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ABSTRACT

A new numerical method for use in the solution of classical
equations of motion is described, accurate to third-order in the
coordinates and second-order in the velocities. The method has
the unique property of preserving the energy and total linear and
angular momenta at their initial values in the computation. This
"discrete mechanics" is derived from general symmetry properties
of the equations of motion and is compared in several numerical
examples with conventional predictor~corrector methods. The
theory is applied to derive a general expression for the impulsive

limit of motion due to a potential.
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1. Introduction

The problem of finding the trajectory which describes the motion
of a system of bodies under the influence of a potential ¢ and sub-
ject to the laws of classical mechanics is, once again, of broad,
general interest. After fifty years of dormancy during the rise of the
theories of relativity and quantum mechanics, the new complexity of
problems accessible via the use of numerical techniques and digital
computers has led to a reinstatement of classical mechanics as a

useful tool in modern physics.

In celestial mechanics the wealth of detail now available from
orbiting satellites allows a very precise description of the motion
of the planets, which cannot be obtained from analytical methods [1].
Similarly, the launching of manned spacecraft has made real-time

calculations of complicated trajectories a necessity in astrodynamics
[1]-[2].

In chemical kinetics, molecular scattering theory, and the theory
of molecular potentials, the typical size of the systems involved has
become so large that quantal methods are no longer feasible: classical
mechanics, although approximate, is now being applied as the only
recourse in such systems (see, e.g., [3]-[4] for reviews). In statis-
tical mechanics and fluid dynamics, increasing use is being made of
the fundamental model of a large system of interacting particles,

solved via the equations of motion (see, e.g., [5]-[10]).

In any of the applications above, the typical problem of deter-
mining the motion of several bodies is solved in the following way:
the initial conditions are determined from experimental data or from
analysis of the theory involved, the potential ¢ of interaction is

specified, and the classical equations of motion are solved numerically.



This last step has been executed using very simple finite~difference
formulae for the derivatives, predictor-corrector and Runge-Kutta type
methods, Taylor~Series expansions, etc. What is desired in every
case (and has sometimes been lost from view) is a calculated solution
which corresponds as closely as possible to the exact, continuous
trajectory of motion. One problem common to all the above mentioned
methods, as well as to analytical perturbation expansions, is the un-
bounded deviation from the exact result as the time t increases. Be-
sides ultimately destroying the value of the computations, this makes
the discovery of long~term periodic motions extremely difficult. Thus,
even with the aid of numerical solutions, the question of the stability

of the solar system is still unsettled [1].

In the present work, a new numerical method, called "discrete
mechanics", which was previously displayed for the special case of
a potential composed of powers and inverse-powers of the interparticle
distances [11]-[12], is derived for the general case in which ¢ can
be represented by a separable expansion, This "discrete mechanics",
now shown to be applicable to all physically reasonable systems, has
the property of the conservation of the additive constants of motion in
common with continuous mechanics. The generalized form of "discrete
mechanics" will be obtained by requiring the difference equations of
the method to have the same combinatorial and transformational in-

variances as the differential equations of motion.




2. Classical Equations of Motion

The system to be considered here is that of the general "many-
body" problem, which, for completeness and for notational purposes,
is summarized as follows: Let n particles, indexed by i=1,2,...,n,
of masses mi, respectively, be interacting according to a potential ¢,
which is a function only of the coordinates of the n particles. At

i

time t, particle i has position vector p, = <X ,Y. ,2.> with respect
Py R R |

to an inertial reference frame OXYZ. Let the velocity of particle i be
denoted by pi = d pi/dt, which has, e.g., an X-component of ki =
dXi/dt. The vector distance p i from particle i to particle j is

given by

Typically, the potential ¢ is a function only of the interparticle

radii pij:

2 o o2 ,
+(Y_J,~Yi) +(ZJ. Zi) (2.2)

— / 5

These coordinates are shown in Figure 1.

The kinetic energy Ti of particle i is defined by

. .

1 _
=5 m ey Py =

2 . 2 s )
m, (X, +Y, +2,) (2.3)
i i i
and the total kinetic energy T of the system by
n n
T=) To=) 2m (XY 2) (2. 4)
Pl i i i

Do |

Finally, the total energy E of the system is given by



Figure 1

Coordinates of Particles i and j .
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E = T+ &lp, PrgresPpq o) (2.5)

where ¢ is, in general, a function of the N = n(n-1)/2 interparticle

—

radii py, (i <)

The problem to be solved is the following: given the position and

3 —

velocity vectors Vp.l and pi (i=1,2,...,n) at some time t, find the

Y L3

position and velocity vectors pi' and p; at some later time t =

i
t + At. (In general primes will denote the value at time t'y. The

exact solution is accomplished via Newton's equations of motion

m, p. = I, (i=1,2,...,n (2.6)
i Y i

s —
where p,1 =d” pi/d’c2 is the acceleration of particle i, with, e.qg.,
—

X~component X1 = dZXi/dtZ, and where Fi is the force on particle

i. Here
— 2}
F., = = ’_,‘L (2.7)
i c)pi

where —d——;;-— denotes the gradient with respect to the coordinates Xi'
3 ps . . .
gl —= . d d o]
, 2., l.e., O 90, = ¢ , )
Yo 00 p; ox, ' oY, " 07

Newton's equations of motion (2.6), together with the initial con-
ditions 5”1 and F: at time t, represent a system of second~order
ordinary differential equations which can be solved in principle to find
the ”{)? and fi' at any time t'. In particular, for well-behaved ¢,
equations (2.6) allow Taylor—-Series expansions in At to be con-

structed, leading to

— LTS N At ,
p - pi + p At + p L——i)_m_ + e (Z-E)a)



p_l = p, + pi At + ... (2.80)

where P is evaluated via equation (2.7), and the higher time-

derivatives are obtained by the chain-rule and position derivatives

of the forces, i.e.,

n . P
L) b= (2.9a)
st 1 30
at © L )
o 9 )
SRR T >0
B v -z 2.9b
= Z (% ox *Yiayi*ziazi) (2.9b)




3. Conventional Numerical Solution

Typical methods for the numerical solution of the system of differ~
ential equations (2.6) involve finite-difference approximations for
the derivatives (see, e.g., [€]~[9]), or the use of polynomial inter-
polation to give predictor-corrector or Runge-Kutta type methods (for
review, see, e.g.,[13]). This latter technique is illustrated by the

following prototype, third-order Adams' corrector [14]~[15]:

2 2
-3 - - X " é.j:_ S _—__E 2
pi ~ pi + pi At + Py ( > Y+ A Py ( 0 ) (3.1a)
=, o At 211
Py P TP At 4+ A P, ( 5 ) (3.1Db)
= 2 (3.1c)
P = Py AR

Equation (3.1c) is used to define A E: The use of'Equations (3.1)
leads to errors in the computed values of EE and E; which are
proportional to (/_\t)4 and (/_\t)3, respectively; thus if At is small,
equations (3.1) give a good approximation to the exact solution. Since
equations (3.1) are implicit and nonlinear in F‘: via E)T , they must
b_e solved iteratively. Typically, "predicted" values for Fj and

;‘: are obtained via equations (3.1) with A }3‘: set to zero. These
first approximations are then refined via functional iteration of equa-

tions (3.1) until suitable convergence is obtained.

Since the accuracy and convergence of equations (3.1) depend
upon the size of At, large time intervals are broken into smaller time
increments, and the solution determined sequentially over these sub-
intervals. Because of this,errors made in the early steps propagate
through the later steps, leading to the problem of "stability" with

respect to errors. The implicit nature of equations (3.1) does much to



alleviate this, but all methods of this type are subject to an amplifi-

cation effect as the number of steps becomes large.




4. Constants of Motion and "Conservative” Numerical Methods

As is well-known [16], certain invariances of the classical equa-
tions of motion are reflected in the time-independence of certain
functions of the positions and velocities. The stationary values of

these functions are called the "constants of motion" of the system.

a. Energy

If the potential function ¢ does not depend explicitly upon the
time t or the velocities "5? , then the same trajectory occurs (but
is traced out in reverse order) if t and t' are interchanged (i.e.,
At - =-At) and the BZ' replaced with ——;Tf . This effect is called
the "principle of invariance with respect to time-reversal’, and as

a consequence the value of the Hamiltonian functional H
H =T + ¢ (4.1)

is "conserved", i.e., takes on a constant value (the total energy)
which is independent of time. This "principle of conservation of

energy" is summarized in the equations H(t) = E, or
AH = H - H = 0 (4.2)
for all At.

b. Linear Momentum

If the potential ¢ is independent of the origin of the coordinate
system, e.g., is a function of the F_;] only, then the equations of
motion are independent of a translation of the coordinate system
(Galilean invariance). Because of this, the total linear momentum

—

P, defined by



10

°
——tt

n

- ) m p (4.3)
- 1 1
i=1

is a constant of the motion, i.e., P' = P forall At.

—
If R 1is a position vector pointing to the center-of-mass of the

system, i.e.,

n
MR = ) m P (4.4)

where M is the total mass

Yt

i=1
then

——

P = ME (4.6)

and consequently the center-of-mass simply translates (f‘:constant)
with time:

U

R* = R + At P/M . (4.7)

c. Angular Momentum

When the potential ¢ is independent of the orientation of the
reference coordinate system, e.g., depends only upon scalars such
as the pij or pi, then the classical equations of motion are invariant
with respect to a rotation of the coordinate frame. In this case,

Pty

"space is isotopic", and the total angular momentum L , defined by

n
L =) L, (4.8)
i=1
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where

is conserved, i.e.,

AT = T'-T =0 (4.10)
Any numerical method of solution of the equations of motion which
maintains the constants of motion at their initial values will be called
"conservative". For example, in order to conserve energy AL = E' -~ E
must be zero for each step, as calculated via equation (2.5). No other
definition of "conservative" is consistent with that of classical mechanics.
If a numerical method conserves energy, it is "better" in the sense of
sharing a property with the exact, continuous solution. It is important
to make a distinction between exact "conservation" as given here, and
tautological definitions of "conservation" used by some authors [6]-[8]
where, for example, ¢ is redefined to include the imbalance AE so
that "conservation" occurs. This fallacy becomes most evident when

a single time-step is considered.

It might be expected that any numerical method whose difference
equations possess the same symmetries as the differential equations of
motion would have the same invariant constants of motion. For example,
any method which leads to the exact result for a constant acceleration
will give zero acceleration of the center~of-mass ﬁ , thus preserving
linear momentum and the center-of-mass motion of equation (4. 7).
Conservation of energy and angular momentum are, however, much more

stringent requirements for a numerical method.
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5. Discrete Mechanics

In conventional interpolatory numerical methods for solving the
equations of motion, the differential equations (2.6) and (2.7) specify~-
ing the accelerations are taken as defining the motion. In other words,
conventional methods correspond to the approximate motion resulting
from the use of exact forces. Since the constants of motion are integral
properties of the differential equations, the functionals involved {i.e.,

LN

H, P, L) are stationary only to the order of numerical approximation.

