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ABSTRACT

In Part I of this work, numerical methods were derived for

the solution of the equations of motion of a single particle subject
to a central force which conserved exactly the energy and momenta.
In the present work, the methodology of Part I is extended, in part,
to motion of a system of particles, in that the energy and linear mo-
mentum are conserved exactly. In addition, the angular momentum
will be conserved to one more order of accuracy than in conventional
methods. Exact conservation of the total angular momentum results
only for the lowest order numerical approximation, which is equiv-

alent to the "discrete mechanics" presented elsewhere.






1. Introduction

The motion of a system of particles as determined from the
laws of classical mechanics is widely used as a model in a variety
of applications in physics. These applications range from statis-
tical mechanics [1] and the interactions of atoms and molecules
[2], to the motion of the solar system and space capsules [3] and
the evolution of star clusters [4]. In each of these applications
the conservation of the "additive constants of motion" -- the total
energy, linear momentum, and angular momentum -- is of funda-
mental importance. Indeed, these conservation principles are the
very essence of statistical mechanics [1].

Conventional numerical methods, when applied to the problem
of the motion of a system of particles, do not lead to exact conser-
vation of the total energy and momenta. The truncation error present
in these methods disturbs the values of the constants of motion.

In previous work [5]-[8], a new numerical method -~ "discrete
mechanics" -- was developed, which exactly conserves the addi-
tive constants of motion. In [5], the basic conservative formulae
were obtained for a separable, radially dependent potential of inter-
action ¢. In [6], "discrete mechanics" was extended to include

anisotropic potentials. Formulae for nonseparable ¢ were obtained



in [7]. The theory was extended to an arbitrary numerical order of
approximation for the case of the motion of a single particle in [8],
Part I of this work. Part I also considered the questions of the trun-
cation error and stability properties of the method, which were found
to be the same as or superior to conventional techniques.

In the present work, the basic formulae presented in Part I
are extended to the case of a system of particles. Unfortunately,
except for the lowest-order approximation -~ corresponding to the
"discrete mechanics" presented previously [5] == the new formulae
conserve energy and linear momentum, but fail to conserve angular
momentum. However, an extra order of numerical accuracy is ob~-
tained for this quantity.

The necessary mechanics of the motion of a system of particles
is summarized in Sect. 2, the conventional numerical solutions
reviewed in Sect. 3, and the conservative methods developed in

Sects. 4 and 6. A numerical example is given in Sect. 5,




2. Eguations of Motion

Suppose there are n particles, indexed by subscript i, subject
to the influence of a potential of interaction ¢. Let the mass of

particle i be denoted by mi and its position vector by ;i'

whie.

r, = <X,, Y., Z.> (2.1)
1 1 1 1

The velocity 31 of particle i is defined as the time derivative of

dx, dy, dZ,
i i i

Vi T <Ta ¢ Tat ' at

> (2.2)

If ;ij is the vector distance from particle i to particle j, then

fy =T -7 | (2. 33)
= <Xj—Xi,Yj—Yi, Zj—zi> (2.3b)

with corresponding time~derivative ;ij given by
v. = v -v (2.4)

ij j i

Assume for simplicity that the potential ¢ is a pairwise~additive

function of the distances r, :

ij
R T B P A UL T UL S LN Iy
(2.5a)
) . () (2. 5b)
i<j 13



where

—Xi)2+(Yj-Y)2 + (2 - 22

1/2
i j i ]

[(X (2. 6)
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=
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]

and

n-1 n n

peT P Y @

i<j i=l j= i+l j=2 i=1

Note since, by eq. (2. 3a),

r.,, = =r., (2.8)

!‘.,:I‘ij (2.9)

Many fundamental physical interactions have potentials of
the form given by eq. (2.5b). For example, gravitational forces
are characterized by

Gmim.
) = __.._._.____J.r (2.10)

i

o, .

A ¢ S
1} 1)
where G is the gravitational constant. On the other hand, certain
potentials corresponding to molecular interactions (with averaged
electronic motions) do not have the additive form of eqgs. (2.5).

The generalization of the results of Sect. 4 to more complicated

¢ is mentioned in Sect, 7.




Newton's equations of motion for the system of particles

are
mi ai = Fi (i=1,2,...,n) (2.11)
where
N dZFi
a, = (2.12)
1 at?

-

is the acceleration of particle i; Fi is the force on i due to the ac~-

tion of the potential ¢, given by

52 _ 0%
Fi = =% (2.13)
1
where
9 9 9 9
of. - Sox ‘' oy ' sz, (2.14)
1 1 1 1

is the gradient with respect to ;i' Using the chain~rule and eqgs.

(2.3), (2.5) and (2.13),

i-1 n
. - dé,, or -~ d¢,, or,
Pooo- ) i) o (2.15a)
i , dr,, or .. dr,, or,

j=1 ji i j=i4l T ij i

i-1 -

dr,, oF, ofF, (2.15b)

(2.15¢)



Defining
- ad)i'
Fij = - —__LBF,, (i<j) (2.16a)
1}
dg,, ..
- - 4 1 (2.16b)
dr,, r
ij ij
and
. -F (i<j)
F,, = i
11 0 (i=}) (2.17)
then egs. (2.15) can be written
n
R (i=1,2,...n) (2.18)
1 j=1 H

so that the equations of motion (2.11) become

2= n

dr, N

m 1 Z F. (i=1,2,...n) (2.19)
-1 Y

i dtz j

It will be of interest for later consideration to examine the

quantity aij , defined by

dv
a = “Jil (2.20a)
- -

Substitution of eq. (2.19) for the 31 then yields




noo2 2
- k' 3
a, = ) (—EL - -r%-) (2. 21)
O i

-
The total angular momentum L of the system of particles is

given by

A} m.(c. % v.) (2.22)

where ;i X v, denotes the vector cross product with components
- b _d.Z. g__¥_ d_x_ - g_z_ d~;¥_ - ..d.}.(.:
rxvypo= <Yar - %& e %q X Xar ~Ya > (2.23)

Conservation of angular momentum is expressed by the equation

= 0 (2.24)

=[5

so that, for any two times t and t',

-

Lt") = L(t) (2. 25)

where L is evaluated along the trajectory. Verification of aq. (2.24)

is easily obtained by noting that

n

- d -3 -y
dL _ Z m, 3¢ (X)) (2. 26a)
dt .
1:1
n
Z - - 6b
= mi(rixai) (2.26Db)
i=1
n
= Z r xF (2. 26¢)



Substitution of eq. (2.18) into (2.26) then gives

- nn
i ) foxF (2.27a)
izl j=1 1
Z - - Z ol 9
= - rixFi, - r xF . (2.27b)
i< e M
- r xF 2,27
l rij X Fij ( c)

i<j
> -
Since the vector direction of Pij is r , from eq. (2.16), each of

ij

the terms rij X Fij vanishes, and eq. (2.24) is obtained. Note that
conservation of angular momentum is obtained independently of the
functional forms of the ¢ij"

The total energy E is given by
n

)

-

mi(vi . Vi) + ¢ (2.28)

13

L
-

e = -3 -t
where a * B denotes the scalar product of two vectors a and B.

Conservation of E is expressed by
o= 0 (2. 2-9)

or

E(t') = E@)




for any two times t and t' along the trajectory.

With regard to conservation of total linear momentum, (and
consequently the center of mass motion), the only requirement is
consistency, which is a property of the pairwise-additive formula-
tion and therefore, interestingly enough, of every numerical method
of order 2 or higher. For this reason, conservation of total linear

momentum will not receive special attention.
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3. Conventional Numerical Solutions

Three commonly used methods for the numerical solution of
the differential eqs. (2.19) are the truncated Taylor-series, Runge-
Kutta, and Adams' predictor-corrector formulae. In each of these
methods, the ;i(t) and _\‘}i(t) and previous values of the forces or

derivatives of the forces are used to construct the calculated values

alky

r' . and ;' , for

c,i c,i
I‘i = ri(t) (3.1a)
v, = vi(t) (3.1Db)

at the new time t' = t + At.
The truncated Taylor-series and Adams' formulae will now be
reviewed in order to allow a comparison with the new methods to

be developed in Sect. 4.

