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ABSTRACT

Useful theoretical formulae are presented for measuring, in a guadratic-
mean sense, the extent to which a class of important sequences is im-
perfectly distributed in the unit square. Previous results of Halton and
Zaremba are generalized for sequences based on an arbitrary radix. The
new discrepancy formulae are exact and much easier to analyze and evaluate
than previously known versions. The formulae have direct application in
providing significantly improved error-bounds in the Quasi-Monte Carlo

numerical integration of difficult functions.
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1. INTRODUCTION AND SUMMARY

In [1], Halton and Zaremba obtained exact mean-square discrepancy
formulae for binary equidistributed sequences. In this work their results

are extended to sequences of arbitrary radix.

Halton and Zaremba analyzed the Roth sequence:

. Jo, +ni+_'_+nM—l}2M—l
M 2 it M n=0

where M 1is a positive integer, and where, in radix-two notation,

n = (nM_~1 seemy e LINPY and what is now termed the Zaremba sequence:
t n: i
(L T SR V.C )ZM-—I
ZI\/[ 2 21+l 21\/[ n=0
1 -n,, 1ieven
where n! = ,1i=0,1, ,M=-1 .

These sequences are equidisiributed because the fraction of sequence points

in the box

1A
A
A
A

1, 0O

A

(&, losesx ns y = 1)

determined by (x,y) approaches the area xy of the box as M approaches

infinity, for any {x,vy) in the unit square. If S __ is a sequence of N points,

N
and if v (SN,(x,y)) is the number of points of SN in the box, then the
mean-square discrepancy of SN is given by
‘yl {.,1 ) V(DNI(X-/ Y)) 2 1/2
() dxJ dy (—— —an)) T

0 0
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Halton and Zaremba computed useful theoretical formulae for this discrepancy

and the Roth and Zaremba sequences. Asymptotically, their results are

M/8.2M and Q/SM/S\/?:.ZM , respectively. Since one is most interested in

a small discrepancy, the Zaremba sequence is better than the Roth sequence.

The author has obtained analogous results for the generalized sequénces
(1) and (2) of arbitrary radix R . The principal discrepancy formulae achieved
are those of (24) and (30) which are expressed in terms of R, N = RM and

u = MM—I = M-1 (mod R). The corresponding asymptotic discrepancies are

(Rz—l)l\/I/IZRM+1 and ﬁR2~1)(3R2+13)1\/I/12\A--RM+1, respectively. The

Zaremba-type sequence (2) dominates the Hammersley sequence (1) in dis~

crepancy performance in the order of ,/M, as was the situation between the

original Roth and Zaremba sequences.
An important paper [2] of Halton deals with the theoretical performance

of sequences in the unit hypercube Uk = [0, l]k. Halton estimates the

discrepancy of the k-dimensional Hammersley sequence (and its variations)

N-1

n .
(g« g @ =or b ) 5 (cf (3)
1 k-1
where Rl' ces , Rk-—l are the first k-1 primes. He obtained for this
construction and the quantity
)= ,dptves o T x)?
> N = APV (S /P I ox,
U i=l
- - [
where p (Xl' voe ’Xk)’ the upper-bound on UL of
2
k-1 R )
- i 2
41 k n o— (1nN+%3-Ri)
i=1 (In R))
i
k-1 Rr® 13

2k-2 3
> (11'1N)k , if N z max {R,é}.
i=1 (InR) i !

A
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The coefficient depending on k in this estimate is the result of corrections
made by Halton and the present author, in collaboration. They also

observed that the same bound prevailed if the i-th coordinate of the

Hammersley sequence was perturbed by adding to d)R , modulo Ri'
i

£
component-by-component, the fixed fraction, cf. (4)

LLi = (0,012 -~ (Ri—l))Ri, i=1,2,--+,k-1.

2_2 e o ) _ ,
Note that é(SN) =Ng (SN), if g (SN) is the discrepancy of SN in

k dimensions. From this and the constructed upper bound, it follows that
sequences can be found in two dimensions with a discrepancy of O(log N/N).
The Roth, Zaremba, (1), and (2) sequences do at least this well because

they are essentially of the same construction as the Hammersley sequence.

Unfortunately, the bounding techniques do not predict the significantly better
behavior (by ./log N) for the Zaremba sequences.

The question arises as to the best one can do. Roth showed [3] that

there exists a constant ck > 0, such that for any sequence SN in Uk .

k-1
2
(log N) o
Cy N = (SN) .