The question of interest is how to design a numerical method whose
difference equations (and their solution) have the same symmetries (and
hence the same constants of motion) as the exact differential equations
of motion (and their solution). With suitable restrictions, this question
is answered by the method of "discrete mechanics" described below.

Part of the results obtained for the special-case in which ¢ consists
of pairwise-additive terms of the power or inverse-power type were

presented previously ([11]-[12]) in an ad hoc way.

In what follows, the role of the Hamiltonian H is taken as para-
mount, since this functional contains all of the necessary information
concerning the motion (via Hamilton's canonical equations). The lowest
(1) —(2)

order problem is that of finding ai and ai such that the solution

(i=1,2,...,n)

1 = . »‘L (1 / " 5 C
p_( | f)i At 4 5 a'l (A1) » (5.1a)
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N s _,.s.('>

p, = p, +oa At (5.1b)

has the appropriate properties (i.e., satisfies conservation principles).

For example, the method of equations (3.1) is characterized by

.._:.(1) ~ ,_1_. o __>I )
ai =3 (2 ai + ai ) (5.2a)
—2)y 1

ai =5 (ai + ai ) (5.2b)

and has the property that the solution is of the highest order of exactness
4 - - .

(error proportional to (At)" and (A‘E)3 in pi and pi , respectively).

Since energy conservation will be required, the equations (5.1) must be

symmetric with respect to time reversal. In "discrete mechanics" only
—(1) _ =(2) u

the more basic problem where ai = 5;1i = ai'“ will be considered:
o h 4 poat tar oy’ (5. 3a)
pl - pi pi l 2 D e 2C
.Y ALY —_
p. = p, + a’ At (5.3h)
i i i

For convenience in later formula manipulations, note that (5. 3)

imply

L. = A At

Pi = P i

—— ——

P-' + p' NN —

1 1 _1~ e .
> = + 5 3 At

AT ' '

Py vbp P TRy
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a. One Particle Subject to a Central Force

Suppose n = 1 and the single particle is moving under the in-

fluence of a central potential, i.e.,

CP(-S) = ¢(p) (5.4)

Then, since ¢ is neither a function of t nor of the orientation of the

coordinate system OXYZ, E and L are constants of the classical
motion. However, ¢ 1is not independent of the origin O , so P is

not conserved. The problem is to find a* such that FE and L are

also constants of the discrete motion.

First consider conservation of the energy E. Now

AE = AT + Ad (5.5)
where
1 _.'..s' .'_.;; — .Y ]
AT:zm[(pvp)“(p-p)] (5.6a)
:—Zl—mli"zp VAR AL (5. 6b)
] ' 1 R ' 2
e A SR CRTALI LY (5. 6¢)
and

Ndo= d(p') = d(p) (5.

~1
~—

(For simplicity of notation, the dependence on p and p' will be de-
noted simply by ¢' = ¢(p') and ¢ = $(p)). The requirement is that

AE = 0 for an arbitrary time step At, i.e.,
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AT = =-Ad (5.8)
Noting that, from (5.3),
1 — — — .Y
AT = -z—m(p'up)-(p'-%p) {(5-9a)
= ma*- (p' =-p) (5.9Db)
_.b' P
= F*¥. Ap (5.9¢)
P Y — — — .. Y
where F¥=ma™ and Ap = p' - p, the energy equation becomes
F¥+ Ap = -0d (5.10)

JES.. N O ]

This equation must be solved for F* in such a way that: (1) F* is
symmetric except for a change of sign) with respect to time-reversal
(interchange of —;;" and —; ); and (2) no coordinate X, Y, or Z is

treated differently from the others (this condition is required by con-
servation of ?). A solution is considered to be given if an equation

of the form

B G (5:11

—-h

exists, from which F* is solvable by iterative means.

Suppose
- .o~
i3 = F¥n (5.12)
\J o ~
where TF* is the magnitude of T* and n is a unit vector in the direc-

tion of F¥. Clearly equation (5.10) is sufficient to fix F*, given n:

Ad

P* oz -
n-: L\Wpé

(5.13)
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(If n - A‘p = 0, any value of F* conserves energy). What direction
of A is appropriate? It is required that equation (5.10) hold for:
(1) all initial conditions pand p ; (2) all time steps At; (3) all
¢ satisfying equation (5.4). Under these constra ints, the most general

form for n is

2y

n = (:x})' + Pp (5.14)

Otherwise one side of equation (5.10) would have explicit dependence
—
on quantities such as p , which does not occur on the other side.

Now

~

n-Ap=ap +Bp‘2 (5.15)

and the right-hand side of equation (5.10) is A¢, which is independent

of the term p' - p (which is anisotropic). Therefore «q = B and,

since n is a unit vector,

ORI & i {5.16)
Combining equations (5.12), (5.13) and (5.16), the final form for F*
is

P ¥ N .3
P ___KA_pQZ_(p. £ ) (5.17)

2 a2 2
where Ap®=p -p .
The above expression (5.17) for F* is, via (5.3), in the form of

equation (5.11) with

"EE _/:&—“qz_ O, J—
F5) = -y o2 (p" +p)

@l
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Since equation (5-~17) may also be written

— —
E):k = _._A_g)_ .Q.—_.Q+
Ap p'+p
then
I —
lim FP* = ——359 p =T
At— 0 P

— —
where p=p/p and F is the exact force given by equation (2.7).

—

Therefore, the right-hand side of equation (5.17), i.e., G, is to lowest-

U 9
order in At independent of F* . Hence, for small enough At, equation
(5.17) can always be solved by simple functional iteration.

———
The direction n of F* may be obtained in a direct way from con-

servation of angular momentum. Now,

— b

AL

1
-

i
e

(5.18a)

_:._'L X JELIN. N
( pJ

) = (p xp)l (5.18D)

_._'\_._\ UL L VS W U
[

=i‘m[(p Fp)xlp =p)+(p =p)x(p +p)]  (5.18¢)

Thus, from (5. 3),

o — J— —
- ! - — e A
AT = m[p——f-&mx a*At + (p' - p) ,\<9—Z—t—g ] (5.19)

o,
Since, for all vectors b ,

S
b b = 0

« (5.20)



then
N - T
AL = mat IR e (5.21a)
- &
- at PP P (5.21b)
2

By virtue of the constraints mentioned above that AL = 0 independently

— . Y
of the values given to At, p, p'(via p), and ¢(p), equations (5.21)

must vanish because the cross-product is identically zero, i.e., n lies

—3

along p' + p. This leads to the result given in equation (5.17).

Thus, conservation of energy gives the magnitude, and conservation

. Y
of angular momentum the direction, of the force expression for F* which

. .‘: ny

maintains E and L at their initial values for all values of At, p, p,

and ¢(p), The solution to equations (5.17) and (5.3) agrees with the

3 2 — =
exact solution to terms of order (At)” and (At)“ in p and p ,

respectively, and exactly conserves the energy and all components of
the angular momentum. This is the type of solution which characterizes

"discrete mechanics".
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b. System of Several Particles with Pairwise = Additive Forces

Suppose there are n particles with coordinates as described in

Section 2, and the potential ¢ is of the special form

n~-1 n
PPy yrPygres Py p) = }, Z G (5.22)
i=1 j=i+1

For convenience, set

H
kel
i
©

where, as before, pi' =

(5.23)

1
~—1s © L
i
—~

i=1 j=i+l i<
and denote d)ij (pflj) by d)ij' Since ¢ is a function of the difference
- —
vectors pi]. , total linear momentum P is conserved by the exact motion.

—

Similarly, dependence only upon the magnitudes pij indicates L is to

be conserved. The problem is to find the "discrete mechanics" forces a’i‘<

(i=1,2,...,n) which conserve these quantities, as well as energy.

For the case of several particles, the change AT in the kinetic

energy over the time step At is given (via equations (5.3)) by:

n
1 v.:)' v—'«\l AN LIy )
AT = Z Sm ey py) = eyt ey ] (5.24a)
i=1
n N -
_ z FF - Ap, (5. 24b)
i=]

-3 — . §

), _._);,, -
where F*=m, a, and Ap, = p; - P,
1 1 1 1 1 1

i. Linear Momentum

The change AP in total linear momentum over the time step is
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n
I = ..A 5,25a
AP = Z m, (p1 P, ( )
l:l
n
= At Z Fl (5.25b)

If AP is to be zero independently of At, the particular values of the

—
coordinates P and a constant velocity of OXYZ, the sum of the

—y
forces I’l must be zero from general considerations. In continuous

mechanics, because ¢ 1is pairwise-additive, so are the forces, i.e.

n i-1
N - T —
= - F.. + F..
F Z ij bt
j=i+1 1=
where
9
=y
1 9P

i.e., the gradient of cpij with respect to Xij = X]_ - Xi’ etc.

follows from equation (2.7) and the chain-rule:

joo]
-

i
[

0 d o
— Ky '*“ 8-—-”
o, j=141 9P i=1 ji

Note that equation (5.26) must hold: (1)

forces (i.e., to lowest-order in At); and (2)

Pis even as p, = for all pairs kl Z1ij (i.e.

fore equation (5.26) is a general requirement, and

n i=-1 ‘

-\ w .Y oy -

i . 1) h J1
j=i+l j=1

, arbitrary n).