A. Tavlor-Series Method

For a sufficiently small time step At, the 1-:1 and 31 may be

obtained via the Taylor-series formulae

Lo a1y wn? s oan?
i_ri+ At+m 2.1 Y +G}jl 3! +...] (3.23)

=+

£ At E-
[F; T+ + Gy L—L-z. +eed] (3. 2b)

> 1
o= v, b
i i m,

i

N M~

1
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obtained via eqgs. (2.19), and where
N dF
Gji = “_Ldt (3.3)

etc., The explicit form of the é i may be obtained by noting that

j

no explicit time dependence occurs in eqs. (2.19), and thus, by

the chain-rule, and (2.21)

dr dv
5] e}
goliT T s
k< g k2 kl
) re. . P (3. 4b)
‘ ) k2 Br'kz k2 avkﬂ
. - 3
> 9 0
S Loan, e L R
k<d ki p=1 y/ k k4

£ -h - ol
where, as before, @ - B denotes the scalar product of @ and B.
Relation (3. 4) allows successive time differentiations of eqs. (2.19)

recursively. In the case of Gij' the f are given in the form

ij
Pij = fij rij (3.5)
where
1 ey
£, = - (3.6)
ij r,, dr,,
1] 1}

from eq. (2.16). Therefore, via egs. (3.3) and (3.4),

df
- _ i . - -
Gij = ——ldrij rij rij + fij vij (3.7)
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where
dr
. _ ij
rij = It (3.8a)
_ .._L(F . ; ) (3.8b)
- ry ij 1j ’

is the radial component of the velocity, and (via eq. (3. 6))

2

df, d ¢,
———ldl - -L [f, +—2iLl ] (3.9)
r,, r,, “ij 2

ij ij clrij

From eq. (3.7b), it can be seen that éij has components only in

the two directions r ., and v, ..

ij ij

The calculated values ;é i and ;(': ; are usually obtained by

’ 14

truncating eqs. (3.2) at some point. For example, stopping at the

F.. terms gives
1]

n
K 2
o T 1 2 (at) -
rc,i = ri+vi A‘c-l~m1 j%‘l Fji 5 (3.10a)
n
a. - .—]__— . -
VC,i = Vi+mi j>:1 Fji (At) (3.10b)

so that the "truncation errors" are given by

- - 3

ry ol (3.11la)

-t

, 2
P o= vt olen”] (3.11b)

< b
it

Higher-order approximations are simply obtained by including more
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terms in eqgs. (3.2). For example stopping at the G gives

3
é' _ - N ._l— - - (At)
rc,i = ri+v At+m Z [F 2 + Gji 6 ] (3.12a)
n
=Y - 1 ; - - (At)z
vl = v, = Z [F,, M+ G, ] (3.12b)
c,i i m i ji 2
i j=1
so that
fho= f .+ ofand (3.13a)
i~ Tc,id *
o= v+ olen)’) (3.13h)
i~ Tc,i :

In each of these Taylor-series methods, the truncation errors
in the ;é,i and ;c':,i lead to corresponding errors in i and E, so that
these quantities are no longer exactly conserved. It is instructive
to observe the mechanism by which the error in, e.qg., i is intro-

duced. The lack of conservation in i over the time-step At is given

by the quantity AEO defined by

A = 10 -1 (3.14a)
C C
n
= 2, m[;' x v -r ><$] (3.14b)
i c,i c,i i i

i=1
For the case of the simple method of eqgs. (3.10),

i C'].‘><vcli_miri><vi+ Z[r X F At+vi><P > ]
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Substitution of this result into eqs. (3.14) now gives

n n
- iy 2
- = - - -2
M= L L FoxP oatenxb @ty (3.16a)
c i ji i ji 2
i=l j=1
- 2
B - = = (A)
= Z. [ri>< F]i At+ViXFji > ]
i<j
> 2 s a2 @y’
+ Z [f, XF  At+v, xF ] (3.16Db)
i ji i it 2
j<i
- - - - At 2
= = Z[r x F At+v,><F.(——L]
.. ij i ij 2
i<j
Z - - s PEN (At 2
+ [rij.,At+v.><Pi.———L-2 ] (3.16¢c)
i<j 1) ] J
\" b -t b - At 2
= 2. [r,,xXF, At +v, %XF, ‘L—)—] (3.16d)
i< ij ij ij ij 2

-t

Since by eq. (3.5) I:‘th lies along Fij' the first term in eq. (3.16d)

vanishes leaving

> (an® Y -2
AL, > Z vy Xy (3.17a)

]

2 SIS I ¥ (3.17b)

(3.17¢c)
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As expected, there is a lack of conservation of L of O[(At)z] cor-
responding to the truncation error in Gé i
For the case of the third-order method of egs. (3.12), it follows,

as above, that

2
- _ - - (At) - - ‘-\ -
ALC = izj [rij x Fij A+ 5 (vij X ]E'ij + rij X Gij)
(At)3 = > (At)4 > s
+ v, X G,, + a,, xG (3.18)

3 ij ij 12 ij ij]

where eq. (2.21) has been used. The first term in eq. (3.18) vanishes
because of eq. (3.5). Now consider the (At)2 term in eq. (3.18).

Substitution of egs. (3.5) and (3.7) give

VinFij +rij><Gij = fij Vijx rij
df
- - i . - -
+fij rij X Vij Jr——-j-dlrij rij rij 4 rij (3.19a)
= f v, xr, +f T, XV, (3.19b)

-0 (3.19¢)
so that
. _w’ Vs g 4
ALC = = Vij X Gij + O[(at) 7] | (3.20a)
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3 - df
t 14 o - -
- i-%L Z - By VX Ty 4 olan®] (3. 20b)
i<j ij
or, finally,
2 3
AL = O[(At)7] (3.21)

C

-5
Again, as expected, the lack of conservation of L is of the same

-t
order as the truncation error in v' .

¢

-
In general the truncation errors of the v'C i lead to errors of
'
-
the same orders in L and E, and exact conservation of either quantity

only occurs in the limit At - 0.

B. Adams' Method

The essence of the Adams' methods is to interpolate the der=-

-
ivatives in eqgs. (3.2) by using values of the F,, over several time

ij
-

steps. The lowest order Adams' attempts to approximate Gij by
the formula

- _ .kl _ - -»t ] .

Gy = [, Fij)//\ T+ Ot (3.22)
where

.;.’ - -bl

Fe,i5 = Fiylfe, iy (3.23)

Egs. (3.22) and (3.23) gives rise to the Adams' formulae
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n
2 ¢
rloo o=, + v, At +@)— l [F.,+"1—F' o] (3.243)
c,i i i 3m j=1 2 c,ij
n
e At \—7 e b
1 —_ i / ' .
e i Vit L [Pij FC,iJ] (3.24b)
i j=1
F' .. = F,(r' ) (3.24c)
c,ij ij  c,ij

Higher-order formulae are obtained by multipoint approximations

to the derivatives using values of the Fij at times t - At, t - 2At

’

etc.

4y For small

enough At, the equations may be solved by starting with

-t wh
Egs. (3.24) are implicit in the ré i via the Fé

’

S -
Fc,ij ~ Fij (3.25)
and iteratively finding thei;' i and reevaluating the 1:-'.(': iy Since
? '
eq. (3.22) holds,
fo= 1+ of(anY] (3. 26a)
i c,i
Ffo= VL4 o[(At)3] (3. 26b)
i c,i
and
= 3
AL, = O[(at)”] (3.27)

similar to the third-order Taylor-series method of Sect. 3.A above.



18

4. Maximally Conservative Solutions

The Taylor-series and Adams' methods of Sect. 3 suffer the
defect of not preserving the total energy and angular momentum
at their initial values: these quantities are disturbed by the presence
of the truncation errors in the ;c':,i and eéli. Since any numerical
method which conserves the constants of motion is necessarily that
much more strongly linked to the correct solution, this is a very
desirable feature to build into an approximate solution.

