.10a)
m.a, = ) - .10a
i%i 5=1 ji
n o do,. ?i.
= ] g1 =2 (2.10b)
L& r.. Y..
j=1 "71j ij

Equations (2.10) are a system of second-order ordinary

differential equations for the ;i . This system may be
A a

used to solve for the ri' and vi' at any later time

t' = t + At , given the Ei and Gi at time t .

Conservation of the total energy E occurs because

of the existence of the potential ¢ . Here,



V) o+ o (2.11a)

(2.11b)

b

where a-g denotes the scalar product of two vectors

a and b . Conservation of energy is expressed by the
equation

E(t") = E(t)
for any two times t and t' , and E evaluated along

the trajectory.
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Conventional Numerical Methods

A simple example of a conventional approximation method

for the numerical solution of equations (2.10) is provided

by the truncated Taylor-series formulae

. n 2 3
BT =T, 4+ VAt + = ) [ﬁ..(At) g. . {at) ‘J (3.1a)
c,i 1 i m, .= ji 2 i1 6
i j=1
n 2
S = 1 2 (At)
Ve, i = VY + = _Z_ [FjiAt + Gji 5 :] (3.1b)
i =1
where the T and V' are the calculated values
c,i c,i
) ..'s‘ ..\| .
for the ry and v, at time t' = t + At , and
. aF.
Gji = wa%— (3.2a)
do.. v a® a P T
L. VL. . . r..r..
- _ ¢31 ji _ ¢jl _ 1 ¢jl Ji7ji (3.2b)
dr. . . 2 r.. dr.. r.. :
31 Tji drji ji Jji ji
where
dr,i
rji = 4t (3.3a)
SR
- _J J1 (3.3b)
r..
ji
and
- - -
V.. = V., = V, (3.4)
Ji 1 J
The method of equations (3.1) is of third-order, since
20 224 ooran) (3.5a)
Ty T rei .5a
Tro=vL . + OL(At)7] (3.5b)
v c i . .

7 -



due to the neglect of the succeeding Taylor-series
terms. These errors generate an error of O[(At)3]

in the value of the energy Eé - calculated using the

rc,i and Vé,i :
AEC = Eé - E (3.6a)
= O[(At)3] (3.6Db)

The third-order Adams' method arises via
equations (3.1) and the approximation

g.. =82, + ora 3.7
i35 = Gij + O[At] (3.7)
where
Fr .. - F,.
G2 = Tc,ij _ Tij (3.8a)
1] e
In equation (3.8), F' .. denotes the value of F,.
C,1] 1]

obtained from equation (2.9b) using the ré i

7
Equations (3.5) and (3.6) also hold when the E‘;‘j
are used for the aij
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4. Energy Conserving Modification of Conventional Methods

Consider the third-order methods of Section 3, with

G.* laci ither the & Ga

l:] replacing e1i er e l:] or l:] :

S swvar+ 2 7[R we)? g (At)B} (4.1a)
e,i i i m. LA 1F9i T2 i T 6 .

i =1
nr 2

v!' . = 1 = S%  (At) }

c,i=v, + ﬁz jzl[FjiAt + Gji = (4.1b)

When equations (4.1) are used to obtainestimates for

- -5
the r{ and vi , an error AEC is made in the total
energy, which is given by

AE, = E - E (4.2a)

N AR A SR B S (4.2b)

n n . n
: A - &
= At .Z .Z Bvl + §%~ Z Fki)' i
i=1 j=1 i k=1 J
(4.2¢)
. At LAt 3 2 2. At 2,
=7 (v m; kgl ki ¥ Cki 7 ) Gjl] * he

(4.2d)
Aty o2 A“”ij]



where
F F .
n - .
a,. ) Ih-]‘?-l - ﬁi‘i (4.3a)
J k=1 5 i
Sk A* 7
n G, . G..
B. . y ookl ki (4.3b)
ij k=1 mj m, i
and
=0 . - b, 4.4a
Bbjg =00 55 = 45y (4.4a)
= , o)y = b, . . 4.4b
¢i](rc,l]) ¢lj (rlj) ( )
where
S S .
] —_ v - ] .
Ye,i3 T Te,y T Fe,i (4.3)
i £ usi G.¥ =T ga
Suppose now, instead of using Gij = Gy or i3
in equation (4.2)--which leads to an error AEC of
o[ (At)3]1--that adjustable éfj
&.% = ¢.. G.. (4.6)
1] i3 1]
or
S _ 25
Gij - eij Gij (4.7)
is used. The Eij are to be chosen so that
€. . 1 + OLA+] (4.8)
1]