(5.26)

(5.27)

This

(5.28)

for the case of constant

for all values of the

There-

(5.29)
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where the Pl] are now unknown. Subject to this condition,

_ n
AP Tk
AW A F 5.30a
ok Z ; (5.30a)
i=1
n=-1 n 1 i-1
I S A= - o
== ) )Ry L LT (5.30b)
izl j=1+1 i=2 ji=1
_ Lo 5.30c
_ y P 4 Z P (5.300)
i< 1<}
=0 (5.30d)

it -_\"C
and thus P 1is conserved for any values of the F"ij (i< j). This is con-

sistent with the remark made at the end of Section 2 that any method

2 .
accurate to (At)” conserves linear momentum and the center-of-mass

motion.
ii. Energy

Using relation (5.29), AT may be rewritten as

SN N
AT = F* Ap, (5.31a)
. 1 1
i=l
n n i-1
) [ VooFroan 4 Y EEAD (5.31b)
=) |- L Ffenap + P 5.
i S N B S B ST B :
. R n-:l no_, R
== ) Fl-oap 4 r* - Ap. (5.31c)
. . 1} 1 X . J1 1
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-, - - oy
- . l . F:ﬂ: . 5, 1
X B oA, Z LYY (5.31d)
i<j i<j
..LJ‘ e
- z X - Ap. (5.31e)
1] 1)
i<j
In order to have AE=0, AT =-A¢, or
- A\v. RN
T = - 5.32
}‘ P - Apy, Ad ( )
i<j
But, via equation (5.22),
TAY = A 5.33
o = ) ¢, (5.33)
i<ij
- o
here Ad,. = ¢!, - ¢, ., and letti AT, =TF*% - .. vyields
v %5 ch Cbl) " Hna ij ij Apu h
A ==Y Ao, (5.34)
L ATy=- ] bey
i< 1<
or
Z IAT. +A6..] = 0 (5.35)
ij ij

i<j
—

Now 'equation (5.35) must hold for all At, all initial conditions Py
and ;i' and all functions d”ij' It is important to note that the dis-
tinguishability of the n particles is a consequence only of their
different initial conditions ;i and ;i , and the interactions (pij'
The invariance of equation (5.35) with respect to these quantities

implies an invariance with respect to any reordering of the particles.
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Thus the principle of indistinguishability of particles requires each

term in equation (5.35) vanish independently, i.e.,

ATij + Aq)ij = 0 (i<i) (5.36)

or

Ry Aoy (i< (5.37)

—
This fixes the magnitude of each Fl] . Since <1>i], depends only upon
the scalar pij (L conserved), the pvrinciple of isotropy of space fixes

—A

(as in Section 5.a) the directions of the FT], :

e A¢ll > - (i< j
P == <pi]. + pi].) i<j) (5.38)
Apij

Equation (5.38) gives an implicit expression for F’ik], , which may be found
by solving equations (5.3), (5.29), and (5.38) iteratively, using, e.g.,
- -t

the starting values 1“1] = 0. Such a solution by functional iteration

will always exist for émall enough At.

iii. Angular Momentum

.. ¥

By virtue of equation (4.8), AL is given by the simple generaliza-

fion of equation (5. 21b):

i Mo o (5.39)

By substitution of equation (5.29), and a procedure similar to that

followed in equations (5.30),
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i

AL _ P, + P, g
= Z 3 S F* (5.40)
At _ x5
i< /2
. § -
As in the case of conservation of E and P, if AL is to be zero for
e —N

all values of the pij and p;j , each term in equation (5.40) must be

zero separately:
- y -
+ p.)x FTo= 0 (i< (5.41)

—
Equation (5.41) can hold only for all pij {arbitrary rotations of OXYZ)
—_ — -
if FlJ lies along pij + pij . This constraint, together with equations

(5.37), gives equations (5.38).

It is interesting to note that, because of the identical forms of the
pairs of equations (5.31a) and (5.31b), and (5.39) and (5.40), a solution

has also been found for the case of a potential ¢ of the form
a
$lpyoeeeip) = Z o (p.) (5.42)

Here equation (5.37) becomes

Ap, = =N, (i=1,2,...,n) {5.43)

F* /“\4)1 _\I - : -
L= m (p.l + pi) (i=1,2,...,n) (5.44)

Equation (5.44) is a direct generalization of equation (5.17). Of course,

since the ¢ of equation (5.42) is directly dependent on OXYZ via the

-y
pi, the total linear momentum P is no longer conserved.
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c. System of Several Particles with a General Separable Potential

In this section, the results of the preceding sections will be used
to obtain a "discrete mechanics” solution which conserves energy and

both linear and angular momenta for the most general potential for which

such a solution may be obtained.

Consider a potential ¢ which is a sum of terms q>(“g'):

¢ = Z o0 (5. 45)

)
each of which is a separable product of q{%’)

(0) Y (£)
&Py Pygrree Py n) = B (P05l ) X
(£)
x b Py ) (5. 46a)
i (4)
=0 e, (5. 46b)

(£)

where each %‘ is arbitrary. This form for ¢ includes, in particular,

Taylor and Laurent series expansions in terms of powers and inverse=-

powers of the pij's, as well as Tourier expansions, etc.

-

In order for linear momentum P, energy E, and angular momentum

-
L. to be conserved over the time step At, relations (5.29), (5.32), and

. 3

(5.41) must hold for all pij and At. The problem, as before, is to

find the F* which satisfythese conditions. Since each of these equations
1]

is linear in the fll and must hold for an arbitrary expansion (5.45), P

ij
may be expanded correspondingly as

?ﬁ _ Z P?(ﬂ) (5.47)
1j 1}
L=1
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where
A*(«g) . - - (£)
Z ij A pij = ~Ad (5.48a)
i< j
—.-\: A:‘: _.x:v:(/g) - .
ol X ! = 5. 481
(pij + pij) Fij 0 (5.48b)

i.e., each term in the potential may be treated separately, and the
results added. Therefore it suffices to consider a single term of the

form

¢ = I 4.(p.) (5.49)
< U

and the results for a general potential such as that of equation (5. 45)

composed via equation (5.47).

In order to solve

) BT = =B (5.50)
i<
_..\d‘ PN
where AT  =F' * Ap,, and
1] 1] 1]
- Lo .5
Ad .H.cbij 'n.%, (5.51)
i< j i< j

the nature of the solutions found in Sections 5.a and 5.b should be

kept in mind. Because of the invariance with respect to time-reversal,
-5

ATij must be anti~symmetric with respect to interchange of the ;d
. 7
and pk,@ . The solution found for ATij must preserve the principle
of indistinguishability of particles, and hold for arbitrary pij’ p;j .

and ‘*’13" Because of the isotropy of space, no explicit dependence on
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coordinates can occur. This latter condition requires (since ATi, =
...L* — .._».\" . — —y . . ) " .
F" - Ap,,) that F* lies along p;. + p., which is also an immediate
ij 1] ij 1) 1] -
consequence of equation (5.48b). The magnitude of the F1J , or the

ATiJ' , must be obtained from conservation of energy via equation (5.50).

Since the right-hand side of equation (5.50) involves only pro-
ducts of the functions (bij and q);j, and these are arbitrary, the most

general form possible for the ATU is

v 0D
. ij o :
= : o b
AT oL % (i<3) (5.52)
£=0 k=1
where N = Eirzl:ﬂ is the number of pij ,
(N) _ N! (5.53)
LT LT(N=£)!
the cl;k are arbitrary, and (bﬂk is a product of the N functions

¢ij , 4 of which are evaluated at time t + At (using p;j) and N-/
at time 1t (using pij). The subscript k runs over all possible combi-

nations of / of the q;%i from the total set N.

Thus, e.d.,

(1)01 :'H' d)i]' (5. 54a)
1<)

Py :_n. ¢i], (5.54b)
i<j

T T {_ﬂ_¢ij] X [n¢ij] (5.54c)

\_.\/,J .. S

J terms N-/ terms

Substitution of equation (5.52) into equation (5.50) gives



28

N

. N A ij
Yol L P = %0 T O (5.55)
i<j f=0k=1

Since equation (5.55) must hold for arbitrary (bij' pij’ and pij,

the functions (T)Ek are independently variable. Therefore

the coefficients of each rbﬂk on each side of equation (5.55) must

coincide, which gives

N lj _ 5
2 COl = 1 (5.56a)
i<
Z cl;k = 0 (Jk # 01,N1) (5.56b)
i<j
i
Z cyp = L (5.56¢)
1<
A

By the principle of indistinguishability of particles, the L(’k

must be isotropic with respect to the ij, i.e., pij cannot be treated
differently from pmn' Further, once the interaction corresponding to

the pair ij is singled out, the remaining particles are indistinguish~-

able. This latter condition implies the clJ

Lk
all values of k which leave the status of 4)’13' invariant. For ij and

must be isotropic over

each [/, there are (Nﬂ—l) functions @ containing the factor 4){},

Lk
and (?_‘i) functions c"p//k containing the factor (inlj' The elements

of each of these two sets must be indistinguishable from the values

ij .
of the Cﬁk'

ij
Lk
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By the indistinguishability of particles, one cannot determine which

pair ij was singled out. This gives the conditions

823 = &, (G < 3) (5. 58a)
o B (i< i) (5.58D)
Ty - .

The above relations given in equations (5.56), (5.57), and (5.58)
are sufficient to fix all the clgjk, with the solution given by (£ =0,1,...,N)

-~ L 1
7 N N-1 (5.59a)
5 )
~ 1 1
€y T TN N-1 (5. 59Db)
(p-1)
ij A . g
Th : = C -
"s C.@k Cg if (bzk contains the factor cbij or Cl&k Cg if q>£,k
contains the factor q);j:
1
N N-1, Py 1 o
A (g ) o 60
Ik
L —L. ! l(])
N (N"l) ' q)lJ 7k
f-1

For example,

S 11 .
Z “o1 ~ Z [N (N~l)] (5.61a)

i< i< 0

. 1
= 2‘ N (5.61Db)

=1 (5.61c)
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agreeing with equation (5.56a).

Using the C}Jk given by equation (5.60) results, after substitution
in equation (5.52), in the following expression for ATij:
(N-1
N-1 A Y N-1
AT, = -4 Z —L_ Z (T ¢! (T b, . XA, (5.62)
1j N 20 (Nzl) n s=1 lSJS s=f+1 1SJS 1}

Ngl) combinations of the N -1 possible

index pairs iSjS, not including isjé = ij, £ of which correspond to primed

where the inner sum is over the (

¢ values. When expressed in this form, withthe force Fl] being given by

P P+ D,
Fip T ATy w (5. 63a)
ApT
ij
(N-1
1 N-1 1 f £ N-1
=T N Z ( o N 4 )
N z}::o (N//,l) T s=1 'gls s=4+l Yl
Aq)'- —-% -
x —b o (py oy (5. 63b)
2 1) ij
Apij

equation (5.63" is seen to be a generalization of equation (5.38), with the
part in braces being a totally symmetric representation of the other factors
in the potential. Since the right-hand side of equation (5.63) is to lowest-
order in At independent of any of the F”, equation (5.63) can be solved

for FIJ by functional iteration for small enough At.

The expression given in equation (5.63) is the "discrete mechanics™
force which leads to a solution agreeing to order (/,x‘t)3 with the exact
motion, and which conserves exactly the energy and total linear and angular
momenta.

It is interesting to consider the possibility that some cpi i is con-
aq




stant, e.g., &, . = 1. Clearly if i j_=ij, then A¢, =0 and FX =0,
9. 9, j y qq =Y 4U y

in accord with continuous mechanics. If iqjq #Z ij, then the q;),@k which

differ only by the change 4)11 j — q>'i j become identical, and equation

(5.63b) reduces to aq aq
()
1 N7 L 4 N-2
4=0 " 4 i - s’s s=f+1 's°s
Aq)" . -\
¥ I (pl +p.) (5. 64)

2 pl] fl]

(.\pij

where the index pairs iSjS now vary over those N~2 values for which
ij Aijori i . Therefore ifa ¢, ., =1, i.e., p, ., does not appear
s's q’q igig i

in the potential, the net effect is the same as setting up the original
potential without including the cpi i factor, and deleting the iqjq term

A 0 . + * v .
from AT. Thus pi _is an "ignorable coordinate" in "discrete mechanics"”

aq
as well as in continuous mechanics. As a consequence, equation (5. 63)

holds even if N is not equal to the total number of possible radii pi], ;

if the terms that are omitted do not occur in the potential ¢ .