In Part I [8], a conservation method of arbitrary order of ac-
curacy was found for the case of a single particle subject to a central
force (or two interacting particles). In what follows an attempt
is made to extend that result to a system of particles. As in Part
I, two formulations are giyen, explicit and implicit in the ;é:,i'
Although conservation of energy will be obtained in all cases, the
total angular momentum is conserved, in general, only to one more
order of accuracy than in the corresponding conventional methods,
Exact conservation of i is obtained, however, for the lowest-order
method, and in the case of a single interaction.

The method used to obtain the maximally conservative formulae

is to construct the quantities ALC and AEC, transform to the i < j

forms, and solve for zero contributions as far as possible. The




19

lowest-order formulae, corresponding to the second~ and third-
order methods of Sect. 3 will be used throughout the derivation,
although the results easily extend to higher orders of accuracy
in At. Indeed, in Sect. 6, we will, for completeness, outline the
formulae for the explicit and implicit methods of arbitrary order,

for the case of a Taylor-series type method.

A. Explicit Formulation

i. Second-Order Method

Consider first the simple formulae

2 2

A P S N 15 (4. 1a)
c,i i i m ji 2
i j=1
n
Y S 2%
v = v +"L Z F ., At (4.1b)
c,i i mi j=1 ji

where the E in eq. (3.10b) have been replaced by the arbitrary

ji
& o e
quantities Pj';. What is desired is to find values for the F?i such
- =%
that F,, = = F,, and
ij ji
Fro= F. 4+ O[At 4.2
ji = Fyy+ ool (4.2)

and so that L. and E are maximally conserved. Constructing Aic,



20

rtoox v -1 xsi] (4. 3a)

S 2
= Z Z [F,, x v B, 5 F* At] (4. 3b)
, ji i 2 c,i ji
i=l  j=1
n
KN ES é;_ = = o
= At Z [Fi' X vij > +rc,ij X I—‘ij ] (4. 3¢)
i<j
where
al AI AI 4 4
c,ij ~ rc,J _rc,i (4. 43)
- N " & (_A_T,_)__Z_ 4 4b
= + - °
Ty ¥y fttey (4. 4b)

& sk -
Clearly the choice F i = F, results in the method of eq.

J ij
(3.10), with Afc = O[(At)z] from eq. (3.17). Maximal conservation

- b *
of L results if the F b are chosen so that each term in eq. (4.3)

is as close to zero as possible. Setting

- -y =S -
r' x [F..xv é;c—~t~r

=0 )
c,ij ij ij ] (4.5)

, 2 %
c, i <7 i

(which is the best that can be done) results in

L3 -A-. -h é_t
Fij = eij rc,ij +(3ij > (4.6)
where
Y R
fo Fy
e = =& > (4.7)
1] (l )
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- 8, -
is the (unknown) component of F’;j in direction ré i and

14

R 1 -, . KN - _ - . .
By = Tz WMo,y Yy By T gyt Fyyvy] (4.8)
ij (rclij)

. -
At this point, it is opportune to examine the error ALC made

through the use of formula (4.6) for the F¥ . From eq. (4.3c), with

ij°
substitution of eq. (4.6),
AL = At Z [? wv B ><B é—t-] (4.9a)
o} i< ij ij 2 c,ij ij 2 ‘
()2 Z s A Foii” Ty XYy S
= [F XV, r
2 i ij ' 2 c,ij
i<j (! )
c,ij
- Fij X Vij] (4.9b)
)2 Z [re gy " Fyyx vyl s,
i<j (rl, ) !

c,ij

[ Y Y
The scalar triple product a<bxc of three vectors vanishes if g, b,

- - Y
and ¢ are coplanar. Noting that Fi lies along direction rij , via

]
eq. (4.1,
- SN - (At)z
r' =r,, +v,,6 At +a., (4.10)
c,ij ij i] ij 2

then



N 4 [3 . 1-; X 3,,] .
AL, = (—A-E}— Z . i 2” . (4.11a)
i<j (rc,ij)
4 F 7
_e ) -—9-‘”—&— ) (f-l —-lr;—i-) . Fiix;ﬁ (4.11b)
iy % kAL T ™
4
= O[] (4.11c)

which is to be compared with the error of O[(At)z] which resulted

from the choice ?2 =F, in eq. (3.10b). Note that in the special

i
case of only two particles (n=2), the sum over k in eq. (4.11b)
is empty, and i is exactly conserved, agreeing with the results
of [8].

Formula (4. 6) for the ﬁ*ij is incomplete because the Gij are
yet to be determined. Using eq. (2.28), the error AEC made in the

energy over the time step At is

n
AE ——LXm[T}' e (4.12
c—zi_1 it'e,i c,i i i ¢ -12)
where
pe = Lofo] - 0] (4.13)
i<j !
and

¢! = ¢ij<r' ) (4.14)
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-

Substitution of formula (4.1b) for the v into eq. (4.12) gives

c,i

5 n
1 = = 2N A >
AE, = mv, v +_~_Z.V'P
c 2 i=1 i1 i m, j=1 i ji
2 O 0
(At) \ - - & a
* Atz L Fi- CF - vy Vi] + A (4.15a)
m j=l k=1 i
r% r} r% - e =
= At L [;i . F%iJrE% ) Flyt Fjl+ e (4.15D)
=1 j=1 J i k=l

Transforming to the i < j form,

n
\" -l .Y At .A* .é*
AE:-—Atl[v-F*w-—-Z F¥ < 7%
c oy b T2mg g Tk T
: n
- -h At .;* J*
+ At Z [v,-P’.k+“'— Z F . F .1+ 400 (4.16a)
j<i i ji Zmi kel ki ji
n =% Sy
Voo o Y Py By
= At [, [vij . Fij +5 (m - )'Pij]+A¢ (4.16b)
i<j k=l j i
- Ad,
_ 5N ..\* —A;t- . ..s* .__lj
= At Z [(vij+aij 2) Fij 0 ] (4.16c)
i<j
where
n A% 2k
F* T
2% o ) (koK (4.17)
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and

In order to make AEC vanish it suffices to choose the set of Eij
such that
A¢ .
4 AL i] _
(v -i-aj 2) ij = 0 (4.19)

Since each of E’;‘j, vé 3 and a’; are linearly dependent on the
2

eij , eqs. (4.19) represent a quadratic system of equations for the

eij' A first approximation for Eij may be obtained by noting that

&y = At =3
+ * — -
vij i] 5 vij + O[At] (4,20)

so that for the correct root

S . ;* ___lj _
Vij Pij t T = o[at] (4.21)

Y
Substituting eq. (4.6) for the F’ij ,

AC 1
- . A' > c.g.. _A__t_ i _
(Viy " To gyt 0y By ot Ty = Olat] (4.22)

which implies
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A,
S — N
€ = (rij'eijmt + O[At] (4.23)
Since ¢ij = q)ij (rij), it follows from eqgs. (3.6), and (3.8b)
that
' _(.iill_ ' 2
dyylre 1) = dyl) i, (re 4y = Tyy) + OLAn)] (4. 24a)
-l .-l- 2
= ¢ij -fij(rij vij)At + O[(at)™] (4. 24b)
where
. N e 2
rc,ij = rij 4 rij At + O[(At) 7] (4.25)

Substitution of eq. (4.24b) into eq. (4.23) now gives

ey = By + Olat] (4.26)

which gives

- sk o
Fly = fyTe gy + olat] (4. 27a)

= £, ry, + ola] (4.27D)

Eij + O[At] (4.27¢)
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as expected. (Compare eq. (4.2)).
Since eq. (4.23) holds for small At, in this case egs. (4.19)
are strongly linear (the nonlinear terms are one order higher in

At), and can be solved iteratively. For example, noting that

-k A*

98y ] 1y

e - (n_l—.— + —r—_n—,_)-ae_, (4, 28)
ij i j ij

and

oF* .

o (4.29)

Seﬁ c,1j

the Newton iteration for each eij independently is given by

A%
o et AR S
SR (k) gt e ) T Ey T
g - D SR B
eyt Wi tay 2 Yo G tm )yl
i )
k
(k)

is the k~th approximation to

(k)

