WIS-CS~-74-213

COMPUTER SCIENCES DEPARTMENT
University of Wisconsin

1210 West Dayton Street

Madison, Wisconsin 53706

Received April 1, 1974

A CONCEPT OF EQUIVALENCE BETWEELN
FORMALLY DEFINED COMPLEXES OF
INTERACTING DIGITAL SYSTEMS

by

Pamela Z. Smith
and

D. R. Fitzwater

Technical Report # 213
April 1974

A CONCEPT OF EQUIVALENCE BETWEEN
FORMALLY DEFINED COMPLEXES OF INTERACTING DIGITAL SYSTEMS

by

Pamela Z. Smith
and

D. R. Fitzwater

The environment of a formally defined complex of interacting
digital systems is specified as a set of ideal, independent observers
who can provide input as well as monitor any observable computa—
tion. Precise definitions are given for the behavior of an obhserver
toward a system complex, the behavior of a system complex toward
an observer, and the relative rates at which the systems of a com-
plex can finish steps and transmit messages. These ideas are
used in a very general definition of functional equivalence between
system complexes; a sample equivalence proof and suggestions
for more specialized forms of equivalence are added. It is argued
that this definition compares favorably with other notions of equiv-
alence because it is based on effective observations and allows

equivalence classes to be as rich as possible.

CONTENTS

1. INTRODUCTION
II. OBSERVING SYSTEMS
1. The Ideal Observer
2. Specification of Observers
3. Independence of Observers
III. BEHAVIORS
1. Relative Rates
2. Behaviors of Observers and System Complexes
3. Behavior Sets
IV. EQUIVALENCE
1. A Definition of Equivalence
2. Specialized Definitions of Equivalence
3. A Proof of Equivalence
4. Conclusions
REFERENCES

20

A CONCEPT OF EQUIVALENCE BETWEEN
FORMALLY DEFINED COMPLEXES OF INTERACTING DIGITAL SYSTEMS

I. INTRODUCTION

This report is a continuation of the research presented in
[2] and [3] on the properties of formally defined systems.

Qur purpose at this time is to learn how to analyze a com=
plex of interacting digital systems--algorithmically, and without
recourse to simulation or human interpretation of its computations.
The immediate benefits will be diagnostic feedback to the designer,
and knowledge of design constraints that will make precise analy=-
sis practical. We hope to learn, eventually, how to optimize
system complexes, but the problem is especially challenging within
the context of the formal definition universe. One reason is that
whatever changes we make must be valid improvements, no matter
how the system complexes are ultimately implemented., The other
is that we must be able to prove that the optimized complex is
equivalent to the original. |

Equivalence is recognized as the key to understanding in
many aspects of the study of computation. If a set of objects
is partitioned into equivalence classes, all the members of a
class are known to be alike in a significant way, and unlike in
insignificant ways. When the objects so classified represent
computations, correctness is easily defined as membership in
the same equivalence class as a standard of correctness. Each
class may have other canonical members which are‘optimal with
respect to various criteria.

Many notions of eguivalence have been proposed for partial

recursive functions and the sequential processes that compute
them. In [7], Wegner gives an interesting classification of models
of computable functions upon which a classification of equivalence
relations can be based. The first type is that of the input-output
or representation-independent models, in which the function is
defined by a rule of correspondence between elements of the domain '
and elements of the range. Two functions f and g from the same
domain to the same range are functionally equivalent if and only

if they are defined on exactly the same arguments, and when they
are defined, f(x) = g(x). Functional equivalence is the basis for
Manna's formal approach to the verification of programs [5] (any
two programs which satisfy a specific correctness criterion are
equivalent). Manna's definition of correctness of the program

P with respect to an input predicate ¢(x) and an output predicate
¥(x,2z) is that for any x such that ¢(x) is true (the input vector x

is within the proper domain of the program), P(x) is defined and
Y(x,P(x)) is true.

The next type of model in Wegner's scheme is the representa-
tion-dependent one, in which functions are characterized by their
representations in a specific formalism, such as a programming
language. The assumption is that semantics are defined by associ-
ating semantics with individual symbols of the representation.

This may be the best category in which to mention equivalence
of program schemas [4]. The idea is that a program schema is
a partial representation-dependent specification of a function;
a schema plus an interpretation make a complete specification.
Luckham, Park, and Paterson's definition of strong equivalence

between two schemas S and S' is that for all interpretations I and

fel]

all input vectors x, either both value (S,I,x) and Value (S°,1,x)

are undefined, or both are defined and Value (S,1,x) = Value (S8',I,x).
Note, however, that for the complete function specifications (5,1)
and (S',I), this is the same as functional equivalence except for

the means of specifying the function.