For k = 2, this implies that the Zaremba sequences achieve the best possible

asymptotic order. There is a considerable gap in the asymptotic constants,
-8
however, €.9g., c, = 2 for log2 N . Considering the effort invested in

depressing the upper bound on attainable discrepancies by constructing good

o,

“This perturbation is due to Halton and Warnock.



sequences [4,5], perhaps it would be worthwhile to attack the problem

of improving Roth's lower bound with the same vigor.

These theoretical bounds are too gross to be very useful in practical
applications such as numerical integration. Exact formulae, provided they
can be evaluated with reasonable efficiency, are preferred. Another point
in favor of cultivating various discrepandy formulae is that such work leads

to less costly algorithms (usually faster programs) for evaluation.

The sequences under discussion are appealing because they have low
discrepancy [5], a nice structure that is not diffiéult to generate [6], and
a prototype quality that naturally leads to otherinteresting sequences. Even
so, the formulae encountered in working with the sequences are sufficiently
complex to require the support of an automated symbolic manipulétion
facility. Halton and the author have jointly developed such a system,

called the SYMP@L#CALCULUS [8].

The foremost application for sequences of low discrepancy is in the
numerical integration of difficult functions that are either multidimensional with
large k , or expensive to evaluate, or both. For domains of integration that
can be suitably related to the unit hypercube, e.g., domains that are finite
unions of k~dimensional intervals, and for classes of functions whose mixed
partial derivatives exist, the error of numerical integration using such
sequences can be ‘guaranteed within a certain bound. For the k~cube this
bound consists of a finite sum of terms each composed of a discrepancy
factor depending only on the projection of the sequence on a k'-subcube,

k' = k , and the quadratic mean for the corresponding mixed partial derivative,

a factor that depends only on the function.

The mathematical substantiation of the above statements has been pre-
sented many times and is readily available [4,8,10]. Accordingly, the

mathematics is merely sketched for the unit square.




’ 2.1/2
Let rms(:) = (S > dxdy(+) )l/ denote the (root) mean square of
U
(-), and let f(x,y) belong to the class of functions whose partial derivatives

f ,f and f are finite in quadratic mean, i.e., rms(f_ ), rms(f ) and
xy ' 'x y Xy X

rms(fy) are all finite. Furthermore, let <SN>X and <SN>y denote the

, . -1 2 .
projection of a sequence S, = {xn,yn}lr\:__o in U~ onto the coordinate y =1

N

and x = 1, respectively. Then the numerical integration error
) l N'—l

e85 = | dxdy sy -5 T gy
19) n=0

can be estimated by

HA

e (.5 | rms(f, (x,)) « 7 (S) + rms(f, (<, 1)) $ 9 (<S> )

+ rmS(fy(l YY) e ﬁ‘(<SN> y)

where each 7 denotes an rms discrepancy.

The advantage of utilizing cleverly constructed sequences of low

digcrepancy, viz., quasiranddm sequences, rather than pseudorandom sequences,

which are generally expected to pass a number of statistical tests--un-
necessarily, for this application--or random sequences, is that many fewer
sequence points are required to achieve a given error bound. Hence, the
evaluation of f in the si%nple quadrature formula above is much less costly.
This advantage is especially pronounced in two dimensions [5], for a random
sequence yields the expected value for ¢ of

(2% 3—-k)l/2

N]./Z
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a quantity that decreases with increasing k , while quasirandom sequences

€.g., the binary Zaremba sequence, exist with a discrepancy of

/

(log2 N)l 2/8N, a much smaller quantity for k = 2 ‘and large values of N .




2. PROBLEM FORMULATION

For any positive integer M and any radix R=2,3,4,..., let

%= {0,1,2,... ,R-1}, and let N = RM be the number of points in a restricted

quasirandom sequence. 2. _ is used generically for either of the two-dimensional

N
sequences
D Yy = (G by
2) Jy = (& b D )7
where
3) Op(n) = (0.n 0y onpL )y = o EO niR-i

n.)

i R, 1= 2,000,
with nieﬁ,l 0,1,2, and ( ny nl o'R

@ i

:= ¥ n R , the R-adic
. i
i=0

expansion of the nonnegative integer n , and where W is the non-terminating

fixed R-adic fraction

4) W= (0.012...(R-1)01 2...(R-1)0 1 2 ...)R
———— 1 R-1 . o« R
= (0.012...(R-1)), = = iR S R
R R | .
i=0 j=0
L LR,
" R-1 R-1 R "~

R -1

The 4 of (2) denotes mod R _addition component-by-component, i.e.,

0 M B 1 = (0.(1,® 0)(n; 1)+ (0;® (1 mod R+ )y

mi 4+ (1 mod R), n, 4+ (i mod R) < R
ni@ (i mod R) =
R~ni—(i mod R}, n, + (i mod R)

LY

R .
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Since N = RM , and because the points of PN are equally spaced in
the first coordinate, by (1) and (2), it is convenient to partition U2 into

R wvertical strips, each containing RM“l points of ‘pr , by defining the

boundaries
A 1 . .
5) X, =g le A .
Clearly, the RM—1 points of the _i_th strip

2, oo .
s, ={peU|xe [x,.%, ) velo,1]]

have the labels iRM—l, iRM—lﬁ-l, ces ,(i+l)RM~l—l . In the R-adic expansion

for any of these labels, n say,

= 3 = g i =
nl\/[-l i and nj = 0, for all j M.