For the caseof N =1, ¢ = d)ii and equation (5.63b) reduces to

equation (5.38):

— -/\(1).. _a Y
F - - 1 (p' + P, (5.65)
1] 2 1) 1)
np
1]
If N = 2 and the two radii occurring in the potential are pi . and
1
pi ] ‘
2" 2
¢ = b ([)ij (5.66)
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then equation (5.63b) gives

M 1 i i
R GO ) (’5;. +P, 1) (5.67a)
1 22 e a2 I |
i,]
!
>, 1 M)iz]z
P === {4+, —= (., +P, ) (5.67b)
o S W S R Piy e e
2'2
For N = 3, with
b o= b, . b, . b, . (5.68)
Wl Tels
_-\d‘
the expression for, e.g., F7 , is
i
Pl
P Lidor o #2@ o .+ 4l )
L =T T ¢ S N ¢ ¢, . ®, ,
" 30\ iy lgis 2 T, Tigds Ty Tl
/.\(l)i R
P 3
by i b, i 'l (o, +p,.) (5.69)
22 M3l3 (2 Wit
H
. “'\‘,/
with similar formulae for Fj i and Fl J. obtained by cyclic permuta-
3’3

tions of the subscripts 1, 2, 3.

Finally, it should be noted that, as in Section 5.6, if ¢ is a

function of the Py instead of the p_lj:
¢ = I ¢.(p)) (5.70)

then the entire sequence of results except for conservation of linear

momentum follow, leading to:




X — P+ p) (5.71)

where the is vary over the n-1 wvalues not equal to i. Because of the
property of "ignorable coordinates", n may be a number less than the

total number of particles if the neglected radii do not occur in ¢ (for

—

these PL = 0).
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6. Impulsive Limit of Discrete Mechanics

In problems where collisions occur, extremely large forces of very
short duration are typical at the height of the interaction. In this situa-
tion, "impulsive models" are a convenient approximate description and
were investigated extensively in nineteenth-century physics (see, e.qg.,
[17]-[19]). The impulsive limit is defined as the limit At -+ 0 while
A¢ is held fixed. Under these conditions Fij At tends to a limit ?ij'
called the "impulse" transferred by the trajectory crossing the bound-
ary over which the discontinuity A¢ occurs;

A

= lim (F, At) (6.1)

I,
U optmo Y

In the derivation of impulsive models, the limit At-+0 is assumed,
so that 513 :Eij' and the impulses _1; which give the chaige in thi
momenta are obtained by requiring conservation of B, P, and L
during the collision. Since the limit follows from classical mechanics
and the E\ij At at each point, the total change of the motion occurs
in a direction n pointing towards the increase of ¢. These conditions
are sufficient to fix the impulses —I\ij in simple cases: the collision of
two rigid-bodies [17]-[19], and the motion of three particles on a dis-

continuous potential (see, e.g., [20]).

Since "discrete mechanics" obeys the same conservation principles
as continuous mechanics, and differs from it only in terms of order
(A t)3, it is expected that the impulsive limits of discrete and continuous
mechanics will coincide. It is the purpose of this section to find the
impulsive limit of "discrete mechanics", and thereby give the most

general exposition of an impulsive model that has been presented to date.

It is conventional to consider the discontinuity A¢ to occur as the
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limit of a potential ¢ which becomes increasingly discontinuous as

At = 0. Of course, in practice there is a real, continuous potential

¢ whose interaction is being modeled by a discontinuous limit potential,

rather than vice versa. Suppose for simplicity that,for fixed At,¢ has

the pairwise-additive form of equation (5.22). Then the "discrete

mechanics" forces Fl] are given by equation (5.38). What are desired
-5,

are the "discrete mechanics" impulses If:j defined by the limits

I* = lim (F’i",m) (i< i) (6.2)
Yoooat—o0 T

where the z,\(pij tend to constant discontinuities simultaneously.
Clearly, from equations (5. 3),
lim p!' = p.. (6.3)
At—0 H

and the only other term in equation (5.38) whose limit is unknown is

Ap 2 . Note that
1]

_ ._..&' - . ,,,,A' .-,L 4
/\pU (pl] 4 pij) (piJ pl]) (6.4)

where
D= = AD. -0p (6. 5)

Now, from eguation (5.19a), equation (6.5) becomes

/:,\Bi]_ S Pyt R Ay PR A (6. 6a)
' 2 2
A i ¥
Pt
= 1] ij At (6.6b)
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where

AN LAY AN
pl] = pj - pl (6.78)

Substitution of equation (5.29) into equation (6. 6b) via equations (5.3)

gives
N N LN
Ap.. SHUNE ol
p” = (U pU (6. 8a)
At 2 :
n _\:': .
- t 0 ¥
= b, AL Vo ki Fyi (6. 8b)
k=1 \ ™5 ™
where the convention is that ij = —F;kk for k >j and F* = 0 for

all j. Thus equation (6.8b) may also be written

Ap,
ij - At 1 1\ 1 v
= 4 ——
At le 2 [(m L ml rl] i m Z Fk}
) k<j
k#i
___l_. 4>}< ______l. f‘\*
B m, ij m Z Fki
J k>j k<i
) P’."}, (i < j) (6.9)
m ik
i k>i
k#j

Finally,
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2 . .
m o SPy - aim Py P Py) T APy
At-=0 At At—0 At
5 An\
= p lim pwy_
oAt—+0 At
,:_s‘ +.'_S
i
- (Ey___.fu)
ij 5

kol m,
The expression for I{;‘ is thus
""u, “\.,
I7 = lim  (F7 Aft)
B oAt—0 B
A(P., e N
= lim <~ mleL (p'. +p..
At— 0| AP i
8oy, N
=7 2 o pl]
=S Pt P
Pis ( ij Vi
2
. !
1f o= - B, p..
Y 51' ’ <f_L_..1 " P5) Y
J > )

~ —h
where pi]_ = pij/pij is a unit-vector in the Bij direction, and this

-,
I e

kb
Equation (6.11d) gives the direction of Il]

last expression is implicit in the other

. WO

by I}d the signed magnitude of Ikﬂ , il.e.,

via equations (6.10).

as ‘Sij . Denoting

.10a)

.10Db)

.10c)

.10d)

.lla)

1lDb)

dlo)

L11d)
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e A ¢

kL kf
L, = - (6.12)

Prg (___kxzz kﬁ)

then
A)‘: ste ~
Leo = Ly Pry (6-13)
t ‘ s - e . ~ ai o, -
{Note that Ikﬂ Iﬂk.’ since pkﬁ contains the change of sign.) Sub

stitution of equation (6.13) into equation (6.11d) via equation (6.10d),
with multiplication of both sides by the denominator of the right-hand

side of equation (6.11d), gives

n k% £ P
I 17 s .
E 1 3 4 + -~ ~ k ~ ~
' = _ij k) . _ i ki .
+ L\(l)ij:O (i <ij) (6.14)
where
: . p 6.15
le = pi] ' plj ( b )

Y
is the radial-component of pij' Equations (6.14) are a complete system
of quadratic equations for the independent I>:i:j' Which set of roots of
equations (6.14) are chosen must be determined from considerations of

the actual, physical motion (i.e., finite At).

Since the potential ¢ was given in the form of equations (5.22),

the total potential shift A¢ is given by
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A = Z Ay (6.16)

i<

in the impulsive limit. If constants Bij are defined by
Ad,, = B,. A (6.17)

then the Bij are the direction cosines of a unit-vector n in the direction
of the increase of ¢ in a plot against the pij' Tor finite Aft, n would
be in the direction of the negative of the gradient of ¢ with respect to the

magnitudes pij .

For a general potential of the form given in equation (5.45), equa~-
tions (6.13) and (6.14) for the impulses Itj still hold, if the potential

shift AquJ. is replaced by

N1
o0 N-1 g N-1
-1 1 4 ), (£)
= = — - I
Doy, ) N-T, ) n b5 )0 T 0 )
=0 q=0 " q I S=q+i &8
(£)
VAN (j)ij (6.18)
where now the ¢>;£;' and 4)({@ ), are the values of the potential term
¢(ij'). on the newsaﬁd old sidesssof the discontinuity, respectively. The

s's
sum  over [ is that of equation (5.45).

Since "discrete mechanics" obeys conservation of energy and total
linear and angular momenta for each At, it also conserves these quan-
tities in the impulsive limit. Thus the impulsive limit of "discrete

ol
=T
ij ij
The results obtained in equations (6.13), (6.14) and (6.18) are the

—

mechanics" is the same as that of exact mechanics, i.e., I

most general expression that has yet been given in the literature for
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the impulsive limit of motion due to a potential. Hence "discrete
mechanics" obeys the fundamental conservation principles where the
potential is both continuous and discontinuous. The impulse model can
be considered as a special case of "discrete mechanics", or "discrete
mechanics" viewed as a generalization of the impulsive model to finite
At. "Discrete mechanics” is more than a numerical method: it is an

approximate theoretical model for the classical motion.
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7. Examples

Many numerical applications of "discrete mechanics" have been pre-
sented previously for the special case of forces of the pairwise=-additive,

inverse-powers form, i.e.,

e B
L (p.) = 7.1
(bl] pl} Pl-f]- p?j (7. 1)

where o and B are constants and p and g integers. These studies
have included problems from astrodynamics, elastic oscillations of
continuous media, heat transfer, etc. (for review, see [12]). These appli-

cations are extended here to include problems of molecular scattering.

The first example involves a potential of the inverse-power form
of equation (7.1) and serves to illustrate the coordinates and numerical
methods involved. The second example is that of a three-body reactive

interaction, and is taken from current research in this area [20].

Comparisons are made with the Adams' method of equations (3.1),
and a conventional method used on problems of this type, which has
truncation errors of orders (/_\t)8 and (A t)7 in the f;; and ﬁiﬂ . Programs
implementing the "discrete mechanics" and Adamsg’ for.mulae are given

in Appendices 1 and II of [21].

a. Two Particles Subject to a Lennard—-Jones Potential

Many of the properties of dilute gases can be well-approximated by
the theory of structureless particles. One of the most common potential
forms used in this connection is the Lennard-Jones form for the inter-

action of two particles 1 and 2:

5 12 5 6
b (p, ) = 4e [("-—-w - (=) } (7.2)
Lyl P12 P12
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where the parameter ¢ is the minimum value attained by ¢LI, called

the "well-depth" of the potential, and o is the value of p12 for which

*1iP12
giving values for ¢ and o and have been tabulated for many systems.