If the semantics of a representation specifying a function
are defined in terms of execution~time transformations, then we
have an implementation~dependent model. Wegner's formulation
of this class of models, also given in [7], is the information struc-
ture model: each function is specified as a triple (I,IO,F) where
I is the set of all information structures or states that can arise
during computation, IO < 1 is the set of all initial states, and F
is a binary state transition relation, F:1 — ¥I) (the set of all
subsets of I). The many forms of equivalence possible here are
all instances of mapping equivalence, arelation between informa-
tion structure models whichholds when certain mappings canbe
established between states in the computational sequences gener—
ated by those models. An example of this is output equivalence
asdefined by Berry [1]: ifthe two information structure models to
be proven equivalent are M and M', for every computation C in
M there is a corresponding computation C' in M', such that C’
halts if and only if C halts, and if they both halt, they both yiecld
the same output (output is defined by a projection function on
the state). The same must alsc be true of a mapping from com-
putations in M' to computations in M. This is also the same as
functional equivalence except for the way the function is speci~
fied.

Wegner's final type is that of device~dependent models,

in which functions are characterized by their hardware implementa-
tions. These do not stimulate much theoretical interest, because
of their lack of general applicability.

We have seen that all these equivalence relations are basic-
ally the same as functional equivalence: they treat representations
of two partial recursive functions as black boxes, call«ing {hem
equivalent if they transform the same inputs to the same outputs.
Almost nothing has been said about equivalence between assemblages
of processes interacting both synchronously and asynchronously
(which are, of course, realistic models of computations performed
by digital computers today). The problem is mentioned by Wegner
[7] and Berry [1], who both point out that functional equivalence
is useless for operating systems, because they do not halt and
do not have a one~to~one correspondence of inputs to outputs.
Their solution is to deal with operating system equivalence exclu-
sively on the implementation-dependent level, and to use some
form of mapping equivalence between successive states of the sys-
tems which does not depend on arrival at a halting state.

Our problem of defining equivalence between system complexes
is essentially the same as defining operating system equivalence,
and we are also bound to an implementation-dependent (in Wegner's
terms) model of computation. But we have chosen our definition
differently than Wegner and Berry because we wanted it to be
more general than mapping equivalence, which places severe
constraints on the computational structures that can be proven
equivalent.

What we wanted was a definition analogous to functional

equivalence in that the actual computation can be viewed as a

black box~~only results matter. This was achieved by generalizing
the notion of input and output to that of a conversation between

the environment and the system complex. Formalizing such an

idea requires a clear understanding of the relationship between

a system complex and its environment. We hope to come to such

an understanding in this report.

II. OBSERVING SYSTEMS

1. The Ideal Observer

A system complex has no usefulness or meaning unless it
can engage in communication with its environment. From the view-
point of the system complex, this communication takes place via
the standard mechanisms for asynchronous communication between
systems: an incoming message is associated with a channel name
and is received in the o''s of all the systems just as if it had been
sent by one of the systems in the complex, and a message sent
by a system in the complex is assumed to be broadcast outside
the complex as well.

With this mechanism a user of the system complex can send
any message to it (provided he knows the right channel name!)
and can observe any part of the computation which is observable.
Here "observable" refers to the well-defined sequence of process
state sets of a system produced during interpretation by the prim=-
itive automaton--computations within an RPR, for instance, cannot
be observed or influenced, but they are defined on another level
that is meant to be unobservable. The simple production

{ $ x: < any characters every appearing in o> 1 } - $1 - observer
would make the complete contents of every process state set of a system
visible to anyone accepting on the channel "observer".

The designer of a system complex should be able to specify
what is significant about its computations. This is the only way
that we will be able to find non-trivial equivalent forms of it:
system complexes which preserve the assential aspects of its

computations, but differ from it in interesting ways.

The designer gives us this information about the system
complex to be analyzed in the form of a set of observing systems.
These systems are not formally defined except by constraints on
the interactions they can have with the system complex. These
constraints are, effectively, a specification of the inputs the com-
plex can expect to receive and the messages it generates which
will be accepted by its environment.

Fach observer is ideal in the sense that it is assumed to
have communication links with each system in the complex so
good that message transmission between them is effectively in-
stantaneous, and to cycle so fast that messages to it are always
accepted before they are overwritten, Although if is obvious that
no physical device could implement such an observer (how could
one device be close enough to all members of a set of asynchronous
devices to have "instantaneous" electronic connections to all
of them?), it is necessary to define observers this way, so as
to satisfy any requirements that a user might have. In other words,
some local properties of a real observer could approximate ade-
quately those of the ideal observer. Since we have no way of
knowing where or when this will occur, we must assume it is al-
ways the case. Figure 1 may help clarify the relationships.

Take as an example the problem of message loss by over-
writing of a buffer. It is surely possible for a user of an imple-
mented system complex to need every single message that comes
over a certain channel (the buffer name), no matter how closely
each follows the other, and to implement some device that guaran-
tees acceptance of each one. If our analysis is to be valid for

this user, the formally specified observer corresponding to his

an observer

~
™ M boundary of g

~ 7 system complex . ~
—— -

two-way communication link with finite transmission time

two-way communication link with infinitely small transmission
time

Figure 1.

implemented observer must also be guaranteed to accept all the
messages sent to it. The only difference between the formal rep-
resentation and the implementation is this: since the speed of the
formal complex is unbounded (but finite!), the speed of an ideal
observer is also unbounded; the speed of an implemented complex
is always bounded by its technology, and so the construction

of an ideal observer is simply a matter of using slightly betier
technology.