The set } assumes all RM.—1 possible combinations of

values over the labels of zsi . Hence, the RM—'1 points of ﬂ)N in esi

{no,nl, aoe 'nM—Z

are equally spaced in the second coordinate as well, with a spacing of

Rl_M . Furthermore, the y coordinate of the lowest point of the group is

given by
( M i
iR = N for XN
A . _M 1 (<] ._.j
oz (- -
6) v, : { WDuy, PR+ I pR
=M
i@ M=) + {Np}
= N , for ,}N .
.
With the definition
N-1
o o g - d = ? — — -
7) % (?N,p) : V(WN,(x,y)) Nxy = % H(x xn)H(y Yn) Nxy
n=0
>
where H(z) := {é’ 228




A

the objective function %@N) becomes

- 8)

The primary concern here is the derivation of useful formulae for (8) and

the sequences of (1) and (2). In computing (8) it is helpful to be cog}nizant

1

! ,
sy = §ax jody 6% (2 0,7,

of the following auxiliary integrals and summations:

9)

10)

11)

Useful formulae for ¢ (@N) and

1 1
9(¢N) = Y dx 50 dy @(@N,(le))
N-1
= 2 (ex )y -
n=0

1 1

N-1
1 Wy oy N
> % (=x) -y ) - ¢
n=0

it

J L1
y = § ax | ay v s, (x,9)

N 0 0 N
N=-1
_1oo 2, _N
=5 3 (l-xn)(l-yn) - %
n=0

# , respectively.

yf(ﬂ)N) are derived in Appendices ¢ and
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In the case of the Zaremba sequence, formulae like (9) - (11), except

that each yn is smaller by a constant, are easier to calculate. The

constant equals {Nu}/N, the positive difference between K and a [ that

is truncated after the first M components.

With derivation techniques closely paralleling those of [11, Chapter 2],

(8) can be rewritten as

R-1
12) Cdeg = 2 4y
i=0
where for the ith strip
X, Y.
L+l i 1
- ¢ ! )
13) Koy = & ax (§y av + Xyidy)g @ b 9)).

With the change of variable x < R(x—;ci), and by decomposing v, (13) becomes

1 RS

' 2
1) i@y = %gjodx do dy(v @, (L,y)) = wlxti)y)

A

P oavve L)+ e G yev)) - wixk)y))
Y
1

where use is made of (5), (7), and the shorthand notation

- gM-1 _ N
15) w = R =R

One can write the following:

1 ‘
: 2
16) a, ) = jody vo@ L)
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1 1
].7) ﬂl(g)N) ::‘S dx \SA dY V(@WI(XI Y";’i))v(?iwl(lIY))

0 yi

1
)= dyyve,, L)

18) € (7 i
R
19) 0.6 = §ax) ayve. Gy - wir) v+ )
i"NT 0 0 w7 ' i
w53
l »
Fg i) —
, R-1
20) CQ'(EDN) =R i§O (.wi(sz) + mi(@N) - w(1+-2.i)‘gi(50N) + @i(.ﬁl)N)).

The component formulae @B and o, are derived in [11], but are omitted

here.
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3. RECURRENCE RELATIONS

X ., (with (¢7), @7), w = N/R, and

Specializing now for #__ =
p g N N

/3} = i/N), (20) becomes
21) )= ML) R ) gy )
2 2
LB R 1 RERA 2Rl
90R2 24R Z4RN 7'2-N2
- é)’(y( )+ ((R+l)(R -l) B (R+l)(R —9) R+l
6R° 30R” R
2
R =1 R+7. 1 R+1
oM - Sy L By
2R 2 "N 6N2

From this recursive relation it is a straightforward matter to postulate a

& of the form

2 d
22) ) = aM +bM+c+——1\—1/{Ti‘?—+%
N

and solve for the unknown coefficients a, b, d, e and f , which may depend

on R only, by equating like terms in the equation induced by (21) with

d(M-1)+e
N/R

HK ) = a(M-—l)Z + b(M-1) + ¢ + };?;f

appearing on the right-hand side. This procedure results in the partial solution
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2 2 2 2
5 = (R™-1) b= (R™=1)(3R +60R+13)
= S =
144R 720R2
2
d= - B.._:...l._ e = 1 f = - 1
T 24R T4 72

The remaining unknown c¢ is determined using the initial condition, by

(1), (3), (7) and (8) ,

2 _ 11
)

1 A
23) A=) dx ) dy a-xn)® = 3
0 0 '

corresponding to with M = 1 in the induction on M. Substituting
X

(22) and (23) into (21), taking N = R, and solving for ¢ using the known

1]

coefficients yields ¢ = 3/8.