Eij' and lk denotes evaluation using the ¢ = Eq. (4.30) must

where k is the iteration number, €ij

be iterated to convergence in order that eq. (4.19) be satisfied and
the energy exactly conserved.
As long as fij is of order of unity, eq. (4.23) holds and the

iteration eq. (4.30) is self-starting. In this case the starting values
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)
ij

= 0 (4. 31)

are convenient. In the event fij = O[At], the starting values

e, = f, (4. 32)

or the ¢, from the previous step are appropriate.

ij

ii. Third-Order Method

An extension of the formulae of Section 4.A.i. to higher-order

methods is now obvious. E.g., consider the third-order formulae

of egs. (3.12) with the éji in eq. (3.12b) replaced with é;:
n
- = e 1 Z s an® A (o)’
r' = r, +v, At +-—— [F + G, ] (4. 33a)
c,i i i m, j=1 i1 2 ji 6
n
o= v+l ) [F, &Y g% L/'\'—'-QE—] (4. 33b)
c,i = i m il i 2 *
i j=1
= e il 3
The G, are to be chosen so that G,, = - G,, and
ji ji ij
A* -y
G,, = G,, + O[At] (4. 34)

ji ji

and so that L and E are maximally conserved. Using eqs. (4. 33)

and algebra similar to that of Sect. 4.A.i.,
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- 2 \" o N XY BY Y
AL, = (8t) ,>.. [v,,><’r"_,+Gr,.><(v,,+a,,A1:)-Al
c 2 . ij ij ij ij ij 3
i<j
1t x G¥] (4. 35)
c,ij ij
where
A.l A! Al 6
rc,ij = rC,j - rc,i (4. 36&a) )
> - -l At 2 - At 3
= r,, +v, At +a, (at) +b (at) (4. 36b)
ij ij ij 2 ij 6
and
n 2> =
- \" G s G 4
b, - L (k. K, (4.37)
S i

=
As in Sect. 4.A.i. above, the G’L are chosen to make each

ij term in eq. (4.35) to vanish to as high an order as possible.

Setting
r' x[; xE +(§ x(?r +; At)'é-t-
c,ij ij i} i ij ij 3
r G*1=0 4.38
+rc’ij>< yl= (4.38)

and solving for the é—:; gives:
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G* = et .+ P (4. 39
50T %y ey Py -39)
where eij is the (unknown) component of ég;] in the F(': i direction,
'
and
y v xF. +G. x(v. +a, o)kt
N rc,ij X [Vij X i + i X (vij 4 aij ) 3 )]
B = (4. 40)
ij (" )2
c,ij

As in Sect. 4.A.1i., it is interesting to examine the error in

iwhich results from the choice (4. 39) for the é *_ Since

ij
A' C-)->:< .L' Y
rc,ij X :rij = rc,ij X ﬁij (4. 4la)
7 v. xF. +6 v. +a At
To g~ Dy X By + Gy X vy 2, ) 5 >,
- (r )2 ¢,
c,lii
v. xF. -G v +a, At 4.41b
vijx 1 ijx(vij+aij')3 (4. )
then eq. (4.35) becomes (via eqs. (3.7b) and (4. 36))
Ai =
C
2 >
(A) > & & N A a AL r!
Lt v, ot e i v
2 iy e [ The Fu Gij x (vij tay, o) 3 > (4.42a)
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2 2 2
_ (At) ey . - -h. (At) - wh o> (At)
= 5 E [aij VleFlj 5t rij Gijxaij 3
j
3 r! i
+ O[(at)”] —=4 > (4. 42b)
(rclij)
| et L 3a - xP os2f -8 5]-—-‘2*-1—?'1 + O[(at)°]
T D TR TR i, 2 [
i<j (r )
c,i]
(4. 420)
4
= O[(at)™] (4. 42d)

which is to be contrasted with the error of O[(At)s] of eq. (3.21)

-~ 0% -

when Gij = Gi in egs. (3.12b). Of course, for the case of only

J
a single interaction (n = 2) each ij term in eq. (4.42) vanishes
completely, leading to exact conservation of i, agreeing with the
results of Part I [8].

As in Sect. 4.A.1i., the quantities Eij are determined from

the criterion that AEC vanish. The analogue to eq. (4.16) is

AE, =
At k[j [(3ij + ;jj At +EE @iﬁ)'é; —Aét + ($ij+§“' —%L)-ﬁij +—A—A%1] (4.43)
where
b = i E:i -5; (4. 44)
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The equations o be solved for the ¢.. are then

ij
[(V +a At+b (.__‘.)_.__] Ny AtJr(-a A) ; +éd_>_ij 0 (4.45)
ij 1J 2 j ii 27 74 At
for which the Newton iteration formula is
- (A ) =% Af i dAY ? A¢j
e(k+l) ) e(k)-~~—(v +aij At +bJlj Gii 5 + (vij+aij 2) i + A
i ) i At S S ok 2 5 2
B v ta,, Atebs Bt L L e
c,ij ij ij ij 4 mi mj ij 4
(4.46)
For small At eqs. (4.45) are again strongly linear with
€., = e(l) + O[(At)z] (4.47)
1 ij "
and
df,
() = —ii r,, + OfAt] (4.48)

If egs. (4.46) are iterated to convergence, exact conservation of
energy will result, as compared to an error of O[(At)S‘] using the

method of eqs. (3.12).

B. Implicit Formulation

Implicit maximally conservative methods can also be obtained
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. .b' A* .
in both the rc,i and VC'i by the Pij

which-are implicit by virtue of

by replacing, e.g., the Fij

This results in equations for the eij

the dependences of the form ¢ij )o

]
(rc,ij

i.  Second=Order Method

Consider the simple formulae of eqs. (3.10) with the ?Tj

-
replacing both occurrences of the F_ :

ij

a 2
- v D N S (4. 49a)
c,i i i . ji 2

i j=1
n

TR S N Y (4.49b)
c,i i m:.L j= ji

The ‘?‘21 are to be chosen so that eq. (4.2) is satisfied and
maximal conservation of E and i occurs. From eqgs.(4.3a), replacing

a =
the F,, with the F _,
ij i]

noon
& .3 EY t ¢
) . +v 2y« F (4.50a)
c , i i 2 ji
i=l j=1
- ) Z,jxf’f (4.50b)
i<j 1 1
where
-7 g A& (4. 51)

* < Ty TV 2
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-k
Since each term in eq. (4.50b) is dependent upon a single Pij '

exact conservation of L occurs if

.4

-
Pij = eij aij (4.52)

i
Similarly, the error AEC in the enhergy is given by egs. (4.16)

where ¢ j is arbitrary.

<
.
.

with the ré i implicitly dependent upon the P;

p j
- v ns Ao
e A > ij
= v.,,+a,, ) * E3 o
AE, At Z [( TR 5 ) Fij N ] (4.53)

i<j
The equations to be solved for the eij are then egs. (4.19), with

Newton~-type iteration formulae given by

. Db,
- A% AL - 1]
v, +a, —)°F,, +
k) (k) g tay ) "Byt
T I S S TV SN BN G
@, (v, 43,55 4 = (= 4 = )Pk = (== 4 Pk ==
11[11 1J2+2(m.+m)Fij (m+m)}ij2
i j i3
k
(4. 54a)
i o Y Aq’)
AT a;' ‘éz't) R
RS B R i 4o (4. 54b)
1 S Ak AL ‘

% - (v, +a. =
alij (1] 1j2)
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NG, /At
I ij
iy Yy Ty )
k
Ao,
o e = —H (4. 54d)
TR TRL Y
' k
Since R S
A s 2 o ytty o - 3
@ (rL T = 5 ry g ry) TOLADT]  (4.55a)
— 2
=yl ) + O[(at)“] (4. 55b)

it is evident via eq. (4.54d) that eq. (4.26) and its subsequent dis~
cussion also holds for the €ij of this section,

These second-order formulae as developed in this section
have the unique property of exactly conserving both the total energy
and angular momentum for an arbitrary system of particles. Egs.