It is instructive to consider the alternative to defining our
observers as ideal. If the dkesigner knows that the user of the
complex cannot tolerate message loss and will implement his
a formal observer who loses no messages. Either we help him,
or he has to tamper with the system complex to introduce, at the
source of the messages, cooperation with the observer that will

prevent message loss.

2. Specification of Observers

The formal specification of an observer states which channel
names he can use to sent messages into the complex, what kind
of messages can be expected on each channel, and which channels
he accepts messages on. The description for each of these cate-
gories is in terms of regular languages. Regular languages per—
vade our analysis, for reasons that are fully explained in [6],
but for now let us just say that, because of the nature of the formal
definition universe, regular languages are excellent finite charac-

terizations of the structures of infinite sets of process states.

Fach observer is specified as:

(1) a set of disjoint regular languages, called output channel
languages~~the observer can send messages to the com~-
plex only on channels contained in these languages;

(2) for each output channel language, a corresponding reg-
ular message language, containing all the messages
which can be sent on channels in the output channel
language; and

(3) a regular language called the input channel language-~
the observer accepts a message if and only if it is sent
on a channel contained in this language.

Except for this interface, an observing system is not defined,

and can be arbitrarily complex in its behavior.

3. Independence of Observers

The reason for allowing a designer to specify a set of ob-
servers instead of just one is that each observer is understood to
be autonomous, making it possible to model the effects of simultan-
eous, but separate, demands on the system complex. The separate=-
ness of observers is most useful for factoring the analysis of the
system complex. If the observers are really independent of each
other, we can carry out our procedures with respect to one observer
at a time, ignoring the rest of the environment.

As a matter of fact, because of the nature of observations
(which are always made from a particular frame of reference), we
have no choice but to analyze with respect to one observer at a
time. An assertion about a system complex can only be said to

be true or false with respect to some observer, although one could

10

also make an assertion about the complex with respect to some
well-defined class of observers.

A problem arises because the observers specified by the
designer may not be independent~-if one observer can send a
message which later affects what another observer sees, the second
observer is dependent on the first. To analyze with respect to the
second observer, we will have to merge it with the first, so that
all the influences on the behavior of the complex will be involved
in the analysis.

The difficult part is finding an effective test of independence
for observers. It is possible to describe all the computations,
finite or infinite, that can ever be generated by a system complex,
in a finite graph whose nodes are regular languages--and which
can be derived algorithmically from the formal definition of the com-
plex alone. These graphs are called finite process structures,
and are discussed at length in [6]. A finite process structure for
a system complex and its observers can be used to test the observers
for independence.

Figure 2 is a finite process structure for a complex with
two systems and three observers. FEach node in a system represents
a regular language that process states in the system can belong
to. The arcs represent successor relationships; arcs with the
game letter label are components of multiple-component arcs rep-
resenting interactions between process states. Here is how a
graph like this can be used to test for independence:

We define an equivalence relation on the nodes of a finite
process structure called influence. Node A influences node B

if there is an arc component having one of them as its origin node

11

and one of them as its destination node. This makes it symmetric,
and since we define it to be reflexive and transitive, it is an
equivalence--and so it specifies a unique partition of the nodes

of any finite process structure into influence classes or domains
which cannot affect each other in any direct way. In Figure 2
there are two domains: {A,B,C,D} and {E,F,G,H,I,J,K,L,M,N}.

Fach observer is connected by arcs to one or more domains,
but if an observer only accepts messages from a domain, he cannot
affect it or any other observer through it. Thus two observers
are independent unless one of them accepts messages from the
same domain that the other one sends messages to. The observer
sending the messages may still be considered independent in
analysis with respect to it, but the observer accepting messages
from the domain is dependent on the observer sending messages
to it, and must be merged with that observer before analysis. In
the figure, Observers 1 and 3 are independent, but Observer 2
depends on QObserver 3.

There are two ways in which this test might be less than
satisfactory. One is that influence domains are rather vague
characterizations, taking no account of path directions, etc.

It might be impossible for two observers that the test says are
dependent to ever affect each other, because crucial connections
are one-way in the wrong direction.

The other is that it depends on finite process structures,
which can give different pictures depending on how their nodes
are chosen. For instance, if the left-hand system had only one
node in place of nodes C and E, representing the union of their

languages, the test would have said that Observer 1 was also

Observer

o
9}
>
<
©
Ul
Ko
O

system boundary

boundary of system complex

Figure 2,

12

dependent on Observer 3. This can always be solved, however,

by looking at a sufficiently detailed process structure. The par-
tition into domains is actually quite invariant to the choice of
nodes for the finite process structure. To see why this is so,
imagine an ultimate, most detailed finite process structure in

which the domains are completely accurate characterizations of
which process states can affect others. When nodes of this process
structure are combined to make simpler graphs (the languages of

the combined nodes are unions of the languages of the nodes from
which they came), the domains do not change unless two nodes
from separate domains are combined, in which case the two domains
are combined. Thus a partition into domains based on any finite
process structure for a system complex is at worst a poor approsxi-
mation to the "real'" domains.