Thus, the complete solution for the Hammersley sequence is

2 .2 2 2
. ®Z-n° 2 (RT-1)(3RTH60R+13) 3

24) ML) +
N 144R° 720R" 8
R%-1 1 ]
2arn M Y N .

a major result. For the special binary (R = 2) case, (24) reduces to

2

29M | 3 M 1 1

25) HE )= + + T - + - :
oMY T 64 T192 T8, oM T M, ,2M

1=

an expression that is well known, having been derived previously by Halton

and Zaremba.
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Turning now to the more complex case of #. = ZN' (with (#16), (#13),

N
w = N/R, and /3;1 = (1 ® u) + (NR})/N), with u = (M-1) mod R, (20)

fi

becomes
26) Mz = #3,) - Ee s )

6u2-—6Ru+Ra+3R-—4 24 )
6R w

2
u _3Rfl u3*‘4R2+3R~l 2 RT4R-l

. 2 2
4R2 6R 12R 12R

+ 8R4+30R2—3OR-8 _ ZR2~3R+1
2
72 ORZ 72N

1 u’ 2Rel 2 4R+3 R 48R°-8R-1

*NrR AR Y tTiz YT 24r ) + Fy ({(NE),N,u,R)
bZg
2
- &(g )+ US _ 5\14 + 13R -1 u3
w 6RZ 12R 36R2

3R*—4r>-12R%+26R-1 2
24R% (R-1)

2
R°-5R%-30R>+11 0R®~43R+39
+ > u
72R (R-1)

2R +9R®-54R+13R*~17R°~114R* 2 1R+ 2
y 3
180R% (R-1)

+
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2
1 Rl 3 (RS 2 (Rel) (R+3)
*y RY gr " T 24

5 : 2
_ 5R -29R4+32R3—32R -R+l) . RE-1
24R(R~1)3 72N2

REDRT
2 R-1)% (R} A1)

~l=(u-1){mod R) R
N

(R

+ F, ((NW}, N, u, R)

fu=0

8 7

43y + LR _126R%4314R%-240R%-374R >+ 366R%+46R-4
v 360R% (R-1)"
5R5—29R4+32R3—32R2-—R+l+ R®-1 . R+l gRH

- —1\3—)

2
24R (R-1)°N 72N 2R-1Z RE-1)

-

F, ({NK},N,0,R)

where Fl, P‘2 and P3 are complicated functions with the property that

Fi(O,N,u,R) = 0,1i=1,2,3. The explicit expressions for the F's are omitted
: v
since it is easier to solve the above recursion relations for &(jN) with

the truncated p and subsequently derive the expression for &(‘EN) using
(32).

In proceeding to solve the recursive relations of (26), a Vs of the form

4
27) HE ) = au® + bu” + cu” ¥ dud +eu” + futg
hu3+iu2+ju+k+k1Ru : "
+ N +*"'2'+mR

N
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is postulated for the truncated [ , where the fourteen coefficients, a, b, ..., k,

ki, £, m are assumed to depend only on R . For the case u # 0, i.e.,

M Z 1 (mod R), with u replaced by u -1 and N replaced by N/R in (27)
for Gé(ng), and by equating like ternis in the equation induced by (26) and

(27), one obtaing the partial solution

1 R-1 13R%~30R49
36R 12R 144R
4 . _ 3
o - 3R-1TR F11R“+17R-2
- 2
72R” (R-1)
2
.- RO_14R%+4r%+108R > -147R°+126R=6
144R% (R-1)°
5 2
‘o 13R 7 -9R®-291R°+767R*~1093R>+309R" ~42.9R+13
3
720R® (R-1)
he o Ril o R2-R%-3R=1 . R =4R>-4R’4+16R+15
- 2R (R- B 2 -7 3
12R (R-1) 8R(R-1) 24 (R-1)
5
‘- RO-6R*+21R*-24R’+51R"16R-1 ®+)RN!
- ; :
24R (R-1) 2 ®R-1)° ®R-1)
S L L R+DRY
== -

2 R-1)° RR-1)

The unknown kl is determined in a similar manner from the equation induced by

(26} with u = O:

: 3 2 R~1
ktk, h(R-1)"+1(R-1) +](R-1)+k+k R
N N/R
D 4 3 2 L oRF1
_ BRT-29R 4+32R°-32R -Ril RiDR
2 R

- r
24R(R-1)"N 2(R-137 (R ~1)N
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with the solution

R(R+1)
2(R-1)° (RR-1)

kl=

The remaining unknown g is determined by the initial condition for
v
M = 1, when J’ is given by (24) with N = R, sinve 5R = ?R' i.e.,

2R4+1 5R3+6OR2+30R+3

28) MIP= S = o

This, along with the solutions for k, kl,‘Z and m and the equation induced
by (27) with u = 0, implies that

6 5 3 2
g = 4R8+14R7+39R -346R +69OR4-494R +711R +106R-4

360R%(R-1)"

R+1
2(R-1)3(RR~1)

Now suppgse that u =0, i.e., that M =1 (mod R). Then the u=20
recursion relation of (26) and the M £ 1 solution with w replacing N

and R-1 replacing u vyield

v ®2-1)3R%+13) | K

| 2
29) J ) =9 T 20 oyt D +m

which actually is valid only for M =R + 1. Hence, it is apparent that g

depends on M , confrary to the hypothesis for (27). This anomaly is

accommodated by adding

2
‘.l\/{nlj . (R%-1) (3R“+13)
R 720R

to the current g to reflect the increases of (27) in steps at values of n

=

where M =1 {mod R). i



Therefore,

18

the original form of (27) is amended to

R-1

5
u

2
. 13R -30R+9

4
u

2
IZRZ 144R

3

sRA 17 r iR 7R
2
72R(R-1)

P6 '4R5

R —~1

4 108R°~147R +126R~6
> 2
44R“(R-1)

4R

i
T

2
u

13R7—9R6—ﬂ2 91R5—i—767R4—1 O93R3+3O9R2-42 9R+13

7ZOR2(R—1)3

.{_.

1
5 4 3 2
14 " +39R°-346R7+690R ~494R>+ 71 1R®+1 06R-4
‘ 4
360R (R-1)

4R8+

R+14u

R+1

Z(R—l)B{R -1)

(

Rz-l)(3R2—l-~1 3)

(1 +R

R-u _
N

M~

720R

[

R

{J 1

72N

% _3R-1
2
8R(R-1)

R+l 3

12R{R~-1}

R -R 2
I u

A
x G2

4 3 2
R -4R”~4R“+16R+15

oo 3
24(R-1}

26,5 4 3 2
. R =6R +21R R +51R +6R-1 |

24R(R~1}

IS

gt

Z

on, which is now valid for M and R

3

all positive integers

t; {30}

his expressd

{except R = 1, of cour is the principal regul ig the complete solution

aremba sequence with the truncated

i
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k

For the special case R=2, uw =u=1 - EM, k=2,3,...,6, where
e T 1 (0y if M is odd (even), and (30} reduces to
24+9¢€ 36~49¢
- 59(52 oM M VR A VAN
/e ZM' 192 64v 16’ZM 72_241\/1
using the facts that
£
M- M M
Py =¥ e
1

and si/{ = 8M, k=1,2,... . This is a new binary result which ig to be

compared with the corresponding expression

24-7€ 4+ €
5M "M Y 1
- T s ,
192 64 o.M 45 52M

derived by Halton and Zaremba for the truncated ordinate perturbation

(0.10101 ), .

The R-adic formula for J with the non-terminating . is obtained via

the following auxiliary expression for # N = j&N or ‘31\1 which is developed

using (1), (2}, {7) and (8):

al {,1 N-1 >
32) ey =) dx] dy (2 Hlxmx JH(y-y )-Nxy)
0 0] n=0
N-~1 N - N-1 .,
= ZA{l-x ¥il-yv )+ 2 I n{i-x3 ~£\l* 2 (m\{/‘)(iwya"‘;
n “n 1 2 n n’
n=0 n=1 n=0
N-1 n-~i NZ
-2 E (i ~xn) Zomax {y vmj + 5
n=1 m=0