(4.49), along with eqgs. (4.52) and (4.54), are equivalent to the

"discrete mechanics" of [5].

ile.  Third-Qrder Method

Replacing all occurrences of éij in egs. (4.33) by érj gives

. the formulae

e

2 3
2 a N - @t) &% ( )
r' o= r, +v, At +-""l [F, + G, & ] (4.56a)
c,i i i m, j=1 jii 2 jii 6

1
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n~—is

2
-‘-I K l S -k (A«t)
. = . 4 t o
v v, + [le At + Gji > ] (4. 56b)

c,i i i -1

-

The Gij are to be chosen so that eq. (4.34) holds and E and
f are maximally conserved.

The analogue of eq. (4.35) for the 5* is

1j
- gAt)z Z - - - o e
AL = V.. xF,, +a,,xG,] (4.57)
c 2 RS § ij ij ij
i<j
where
aij = rij + vij T + aij a (4.58)

-
Conservation of angular momentum in all directions except «,, occurs if

ij
2 X [v.XF, +a.xG 0
oeijx ijx i +ozij>< ij] = (4.59)
with solution
é* _ £ -
y = eij aij + ﬁij (4.60)
where ¢ i is undetermined as yet and
24
ij
- - . Y i - - . - Y 2
[(aij Fij)vij (ozij vij)Pij]/a'ij (4.6lb)
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With the choice of eq. (4.60) for the éjﬁ , the resulting error Aic in

the angular momentum is then, from eq. (4.57),

2 - - - "y
T - e N (T R ST N
c 2 i< 5 aij (4. 623a)
o2 ;
ij
;nx;‘ﬁ -
_ L_-le Z , 2, (4. 62b)
i<j o
ij
4
= O[(at) ] (4. 62¢)

-

Of course, for the case of a single interaction (n = 2), 5ij and Fij

are proportional and ALC vanishes completely, agreeing with the

results of Part I [8].

The error AEC in the calculated value of the energy is given

-0
by eqs. (4.43) with the cj)c‘ 5 implicitly depend upon the Gij:
AE =
c

b - A¢
At}: +a At + b ‘——-)-— _ +(v +a -—2-)P +-———i-](4 63)
i<i 1j 1j z 1§ 1

=%
with the bij given by eq. (4.44). The equations to be solved
are

2 N Ad
P A LG oA SR el 0 (a6

[vy + 3y &t + Dy i 2 i " 4 i At
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which are implicit in the Eij' The Newton=-type iteration formulae

for the ¢, are
1}

s At
At + b 1—-—L aty, i
(el) (k) _ [vij+a i ii I Gii 2 HY ij+aij 2 Nt TR
€ =
ij “ij (A ) 1 *(m;) >
b e S ot
(4. 65a)
T T o LTI NC N s |
" PRpatine: ij 4 2;sz Wit 2 Uyt T (4. 65b)
ij " Atoe 2 2 g an” 11 3% At At
@57 [Vyy+ayy A +byy mi+m])( TR TR )

Egs. (4.47) and (4.48) also hold for the eij of this section.
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5, Numerical Example

In this section a direct numerical comparison will be made,
for the case of a particular three=body problem,between the third-
order Adams' method of Sect. 3.B and the implicit, third-order,
conservative method of Sect. 4.B.1il. Numerical results using the
second~-order method of Sect. 4.B.i. have been presented previously
[5].

The case chosen was selected to mimic the reactive interac-

tion of an atom with a diatomic molecule. Here n = 3 and

m, = m_ = m_=1 (5.1)

The potentials of interaction ¢12' c|>23, and cpl 3 were all of the Lennard~

Jones (12,6) form

30 N
q)L]-(r) = 4[r12 - r6] (5"2)

The initial conditions att = 0 were

?1(0) =< -3., .5, 0> (5. 3a)
31(0) =<1, 0., 0, > (5. 3b)
FZ(O) =< =T, =T, =TS (5. 3¢)
\72(0) =<.l, -.1, 0. > (5. 3d)
F3(0)=<.7,.7,,7> (5. 3¢)
V(0)=<.1, .1, .1> (5. 3f)

3
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For these initial conditions, the total angular momentum is given

by

L = <=.07, -.07, -.36> (5. 4)

with magnitude

L = 0,.373363094] (5.5)

The total énergy is

E = 0,4934308709 (5.6)

At t = 0, particles 2 and 3 are bound. Ast -=w0, particle 1
has reacted with particle 2, leaving particle 3 free. Two asymptotic

(t =) quantities of interest are the internal energy E, _ of the bound

12
pair 12, defined by

1 MM -

o
Elz = 2 m1+m2 (vlz ° Vlz) + q)lz(rlz) (5.7)
and the relative translational energy .'E:3 12 of particle 3:
. 1 m3(m1+,n?2). 3 _ mlvl+mzv_2_ 2 5.5)
3,12 72 m1+m2+m3 3 ml+m2

Both the method of Sect. 4.B.ii, and the Adams' method used

a maximum step-size of At = .0l. Smaller step-sizes were chosen
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only to insure adequate convergence of the implicit equations to

a relative tolerance of 10—10 (In the method of Sect. 4.B.ii., this
tolerance was on the value of AEC.) Programs implementing the
method of Sect. 4.B.ii. are given in the Appendix of [9]. The pro-
gram for the Adams’ method is given in the Appendix of [5b].

The calculated values obtained by the two methods for E, . and

12

E3 lzare given in Table I, for a value of t large enough that further

three-body interactions were negligible. Also shown are the max-
-

imum observed errors [AEcl and IALC{ in the energy and angular

momentum, respectively.
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Comparison of Conservative and Nonconservative
Third=-Order Methods

Quantity

t (final)
No. steps

a
B2
b
E3,12
10
max. |AE_| % 10
c

max. [Af | % 1010
c

Method of
Sect. 4.B.1i1

10.0

1472

-0.004227

0.25602

-34

+135

a ,
Correct value is E

bCorrect value is E

12 = =0.,004250

3,127 0.25604

Adams'
Method

10.0
1000

~-0.004195

-0.25599
~50592433

+5630880
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6. FExtension to Arbitrary Order

For completeness, we will now show how to extend the explicit
and implicit methods of Sect. 4 to arbitrary order. The discussion
is based upon the use of a truncated Taylor-series form, similar
to that of Sect. 3.A. The development extends also to predictor-
corrector methods in the Nordsieck form [10]. Similar results are
easily obtained for other forms.

=(k) . o 2
Let Pi denote the k-th time-derivative of the force Fi:

L OF
Frolo- —+ (6.1)

at

The (m+2)-th order truncated Taylor-series approximations to ?i and

;f are
i
m
- . k+2
r% = r, + v,At + “r'r'll“‘ Z, Fik) (A1) . (6.2a)
1 1 i k=0 (k+2)"
. ? okt
vi = - 1 ]<.+1) (6.2b)

m
The explicit formulation is given by eqg. (6.2) with Fg in

- B3
eq. (6.2Db) replaced by an adjustable Fim) :

, L ) 2(k) gzxt»
m é i (k+2)! (6.33)




c,i

Noting that

-‘l
mi(re g

m=1

Lo

k=0
m=1

RER

Ty >k

'“()

XV

i .
i

k+1

PPk s k) (At)

i i (k+l). i

i i

k+1

m-]
s L) Rk oy
T [kéo i ST

m)* (At) m+1
(m+1):

k+2

1 (k+2)!

1 1

(k+1). (£+1).

m-1

Y k+l
X (v, + - LS A I 1)

o4z " ke2

(k+1) ]

)

m+-2

mo oo T kD) (mea)!

m+l

- ¥ (At)
4+ r me) ot

]
c,i i

n -1

= \" X - wh "y

AL = Z z (I'. + v, At k‘+1 ) % F(k) (_A..tl_...
c i i i k+2

1
PR
i

2(m)
+ Pi

(m+1).