The most important point is that either of these flaws in the
independence test always causes errors on the safe side: the test
may indicate that two observers are dependent when they are really
not, but it will never say they are independent when they are really
dependent. Consequently, the worst that could ever happen would
be the loss of a degree of freedom to change the system complex--
never would we be caused to make a change under an invalid proof
of equivalence.

All we have to do now is define a merge of two observers,

The process can be iterated if other observers fail to be independent
of the new observer.

(1) The new set of output channel languages is the union

of the sets of output channel languages from the two

observers, except if two languages intersect, their

13

intersection is made into a separate language:
0,0 U + {0 U 0_,0 = {0 ,0_,0_,0 ,0_,0 1.
{01'23”4} {4 5 6} {1’2 3774775 6}
(2) The message language for an output channel language
is the union of all the message languages that were
formerly associated with the output channel language

or any superset of it:

{MI'MZ'MEA} + {M45,M

1t

0}

M. UM

L IM 7
(MM, M, 34 45

4 45" 6
(3) The new input channel language is the union of the two
input channel languages from the former observers:

Cl + CZ = Cl U CZ.

14

11I. BEHAVIORS

1. Relative Rates

Our formal definition of a system complex contains no in-
formation, explicit or implicit, about the speeds or message trans-
mission times of any system. The systems may run at any rates
relative to each other and to their observers, and so a formally
defined design can be considered satisfactory if and only if its
behavior at all relative rates is acceptable to all its observers.

It may be true that all implemented designs are subject to physical
constraints on their speeds, but until we understand the signifi-
cance of relative rates and have a general notion of equivalence
when they are not constrained, we cannot expect to make use of
such information.

From now on we will be talking about the system complex
with respect to a single observer. We must have a way to measure
relative rates, and since we obvicusly mean "relative to the ob-
server"”, we will measure them in Observer's Standard Time.

OST is zero when the observer begins a session of use of the sys-
tem complex, traditionally called an experiment. OST is the inte-
ger n at the instant the observer sends its nth collection of message
sets to the system complex, If the last collection the observer
sends, during the experiment, is the gth, then when the experi-
ment ends and the observer ceases to receive messages, OST
isg+1.

In other words, the observer has an internal clock on which
all message exchanges are timed. By convention, it begins ex-

periments, ends experiments, and sends message sets only when

15

the time is an integer. This is not restrictive because the rela-
tionship between OST and any other kind of time, for instance,
real time, can be any monotonically increasing function. Figure
3 is a possible graph of OST as a function of real time.

Any experiment is completely determined by the set of SR's
representing the system complex, the sequence of message sets
sent by the observer,and the set of rates for the complex relative
to that observer.

A set of relative rates for a complex of n systems is a set

of n finite vectors {Rl 'R .- ,Rn} , one for each system. A vector

2"°

Ri is composed of pairs (tij’ V. .) where ti]’ is a time (in OST, of

course) and Vij is a vector of rlxjtimeso System i finishes its jth
step at tij’ If uijk is the kth entry in Vi]' , any message set sent
by system i to system k at the end of its jth step would arrive at
time uijk'

The sets of vectors which can be allowed as relative rates
are subject to the following five constraints:

(1Y Vi,i,k: tij>0,u,‘ > 0:

ijk

(2) Vi ifj<k, thent < t,
ij ik

i
(3) Vi,j: t,, <u,, unlessi=k, in whichcaset =u, .
ij ijk ij ijk
(all message transmissions to systems in the complex
require finite time except a system's transmission to

itself, which is instantaneous);

(4 Vi,k: if j < p, then u],j]/ < uipk (message sets sent from
one system to another arrive in the order they were trans-
mitted~~this is a basic property of most real communi-~

cation links, and the assumption is necessary for the

400~
units

300~
units

o0sST
200~
units

100~
units

0- K
units ! | [f ! I | I]
real time r.t. r.t. r.t. r.t.

at beginning {2 sec. +4sec. +6sec. +8sec.
of experiment

REAL TIME

Figure 3.

ot
o

modeling of real-time interactions, and simplicity, among

other things):

(5) Vi,q suchthatifq, Vk,j,pr u,, #u

i] qpk’

This last constraint deserves some explanation. It (in conjunc=
tion with constraint (4)) ensures that never do two different mes~
sage sets associated with the same channel name arrive at the

o' of a system simultaneously. The formal definition universe
demands a well~defined result: that the later message set over-
writes the earlier; there is a conflict-resolver in every system

to guarantee that this happens. However, if we allow the relative
rates to indicate simultaneity, then the result of the conflict reso~
lution will be random (or, at hest, probabilistic) in the eyes of
the observer—-and the model is no longer deterministic.

We are actually standing on golid philosophical ground,
claiming simply that no two events are simultaneous if you measure
them accurately enough, and that we can measure them accurately
enough. Tt is still possible for an observer to view the behavior
of the complex as a statistical phenomenon, and certainly some
kinds of averaging will be necessary to tame complexities that
arise in analysis. The point is that we are talking about artificial,
rather than natural systems: since we design them (formally speci-
fying all their properties), it should be possible for us to know
exactly what they are going to do.