(preserving the order of the method), and such that exact

conservation of energy occurs. Solving

0 (4.9)
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for the Eij gives, for example, for (4.6), the equations

(cf. [1]1 and [51])
2
S S Y (At) > At
{vij + aijAt + bij ewz——l} Gij =5 Eij

M, a3 Aoy

-3 >
+ (VJ] + alj 5 . Fl] + X = O (4.10)
Equations (4.10) are a set of implicit, coupled equations
0 . ol '
in the €54 since the bij and ¢c,ij depend upon
the values of the eij

For small At , equations (4.10) are strongly linear

in the €55 - The only nonlinear dependences on the
i 1
eij occur through the bij and ¢c,ij (through the
ré i3 ). In both these cases, the terms involving the
14
Eij occur with coefficients proportional to (At)3 .
(Compare equations (4.1), (4.5), and (4.10).) 1In contrast,
the coefficients of the linear terms in €55 7 namely
LN £ S At

are of O[At]

Because equations (4.10) are linear except for terms

of O[(At)3] , they may be easily solved via the iteration

formulae
¢1
SR bty g
- _ 2 At M (Vij+a13 3) ij (4.12)
ij At 2 '
.. (V..+5, .At+D, LAE) T
ij i 4

For small At , equations (4.12) are solved via successive

substitutions, starting with

éij = ] (4.13)
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Iteration to convergence of the eij guarantees exact
conservation of energy in the method.

Higher-order formulae may be obtained directly in
the same way as equations (4.10). If the highest-order

terms involve

2 (m)

pm) _ — 13 (4.14)

ij dtm

then these are replaced by

- * wd
pm* _ gl (4.15)
1] i3 13
where the 6jj satisfy equations (4.8). The formulae for
the Gé ; are substituted in equation (4.2b), the sum
transformed to i < j , and the ij terms set individually

to zero. These resulting implicit equations in the Eij
are then solved by standard methods, with the first

approximations given by equations (4.13) .

For very high order methods, the extra algebra
needed to obtain the éij is considerable, and substantially
reduces the relative efficiency of the method. However,
it should be noted that conservation of energy guarantees
stability in the usual sense (bounded motion), which is
always a desirable computational property.
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5. Numer ical Example

As an illustration of the affect of the modification
described in Section 4, the modified and unmodified forms
of the third-order Adams' method were compared numerically
on a sample two-dimensional problem involving two particles.

Here n= 2,

m =m, = 2 (5.1)

and the gravitational interaction

1
pi,(ry,) = = —— (5.2)
12712 r12
were used. The initial conditions were chosen so that

the center-of-mass of the system was at rest and

- 1
£),(0) = <z,0> (5.3a)
£y

v, ,(0) = <0,1.63> (5.3b)

The value of the energy is then
E = -0.6715500000... (5.4)
Because of the form (5.2) of ¢12 , the exact

motion that occurs traces out a closed ellipse with

major-axis

2a = 1.48909 23855 (5.5)
corresponding to upper and lower bounds on ¥, of

r, = 0.98909 23855 (5.6a)

r_ = 0.50000 00000 (5.6Db)

<

The motion repeats itself with period 1t equal to

T = 4.0366 15087 (5.7)
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The implicit equations of the third-order methods

were iterated to a relative convergence of 10—8 . A
constant step-size of
At = 1/80 (5.8)

was used. In order to focus attention on the errors made
in the methods, results were obtained at times t which
were multiples of the period 1 , where the exact solution
returns to the initial conditions. Measures of the

error at these points are the error in the calculated
value of E and the deviations from zero of dX/dt

and Y , and from 1 of r

2 12 °

Table I gives these quantities for several times
£'" = mt . It can be seen that the unmodified Adams'
method makes an error in E as well as larger errors in
dx/dt and Y , and compares unfavorably with the modified
method. Another simple measure of the error for this
problem is the number of steps over which a phase error of
180° is made: i.e., the time at which rip9 = 0.985 instead
of 0.5 . For the unmodified methods this was about 2800
steps (35t). For the modified methods, at 20000 steps
(250T) a phase error of less than 180° had been made.

Programs for the methods are given in the Appendix
of [6].
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TABLE I.