) = 0. The physical properties of many gases are summarized by

If the units of energy and length are chosen to be ¢ and o, respectively,

then q:LI assumes the dimensionless form
P SN
¢ (pA):éL[ 12 6 (7.3)
Ljle P2 P12

which will be used in the following discussion.

In the Adams' method of equations (3.1), the classical definition

of forceas the negative gradient of the potential is used, which gives

where 512 = 61 2/p12 is a unit-vector, and

a‘_,‘]‘fl— = 2-4 [ 7 - 13 j ' (7-5)
P12 P12 P12

directly from equation (7.3). In the case of the "discrete mechanics"

-

solution, given by equation (5.17) or equation (5.38), the force F,

due to ¢_._ is given implicitly by

’L]
N - (pr,) = ¢ (p. )
P AL VLIRS P AiS LR S
Fl2 = 2 _ 2 (P1p T P1o) (7.6)
P12 " P12

which is used in conjunction with equations (5. 3).




43

For the Adams' method, the equations which determine plZ
implicitly are
P12 = P12 " P12 P12 2 Pi2 " P12 e :
= 1Y e At e a .é_}_ 7 7b
Prp=Pyp PP TP, 7P (7.770)
[22% N * \ — . %
where ‘ulzplZ:FlZ and “‘12912'?12 with Plz and FIZ from

equations (7.4) using pL2 and piz, respectively, and Uyor the

"reduced mass", given by

For "discrete mechanics" the corresponding equations are

. 2

) _M\‘ K % _i_A..'_tl—_.

Pla= Py TP B P T2 (7.9a)
.y bAaY

1 - s sk G

e b Py At (7.9b)

where ulz‘ﬁ’fz = ?12 with ?;:Z given by equation (7.6). Lquations
(7.7) and (7.9) were solved by simple functional iteration (successive
substitution of p12 and redetermination of the forces F 12 and ?TZ)
until convergence was obtained in all components of p 12 to an

relative tolerance of .00001. If this convergence could not be ob~
tained in five iterations, the stepsize At was halved. In practice, only
one or two iterations were required per step. Similar procedures were

used to control the step-size At to bound the truncation error for both

methods (for details, see the Appendices of [21]).

The initial conditions at t = 0 for the trajectories calculated were

of the following form:
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-0 o)

p12 = <O,b,212> (7.10a)

sz = <0, 0, J2E> (7.10b)
where Zi)z = ~10 (essentially infinite), and values of the impact para-

meter b and energy E used are listed with the results in Table I. In

every case the reduced-mass was taken to be 1. The scattering

W, .
12
was assumed to be ended at the time t = tf when again plz(t) >10
-5
(i.e. ]ch](plZ)] <10 " E). At this point, the value of the energy, and

the value of the "angle of deflection" Y, defined by

E1N <10
o1 Pttt P,
[P1 () 16T, |

X = cos (7.11)

were calculated, with the sign of X taken to be that of the Y~-component
of “512 (tf). The calculated values of E and X are compared to the

correct values for several sample trajectories in Table I.

The results show the Adams' method and "discrete mechanics"
give comparable computational accuracy from comparable computational
effort (number of cpu evaluations, or number of steps). Of course,
the problem used as an example here is not a severe test of the Adams'

method, since as t— o )— 0, and in this limit all methods

o br5lep
are conservative.




45

b
Quantity

b
E

E Ezmsm

max AE

No. Steps

>

No. Function cails/step

f

DM

HO
DM

HO

Sample Trajectories Us

Case 1

1.0
1.0

0.996949
0.996957
0.997050
€.996930

1.00004
1.00000
1.00007
+.00004
+.00004
+.00008
1396
1530
114
2.8
1.6
2.9

Case 2
1.0
10.0

0.333310
0.333321
0.333318
0.333309

10.00008
10.00005
10.00008
+.00008
+.00013
+.00008
1006
1061
99
2.7

Case 3

2.0
1.0

~-0.234471
-0.234519
-0.234543
-0.234487

1,00000
1.00000
1.00002
0.00000
+.00002
+.00002

335

352

64

3.2

[¥8] -
™o ~1
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TABLE I°. (continuedi

Computing time Ammow@ DM 1.9 1.3 0.5
A 1.9 1.3 0.5
HO 0.4 0.3 0.2
SThe implicit equations were, for methods DM and A, iterated until relative convergence in Mmmwv I
was obtained to Ho:mn for method HO, two iterations were performed each step. Step-size was
controlled to limit truncation error to about wo..w (absolute) after 500 steps (100 for HQ).
b

See text for explanation of symbols.

°DM = Discrete Mechanics; A = Adams' method; HO = High-order method of [14]; "Exact" denotes

exact answer.

d
Calculated value of energy at last step.

e . - 4 i - .
Maximum deviation of calculated energy at any step from initial energy. Error for DM is due solely to

lack of convergence in the iteration.

f .

Total number of potential or force evaluations divided by number of steps. This includes all evaluations

necessary for starting and step-size changes, as well as in the iteration.

@Gbr\wo 1108 (1.5 is add time). Numbers are very crude (+ 20%)
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b. A Three-Particle Reactive System

Another application of "discrete mechanics" to molecular inter-
actions, this time requiring the formulae developed in the present
work, is in the reactive scattering of potassium atoms from methyl
jodide molecules, resulting in the products potassium iodide and a
methyl radical. This system has been the subject recently of a study

using a high-order Adams method [20].

Let the potassium atom be denoted by the index 1, the iodine
atom by 2, and the methyl group by a single particle with index 3.
One of the potential forms used in [20] to model the interaction was

the "modified Bunker-Blais" potential given by

q)MBB

“PaPraT) 2

¢vpaP127P23P13) = Ppole Y
=B (P, L) =B, (P =0 L)
23723 23 2 13'713 713
+D23[e -17 + D¢
-B,.(p,,~0, )
23723 23 )
-} - 14 - 7. 12)
FD,, e [1 - tanh (Y Pyt &1 (

where values of the parameters Dij' B, o, (ij =12,23,13), Y

13 1]
and & are given in [20]. Also given in [20] are expressions for the
Y -4 %
forces Flz’ FZ3 and 1712, resulting from the gradients of q)MBB' to

be used in the Adams' method of equations (3.1).

Now, the potential ¢MBB can be written in the form of equation

(5.45):

. () (2) (3) | (4) ”
q)MBB = ¢ + ¢ + ¢ + b (7.13)

)
where each 4)(/’«) (4 =1,2,3,4) is of the form of equation (5.46)
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(£) R E2 (£) (£)
O PyprPygiPrg) = & 5Py 505010, ) 0L (P )

(7.14)
The cbif) (ij =12,23,13; £ =1,2,3,4) are given in Table II. The
"discrete mechanics" forces F;J (il = 12, 23, 13) have the correspond-
ing expansions

'<(3) 'A>’<(4)

T AT (7.15)

(2)
j ij ij

-,
+ F;
1

where, e.g., for ij = 12, from equation (5.69),

Se(0) 1) () L[ )
Fla® 7 73 %3 913 *3 [¢23 ®13
(L) (£) Ly (£)
T %3 93 J HRFEIEE!
£) 4
¢3§ ~ ¢§£ N -
X =5 (P, +p,,) - (7.16)
2 2 12 " P12
P12 7 P12
(Note that the factor (?' L + B A )/(plz, - pz‘ ) may be extracted from
12 P12’ P2 TP ) -0
each term of equation (7.15) for F’fz). The forces FZ3' and F’IB’

may be obtained via cyclic permutation of the indices 12, 23, and 13

in equation (7.16).

A comparison of the results obtained using "discrete mechanics",
the Adams' method of equations (3.1), and the high-order method of
[14] and [20] is given in Table III for two characteristic sample
trajectories. The quantities calculated and tabulated at the end of
the trajectories were: the final total energy E; the magnitude of the
total angular momentum L; the angle of deflection X of the resultant
free particle i with respect to the Z-axis; the final translational energy

Ei ik of the free particle i with respect to the bound pair jk; and the




1SS
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TABLE II

Component Functions of (bMBB

(4 ()
KT ®23
=B (P, =0, )
12'P127712 2
DI 1] 1
X b P3P 37 %23
23!
1 1
-B__(p,,=0,.)
1-—tanh('yp12+c3) D23 23723 23



a
TABLE III . Sample Three-body Trajectories Using ¢MBB

Quantityb

Total E(10—14erg)
. w d

Final Conditions

Configuratione

E(10 14terg)

27
L(10 erg-sec)

x (rad.)

]J_k(lo_ 7erg-sec)

-14
Ejk(lo erg)

Number of steps

a,b

’cSee Table I.

1\/IethodC

DM

HO
DM

HO
DM
HO

DM

HO
DM

HO
DM

HO
DM

HG

d]—\t a final time t when all further interaction of the free particle i

bound pair jk was negligible.

Case 1 Case 2
384.431 587.286
1+ 23 12 +3
1+ 23 12 +3
1 +23 12 +3
384.297 587.222
384.252 587.107
384.397 587.141
101.361 147.977
101,355 147.971
101.380 147.973
17.167 114.769
17.152 114.742
17.216 114,763
34.074 78.088
34.066 78.085
34.077 78.077
367.131 472,456
367.101 472.365
367.181 472,414
7700 5660
8260 6120
380 285

and

ei+jk denotes particle i free and particles j and k bound at the final

state.
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magnitude of the rotational angular momentum ]jk and internal energy

E o of the final bound pair. (Formulae for the calculation of these
qglantities from the 6,1 and 'Si are given in [20].) The values of E
and L are necessarily conserved by "discrete mechanics”". (Since

the calculations were carried out in the relative~internal center-of-mass
cartesian coordinate system of [20], the conservation of the total linear

. N
momentum P was separated out ab initio).

In order to ease the comparison between “discrete mechanics” and
the Adams' method, in both cases the implicit equations were iterated

to convergence (1 0>

relative error). Surprisingly enough, this con-
vergence was usually attained in a single iteration. The net result of
this procedure was that both methods were very stable for the examples
shown, but the conservation principles of "discrete mechanics" served
to enhance slightly the accuracy for the same number of steps.
The high-order method of [14] and [20], because of the fewer (~ 1/10)

number of steps required, was of course the most efficient of the

methods by a factor of about 5 in time.
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8. Remarks

a. Stability

It is well-known in the theory of numerical methods for differ-
ential equations that the use of an implicit set of formulae (such as
equations (3.1) ) is necessary to maintain "stability", i.e., retard
the growth of accumulated error (see, e.g., [13]or [15]). Although
this requires solution by an iterative method, in a "stable" system
the error grows approximately proportional to the total number M of
time steps (due to truncation error), rather than exponentially (due to
feedback), as in an "unstable" method. Eventually, however, as time
progresses, the error in the computed solution must grow unboundedly,
and any method becomes inaccurate. For example, no matter which
predictor-corrector system is used, the total energy of a system of

particles becomes infinite with M.