Any set of vectors which satisfies this definition is a set

9]

of relative rates. In the course of an experiment over t units of
time, an observer is affected only by those system steps whose

finishing times are specified and are less than or equal to t.

17

2. Behaviors of Observers and System Complexes

An experiment is really a conversation between the cbsarver
and the system complex. The outcome is the sequence of message
sets observed, and is called a behavior of the system complex.
We have not yet defined, however, the third factor determining
the outcome--the sequence of message sets sent by the observer,
called the behavior of the observer. These two kinds of behaviors
are very similar, as befits two halves of the same conversation.

A behavior is a finite sequence of message sets:

<t : , , oo , ty (C . e
oGy Imypemyys m1n1}) ty (Cpelmyyemyy
. , M ‘o s :
mZn 1, , tp (Cp,{mp1 2’ mpn 1>
2 p
where {mil,miz, - 'min } is a non-empty set of messages generated

in the same step of the Same system (or sent at one time by an
observer) and associated with the same channel name, Ci" It

is transmitted at ti. The behavior sequence is arranged in ascending
order of transmittal times, although adjacent message sets may
have the same transmittal times as long as they don't have the
same channel names (this would always be the case for different
message sets generated in the same step of the same system,
because all such message sets are transmitted at the instant the
system step ends). A behavior is either a sequence of message
sets from the observer to systems in the complex, or from systems
in the complex to the observer; in either case transmission is de-
fined to be instantaneous, and so a message set sent at ti is re-
ceived at ti.

If the sequence is an observer's behavior, each ’ti is an

18

integer, and t'1+1 equals ‘ci or ti+1,

Fach Ci must be in one of the observer's output channel
languages, and all the mij must be in the corresponding message
language. In the behavior of the complex (which is actually ob-
served behavior), each Ci must belong to the input channel lan-
guage of the observer, and each t,1 is a real number.

Although the number of message sets that a complex can
send to an observer in a finite period is unbounded, it is always

finite, and so the behavior of a complex is always a finite sequence.

3. Behavior Sets

An experiment with a given system complex and a given ob-
server's behavior can result in an infinite set of different complex
behaviors, because of the infinite number of relative rate sets
the system complex can obey. This set is called a behavior set.
Since each of its members represents an acceptable behavior of the
formally defined complex, the entire set must be taken into con-
sideration when deciding what the system complex does, or whether
another system complex is equivalent to it.

The reason that times are recorded along with message sets
is that they allow conditional predicates to be decided. For instance,
the observer's question, "If the system complex sends me message
set A and I then send it message set B, is message set C the next
one I will receive?" can be answered by looking at all the behaviors
in the behavior set which include message set A transmitted at |
a time before the transmission time of B in the observer's behavior.
If all of these behaviors show C as the first message set sent
with time greater than the transmission time of B, then the answer

is yes.

19

We do not intend, by this glibness, to ignore serious prob-
lems. The test explained above is not effective because it is
impossible to generate or examine all the members of a behavior
set. The point is that as long as the infiniteness exists, it is
best to acknowledge the fact, and then go on to look for ways
of dealing with it.

The alternative to recording transmission times, as a way
of deciding questions about conditional behavior, is to define
behaviors with conditional clauses. One could then specify that
the observer was to send a certain message if and/or when he
received a certain message sequence from the complex. This
scheme has the advantage of removing that vast and meaningless
variety fromthe behavior set stemming fromnon-critical differences
in transmission times—--who cares if a message set arrives at
OST 9.561 or 9.562, except in the rare cases when something
critical happens at 9.56147 The disadvantage, however, is
that waiting for a message results in an infinite experiment if
it never comes, and we have unnecessarily involved ourselves
in the halting problem. This is a sufficient reason for rejecting

the idea of conditional behaviors.

20

IV. EQUIVALENCE

1. A Definition of Equivalence

Now that we have a precise characterization of the relation-
ship between a system complex and its environment that corres-
ponds to the input-output relationship induced by a partial recursive
function, we are ready to define an equivalence relation for system
complexes analogous to functional equivalence.

Two system complexes are equivalent with respect to a set
of independent observers if, for every observer: for every possible
behavior of that observer, the behavior sets produced in response
by the two system complexes are identical.

This definition is exactly like a mapping equivalence, such
as the one in [1], in its worst aspect: the sheer infiniteness of
cases to be verified. In the particular definition Berry uses in
his proof (which he calls operational equivalence), two informa-
tion structure models are equivalent if and only if there is an es~
sentially isomorphic mapping between the sets of computations
generated by each one. Since the set of states in these computa~-
tional sequences is infinite, and the state succession is non-
deterministic, proving such an isomorphism is a tall order. In
our definition, of course, the response of the system complex
to one behavior of an observer corresponds to an information struc-
ture model; we have to prove that the two infinite behavior sets
produced are identical, i.e. isomorphic. Berry deals with the com-
plexity by confining his proof technique to two information struc-
ture models which are very similar, so that he can work only with