Comparison of Modified and Unmodified Methods

on a Simple Gravitation Problem

At times t = mt

ax

Method B r dt Y
Exact? -0.67155 0.50000 0.00000 0.00000
uP -0.67140  0.50221  0.20630 =-0.08704
M€ -0.67155 0.49997 0.02164 -0.00462
U -0.67099 0.50873 0.40254 -0,17213
M ~0.67155 0.49997 0.04328 -0.00923
U -0.67040 0.51924 0.58036 -0,25351
M -0.67155 0.50001 0.06492 -0.01385
U -0.66905 0.55019 0.86162 =-0.39996
M -0.67155 0.50017 0.10818 -0.02311
U -0.66679 0.65934 1.15127 -0.64976
M -0.67155 0.50116 0.21592 -0.04639
U -0.66561 0.97998 0.82003 -0,97598
M -0.67155 0.62554 1.35684 -0.,57888

a Initial conditions

b Unmodified third-order Adams' method

C

Third-order Adams' method modified to give exact energy

conservation.
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APPENDIX
1LABUD,2070,9000055203,1M¢50
i1 DTESTY
NaMACC 1.145=06/10/74=16327:06 (,0) DTESY
1o c TEST PROGRAM FOR GREENSPAN’S DISCRETE MECHANICS
20 IMPLICIT DOUBLE PRECISION [A=H;,0<Z)
3, DIMENSION Y{(3,7),AUX(3,7) ,R(3),DR(3),XMETHD(4)
'IN DATA XMETHD/DDISDE® ,*DADAMS® ;*DRDE’ ,*DDM3?/
e EQUIVALENCE (Y(lol)9R(!)).(Dﬁ(i)avll,2l)
b4 EXTERNAL F,DISF,FDM3
7 50 READ 10,METHOD,IBIT,1SW,B,E,Z0pHosHMAX,STEP
8, 10 FORMAT (3i5,6F1000)
9 d METHOD = |, 2ND ORDER DJSCRETE MECHANICS. = 2, 3IRD ORDER ADAMS.
10, 4 @ 3, 7TH ORDER ADAMS. = 4§ , 3RD ORDER pDISCRETE MECHANICS
11e o IBIT = NOo OF BINARY BITS OF ACCURACY DESIRED IN SOLUTION
126 4 B AND E = INIy{AL CONDITIONS OF TVTHE IMPACY PARAMEYER B AND EMERGY
£3 d 20 = INITIAL Z VALUE
140 c ISW = STEP CONTROL SWITCH cee =}o0s¢1l
15, c STEP = IF ISW = 1, STEP 1S POINTS AT WHICH SOLUTIONS ARE PRINTED
16 MSIGN = ISIGN(1,METHOD)
176 METHOD = xaas«mz?woo)
18, IF _(MSIGN o.GT, D) GO 70 5}
19, READ (S,13) (REID4DRII), 1a1,3)
20, 1 FORMAT (&F1004)
21, E = D.500%(DR(1)®DR(1) ¢ DR(2)@DR(2) ¢+ DR(AI®DR(3))
22 51 DO 1 1 = 1,3
23, DOt G = 4,7
24, 1 AUX(1,d) = 0033333333333333333300
25, VREL = DSQRT(2.D0sE)
26 NSTEP s 10
279 IF_(METHOD oEqQe 3} NSTEP & 5
28, WRITE (6,20} XMETHD(METHOD) ;B,E,VREL,IB1TV,20,15W
2%, 20 FORMAT(iHl 5%, “TESTY TRAJECTORV ustG Ab/10X,°WITH B w”gFlO.S 5X
30, 1°AND E =° ,F10,5/10X,°RELo VELOCITY =°,F10,5,5X,’N0s BITS w’,15//
31 2 10X,*STARTING Z VALUE 1S°,F10eB:5X,° ISW(STEP CONTROL) &' ,15//)
Ao TIME = ZOG/VREL
33, IF (MSIGN «1.T, 0) GO TO B2
3‘49 R(l) k-] Uo
35, R(2) = B
b, R{3) = 70
37 DR{1) = Do
38, DR(2) = O,
39, DR(3) = VREL
40, 52 CaLL Fly) =
41 ANGO = R(2)aDR(3) =« R{3)spR(2)
420 T = 0.D0
43, TEST = STEP
44, PRINT 21 ,MSIGN,STEP ,HMAX
45, 21 FORMAT (10X, MSIGN =®,13,8X, “STEP =¢,D18,9,5X,
44 CALL FINAL (KOUNT)
47 WRITE (4,25)