1 (k=0

m~-1
) O 300 @b

k41

i (k+l))

k ‘
+£+3 (k=4)

o 1T (ke2)i(es2)

m-1

My k=0

i i (m+1):

f(m)* At m+l}

k+l

v+ L) P00 (on™

+2

(k+1): )

(m+2)"

]
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(6. 3b)

(6.4)

(6.5)
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Since egs. (6.3) are exact to order m+l without the terms involving

2(m)

the F , all terms in eq. (6.5) of O[(At)k] vanish for k < m. Thus

eq. (6.5) reduces to

m-+1 R (m-1)
AL ”@B“‘T Z. [mv « F
c (m+1). i=1 i
m:l m:l Citen
+ }hl— ) Fi“xﬁik) (k=) (m+]) (A1) +'+ m
i k=0 4>k (k+2)% (L+2)0
L=m=2=k
m_—l
2m) s L) k) (e
F. X (v, + F - )
1 i M woo i (k+1):
=4 A(m)*
+rc iXPi ] (6.6)
Now,
n
ﬁik) - L B (6.7)
j=1 i
where
k-
d FI
F - : (6.82)
ji dtk
A
0 1= (6.8b)

Let
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a3
agy) = kl (6.93)
4 at
i #(K) #(K)
Fu Fai
= ( - ) (6.9b)
1=l My
Transforming eq. (6.6) to the i<j form then gives
m+1
I = > (m-1)
ALy = m+1) z [mv XFij
m:l m:l " &+z—
) 20 30 ety (mal)t () AT
k=0 A4=m-2-k 1 13 (k+2)% (2+2)}
1>k
~ k+l
=(m) 3(k) (At) At
t X Vi ¥ %o i ket ) me2
¥ ?cl: jj > A(m) ] (6.10)

-
Requiring each ij term to vanish when crossed with ré iy
2{(m)*

for F , gives

and solving

2(m)* > =

Fii = ey toyt ﬁij (6.11)

where Eij is arbitrary and
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& ;' ‘2 N -b(m_]_)
By = - [mv ><F
1) : 2
(r' ..
C,1)
m=-1 m-l
) a0 gk (k=2) (m]) (ar) R
k=0 tem-2-k J Y (k+2)} (442)}
4>k
m-1
¥ k+l
P (k) (at) At
Fry oyt kéo i (keDt ) mez ] (6.12)

The eij are determined from the criterion AEC = 0, which nec-

essitates
m-1
V N 2. 2(k) (A’c) L m)x (at) +1] -»(m)*gm.)
0 ij (k+1): ij 2(m+l1): ij (m+1):
m-1 al mil kK Ad
2 1 a(k) (At) . =(k) (Ab) i _
* [Vij *2 kgo %y (kD! ] k:oFii k+D)t At 0 (6.13)

=(m)%*

i , and may be solved

These equations are strongly linear in the F
via Newton's method, as in Sect. 4.A.
It follows readily, for example, that setting m = 1 in the above

formulas yields the method of Sect. 4.A.ii.
~(m)

Next,for the implicit formulation, both occurrence of F

in egs. (6.2) are replaced by the adjustable F( )
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alk . m-+2
2 ) (oe)*? +F§m)*%r (6.14a)

1 m=l
'r}T é 1 (k+2)!

rcli=r1+v At +
ot - = _L 2‘ (k) !At!k+l ( m)¥ (At) ~ m+1] (6.14b)
c,i m (k+1): .'l (m+1)e )

From these formulae

k+2
F(k) (At) (k+1) 1

m=] k+l
- ..;(k) (At) S
) [ T xEy (k12"

r,xF ,
k=0 i i (k+1)%
m=1
- k 3
L] 3w 300 e k-
m, ek (k+2)" (2+2)"
A (m) At m+l
+a/l ><Pj L—)‘(mm (6.15)
where
2 =t v sty
i i i m+2
(6.16a)

m-1
1) pm e ke
' m+2

B Tki2)
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m:l k+2
- m+1 A =(k) (At m=k

Using formula (6.15), it follows, as for (6.10), that

m+l

2o ) 2(m=1)
AL = [m v h e P
c (m+1)s 1< i
kel k+4+2=m
D) ) 2(k) (k=) (ml)d (o)
(=0 f-m-2-k U Y (k+2)% (£42)"
2>k
*
* “ j % Fijm) ] (6.17)
where
;‘ij - Zj B 3‘1 (6.18a)
m=-1
: N k+2
_ 7 > mil (k) (At) m=k
= ru + V':_U mi2 At 4+ k%,o aij (k-l-Z)'. 2 (6.1813)
Solving for the ﬁi;n)* yields
a(myx >
Fy o = 4% TPy (6.19)

where
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>~ _ i P(m-1>
ﬁij = 5 X [vax i
a,,
1]
m-l m-l kK+4+2=-m
Z Z S(2)  2(k) (k=4)(m+l) (At) 6. 20
35 X Fyj (k+2) " (442)" (6.20)
k=0 f=m-2-k
>k

and the eij are determined via the energy conservation conditions eqgs. (6.13)

where the q> q:lJ( c, lJ) are implicitly dependent on the €ij'

It follows readily, for example, that setting m = 1 in the above

formulas yields the method of Section 4.B.ii.
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7. Remarks

Explicit and implicit methods for the numerical integration
of equations of motion have been derived. These methods conserve
the energy exactly, and the angular momentum to at least one higher
order of approximation than conventional methods. The angular
momentum is conserved exactly for the case of the second~order
method of Sect. 4.B.ii., and by all the methods in the case of a
single interaction.

This property of conservation of the constants of motion is
expected to give these methods an exploitable advantage in the
qualitative investigation of the motion of large systems of particles.

With regard to the extension of these methods to anisotropic
and nonseparable potentials, see [6] and [7].

Finally, we note that the existence of higher-order conser-
vative formulas which do conserve angular momentum exactly is

still an open and important question.
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University of Wisconsin Computer Sciences Department Report
WIS~CS=-210 (1974).

R. A. LaBudde and D. Greenspan, "Energy and Angular Momen~
tum Conserving Methods of Arbitrary Order for the Numerical
Integration of Equations of Motion. I. Motion of a Single
Particle", University of Wisconsin Computer Sciences Depart-
ment Report WIS-CS-208 (1974).

R. A. LaBudde and D. Greenspan, "Energy and Momentum
Conserving Methods of Arbitrary Order for the Numerical In-
tegration of Equations of Motion. II. Motion of a System
of Particles", University of Wisconsin Computer Sciences
Department Report WIS-CS=-215 (1974).

See, e.g..,

(a) A. Nordsieck, "Numerical Solution of Ordinary Differen-
tial Equations", Math. Comp., 16, 22 (1962);

(b) C. W. Gear, Numerical Initial Value Problems in Ordinary
Differential Equations, Sect. 9.2.5, Prentice-Hall,
Englewood Cliffs, N.J., 197L;