their differences, and assume anything he doesn't mention is

21

isomorphic in the two models. We could use this proof technique,
(and will, in the sample proof in section IV.3), but another approach
to the problem is suggested in IV. 2.
If our claim that our equivalence relation is more general
than operational equivalence is true, then it should be possible,
by relaxing the definition of operational equivalence, to get a def-
inition resembling ours somewhat. This might be the case if the
mapping between information structure sequences could be defined
so that only certain states in the sequences had to correspond--
and the choice of those states was determined by the content of
the states themselves, not something more global like position
in the sequence. The mapping, then, would actually be defined
on a projection of the state which selected a portion intended to
be observed by the environment. This definition would differ from
ours mainly because of fundamental differences between the models
of computation being used, not because of the notions of equivalence.
There is no doubt that this is a very strict definition, but
some equivalence relations under it do come to mind. One case
will be illustrated by the equivalence proof in section IV. 3.
Another is that the finite process structure model of a system com=
plex enables us to find output~free processes, i.e. processes
that are not observed and cannot affect other computations. These
processes can be removed without altering any behavior of a system
complex, and so this definition of equivalence could be used in
proofs about such transformations, but even here there are design
considerations to be examined. Suppose the situation were described
by the fragment of a finite process structure shown in Figure 4

(dangling arcs come from or go to parts of the graph that are not

22

shown). The output-free process is marked; both the 1-arcs labeled
"x" are associated with the same production. Then the only way

to eliminate the useless process from the computations of the
system would be to change the general production whose antecedent
matches in Ll, LZ' and perhaps some cother languages, into a

much more specific production whose antecedent does not match
any string in LZ' In the implementation of the design, that might
require having several specific operators instead of cne general
one, at an obvious cost.

One very important equivalence relation is that between the
different system complexes describing the same design at different
levels of abstraction. As long as the mapping between two levels
is an isomorphism at the interface of the complex with an observer,
that observer should always see the same behavior sets from both
complexes. This would be the case when the mapping from the
lower (more detailed) level to the higher level involved hiding
processes in RPR's, because none of the information in the lower
level would really have been lost at the higher level-~making an
isomorphism possible. The advantage of the higher level descrip-
tion, of course, is that the hidden computational specifications
inside RPR's are gone from the structure and complexity of the

system complex at the higher level.

2. Specialized Definitions of Equivalence

As mentioned before, it will be very difficult to deal with
most useful types of equivalence relation using this definition.
What we must do, in practice, is find abstractions of behavior

sets which are more manageable than the behavior sets themselves.

Tigure 4.

23

A certain abstraction of a behavior set can be called an intrinsic
behavior, and we can prove a specialized equivalence between
two system complexes (where the specialization is defined by the
abstraction) by showing that their intrinsic behaviors are identical
under any behavior of the observer. It is quite apparent that differ-
ent users will have different ideas of what an appropriate abstrac-
tion is, and so it will not be possible to define one universal
form of intrinsic behavior.

The closer our intrinsic behavior comes to being decidable
in a finite number of experiments, the betier chance we have of
using it to prove non-trivial equivalences. Here is an example
with some obvious applications. FEach behavior in a behavior
set is associated with at least one set of relative rates under
which the system complex produces it. Suppose we consider only
those behaviors produced by relative rate sets in which all system
step times and all transmission times fall within certain bounds,
on the assumption that any implementation we are interested in
will satisfy those bounds. Then suppose we define intrinsic be-
havior as the set of message sets which is the intersection of
all the sets of message sets found by regarding each individual
behavior as a set instead of a sequence. This intrinsic behéviw
tells us what message sets the observer will always receive from
the system complex, as long as it obeys the bounds on relative
rates.

This intrinsic behavior is especially intercsting because
it can be approximated by one experiment. One behavior observed
from an acceptable set of relative rates will include all the message

sets that can possibly be in the intrinsic behavior. Successive

24

experiments will refine it, but the experiments can be stopped

at any time that the approximation seems good enough.

3. A Proof of Equivalence

As an example of these ideas, we will give a proof of equiv-
alence based on the general definition.

In section II.3 we showed a finite process structure for
a system complex in which connectedness relationships showed
that Observer 1 and the domain connected to it are completely
independent of the rest of the system complex. The boundary
between this domain and the rest of the system complex is not
a system boundary, but it could be. The proof will show that the
complex resulting from splitting the original left-hand system
into two systems is equivalent to the original system complex.

When we speak of splitting systems, we are referring to
a way of factoring a computation based on & regular language
partitioning of its process state set. For a system represented
by the left-hand part of the finite process structure in Figure 2,
we can see that any process state that ever appears in its ois
either in the regular language Ll = (language (A) U language (B)
U language (C) U language (D)) or in the regular language L2 =
(language (E) U language (F)). The system can be split by making
two SR's to replace it, each with the same set of productions.
The only difference is that all the initial states in Ll become the
initial state set of the other.
state set of the other.