In contrast, with "discrete mechanics" the total energy and
momenta are constrained at their initial values, and the errors in the
calculated motions are largely confined to errors in phase rather than
amplitudes. Thus "discrete mechanics" is intrinsically more stable

than any conventional numerical method.

b. Periodic Orbits

Bounded, periodic orbital motion can occur only if the total
energy of a system of particles is below the "energy criterion" (see
e.g., [2]). Since,in conventional numerical solutions of the equations
of motion, the energy increases slowly, but surely, due to truncation
error as time progresses, such solutions will never correspond to
closed orbits. There are problems, such as the stability of the solar
system or the semiclassical theory of stationary states of atoms and

molecules, in which it is only the periodic orbits that are important.
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These problems are thus extremely difficult to solve hy conventional

methods.

"Discrete mechanics" therefore has a usuable advantage in the
fact that for small At there is a one-to-one correspondence of periodic
orbits with the exact solution of the equations of motion. Initial con-
ditions which lead to periodic orbits in "discrete mechanics" will corre-
spond approximately to those which lead to such orbits in exact mech-

anics.

¢. Statistical Mechanics

In the theory of statistical mechanics the equilibrium distribution
of states of a dilute fluid is uniform over the manifold of constant E,
;, and —Ij in phase-space [22]. Scattering due to a potential modifies
this uniform distribution of initial conditions to a non-uniform distri-
bution of final conditions, but still on the manifold of constant L, ;
and f Since "discrete mechanics" preserves this property of remaining
on the constant E, ?, and f manifold, it gives rise to a complete
corresponding theory of "discrete statistical mechanics", whose results
differ from those of normal statistical mechanics by terms of the order
of (A t)3. Thus "discrete mechanics" may be used for qualitative in-
vestigation of statistical-mechanical properties, such as correlation
between collisions or the states of a large system of interacting particles,
where conventional numerical methods have failed. The qualitative

effects found will correspond to the exact solution, even though the

quantitative results may only be approximate.

J

d. Limitations of Discrete Mechanics

Even as generalized in the present work, there still remain several

disadvantages of "discrete mechanics"” which may restrict its usefulness.
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Firstly, an obvious failing is the low order of accuracy in At. Tradi-
tional methods (Adams-Moulton, Runge-Kutta, etc.) as applied to
dynamical motion have been of order (A t)5 or higher, and provide a
solution with much less labor. Secondly, the potential ¢ must be
given in the form of equations (5.45) and (5.46), with the forces given
by equation (5.63), which is more cumbersome and inefficient than the
direct differentiation of a general form of ¢. Thirdly, the conservation
of energy follows only to the extent of the iteration to convergence of
equation (5.3), while typical corrector equations of the form (3.1)

are usually iterated only once or twice.

The first disadvantage has been partially alleviated by the discovery
of higher-order energy conserving methods, which are currently under
study. The second disadvantage may be insurmountable, since the
conservation principles lead to a complete solution only when invariant
with respect to an interchange of particles, which requires a separable
potential form. Empirical results indicate the third "disadvantage" is
in reality on advantage, improving the stability and reducing the accumu~-
lation of error, and typically requiring only one iteration versus the two
iterations necessary in usual implementations of predictor~corrector

methods.)
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APPENDIX I. Subroutine DISDE

PURPOSE
The following program DSTART/DISDE solves a system of n second-

order differential equations
pot Y -y
pi = a i=1,2,...,n

where the accelerations gi are returned by an outside subroutine. This
program was designed to perform the major part of the arithmetic necessary
to use the second-order "discrete mechanics" described above. The sub-
routine has two entries; the first, DSTART, is an initializing entry for

step-control; the second entry, DISDE, may be used for subsequent steps.

INITIAL ENTRY: The entry-point DSTART must be used to start the solution
of the differential equations. Subsequent use is unrestricted, but no
step~size doubling can occur with this entry. The call should be of

the following form:
CALL DSTART(HMAX, H,X,Y ,AUX, IBIT,N,F,ISW,NDIM)

where the arguments are defined below.

HMAX - A positive upper-bound on the stepsize of the integration.
H - The stepsize of integration, which may be positive or
negative.
~ The independent variable.
Y - A N by 3 array containing the solution vector and its first

two X derivatives. For the problem described above,
(¥Y(I,1),I=1,N) where N = 3n would contain the 3n co-
ordinates of '51 fee ’En' The second column of Y should

contain the velocities, i.e.,

Y(I,2) = —— Y I=1,2,...,N




AUX

IBIT

Isw
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and the Y(I,3) should contain estimates of the second-
derivatives dZY(I)/dXZ. (If no estimate is known, set
Y(I,3)=0.)

A N by 4 array of temporary storage. The element AUX(I, 4)
should contain the weight assigned to solution Y(I,1) with

respect to the L1 error norm, and
N
z AUX(I,4) =1
I=1

An approximate value for the number of bits of accuracy
desired in the solution after 500 steps. For example, an
absolute error of less than 10_3 in the solution after 500
steps would require IBIT > 10. (Zm10 ~ 10”3‘)
Number of equations to be solved.
A subroutine whose call

CALL F(YPR,Y,])
where YPR = Y(X) and Y = Y(X+H) will store cleY(I)/dX2 in
Y(I,3). The quantity J will contain the index of the function
call at the current step: i.e., the first call will contain J =1,
the second J = 2, etc. Only the call with J = 1 will have new
values in the argument YPR.
An integer switch which may be -1, 0, or +1.
ISW = ~1: the step-size is controlled to maintain an ac-

~IBIT

curacy of 2 , and to allow the solution to be determined

-5
to a relative tolerance of 10 ~ by functional iteration.

ISW = +1 in addition succeeding values of H are required
to satisfy the condition that the solution will be found at all
values of X = XO + kHO where X_. and H_ are the initial

0 0
values of X and H given in the current DSTART call.

ISW = 0: no step-size doubling is allowed, and #H is halved

only if the functional iteration does not converge
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NDIM - dimensioned column length of ¥ and AUX.

Upon exit, H will contain the current step~size, X will contain the

updated value X + H, and Y will contain the solutions and their deriva-

tives at the new point X+ H.

SECOND ENTRY: The entry~point DISDE should be used for all calls other

than the first(when the values of HMAX, IBIT, N, ISW, or NDIM are
changed). A call to DISDE via

CALL DISDE (H,X,Y,AUX,F,NDIM)

has the same effect on H, X, and Y as a call to DSTART, except

that H may possibly be doubled if the accuracy conditions warrant.

REMARKS:

(1) The transformation equations for X—X + H are
X=X+H
Y(I,1)=7Y(I,1) + H*Y(I,2) + 0.5%H*H*Y(I,3)
Y(I,2) = Y(I,2) + H¥Y(L,3)
where I1=1,2,...,N, and Y{(I,3) is the value returned by a
call to F.

(2) The transformation equations are iterated in Y(X + H) until

5

relative convergence is attained to 10 7, i.e.,

1D o -9 Do < 1072 ¢ e

I

where j =1,2,3,... Iis the iteration number (j = 0 corresponds

to the predictor), and
N

z]l, = ) 2UX(I,4)*ABS(Z(1)
I=1
If convergence is not attained within 5 iterations (j = 5), the

step-size is halved (H« H/2) and the step restarted.




Drsnk
«MACC 10108=11/07/73=156041015 {,0) D1sSDE
e 'd SUBROUTINE wHICH SOLVES SYSTEM 0F N 2NU ORDER DIFFe EQINS, USING
2 C GREENSPAN®S DISCRETE MECHANICS
3 SURROUTINE pSTART [HRMAX sH o X oY s AUX G IRET g NoF o ISWNDII
Yo C DSTART 1S InITiaL ENTRY POINT TO KOUTINE FOR FIRST STEP (wheN
5 C ANY OF HMAX,1B1T.N, OR IsW OR NDIM ARE CHANGED)
b C HMaX - POSITIVE UPPER BOUND ON sizZE OF s5TEP
76 C H = INITLAL GUESS FOR STEP=SIZE (wiiLl CONTAIN CURRENT STEP=SIZE)
8 C X = CURRENT VALUE OF INDEPENDENT VARIABLE {CHANGED 6Y DISDE)
9 C Y{ls1) = VALUE 0F I=TH SOLUTION, Y(iles2) = VALUE OF DERIVATIVE
1 c OF leTH SOLUTION,
11e C AUX = MATRIX OF S1Ze AT LEAST N X 4
12 C NOTE = AUX (l,4) SHOULL CONTALN Wi LGHT (FOR ERROR) 4S5 1GNEDL TO
130 C [=TH SOLUTIONG
14 C IBIT = NOe UF BI1TS OF ACCURACY pLsIRED AFTER 500 STEPS {ABSOLUTED
15, C N = NUMBER OF EQUATIONS TOo BE SOLVED
169 C CALL F LAUX Y ) SHOULD 3TORE ACCELERATION IN Y(l,a3) GIVERN
170 C YOX) IN AUX(L,1) AbD YOX#H) IN Y(Telde J wiLL BE ITERATION NG
186 C 1SW = STEP CONTROL S&#ITCH oo 1F =1, TRUNCATION AND STABILITY
19 C CONTROL @ {F 0, DMLY STABILITY CUNTROLS IF 1, YRUNCATION AND
20 C STaBILITY CONVROL AND H IS REQUIRED To BE CHANGED 350 THAT ALL
21 C MULTIPLES OF INITIAL STEP OCCUR
224 C NDIM = DIMENSIONED COLUMNW LENGTH OF AUXA AND Y
23 DIMENSION YINDIM,3) 5 AUXINDIM,4)
24 d BETA IS FACTOR BY WrlcH STEP=SIZE IS CHANGED (BINV = 1/BETA)
25 C ITER AND FACTOR ARE NUMBER OF ALLOWABLE [TERATIONS AND CONVERGENCE
260 C CRITERION (RELATIVE) FOR 1TERATION OF IMPLICIT EQUATIONS.
27 DATA BETA/ZWDB/QBINV/OQSUO/QXTER/ﬁ/gFACTORlleE”B/
286 C STORE INIYIAL WUANTLTIES AND SET UP PARAMETERS
29 MODH = ISw
30, HMiin = HMAX/1048576.
31 HUP = 100001 sHMpaX
32 A0 = X
33, M = N
34 C EPS 1S TRUNCATION ERKROR CRITERIGN (ERROR LT OeveelBIT AFTER 500
35 C STLEPS)
Abe EPS = QaDZ/GAB.‘S(H)*—“Z@'%IBlT)
37 ISTLEP =0
38 ITOV =0
3% IF (ISW oNDs ) GO T0O 400
40 EPS = (.E+3Y
41 e HUP = =1
42 6o TO 400
43, C DISUE 1S NORMAL ENTRY POINT FOR UPUATING HeXsY FOR ONE STEP
44 C NHEN RETURNSs HoX,¥ #ILL CONTAIW CURRENT VALUES
4h e ENTRY UISDE (Ho XV aUX  F gNDIM])
Gbe C CHECK 1fF STEP=S1ZE H CAN BE INCREASED
47, IF (1TOVeEGQ.Q) GO YO 400
H3e HW = BETA=H )
49, IF (MODH®ABS(AMGD {X=X0sHW)) oGTo HMIN o0Re ABS(HW) oGEe HuP) GO 1
50 1 400
5% C INCREASE STEP=S12E BY FACTOR BETA
52 H o= HW =
53 EPS = pINVeEPS
540 400 Mt = QoS ®ieEp
55 SET UP PREDICTOR FOR Y(Iol) AND STORE CURRENT ¥ An( F ovakueb
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720
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775
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790
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82
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B4,
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B
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930
PA R
Ihe
b
970
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99
1000
i0le
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104
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1060
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~