(¢) R. A. LaBudde, "Extension of Nordsieck's Methods to
the Numerical Solution of Higher-Order Ordinary Differ—
ential Equations", University of Wisconsin Theoretical
Chemistry Institute Report WIS-TCl1-443 (1971)
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Appendix - FORTRAN Programs .
_ATUDST72%e¢30C000RE20 3¢ Rp LCT
[ TEST
N-MACPr 1145 ~-C7/0S/74-13023027 (o0} TEST
T TP T ST T AT LI TA-ReLi=2]
2. POALF? LY sLYeLZsLMAGC
_3. STTUINSTON RUZe1795) eI 030850 4) cAUXTIZ o4 ) sPOT(HD03) e XMASSI(LO)
ko “ATA (FCTEKsRYeWzlebT)/u85%2.00/ ’
5 e DATA ((2(ToJoei)elT103)0JT193)/-2o00¢Ce50090e00Ge35~C.7D0e3%5.700/
L3 NATA (D0 Tedsn)eT=1e239JT297) /1000230 uDCel o1009~-0100vCe0090100
70 1”:.1 :‘,'Coli‘»u/
2. TATA XPACT/LIUsL W00/
3. TATA NPADT/Z3/ oMl IM/3/
17 . TATE TI0L71en~10/ o MAXTT/N/
1la SATA SRPTOL/1e2+2/ 0T R/1a0-G/ e HMAX/CWC1D3/
12. TSTER = C
17 T T Cali
T4, H = T,C10C
15. MTOT = {(NPART={MPART-11)/72
It TR TIVTTT TC o7
17 PRINT 5
18. 5 FCRMAT (1H1)
17 200 T IR TLF eNC» 20%(Io1TOo/7707T 7V T0 T3 70U
20 CAL TwrfT (eENTXT®)
21, PRINT CoToeHs ITRe ISTEP
27 5T FORVET EXs 3 IHME S¥sL 105901 Bebo s Xe STEP =%elb)
2% CALL RYECT (Qw”(lvlwh)aPIJv”IJ(lolvl) PITTU192) o NDIMeNPARYT s 3
Ihe iC FORMAT (S%91251C.6)
T, TARLL L TVARL Tt T T T AUX TP TN T Ty
0. e (RN 0
274 D0 40C T T 1eNPART
2% cuM T (.LC
23 TQOICT L T leNDIM
T or TUM D Uy 4 PlLeTe2 xRNl Lelecl)
T1le q4Cu T XAATOITY e SUNM
37 I = CLEl0=C
27 0o 00 T oz 1eHTOT
I TCT  E = [ % FCT(-s1]
BATIN PRINT 22 "v(PD o230 Tz1leNTOT)
7L o Eae FORMAT  EXs YENDRCY T D2Ce1CsE0Xe 302110
37, XTI
T2, Ly = C,.0C
3. L? = S.0C0
4C . nC CIC T = 1eNTART
hi, UX D LY o+ XMATSUT)=(R 2 Tel)aR(ZeTe2)~-RI3sTel)xR{2eIs 2))
47, Ly - LY + XVAZS(I)¢(~(J-Zv1)*P(Lv‘a?)-R(lstl)»P(;nI 2131
T, T T T F XA ST T R TR IV Iv I R 2719 2T =RU e Lo LTV ¥RU T v Zv 277
44, LMAC = CSQ”T(LX*&X + kY*LY + L2100
4%, PRINT 3C bfoY1L
4% o 3 FCRMAT SXv'ANC. MOMENTUM VOCTOoE Y+ 30201245 Xe " MACL ¥9020612
47, 7700 CALL DMAZTR {He ToReR TJo AUX o POT o XMASS e ET OL o MAX IT o TRRT DLe ND I My
92, 1 MNPALT 32 10 e 45 HMIN s PHAX s IZR)
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49, TEIL, oz ro7trP o+ 1
50 SARS TF (T +LTe. 10.D0) €D T2 2CC
£le. AALL TIMOOT (°THDY)
52 PLRINT HCeloHdes JLRe LSTEF
% PRINT BCe(({R(L sToJd)eJo 1o el oleldeIzled ]
54, 5C CORMAT (SXe502C.10)
55, 10V
tCe TND
T CF LCMrlLﬁl;»H; e IR TS TICES
POTVAL
j=MACC 115~ 7/02/74-13:35:42 (T) FOTVAL
Te SURRCUTINT POTVAL {QonFDTvFLJvISw)
Ze =MPUTCIT REAL®2 (A-HeC-71)
Ze NTMONSION RELIeF{Ll)er0iT(1)
e Fo 1CC ¥ = TeN1J
Yo “"eoA = 1.0C/RUI) %6
238 POTITY = 4.00%xTQDA=(CCDA - 1.2C1)
T 1oo TE O{ISW .NU. 0O} F{I} = 2“0DC$DDDA$tloDG_ZODD*DDDA’/R(x,
8. RETUPN
= TND
cap OF COMPILATICON: WO OTAGNCSTICS.
© DMASTR
FT=WACr 1.180-C 1703779 -12075800¢8 {07 TRATTR
1. SUSIROUTTINT TMASTR {(He TeReRIJeAUX 9P DT ¢ XHMAS SaFETOLsMAXIT9ERRTOL, NDIHM
2o TeNFART ¢ NS U:lvw’Un?ethEJwHVINeH“AXvTODU“L)
Je = FONTROL 5 S1oP sLrE COF M2 BIUTTHE TNTEGRATION
4 c CRRTLL -~ DOUND CON ERRCP OIN VELSCITY OF ANY FARTICLE
5e ) UMIN - MTHIMUM ALLOWABLT ABS SILUTS VALUEZ OF STEPSIZE H \
Eo C AVEY = FAXIWUY ALLCWATLE AEC. VELUT OF STEF H ’
7o z TOOoUTL - IF l1s STEP H CAN 2T NOUSLTD NEXT TIME
8. TMPLICIT RCAL®Z (A-He(-T)
A, ATMENSTON RINGUBLeNZUZZeY)
10« TF (TDCUBL LT. 1 «0R. DADL(2.00%H) oCE e 1.COCCCCIDC#HMAX)Y GO TI
ile 1 3¢
12 H = 2.C00#H
13, TooutL = -1 f
14 cCc TC 1CC
1%. 30 TOOUTL = G
16 1cC CALL OMZ (HeTsFeRI " Js AUX e PDT e XMAST el FTALy MAXTITsNDIMsNPARTONSUR LS
17, 1 MSUN2¢NSUZ32TER)
13. TF (TER JNE. T) GG TC &CEC
13. TRR T 0,00
20 ro oTCC T = LsNFART
21l B LG J = LeNoIM
22 I0C T {CRP JLT. GASS(R(JFLQH)) y Epp = DABSIREJeIsl) 1}
2%, TRR = HxHsEAR
24 TF (FRR .CT. LRRICLY €T T3 Yoo
2% e TE {(4.0C*7RR oL Te CRRTILI InoU3L = IDJUSL <« 1
28 e RETURN
276 400 H = Co50C%H
28 TROUEL = ICsuBL - 1 ‘
23, TF (DADS{H) oCf. HMIN) 53 TO 1ce
iC. FRTNT ICeHeHEINGe !
31l. i FORMAT (///75%X+"H —9,301%595Xe *HMIN T 9D15,605Xe* T =9 ,D015. 61}