A finite process structure for the new system complex could

look exactly like Figure 2 except that there would be an additicnal

25

system boundary. The argument that the process state sets of the

two new systems are always contained in L1 or L, respectively,

2
is based on considering the three ways that a process state can enter
a o: it can be in the initial g, it can be generated by the system,
or it can be accepted as a message. The initial ¢'s of the two new
systems are certainly partitioned correctly. It is obvious from the
finite process structure that states in L1 or L2 can only generate
states in Ll or LZ' respectively, under the productions of the or-~
iginal system. Finally, the split has no effect whatsoever on mes-
sage reception and acceptance, since all messages generated
are sent to all systems of the complex.

Note that any system can be split like this as long as (1)
it has a finite process structure whose nodes can be partitioned
intotwo subsets, with L1 beingthe unionof allthe node languages in

one subset, and L., the union of the other, and (2) no arc compon-

2
ent has an origin node in one of the two languages and a destina-

tion node in the other. TFigure 5 is an example somewhat different
from Figure 2. The complex has only one system, and its nodes

can be partitioned into three subsets, L , L , and L_, which are
2

[
2

1 !
not connected directly by any arcs. This system could be split

into two systems along the lines (L. U L2) vs. L,, (L. U TL,) vs.

1 3

LZ’ or (LZ U];3) Vs, Ll, according to the above 1;))'c>celdure. This
is not to say that the new system complexes would be equivalent
to the original, but only that the process state set of each new
system would always be contained within its assigned language.
The following theorem will give sufficient conditions for the new

system complex to be equivalent to the original.

Observer

Observer
2
e

@ W S e S w0 mm O w9 G O ok O W

{

i

“d7 - §
Vieef . g
s ™. N ;

) 5 M

b \ {

i

\ .

2 ! ;

} :

i

a / /.

A b y, :
- /]

L . i

catna s 3 - °
- i

1

H

i

o et o mn s e e S 5 e e W e D MWD e MR e MO We s mea WO W e e g e O e g e i

boundary of system and system complex

Figure 5,

26

Theorem Given a set of SR's and a set of independent observers
such that there exists a finite process structure describing
them in which one system consists of part or ail of two
separate domains of influence, and there is no observer
to which both those domains of influence are connected,
then the system complex derived from the original by splitting
that system along the boundary of the domains of influ-
ence is equivalent to the original with respect to the

given observers.

Proof. For any observer Oi' and any behavior of that observer
Bij' let Pij be the behavior set produced by the original
system complex, and Qij be the set produced by the
transformed one. We must show that Pij = Qij° We
will do this by showing first, that for any set of relative
rates of the original complex, there is a set of relative
rates at which the new one exactly simulates the orig-
inal, showing exactly the same behavior to the observer,
S0 Pij - Qij° Then we will show that for every set o:?
relative rates for the new complex, there is a set of
relative rates at which the original complex exactly
simulates it to the observer, so Qij < P...

1]

Part I: P, SQ,,
i

Suppose the original system complex has n systems {and the
system to be split has index n), so a set of relative rates governing
the production of a behavior in Piv’ is a set of vectors {R1 ’RZ' o v

4 A

Rn}, The new complex has n+l systems (the two new ones are given

27

indices n and n+l) so that a set of relative rates for it is {Sl .

S }. Derive {Sl,SZ,...,Sn,SnH] from {Rl,RZ,... ,

2""’Sn’sn+l
Rn} as follows:

(1) Si = Ri' i=1,2,..., n=1, except that each Vij in Si has
n+l components instead of n. The observer may be connected
to a domain of influence in the new complex containing sys-
tem n, or containing system n+l, but not both. Assume
without loss of generality that it is connected to a domain
containing system n. Then ui,j,m—l in Si (i=1,2,...,

n-1; j=1,2,...) is irrelevant, and can be any number which

does not violate the constraints on relative rate sets.

(2) Sn = Rn except that each VHJ' has n+l components instead

of n, and u , 1 =1,2,... is any number which does

n,j,n+l
not violate the constraints on relative rate sets (it is irrel-
evant because we know from the finite process structure that

the split systems never accept messages from each other).

(3) Sn+1 is any vector that does not violate the constraints on

relative rate sets.
We assert that the behavior of the new complex observed
by C de 1S, eeeD , S in response to B, , is identical
% Oi under {Sl 5 S1 n+1} in p BiJ i ntice

n
to that produced by the original complex under {Rl (R ,Rn}

2
and seen by Oi in responsge to Bij°

The truth of this assertion is obvious when it is pointed out
that an observer cannot be affected in any way by a domain of
influence it has no connection with, in this case the domain in-

cluding system n+l. As for all the other domains, their computa-

tions are exactly the same in the new and old complexes, at the

28

specified relative rates. System n in the new complex generates
the same sequence of process state sets as did the corresponding
half of system n in the original, and all the other systems of the
complex are untouched. Furthermore, all system steps and mes-
sage transmission in the domains of the new system complex that
do not include system n+l occur at exactly the same times, so that
all message exchanges are undisturbed, including those between

the observer and the system complex.

s

Part 1I: . P
1 QiJ” -

Assume that the behavior of the new complex we are trying
to simulate with the original complex is produced under a set of
relative rates {S_,S_.,...,S5 ,S

{ 17 2 n

n+l
a domain containing system n (as above). Construct {RI‘RZ' cee

}, and that Oi is connected to

Rn} , @ set of relative rates for the original complex, as follows:
Ri = Si' i=1,2,...,n, except that the (n+1)st component of each
Vij’ ui,j,n+1’ is removed.