—-2.0~

N~-1 n-l N-1

) N 2 2
= -2 ~ : : - 3
2 3z J(l xn) 3. max {yn,ym_} > 2 XV
n=1 m=0 n=0
+ N;:Zl x +§~Ni _By 2
n'n* 18 2 7%
n=0

where the fact that X > X for n > m, is also utilized.
Although (32) is easily derived, this formula is much less efficient than
(24) and (30) for calculating the discrepancies for '}{N and 31\7' at least

for sufficiently large N . The relative computational efficiencies of such
formulae are not pursued here. Using the summation form of (10), along

with (32), and the fact that x = n/N, the ﬂlL(jN) formula for the non-

terminating K 1is

v N-1 N N-1 > y >
33) AEy) = MEP-cy = (I=x) -3 2 (I-x)(-2c v -c)
n=0 n=0
N-1
-—ZCN b n(l—xn)
n=1
v v
= ‘7&(31\‘1) - 2Negx (ZLN)
02 2 c
N 2N N 1. N
2 U3t 278
v v
where  §( jN) and yi’(g,_N) are given by (30) and (¥13) and ey = {(Nuw}/N.
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Appendix ¢

For the truncated [ the integral form of (9) can be expressed as

Using (9), (# 3)can

¥ 5)

) )

1

i

i

i}

v v N
GZL(?N) “"(‘71(501\1” "7

1
§oay v, (Ly)
0

L1 1 ,
j dx jv dy v(ﬂ’w,(x,y—x"’i))’

0 yi

N 19 (M-1))/N=({® u)/N. (92) becomes

i-1 1 : Y
3 ), dyswy-¥)D

Y

be rewritten as

w-1 "1 1
s ) dx | dy
v NA
n=0 xn 3ri4-yn
v W w+1 v
IO T T T Yy

Specializing now for TN , by (6), (24) and (¢5), (¢1) results in the

recursive relation
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It is easily verified with (15) that the explicit formula

. ; Mo 1o L1
77 I = T2 R Yoy

satisfies (¢ 6) and the constraint or initial condition that ¢ (')Cl) = 3/4

which corresponds to ¢ (X,,) with M=1.

Turning now to the more complex case for jN’ by (6), (#4) and

(#5), (#1) becomes

YV  R-] N4R R-l
=920 T " 2Ry U2

+ u - (R-u)H(u-1))

R-1 . ..
- -15 5 (9—}H Fui - R(-0)H(i-0)H(u-1))
R i=0

where (15) and the fact that H(R-u) = 1, since u = R~u(mod R) € &,

also applied. Observe now that

u - (R-u)H(u-1) = 0, identically, even if R = 2.
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Further simplification of (¢8) yields

v v . -]
#9) sy = #F )+ T R-p) -

¢ L &L @-w - 0+ 2@-rpHE-1).

Since u = 0 implies u = 0, and because of the equivalence

-2 -
u = U

i

l-—SM, for R = 2, using (4),

one can write (¥9) as

7 10) sy = e B )+ Ty ®R-F) - G5 - o (R-w).

For R=2, (#10) reduces to
11) oG = ed oLy Mo M2
¥ 521\/{ =7 %M—l 8 4

where EM = 0(1) for M even (odd).

The recursive relations (# 10) and (¢ 11) will be considered separately

using induction on M . Relation (#10) with R > 2 will be further separated

into two cases determined by whether u = 0. One deduces that u = 0 if and

only if M = 1 (mod R).

Taking the most interesting case first, suppose that R > 2 and that u # 0.

Assume that ¢ has the form
12 7 =L yaud 4 bu® +cu+d
g12) ¢ UN) T In u u cu

where the constants a, b, ¢ and d, which may depend on R but are independent
of M , are to be determined. It is clear that the 1/4N term satisfies the
recursion since 1/4N = 1/4w - (R-1)/4N. The coefficients a, b and c are

found by solving the equation induced by (# 10)
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au3 + bu2 + cu = a(u«l)3 + b(u-—l)2 + clu-1)
R -7) - 355 (R-u).
Equating coefficients of like powers of u results in the solution

o1 b____R—l C__R—a
T 6R T 4R T 12

The constant d is determined from the initial condition for M = 2, the

a

smallest value for which u # 0. Using the summation of (9), by direct

calculation

2
y RZ 1 R :"l .
g13) 5&(3’2)=1——Z-+~2* Znyn.
R R n=0

The summation of (¥13) can be written as

2
R -1 v 1 ~1
g14) S n Y, SR 2 (niR + no) (nO + (nl@ DR )
=0 (no,nl) € X
R~-1 R-1 R~1
=§(2R Sk 4 R+RH( 2K -R Z k)
k=1 k=1 k=1
T4 6 3 4°
Thus, (#13) becomes
v ZR3 + 4R + 3
#15) #(3 )= T
R 12R

which, along with (#12) and the solution for a, b and c , implies that

4= R 4 6R - 1
B 12R

whence one obtains
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3 2
| v 1w (R=1) 2, R-3_ RC46R-1
16) FO) = Iw t eR R Y T2t TR

valid for R> 2 and M # 1 (mod R).

