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ABSTRACT

In previous work, a new type of numerical method for the
solution of equations of motion was derived, denoted "discrete
mechanics", which has the unique property of conserving the
additive constants of motion exactly. The discrete mechanics'
"forces" were obtained for the case of a general, separable
potential with radial dependences. 1In the present work, discrete
mechanics is extended to include potentials with anisotropy.
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In previous work [1], an energy and angular momentum conserving
numerical method--"discrete mechanics"~~was derived for the case of a
separable, radially dependent potential ¢ : i.e., ¢ 1is of the
form

B(ryareeary) = (reg(ry) e (1) (M
or is composed of a sum of terms of this type. Here ?: is the
coordinate vector of a particle {1 of a system of n particles,

and ry is its magnitude. For a complete description of the
mechanics of the motion of the n particles subject to the potential
¢ , as well as the basic formulae of "discrete mechanics", see [1].
The "discrete mechanics" solution 1s’specified in terms of the

—

implicit formulae for the "forces” Fiw (see equation (5.71) of [1]):

A ~ - ‘+~.».
Foo= TR TS (2)
Ar r%+r.

where the primes denote values at the new time t' =1t + At , and
where

Ary = r.' -, (3)

and



and the inner sum is over all combinations of the ¢ (1'S # 1)
of which 2 are primed and n -~ 1 - ¢ are unpm‘med.S (The
notation is such that null products with upper limits smaller
than Tower Timits have value unity.) For example, if n=1,
then

bo, = by - b (6)
For n = 2,
~ CI)] "fbi . . .
A(bi = Ty {(bJ +¢J] (j #1) (7)
Finally, if n= 3,
AN = f.‘l_l:..q,bl [ L LS .]_.( Y+ '> + ]
¢4 3 630"+ (05 0050, ") + 050y

(3#1,k#1,3)

Although many fundamental interactions are expressible in the
separable form of equation (1), in certain problems "anisotropic"
potentials arise which depend directly upon the angles between the
radius vectors ?} . Such potentials are usually obtained from
the perturbation of a spherical distribution of mass or charge:
e.g., the oblateness of the sun [2], or the shapes of molecules [3].
As an illustration, a typical case might have a potential term of
the form

Blryar) = 0y (r),(ry)00(ar ) (9)
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where n = 2

%12

For ¢ given

and

= Y‘] o Y‘2 (]O)

by equation (9), the exact forces are

Fo= -2 (11a)
57
1
_ doy 7, W o
ERCALF IR T LY doy, 2 (11b)
and
7, =% (12a)
T
do do., 1
= 12 = 2 2
195 Ty, 91912 v, (12b)

Because of the form of equations (11) and (12), the discrete
mechanics "forces", in order to maintain consistency, may reasonably

be expected to be composed also of two contributions, or:

R _ ok Lk
F] = F1] + F12 (13a)
S % _ -k Dk
Fo = Fop F Ty (13b)
S . ) . .
where F and F are approximations to the two terms in
—]-l 1_@; * Sk

equation (11b) and and F,, are approximations to the two

Fo1
terms of equation (12b).
Sk
The forms of the Fij
the requirement of conservation of angular momentum.
(5.39) of [1], this condition requires

may be ascertained via consideration of
From equation



=T K ”‘\'+'J Y Y
T oxF o+ T2« F, = 0 (14)
1 < 2
2 2
- -3 R} -
which must hold for all values of Py s oo r]' and r2'
The general solution to equation (14) is given by
- K * — —_\ * - -
F] = FH (r]'+r]) + F]2 (r2'+r2) (15a)
. * Y * =,
F2 = F2] (r] +r]) + F22 (rz +r2) (15b)

* * %
with F12 = FZ] and the F.. otherwise unrestricted. By comparison

of equations (13) and (15), sgiisfactory choices for the ?}j* are
B o= By () (16a)
Fl, = Fpp (7,47, (16b)
Fé]* - F2]* (?}'+?}) (16¢)
Fop = Fpy  (1p'4Ty) (16d)

*
The symmetric matrix of coefficients Fij remains to be

determined. From equation (5.24b) of [1], conservation of energy
requires

L PR I N PRCPY
Substitution of equation (15) into equation (17) yields

L Y I JL L IPal MR PR IPS (18)
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where

* 02 2.
x N
AT, = Foy  Llry')7ery] (19b)
- * ¢
AT]2 = 2F12 (%2 ~(x-i2) (19¢)
Now, equation (18) is identical in form to equation (5-50) of [1]

for n =3 (i.e., three particies) if a pseudoradius Py = 0y
is defined. Therefore, the solution obtained in [1] for equation

(5.50) also suffices for equation (17), if %y is substituted

for r3 :
aT, = —A$1 (20a)
AT, = -, (20b)
0Ty, = Moy, (20c)

where the A¢ are given by equation (8), i.e.,

i

~ ] ] t ] H ¢ ) t
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(21a)

IR ORI RS (")

(21b)

. R D - |
Mg = B0y 0y Ry byt Veidy] (6, 1)
(21c¢)



Substituting equations (20) and {21) into equations (19) then
gives the discrete mechanics "forces" corresponding to ¢ of
the form of equation (9):

Moy Ty B, T'HT
=S A R 12 "2
T T W T &y, T2 (22a)
AE) Y .+_.\ A% Y '+.._\
- r r r r
fz* =_Aoc]z ]2 Lo Ar‘z r2'+r2 (22b)
12 2 "2 "2

where By, = a]z' - Qg - In the Timit At > 0 , equations (22)
of course reduce to equations (11) and (12).

In summary, for the case of a potential ¢ of the form given
by equation (9), the discrete mechanics forces are obtained by
considering the ™ and ro terms in the energy and angular
momentum simultaneously. The resulting implicit expressions for
?2* and ?2* are given by equations (22) and (21). The ?:*
for the general case of an n-body system with a more complicated
form of ¢ may be obtained in an analogous way by treating the
?% . F} the same as radial dependences, with vector directions
determined as above in equations (15).

As remarked in [1], the same discrete mechanics solution
holds for the case Ef ¢ dependent upon Eﬁe distances ?¥j between
particies, if the rjj are used as the rs and n is replaced

by N =n(n-1)/2 .
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