48

25 FORMAT (SXsfSTEP?QSXa’TZNE?QSXn’DELTA ) Y
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49, ] 6X9’X@96prKDOT?9?X¢’Y°pbﬂg’YDOTQe@x.“z’g&x.’ZDOT‘96Xa‘VREh”/Q
50 i =0
51, RR =DSQRT(R(j)ee2 + R(2)ew2 ¢+ R(3)ewz)
§2, WRITE (&,30) [ o ToHE RRp(REJD s DREJD a1 3) ,VREL
530 a0 FORMAT (HX,§16,F10¢5,F10:6,8F10060F1206)
54, CALL TIMSETY (0o) “
88, GO TO (60,70,80,856),METHOD
§6 o 60 CALL DSTART (HMAX H,T,Y,AUR,1BITo3,DISF,15W,3)
57 G0 70 90
58, 70 CALL ASTART(HMAXoHT oY AUXoIBITp3,FsI5W,;3)
59 G0 TO 90
60, 80 CALL RDEO (HMAXoH T,V AUX,1B1T,3,F,18W,3)
b1 G0 T0 90
62 85 DO 86 1 = §,3
630 86 Y{1o4) = Qo .
64, CALL DM3IN (HMAKoHo T YoAUXIBIT3,FDMI o 15W,3)
65, 20 DO 160 1 = !920003 )
6bo RR =aDSQRT(R(})es2 ¢ R{2)10e2 ¢ R{3)we2)
67 IF (RR o GTo §0o¢ oANDe T ,GEe TIME) GO 7O 200
680 IF (NSTEPs{1/NSTEP) & | oNEo I ¢ANDs 184 ,LEes 0) GO TO 95
69 IF (1SW oEQe 1 oAND, DABS(T=TEST) oGVe 1sD=Ha 0
700 TEST = TEST & STEP o '
710 VREL = DR{i)epR(1) + DR(2)eDR(2) + DR{3)eDRIIN}
726 CALL DFPOT(RR,FORCE,POT)
730 EE = 0.5D0eVREL ¢ POT
7% VREL = DSQRTUYREL)
750 PRINT &DBXBTQHﬂgEnRRﬁ(R(ﬁ)EDRQJ)Edmlaé‘hm_k__
Thoe 95 GO TO (96:97,98,99) yMETHOD
78 60 Yo 100
79 97 CALL ADAMS (H,T,Y,AUX,F,3)
80, Go To 100 )
Ble 98 CALL RDE  (H,T,Y,AUX,F,3)
82, GO To 100
83 99 CALL DM3 (H,oT,YoAUX,FDM3,3)
84, 100 CONTINUE .
B5, 200  VREL =DSQRT(DR(1)eDR(1)+DR(2)eDRE2I+DRIZIDRIIN)
Bbe CALL TIMGET(?END?) ’
87, CALL FINAL (KOUNT)
88, CHI = ACOS(DR(3)/VREL)eSIGNI10,DR(2))
89, RR = DSQRT (R(1)I®R(1) & R(2)wRI2) <+ RI3IER(3) 1}
905 caLl DISPOT (RR,POT) '
91 EE = De5D08VRELeVREL + POT
926 PRINT 309107 H,EE,RR
930 ANG w R{2)#DR(3) = R(3)¢DR(2)
94, EANG = ANG = ANGO ‘
95 WRITE (4,40} CHI KOUNT,ANG,EANG
94, 40 FORMAT (5X,*ANGLE OF DEFLECYION 1S°¢,F15,6,8X, N0 POTs EVAL.? X8/
97 I SX,'FINAL ANGe MOMENTUM =’ ,E15,7,5%,’ERROR @’ E15eb) ’
984 G0 TO 50 o o
END OF COMPILATIONS NO DIAGNOSTICS,
51 DDM3
AN=MACC 10145=06/10/74=16327:25 (,0) DDM3
1, SUBROUTINE DM3IN (HMAX Mo X Yy AUR IBIT N oF o ISW,NDEMI
2o c SUBROWTINE WHICH SOLVES SySTEW OF N 2ND ORDER DIFFe
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3, 4 GREENSPAN?S DICRETE MECHANICS (THIRD-ORDER)
Y4 e YOIp1) = YOI), Y(1,2) = YPUE)=mDY([) /DX, Y(I:3) =D2Y(I)/DX2
Be C Y(1:4) = HeD3Y{])/DX3 ' ‘ .
o C NOTE = COLUMN 5 OF AUX SHOULD CONTAIN WEIGHTS OF Y(1) (SUM = 1)
7e c NOTE = FIH,YPR,Y,ISW) SHOULD STORE VALUE IN Y(1,3) '
8, c ISW = =§,0,%1e IF D, NO STEP CONTROL. IF «1, NO MOD CONTRQL
9 IMPLICIT DOUBLE PRECISION (A=H,0=2)