Now suppose that R > 2 but that u = 0. Then the recursion (¢10) and
the M #Z 1 solution (#16) with w replacing N and R-1 replacing u vyields

the solution

3 , 2
v o 1 (R~1) (R-3)(R-1) R 46R~1
§17) TG = Fw " 12r T 12 T TR
1 1 R~1
+ 12 R-3) -y
1 . R2+6R—1
T 4N 12R

valid for R > 2 and M =1 (mod R). Note that (#7) and (#17) agree for
M = 1, as they must, Since (¢16) reduces to (#17) when u =20, i.e.,

when M =1 (mod R), (#16) is valid forall M .

For the R = 2 case, (#11) is satisfied by

_ ,~M-2

$18) sr(g\; M) = +
2

Mo,
8

o f—

v
where the constant 1/2 is forced by the initial condition yf(ﬁl) = 3/4 corresponding
v
to y(jw) with M =1. Itis noted that (#16) and (¢17) each reduce to

(#18) when R =2. Hence, (g16) is valid for R =2, as well, This completes

the derivation of explicit formulae for y(&‘gN), namely, (#16).

Using (9) , it is now a simple matter to obtain a similar formula for y(ﬁw)



—2b=

w=-1 w
#19) (G = ZO (1-x )(1-y ) =
n:
v w-1 v _
= .¢(ﬁw) oy 2 U-x)
n=0

il
@9
AP
i
g
+
[
=
-
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Appendix &

For the truncated K the integral form of (10) can be expressed as

v . R-1 v
_ WA ,
*1) TEy) g 2 (G (G + %) YFy + 5,4 (¢
1 v N

tr Ml - g
where y(s\{ ) and U(ﬁl ) are given by (#2) and (¢ 3), respectively,
I N i N
and where
v ‘ " v v ﬁ
; M - -
¥ 2) .1(9>N) : Y dx x jv dy vz . (x,y=y;).

0 Yi

Using (10), (¥2) can be rewritten as

w=-1 1 1

s 5 dx x j

=0 x ;+§fl
n n i

7 3) M(F)

n

2
v w 4w +3w-1 v
¥ TS L S S
(EDW) F 6 12w yi

H

Specializing now for "’ , by (5), (6), (4)and (¢5), (*1) results in the

recursive relation

R~1 W N 1
Y ) = —) == 4+ = (¥ -~
#4) AP =5 FA )+ -5 g A
w1 W+l
+op (R-1)+ 57 (R-1) (2R-1)
W R-1 1 i-1 3
"R 2 GR +”) %N
=0 j
- 2
_1R1wu +4w+3w1)‘_;_
N 2R 12Rw N
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1 R-1 R 4R-2
=R¥Y) Y SR @) Y TR

4R®=3R-1 , Rol
24RN T, 2

-

after some manipulation. Substitution for ¢ (?/w) from (¢ 7) yields the following

recursion in ¥ alone:

3 _2 2
1 M(R ~-R -R+1 8R =7R~-1
x5) x (Ry)= 7 (F,) + B R ;
24R 24R
RS-, Rl
24RN 24N2

In solving for x(YN), let the longer polynomials be denoted by

r= R3r-R2‘R+1 s = 8R2~7R+1
and assume the following form:

cM+d + e
. Z
N N

®6) w(?CN) = aM+b +

Then four of the five unknowns can be obtained by equating coefficients of like

terms in the equation irdduced by (¥ 5):

- R
aM+ b+ L& - Loy g by SMEUR L ER
N 2 R N 2
N N
2
+ Mr+s _ R -1 + R-1
2
24R 24RN 24N2
The solution to the above equation is:
B i
" 24R(R-1) ~ 24R T 24R

b = (R-1}s-r 7 1
T 2 T 24 €= " 724
24R(R~1)
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The remaining unknown is determined by the initial condition :ﬂ'(]/l) =

1/3 corresponding to Z’W with M = 1. Thatis, from (*6) with M = 0
and N = 1:

1/3=b+d+e or d=1/12.

Hence, one obtains

2 2
CM@ER®-n) 7 MER-L) 1 _1
x7) N 24 24rRN T 12N S

- L
24 N 2)

2
(R~ 2

L M ii"ll “~__§q +74 2
. N

v
Turning now to the more complex case for 31\1' by (5), (6). ($4),

(#5), and (#3), (#*1) becomes

» . _ L 4 w L bt w i N
¥ 8) W(Z'N)”R(£(3W)+6)+R(9(5w)+ 4)1:0 R o
R~1 i-1
R i=0 ji=0
_wtl Rgl iiu) 4w2+3w—l R;l id u
2R i=0 RN IZRZMJ i=0 N

1y L Rl ¥ Rel 1
=R7Q) o G Y s T TR

4R"-3R-1 R-1
24RN .