As before, nothing seen by Oi is affected by this change
from the new system complex to the original, so the observed
behaviors are identical. The computations of system n+l in the
new complex are now constrained to run in lockstep with those
of system n, but no domain affecting Oi contains system n+i,
so the constraint is meaningless.

Q.E.D.

4, Conclusions

To summarize, we feel that there are two important reasons
why this definition of equivalence deserves serious attention.

The first is that it depends only on behavior which is alwavs well-

29

defined and always effectively observable. It is still true that
equivalence cannot be proven by exhaustive testing of cases,
but the situation is much better, from a systems analysis point
of view, than for functional equivalence or mapping (operational)
equivalence. The functional equivalence of two functions is not
effectively verifiable even for a single argument, because one

or both of the functions may be undefined on that argument. The
verification of mapping equivalences requires an examination of
internal states of a computation--it is easy to see that, in prac-
tice, two systems could not be tested for operational equivalence
without tampering with their implementations (and incurring all
the risk that something will be changed thereby) to make internal
states observable.

The other advantage of the definition of equivalence we have
presented is that it allows the designer maximum freedom to specify
exactly which aspects of computations are significant and must
be preserved. Since all other aspects are considered variable,
the classes of system complexes which can be proved equivalent
to each other are as large and interesting as possible. The spec-
ification of observers determines which message transmissions
are observable outside the complex~-all other computational se-
quences are considered irrelevant to equivalence. Furthermore,
the use of intrinsic behaviors can single out certain aspects of
the observed message sequences for attention, so that even these
need not be rigidly preserved. We should not overlook the useful-
ness of very relaxed versions of equivalence as approximations
to rigorous equivalence, because of the considerable difficulties
involved in proving any non-trivial equivalences between system

complexes.

(1]

[2]

[3]

[7]

30

Berry, Daniel M. "The Equivalence of Models of Tasking."
SIGPIAN Notices 7, no. 1, January 1972,

Fitzwater, D. R., and Smith, Pamela Z. "A Formal Defini-
tion Universe for Complexes of Interacting Digital Systems. "
Computer Sciences Technical Report #184, University of
Wisconsin, Madison, Wisconsin, 1973.

Johnson, Robert T. Proving Assertions About the State Struc-
ture of Formally~Defined, Interacting Digital Systems.

Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin,
1973,

Luckham, D. C., Park, D. M. R., and Paterson, M. S.
"On Formalized Computer Programs. " Journal of Computer
and System Sciences 4, no. 3, June 1970.

Manna, Zohar. "The Correctness of Programs." Journal
of Computer and System Sciences 3, no. 2, May 1969.

Smith, Pamela Z, and Fitzwater, D. R. "Finite Process Struc-
tures." To be published as a Computer Sciences Technical
Report, University of Wisconsin, Madison, Wisconsin, 1974.

Wegner, Peter. "Operational Semantics of Programming
Languages." SIGPLAN Notices 7, no. 1, January 1972.

BIBLIOGRAPHIC DATA |1 Report No.] 2. 3. Recipient’s Accession No.
SHEET WIS~-CS-T74=-213

4. Title and Subtitle 5. Report Dare
A CONCEPT OF EQUIVALENCE BETWEEN FORMALLY DEFINED April 1974
COMPLEXES OF INTERACTING DIGITAL SYSTEMS ra
. E 8. Performing Orzanization Rept.
7o Auborts) pamela Z. Smith and D. R. Fitzwater 1\125(““2"13 pression TRt
9. Performing Organization Name and Address i0. Project/Task/Work Unix No.
Computer Sciences Department
University of Wisconsin 11. Contract /Gram No.

1210 West Dayton Street
Madison, Wisconsin 53706

12. Sponsoring Organization Name and Address 13, Type of Report & Period
Covercd

14.

15. Supplementary Notes

16. Abstracts

The environment of a formally defined complex of interacting digital systems
is specified as a set of ideal, independent observers who can provide input
as well as monitor any cbservable computation. Precise definitions are
given for the behavior of an observer toward a system complex, the behavicr
of a system complex toward an observer, and the relative rates at which

the systems of a complex can finish steps and transmit messages. These
ideas are used in a very general definition of functicnal equivalence between
system complexes; a sample equivalence proof and suggestions for more
specialized forms of equivalence are added. It is argued that this defini-
tion compares favorably with other notions of equivalence because it is
based on effective observations and allows equivalence classes to be as

17. Key Words and Document Analysis. 17a. Descriptors rich as possible.
asynchronous communication
system equivalence
proving assertions about systems
systems design tools

17b. ldentitiers /Open-Tonded Terms

17c. COSATLE e ld/Group

18, Avarlabitity Statement . Sceurity Class (This 121 No. of Pages

’ iy et Repor L

. Available to public NG L ASSIE LEL .33

; 200 Socuiiry Class (Fhis P32 Price

: , { ASSIEIED

FORM NT(5 35 (10-70) - - S St