10, DIMENSION YINDIMs4), AUXI(NDIM,5)

11, DATA BETA/Z@DD/@BINV/OoSDOIpBE?AZ/QQOD/

120 DATA ITER/4/,FACTOR/1oD=8/

13, MODH = [SW

§4, HMIN = HMAX/1048576.D0

15, HUP = 1.,00000000001D0®HMAX

1hoe X0 = X

17 M = N ,

18, EPS = 0,02D0/(DABS(H)»BETA®eIBIT)

19 ISTEP =D

20, IDELAY = 0O

210 ITOV =0

22, IF (ISW oNEe 0) GO TO 400

230 EPS = 1,D+10D

24, HUP = = [4.D0

25, GO TO 400

26, ENTRY DM3 (HoX YoAUXF NDIM)

270 IF ‘IDELAY eEQe D) GO TO 300

28, IDELAY = IDELAY = |

290 GO 70 4p00

30, 300 IF (ITOV LEQe O) GO TO 400

3, HW = BETAeH

32, IF_(MODHeDABS(DMOD( N) oGFo HUPF)
33, 1 GO TO 400 '
3"’9 H = HW

3%, EPS = BINVeEPS

36, 400 HW = 0.5D0¢H

37, TO = Do

38, DO 450 § = .M

39, AUXTT 1) = Yig,1)

40, AUX(T,2) s Yig,2)

41, AUXSE,3) @ YUg1ol)  He(Y(1,2) ¢ HuweY(1,3) )

42, Y(Io1) = AUX(L,3)

43, AUXTT,8) & Y(1,2) & HeY(1,3)

44 ¢ . Yi1s2) = AUX(I,.4)

45, 450 TO = TO &« AUX(I,5)eABS(Y([,1))

46, TO = TOaFACTOR

47 H2 = Do)bb6bbb6b6b60b666b67D00HEH

48, DO 580 J = },ITER

‘49@ V = Ua

Bl DODA =0,

51 CALL F (HoAUX,Y,J,ITSW,ETA)

520 DO S00 i=1,HM

53& W m Y(!ex)

84, W2 ® ETA®Y{1,4)

5% o YOIel) = AUXTUI,3) & H2ew2

56, YO1p2) m AUX(],8) o HWlew?

57, T om T & AUX(T,5)@ABS(Y(T,1)mW)

58, 500 DODA = DODA ¢ AUX(I,5)eABS{W2)

59 IF (17SW oNEe 0) GO TO 5§50
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50« TF TV oLTe TO] U TG 580
61 550 CONTINVE
620 GO TO 420
63, 580 ¥ (DODA oGTe EPS) GO TO 620
64 IT0V & O
65 iF (DODA2BETA2 ,LTe EPSY JTOV B |
bbo €0 10 650
67 420 IF (ABS(H) obL¥, HMIN) GO TO0 1800
68, DO 630 1 » 1M
69 YEIoll = AUXTT,40
706 630 YeIo2) m AUXER,2)
71, H = BINVaH
72, EpS = BETA®EPS
730 IDELAY = 1
745 GO TO 400
75, 650 ISTEP = I[STEP ¢}
Téo A 8 YaH o
77 DO 700 § s oM
78, 700 YUEs3) ® YEL,3) @ Y{1,4)
79, RETURM
B0 1500 WRITE {46,101 Lﬁ?ﬁP9XQH EpgangOQA
81, 10 FORMAT (‘QeeeseDDM3 FAILS AT STEP°916@§X99AT X a® ;D209 ,2%,*AND g
826 1EPw 3E’uﬁ@maaa€af.3% FERROR Cﬁg?ﬁﬁioi\éme@EE%@&/%K»’S?A@KLgTV TEST a?y
83, 2E1506 540 TRUNCATION TEST 2° E1Boé/)
84, WRITE (60200 (IVIiTeddodml B)olm)om)
8%, 20 FORMATYT ﬁzﬂﬁggvagaﬁggeﬁ2ﬁ99Y€X9336gi2X99Y€E93)eglzxpov(Yg%3¢/
860 1 (10X, 4€1868)) '
87, WRITE (465300 (CAURGE ;J)pdulyS)ol=], M)
88, kY FORMAT (/10K AUXKILIARY MATRIX® /(310X ,56E18,8))
89, SToP
90, END
END OF CoMPILATION? NGO DIAGNOSTICS,
1 DF
NaMACE §,145=06/10/74=16327541 (4,00 DF
$o SUBROUTINE DISF (RP,R,ISW)
2 C NOTE « EACH OF THE FOLLOWING ACCELERATION ROUTINES ASSUMES MASS =
3o C THIS ENTRY (D3SF) RETURNS SECOND=QRDER DISCRETE MECHANICS ACCEL.
4, IMPLICYIT DOUBLE PRECISION (AwHa0e7)
8, DIMENSION RP(1),R(3,1)
bo IF LISW +6T. 1) 60 TO 100
7. RRP =aDS@RTIRP(II®RP(1) ¢« RPL2)eRP(2)+RPIIIsRPLI))
85 CALL DISPOT (RRP VP '
9, 100 RR = SOQRTIRII,100R(1,114R(2,1)eR(2,8)eR(3,1)8R(391))
10, CALL DISPOT (RR.V)
11 DODA = {(RR « RRPI=(RR + RBRRP)
124 ACOEF = 0000 ‘
13, IF (DABSIDODA) 6T 1en=20) ACOEF & (VYP=V)/DODA
14, DO 200 [ = 1,3 ‘
18 200 RE1o3) = ACOEFe(R(1,1) ¢ RPEID)
16, RETURN
$176 ENTRY F(R)
18, C ENTRY POINT F RETURNS CLASSICAL EXACT. ACCELERATION AS FORCE/MASS
19, RR_=DSQRT(RII,1IPRII,1V*R(2Zp1I0R(2,80eR(3,1)@RI301))
20, CALL DFPOT (RRyVoVP) '
2ﬁfa V ] “WV/@&'