620

630

650

706

bs0a

10

20
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10 = Oe
DO 450 | 1eM
AUX(L.1) Yi1s1t)
AUK (1,21 = Yi(l,3)
AUX{T,3) = YUI,1) + HeY(I,2)
Yeisl) a AUX(1.3) + HWaY(][,3).
TO = TG + AUX{I.4)%aBS(Y L1
TGO = TOaFACTOR
ITERATE IMPLICIT EQUATIONS TO FINp SOLUTION To NORMED ERROR FACTUR |
WITHIN ITER ITERATIONS
Do 550 U = [ ,1TER
T = Qo
DODA =Ue
EVALUATE ACCELERATION FUR Y{I,l) GIVEN
CALL FLAUX Y ou)
CORRECT Y{(l,1) AND CALCULATE CONVERGENCE (T) AND TRUNCATION (DODA}
ERRORS FOR THIS ITERATION
bO 500 [=],mM
W= Y{(l,1)
YCIisl) = AUX(I,:3) & Hw2y(],3)
T = T + AUX(IL 4)%aBS{Y(]o])eW) .
DODA = DODA ¢ AUX(I 41 #ABS(Y(],3)=AUX(],2))
IF (T oLTe TO) &0 TO 580
FAILED 7O COMVERGE, DO ANQTHER ITERATION
CONTINUE
FAILED TO CONVERGE IN ITER ITERATIONS see REDUCE STEPwSIZE
GO T0 &20
CHECK [F TRUNCATION ERROR SMALL ENOUGH
IF (DODASGT.EPS) GO TO 42¢
IT0V = 0 . . . o
CHECK IF STEP=SIZE MAY BE INCREASED NEXT T]ME
IF (DODA oLE. BINV#EPS) IToy = |
G0 TO 650
REPLACE STARTING VALUES FUR Y AND F AND REDUCE STEP=SIZE
IF (ABS(H) LT. HMIN) GO TO 150p
DO 630 1 = 1M
YeIel) = AUX(T 1)
Ye133) = AUX{T1.2)
H = BINV®H
EPS = BETaA=EPS
GO TU 4p0
UPDATE DERIVATIVES Y(I1,2) AND X AND RETURN
ISTEP = ISTEP 41
XK = Y+
Do 700 1 =
Y(I,2) = Y
RETURN
WRITE (645100 1STEP:XeH
FORMAT (*0O#eswnDISDE FAILS AT STEP®,lg,5K,9aT A=¥ g E15,8,2X,YAND ST

# u

™

s
£1:2) + HaY{(l,3)

WRITE (690201 (AYLT o) od=l 3)sl=s1,8)
FORMAT (10X,3El8e8)

STOP

END




APPENDIX II. Subroutine ADAMS

The following program ASTART/ADAMS solves a system of second-
order differential equations using the third-order Adams' method. The
program and arguments are set up identically to those of DISDE (see
Appendix 1), except for the case of the function call to F and the

basic transformation equations. The call to F is off the form
CALL F{)

where Y = Y(X+ H), and F should store dZY(I)/dXZ in Y(I,3). The
values of the solutions at the new point X+ H are obtained from the

Adams correctors

(0) (0)

Y(I,1)="Y(,1) + H*Y(I,2) + I.—I>1<I~I>Y¢Y(I,3)(O\)/2

1l

+  HEH*(Y(I,3) wY(I,B)(O))/é

Y(I,2) = Y(I,Z)(O) + H*Y(I,?))(O) + HR(Y(I,3) - Y(I,B)(O))/Z

where (0) denotes the value at the point X.
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00 52030SAMPLEADAMS

i SYBROUTINE ASTART (HMAX.W?*TVT#W*TTBTTTW?FTTSWTNDYMT“”””“”” :
2 C SUBROUTINE WHICH SOLVES SYSTEM OF N 2ND ORDER DIFFe EQTNS, USING
3 C TRAPEZOIDAL RULE ON VELOCITIES
% C NOTE = F(V,,FFT SHOULD STORE ACCECERATION AT Y TN FF
5 C Y(I,1) = Y(I}, Y(I92) = YPUI}=DYC(IDI/DXs Y(1,s3) 2Dp2Y(E)/DX2
6 C AUX = MATRIX OF SIZE AT LEAST N X 4

T C PREVIOUS V,F IN COLS 12 OF AUA, PREDleEB“Vwiﬁwj;WWETGHTSWTN g
8 C ISW = =1,0s%ie IF O, NO STEP CONTROL. IF =1, NO MOD CONTROL
9 DIMENSION Y(NDIM,3),AUXINDIM,H)
O ”Dﬁ?ﬁ“aﬁaﬂ/zeuulJBTWVVGSSUU7$TTfR7EYTFWfTUF7TIEEEV'
11 MODH = ISW
12 HMIN = HMAX/1048576,
I3 HUP E T.0000T FHMAK - - . - -
14 X0 = X
15 M = N
133 —EPS E U UZ/(HEBETAS#IBTT) o T
17 ISTEP = O
18 17OV =0

—YY ~—TF TISW eNES 87 GO 70 400 o
20 EPS = 1.,E«30
21 HUP = =]
2 GO-TGHOT e
23 ENTRY ADAMS (HoX,Y,AUX,F NDIM)
24 IF (ITOVeEQo.D) GO TO 400
: s BETAWH il , e o
Zg IF (MODH®ABS(AMOD(X=XOsHW)) +GTo HMIN «ORe ABS{HW) +GEe HUP) 6O To
27 1 400
28 S et I U
29 EPS = BINV®EPS
30 400 HW = (e5%H

R g E D , R
32 DO 450 1 = 1,M
33 AUX(I L) = YH(Is )

Xt E YT I T T T
35 AUX(I 31 = Yilsl) #+ Hely(Is2) ¢ HW®V(1s3) )
36 Y(le4) = AUX(1:3)
3‘,}7 L}SG 1‘!‘0 = ?e’”ﬁ‘u‘}\(igq‘)'ﬁ}\bbiviigli} i et e et n i o i e a i e wm e
38 HW = Oolbbbbb6b7aHeH
39 T0 = TOsFACTOR

"""_’qﬁ”"'”"‘"""‘“'“—'“_‘“ — - BHSO =TT TTER e e e e e - JE - B
41 T = 0o
42 DODA =0
LI' 3 - _.,t_ﬁtl—_. _,F_-(_ Y«’ e a1 o o e e P e e i s < 8% i [P RROHSE IS S P e e emim o iy =
44 DO 500 I=1,M
45 Wos Y(I,1)
424 e i e et wv? —um ..Y (,._x,. ',3‘, T AU x_(, r.°.2T e e s s i o st s 8 i . e e e e e e me s e e e e R T
47 Y{I,1) = AUX({19+3) + HW*W2
48 T = T ¢ AUX(I,4)eABStY(I,1) = W)

[— _‘_W..ﬁ‘.mv —— _,,5W>-4 .v-_,DV.OdD.A..__E.. _.Do.D,n_ -;NU_XAT.T.;_‘{.)"@._KB‘S&_‘.WZA, S PR var et 1 evonn woenn A v
e IF (T ot.Te TO) GO To 580
e 550 CONTINUE

- _52 e e e e e . .60 TO 6 ZQ PSR e vt oa e e e e e s i . .. e e e - i e et [

53 580 IF (DODAeGT.EPS) GO TO 620
54 ITOV = O

"""" g T T R C(UODA eLEs BINVEEPS) TTOV = |

™ 1 s v ALRDO
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Sy 620 IF CABS(H) oLTe HMIN) 60 TO 150p
5y - . DO 630 T =, . .
59 Yeisl) = AUXiigls
39 &30 Y(i:3) = AUX{TL2)
&1 o H = BINVEH - T
62 EPS = BETAsEPS
63 0 Y0 4008
L T LR CTSTER RTISTEP 4
b5 o= XeH
b4 GO 700 | =i .0
- A 700 YOIz = YUl,o) He (AUX (T ,21 = $@$$€Y€ig3b~Au%(ng}E H
68 RETURN
69 i500 WRITE (46510 ISTEP Xy H
— A N FORMAT {("Ceesw®apaMs FAILS AT STEPY 31695 X,YAT Aot Ei5e8,2XevAnD g7
71 FEP=STIZEY s E15,67)
% 72 WRITE (6,20 YT auyedsl o3y ,1=1,M)
R A S 20 FORMAT {1OX,3FE18.4;
74 STOP
75 END

JPRT S SAMPLEDISDE
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APPENDIX III

Test Program for the Case of a Single Particle
Subject to a Central Force

The following main program TEST and subroutines DISF/F and
DISPOT/DFPOT, together with DISDE and ADAMS, were used to compute
the results given in Table I for the case of a Lennard-Jones (12,6)

potential. The mass of the particle was setto 1.0.