320 STCOF




55

237, END
r\p OF COMPTLATION: NG DIAGNOSTICS,.
I CM3
-MACD 1.145-07/03/74-133 23358 {00} DM3
1e SUBRCUTINE CV3(HFT.RPPTJ:AUX9FO s XMASSsETOL e MAXITsNDIMeNPARTeNSUBL
2e TeNSUB 29 NSUB3p LEF) ‘
Ze C B TS FIXED STEP-SIZE AND T IS CURRENT TIME
Yo c NPART IS5 NO. OF PARTICLES IN SYSTEM AND NDIM IS NJo OJF DIMENSIONS
5e [ hOTE TTOWETUT L S HOULD BE CE RDIMe NSUBCL Gt NFERY AND WSUB3 Gt
5e o NPART#={NPART~-11)/2
7o TMEFLICTIT REAL*S (A-HeO- Z1
B BTMENGION RINSUZLeNS Unz's)VQIJ‘MJU819N3083'Q).AUX(NJUBl,NSLB3’Q"
Do 1 POT(NSUB 2,81 e XMASSIL)
1C. NIJ = (NPART=(NPART-1))/2
1le Uy = DeolU%H
12 H3 = Ne323333332333333323300%H
1% HZ2 = . FGERCELEEELELEELE T T ¥H
1%, HY = 0, 285D00%H
1%. CALL RVYECT (RsR{lsloe? )wnIJwRIJClule}tPDT(‘t3ltNOIMvNPAQTeNSUBl)
1%, C CALCULATEZ FORCES AND POTE NTIALS AT 2L0O TIME
17s CALL F*UKUE tH.I.J(lGII.L]DAUX'FJ!(1!‘5)'?‘ TTTI VI Ty RUIFMeN LI Ie NOUELw 4F
1%, caLL ACCEL(R(10193)?AUX1XMAQ s NDIMs NPARTeNSUBL)
1%. CALL ACALT (R{1e1e3)eRIJl1lsl }vND;WvNPART!NQUBL)
ZCa ITER = C
21, TerR = C
220 DC 400 ¥ - 1eNTJ
27 e RLPMAG = oL b
2%, AT = U.0C
?% e AV = [.L.0C0
28, c CALCULATE ALPHAtI»J) AND STORE IN AUX{LesKse3)
27, rg 200 L = 1eNDIM
2%, DODA = RTJ(LeKs1) + H23=(RIJ{LeKel) * MR TJ{LsKe 3))
29 FUY ULy Ry 21 = DCOUA
ITs ALPMAG = ALPMAG + DO0DA#*DJDA
Zle AE = AF 4 DODA#AUX(LsKe1)
T2 200 AV = AY + DODA=RTIJIL«Kel)
2%, POTIKe®) = .00
ZYHe i CALCULATE 85TA{IsJ) AND STORE IN AUX{LaKo4)
3T ~GO Y0 T = LeNUIM
3Ce 2CDA = (AF*RIJ(%?K@Z)*AV&AUX(L?KFlBS/ALPMAG
27 AUXCLeMet) = CTCULA
T2 40°C POT&K@Q) = PoT K %) + éUX(Lshol)*(?IJ(L»KOZ)*Hz*QIJ[’9K93)3
28, C FTRET ESTIMATE FOR EFSIJ IS PREVIOUS STEF®S VALUTD
40 ng o480 K o= LeMIJ
TT e DA B S I N A O IR
42 450 AUX(Le¥e2) = POTIKs D)« AUX{L oo 3y + AUX(L o olt)
4% e CARLL ACCTL (R(lelv#)vAUX(19192§WXMASYGNDLMVNPARTGN”UBXl
4%, 500 CALL ACALC (R(l?lv“)wRIJ(lvlw#}QNDTMVNPAQT!N*UBL’ ‘
45 . 00O 800 K = 1leWIJ
45, POT{V.+3) = 000
97 e C ~ECTULETLT R{IvJs: At Now TIPE ANU STUOHD LN RIJTTRYy ST
49, 00 700 L T 1eNDIM
%3, DEDAE = RIJELeKel) + He(RTJlLeKe2) + H2x{RIJ(LeKs3] + HEI»RIJ(LeKel
506 1133
51, PTJLLeKeS) = DODA
52 700 POT{Ks3) = POTIKe3) + DODAxDODA
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57 3320 PCTIKeZ) = MNSARTIPOTIK31) V
5% c CALCULATE FOTERTIAL AT NEW TIMT
5fe CALL FORCT (RTJI 16250 AUXePOIT{ L1233 2P0T {1023 o NDIMaNIJeNSUBLD)
5k e vt T U 0C
57 S0 O1100 M oz 1eNIJ
58, c CALCULATE ZPS(IeJ)
59, DCNGOM = C.00
60, TCP = CL.CO
51 DO JC00 1 2 1eNDTIM
£EZ. TEME = RIJILUsHe 2l + Hx{RIJTL v RKe 3T + HEXRIJTL s KRG TS ;
52, TCP = TOP ¢ TEMP#AUXIL 9Ks2)
£E4, ICCC CENOM = DINCM + AUXILeKoX32(TIMD « DOTEKeEl2fAUX(Ls Kol J+HY»
€%, 1 OAUX{LeKe2)15HT 1}
5F . TCF = H2*TOP 4+ FOT{Ke%) + (POT{KeZ2)~POTIKol})/H
57 TELE T DELE o+ TCP
E9. FOTIKsEY = POT{KesSY - ToF/{HZ=DENOMY
53, 2 CALCULATE D FiTe ¥ /07
0. 0O 1100 L = 1eNCIM
T1e 1100 AUXTL oo 2 = POTIR ST AUXTL e K9 3T F AUXTL K EY
724 CALL ACCTL (R{Lelo4)slUX{2els2)e XMACSoNDIMeMPART oNSUSL)
73, TF (DATS{DELT+H) oL Te ET2LY G2 TO 14CC
T4 e TYER = TTPR + 1
7% IF {(TTER LT MAXITY 62 T3 tQQ
7€ TER = 1
77, RETURN
78, C UPDATE TiMEe POSITICNS: AND VELOCITIECS
73, 142C T = T + H
B0 . D0 18CC I = 1eNFART
31, 00 1SCC L = 1eNDIM
32, RELsTv13 = RelsTel} + Hei{RLLsTo2) + H2#{R{ILeTe3) + HIsR{LeIol}})
33, 15800 RilLeIe2) = RILeZe2) + He{R({LsIo3) + H2*R{Lolo%J)
8y, RETURN
8%, MO
ERD CF COMPILATICNG NC DIAGNOSTICS.
FORCE
V=-MACC 1.18S-C7/03/74%-13:22:CE {0} FoRCE
1o SUBROUTING FORCE (RTIJeFIJrRMAGoPIToNDIMeNIJeNSUDs ISW )
2o THPLICIT REAL#=B8(A-He0-2)
3o DIMENSIONM RTJINSUS L oFLJU1) e RMAGI LY oPOTILL)
4o CALL POTVAL (RMACeFTJsFOTeNIJeISK]}
Te TF {ISW 743 0) RETURN
[ C IF TSW SNE. Ty CALCULET. FIORTES
7e K = NIJ + 1
& icr Kz K -1
ER TH (K sLE. 0OV RETUPN
iCo, TJ T NSUP=(K-11}
11le: DODA = FIJIKI/RMAGLIK)
s 1 = NOTH
13 20C FIJUIJd+l ) = -00DasRIJ{LeK)
1%, L = L -~ 1
1%, IF {L «87T. 0¥ GC To 20C
1€, c0 TC 1060
17 END
EXND OF COMPILATION: NC DTAGBNCOSTICS.

RVECT




IN-MACC 1.145-0C7/03/74-13:393:08 (+0) n C
1. SUBRCUTINE RVECT (RoeVeRIJoVIJoRMAGeNDIMeNPARTeNSUBY)
2 ITMPLTICEY REAL %3 (A-He0~7
Zoe TIMC NS I UN KINOUDY [] T ¥ [] ] [<X3 ]
4, ¥ = g
e 00 200 J = 2eNPART
5. I =g
7e icce I I + 1
2, ITF (I 0D 3} CC To 3&C
Se K= ¥ + 1

10. SUM = 0.0C

11. DC 200 L = 1eNDIM

12, RTJ (LeK) = RULsJ)Y = RiLo1I1)
12 SUM = SUM + RETJ(LeKI®*RIJ(LoK}
14 200 VIJIL oK) = Vil eJd) - V(LsTl)

15 e RMACT FRY = DSTORTISUM S

1B, cQ TC 1Q0C

17. 3ce CONTINUE

19, ROCTURN

13 END

MO e OMP T AT IO BT AN STEESs

5I aCCEL

(N-MACE 1.1485-07/703/74-123:333213 (01 ACCEL
1. CUBRCUTING ACCEL TA»F IJe XMALS S e NI Me NFAR T e NOUD )
2e TMPLYTZTIT REAL*3(A-He0-7)

2o DIMENSTICN A(HNSURs1YeFTJUINSUBe 1o XMASS(L)
% O 40C I = 19NPART
fe NT = (tI-11%(I~-23)/2
5o D0 400 L = 1sNDIWM
7 o BTLeTF = G000
Ba J = I
3. 1cC Jd T od o 2
10 IF (J .507. NPARTY €0 TO 20GC
1ie Koo ((d=-1i»tJ-233/2 + 1
12 ArLeT) = A{LeIY = FIJILeK)
13 CC 10 100
1%, 200 J = U
1% Ice J =z Jd o+ 1
16, IF (J +0FCe T SO To 40C
17 K = NIT « J
1%, AfLeI) = AfLeI) ¢ FIJ{(LeK)
1% €0 TC I0C
2 400 AfLoT) T A{Le I}/XMASSHTY
21l REZTURN
272 TNTHY ACALT (AT TJeNUIMeNPAR T NLUS)
2% DO TCG T = 2+HNFART
2%, NI = t{I-1¥=1I-2))/2
E4SIS o = L
20, sor J T J + 1
27 IF (J «CFe T) €0 TO 70C
2%, = NI +
2% "C B0 L = 1eNDIM
I0. 1818 FIJ(LexX) = AfLI) - AlLsJ)
21l cC TC 5CC
32s 720 CONTINUE
I%.a RETURN
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