B R U I

uly - an! toR 2N’ T 2

after considerable manipulation. For R =2, (#8) reduces to
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*9 w3 )=t WRESPTE SR S S .
9) M T2 ZIZM~1 4 321\/[—1 24 T 16N
e
1
e
24N
where € = 0(1) for M even (odd).

M
v
Substitution into (#8) for y‘(fj’w), replacing N by N/R and u

by (u~1)(mod R) in (¥16), yields the following recursion in # alone:
{

2
v 1y R°-1 | R-l (R-1)(R+8)
*10) () =R D) " 2amn A’ TR
2 2
R-3 3 ROR-1l 12 RT6R-3 L
2 2 ;)
. o 4RN 2ar ' an

In solving for Jr(jN), let the longer polynomials be denoted by:

2 2
g:=R -1 r := R +7R~8
2 2
g := R —-4R~1 t := R -6R-3
and assume the following form:
b4 3 2 -u eu3+fu2+ uth 4
711) (4 )=au +bu +cu+d+dR "+ 4 +
N 1 N NZ

Then eight of the nine unknowns can be obtained by equating coefficients of

like terms in the equation induced by (¥ 10) with u # 0:

3 2 eu3+f Z+ u ()
au” + bu” + cu+de SR IOR o

2
N N

e(u—l)3+f(u—~l)2+g(u—l)

1

"(a(u“l)S + b(u-1)2 + c(u-1) + d +

=J

N/R
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2 N
IR g R-1 r
+ ) - + +
2
N 24RN Z4N2 24R
R-3 3 S 1 2 t 1
+ u - (= o+ )u o+ (T ok o) .
12RZ 8R2 4RN 24R 4N

The solution to the abave equation is:

. _R3 . R~ 5R%45R-5
L12R(R-1) 8R(R-1)°
;2
.. R°-8R7+16R>-24R+3R-12
24R(R-1)"
g - RO13r°-21R%+44R>-27R%+21R43
24r(R-1)"

oo A ¢ Rl o _Rz3 P= - L

~ T 2R R 7T 2 2

The unknown d1 is determined in a similar manner from the equation induced

by (x10) with u = O:

d +d, =

. @R-1)> + b(R-1)* + c(R-1) + d + lel"”) bt

24R

= |

with the solution

(R+1)RR

-
2(R-1)° ®R"-1)

2
It can be verified that the two equations in 1/N and 1/N~ that are induced by
(*10) with u = 0 are already satisfied with the previously determined solution
for e, f, gand £ . The remaining unknown h is determined by the initial

condition for M = 1, when % is given by (*7) with N =R, since

jR = 7(R, i.e.,
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v o RE46RE1
% 12) (300 = 2 (X)) =50
This, along with the solutions for d, dl1 and ¢ and the equation induced

by (¥11) with u = 0, implies that

6 5 3 2 :
o= - R -4R +15R4—-6R +13R " +6R~1 L - (R-i-l)RR+1
= : i
24R(R-1) 2(R—1)3(RR—1)
Hence, (*11) is
3 2
v - - -5 2
x13) ¥ (3 = R T e
8R(R-1)
B R5—8R4+16R3-24R2+3R—12 " - 1
24R(R—1)3 24N>
2
R6+3R5—21R4+44R3—27R +21R+3
24¢R(R--1)4
, R
(R+1) N R-u
3 R R
2{R~1) R -1
L( u3 R-1 uZ B R—3u . R6~A4R5+15R4—6R3+13RZ+6R—1\
- e fE— ( 2 )
N'12R 8R 24 24R(R-1)
3.2 X
=] - bM'

(r13) is valid for all values of M and R . For R= 2,u =u =u

and (#13) reduces to

y 7 "M 11 M 1
*14) %’(321\/1)" 24 * 16 T M2 3 - )

0(1) if M 1is even (odd), using the fact that

where ¢ =
M

M-1] M-1 M
L 2] 7 2 2

so that
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M-1] 2-¢
2"2!. 2 J ! = M
and that
cM-1 1+¢
2‘2{ 2 } = ZM

(# 14) can also be obtained directly from (¥10) using the initial condition

v
xr(jl) = x(}’l) = 1/3 corresponding to w and M =1,

Using (10), and the fact that x = n/w, the formula for x(ﬁw) and the

non-termingting | is

w-1

1 ' 2
% 15) 2,027 2 (=) (1-(y e ) - F
y  “No2w 1 i
FQ) -2 G 7 G

4
=2 ) - BB E S -

“w 3 2 bw

where x(‘gw) is given by (¥13).
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