220 Do 300 1 = 1.3
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23, 300 R{1,3) = VeR(1,1)
24, RETURN
25 ENTRY FDM3 (H,RBY, R, ISW,ITSW,ETA)
260 c ENTRY POINT FpM3 RETURNS 3RD ORDER DISCRETE MECHANICS ACCELERATIO
27, DIMENSION RB4(3,1) ) o
28, METH =& 1|
29, ITSW = 0O
30, EYA = 1,00
31, 1F_(ISW oGVo | o0Ro METH .EQe 0) GO TO 400 :
iz, RRP aoSQRfiﬁawszox)eRBq(zag) + REB4(2,1)0RBY(2,3)+RBU(I 11 0RBUCI,1
33, 1)
34, CALL DISPOT (RRP,VP)
35, 400 RR «DSQRTIRII,1)eR(1,1) » R(2,1)eR(2,1)aR(3,1)6R(3,1) )
36, CALL DFPOT (RR,FN,V) '
37, FN = =FN/RR
38, DENOM = 0,DO
39, BNUM & (VoVyP) /H
40, DO 5600 1 & 1.3
41, WORK & FNeR(I,1) = R{I,3)
424 1F (METH eEQw 0) GO TO 54Qp
43, DODA = 0e5D0®(R(1,2) & RB4(1,2))
4y, DENOM = DENOM ¢ WORK#DODA
45, BNUM = BNUM # R(1,3)3DODA
44, 500 REI,4) = WORK
47, IF (METH oE@» 0O) RETURN
48, ETA = =2,D02B8NUM/DENOM
49, IF _(ETA oGT»o 00,6D0 oAND, ETA obTe 1400) RETURN
&0, ETA = 1,00 ‘
51 RETURN
52, END
END OF COMPILATION? NO DIAGNOSTICS,
1 GPOT
INeMACE 10145=06/10/74216527386 (,0) GPOT
fo SUBROUTINE DISPOT (RyPOT)
2 IMPLICIT DOUBLE PRECISION {(AwH,0=7)
3. PSW = § ’
4o ino POT = =1,D0/R
5. NPOY = NPOT ¢ i
bo GO TO (200,300),IiswW
7o 200 RETURN
B ENTRY DFPOT (R, ELPOT)
9 isW = 2
10, GO TO 100
ile 300 F = iuDD/(R@?W)
126 RETURN
13, ENTRY FINAL (KOUNT)
14, KOUNT_ = NPOT
§5 NFOT = 0O
16, RETURN
17, END
ENp OF COMPILATION NO DIAGNOSTICS,

TM=O6/10=16327

IS NoT DEFINED - REFERENCED IN ELEMENT  DTEST
IS NOT DEFINED » REFERENCED IN ELEMENT  DYVEST