References in TEST to the cases of METHOD = 3 or 4 correspond

to other numerical methods and should be disregarded.
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“FACC 1el6S=11/0b/773=133230:04 (40) TESsT
le C TEST PRCORAP FGORK GREENSPAN®S UDISCRETE mMeECHANMICS
2o C FOK THE SPCCIlat CaSE OF ONE PARTICLE GOVERNED BY A CENTRAL FORCE
Je € THROUGHOUT THIS FPROGRAM, THE MASS 15 ASSUMED TCU BE jeU
§, ¢ ROTE = KROUTINES TIMGETY AND TIMSET ARE TIMING ROUTINES SPECIFIC TU
5. O THE U% SYSTEM, THE CALLS 70 THESE ROUTINES MaYy BE SAFELY DebLbTEL,
b CIMENSION Y(3,7)3AUXL3:7 )1 RI3)ZOR{3)sXMETHD ()
7o CATA XMETHD/® LISDE®,® ADAMS?Y 0 RDE®,v pM3*/
5 EQUIVALENCE (¥ {1313 ,RU1Y) g (ORELYuY(1,2))
Do EXTERNAL Fg‘g)ISFgFDM;}
106 50 REAL (5,307 METHOUD,,IBIT,B,E, 20,15
0 S La FORMAT {215,2F5,0,F10e5,15) ; o A
125 C METHOD = 1, 2NU ORDER DISCRETE MECHANICSe = 2, 3RD ORDER ADAMS.
134 C NOTE o [F METHCU IS LT 0 SET METHOD = ABS(METHOD) AND USE READ IN
144 C INLYTAL CONDITIONS INSTEAD OF 8 AnD E
15 C = 3, 774 ORDER ADAMS. = 4 , 3RD ORDER DpISCRETE MECHANICS
l&e C IBIT = nOe OF BINARY BITS OF ACCURACY UDESIRED IN SOLUTION
17e C B AnD € = [NMITIAL CONDITIONS OF ThE IMPACT PARAMETER B AND ENERGY
18 C 20 = INITIAL Z vALUE
19 C Isw =~ STEP CONTRUL S9WITCH sae =1 s0s+]1
23 MSlaN = ISTEN{L METHED)
21 METHOD = TABS{METRHROD)
220 IF (MSTaN «GTse 0O} GG TG 5
23 . , READ (5,111 (RUT),OROE)Y1=1,43)
24 1} FORMAT (6F 1Qoe4)
25 . E o= Dobs{DR(LISDR{1) + LREZVEDR(ZT + OR{3)«R{3} )
26 a 51 DO I T = 1,3
27 C ASSTGN #ETGHTS OF 1/3 TO EACH OF THE THREE CUGRDINATES
28, DO L U = 4,7
29« _ b ... AUX({led) = 0e333333333 ‘
A0 < CALCULATE InNITIAL RELATIVE VELOCITY VREL
31 e VREL = SQKr(Ze"‘E)
3Za NSIEP = 10
33 IF (METHOU EQe 3) NSTEP = &
34 WRITE (420 AHMETHDUIMETHOUD) 3 BoE JVREL s 181 T .20 15w
35 20 FORMAT (1H],5X%X,°TEST TRAJECTORY USINGY 46/10X, UlTH B =%3F10eb,.5X,
36 LYAND E =% ,Fi0.5/10X RELe VELOCITY =% 1008 ¢5BX."H0e BITS =% ,15//
374 2 10X, *STARTING Zz VALUE 1593F10e595X, %15 (STEP CONTROL) =% ,1b5//)
38 TIME = 20./VREL
39 IF (MSIGN LT 100} GO TO 52
il e C INITIALIZE R AMND DR (EWUIVALENCEDL To v
Ml ‘ . Rl = Qe
470 RE2y = B
43 R(3r = 20
444 DRE1TY = O,
HG e DRUZY = O,
Ybe DK(3) = VREL
{74 52 Call, Flv)
HE s ANGO = RIU2)eDR(3) = R{3)2DR(2)
470 T = 0.
50 H “@oi?-[s
51 Callb FINAL {KOUNT}
52 WRITE (&s52%)
Bie 26 FORMAT (DX, 0STEPY 09X TIME T 3D X sDLELTA To 80, "ENERGY v 33X, TRADIUS?,
54 e I X ¥ Xt 36X vXDOTY , 9K, 9V v sk PYDOT® 39X 9 2% 6X24DO0T®,6X%X,9VRELYY/)

A I = 0
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568 RR = SQRT(R(IIsR{1) + R{2)#R{2) » K(3)«R(3))
576 WRITE (6:37) LoToHoEsRR, LRI yDREJ) gud=l,3) o VREL
Y- ip FORMAT (4Ks1b,F1005,F1006,8F10a5sF12e61)
59 e CALL TIMSET (0e)
606 C CALL INITIAL STEP ENTRY UF DIFFERENTIAL EQUATION ROUTINE
blo GO 10 (60,70:80,85),METHUD
 bZe. . hO._. CALL.OSTART {looHoTo Y AURLIBIT 300lgF I8N,3) .
) Go TO 90
640 0 CALL ASTART (Lo oHsT oY AUX,IBIT39F s 15Ws3)
65 GO 10 90
6be. . 80 CAaLL RDEOC {oohiaT oV AUXIBIT39Fs15wW,3)
67 GO 70O 9G
e bBe.. .. BE . DO.ab fo®m 1,3 . N : : L e
EYe Ré Y{ls4) = Qo
70 s Call LM3IN (LosHoToYsAUXSIBIT 3,FOM341Sws3)
71s C COMPUTE SuLUTION AT NEW® TiMe STEPS aAND PRINT oUT RESULTS
72 99 Do 0B 1 = §.,20601)
73 RR = SQRT(R(11#x2 + R(2)%#2 * R{3)eeal)
746 .. . IF. {RR o GTe 106 oANDe T oGEn TiME) GO 10 200
754 IF (NSTEP&(I/NSTEP) + 1 oNEo I oAND, [SW oLEe U) GO To 95
Tée IF (1Sw oEde 1} aANDa AMOU(TQIO) PR loE"'S) (7() TO 9y
770 C COMPUTE RELATIVE SPEED VREL AND TOTalL EnERGY E
78 VREL = DRU1)®=DR(1) + DR{L)#*DR{2)} =+ DRE3IFDR(3I)
79 CALi. DFPOT(RR,FORCE.POTI
ﬂ«wgngm‘wv;,.«..ﬁ_:.gw5§VREL.¢ pOT
810 VREL = SQRT(VREL)
82 e : WRITE (6930) 1oTsHaE sRR, (R(JI DRI =1, 3) ,VREL
836 C CALL NORMAL ENTRY OF DIFFERENTIAL EQUATION ROUTINE TO COMPUTE
Bl - - € - SOLUTION AT NEW STEP
856 95 GO [0 (96:97098,99) sMETHOD
o Bbe . Gl CALL DISDE (HeT Y AUXSDISF3)
7. Go 76 100
BBa 97 CALL ADAMS (HyT Y AUXF,3)
89 Go TO 100
90 98 CALL RODE (He T Y AUK,F 33)
91, Go T0 100
92 99 . CALL DM3 (H,T,Y AUX,FDMN3:3)
93 100 CONTINUE
94 C IF PARTICLES HAVE SEPARATED OR TOTAL TIME OF FLIGHT TIME 1S EXCEED
95 q C ED, ENU TRAJECTORY AND PRINT OUT FINAL CONDITIONS
9éb g 200 VREL = SURT(DR(1J2DROL)#UR(2)#DR{21+DR3IsDR(3))
97 CALL VYIMGETLYEND®)
GHe _ CALL FINAL (KOoUNT) e
99 o C COMEUTE ANGLE OF DEFLECTION CHI BETWEEN INITIAL AND FinalL VELOCITI
100 ¢ £S ur THE PARTICLE
1001 CHI = ACOS(DR{3)/VREL)=SlaN{ieeDR{Z1)
1020 RR = SuRV(R(1)=R(1) + R{2)er(2) * R(3ysri3) )
103, Ccatl DISPOT (RE,POT)
104 £ = 0.5#VREL®VRKEL + POT
105 WRITE (62303) I1oTaHsEWRR
106 C PRINT OUT CHI, TOTAL NUMBER OF POT¢NTIAL CALLS KOUNT, X COMPONENT
107 C OF THE ANGULAR MOMENTUM ANGs AND CHANGE IN THE VALUE OF ANG FROWN
108 ¢ 1TS IMNiTIAL VALUE (EANG)
109 s ANG = R{2})#0R(3) = R(3)#DR(2)
e . : LEANG = ANG = ANGO
111 WRITE (6540) CHI KOUNToANGIEANG

112e 40 FORMAT (5X,°ANGLE OF DEFLECTION 1S9 ElbebybXs¥NG POToe EVAL.®. .18/
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113 I SKs"FINAL ANGoe MOMENTUM =9 E15,7,5X,9ERROR =9,£16,6)
T 66 16 S
1i%se Enb

gNp OF COMPILATION: NC DIAGNOSTI(CS.
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3e
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10
ble
120
13
149
150
169
i le
180
19
20
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220
23
240
259
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27
280
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330
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A7
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1/08/73=17:18:55 (40) F

SUBROUTINES #“MICH RETURN VALUES FOR THE ACCELERATION DUR TO A

FORCE. SISF IS ENTRY FOR DISCRETE MECHANICS AND F FORK ADAMS

NOTE = EACH OF THE FOLLOWING ACCELERATION RUUTINES ASSUMES MASS =)
AnND A SINGLE PARTICLE

SUBROUTINE DISE (RP IR, ISHI

DISF 1S ENTRY POINT FOR RETURNING DISCReTE AECHANICS ACCELE%ATIQ&

HERE RP(1) soe RP(3) S40ULD BE vALugE OF RApIUS VECTOR AT TIME T

R(LI,1) 1=1,3 SHOULD RE ESTIMATE OF RADIUS VECTOR AT TIME T + H

DISF ©witlk STORE 2ZND QORpDER DISCRETE MECe ACCELERATION IN R(I,3:
IF [Sw = 1, VALUE OF POTENTIAL AT Rp WILL BE CALCULATED

DIMENSION RPE1I,RE3,1)

IF (I5W oGT, 1) @0 70 100

CALCULATE RADIUS AND POTENTIAL FOR TIME T

RRP = SGRT(RP{1}%RP (1) + RP(2)eRP(2)+RP(3)¢RP{3))

CaLL DISPOT (RHRPHIVP)

CALCULATE RADIUS AND PpTENTIAL AT TIME 7 + A

RR = SQRTINK(1, 18RI, 1)+RIEZ2,1)8R(2, P)eR(3p1)aR{3,1))

CAlLL DISPOT (RR,V)

STORE DISCRETE MECHANICS ACCELERATION In R{1,3), I=1,3

DODA = (RR=RRP)&(RR+RRP)

ACOEF = Da

{F (ABS(DODA) oGToe 1eE=10) ACOEF = (VP=y]l/DUDA

DO ZQU 1 a,ioa R B

R{1,3) = ACOEF«(RUTI 1Y « RP(I) )

RETURHN

ENTRY F{R)

ENTRY POINT F RETURNS CLASSICAL EXACT ACCELRRATION AS FORCE/MASS
I R(IQB), 1 = 1,3

RR = RT(R(:,1)$R4191)¢?(z51)aﬁtz,1)+R(391)aﬁ(3a1)) -

ACCELERATIJN 15 =RADIAL DERIVATIVE OF PaTENTIAL (RETURNED In V)
TIMES A UNIT VECTOR IN ThHE DIRECTION R {COMPONENTS RUT, 1) /RR)

CALL DFPOT {RR,VeVP)

V = =V/RR

DO 300 1 = 4]

R{1,3) = VaR{ly1)

RETURN

END

COMPILATION: NGO DYAGNUSTICS.
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PoT
«MACC 10108=11/08/75=-13:30:542 £,0) POT
to C SUBROUTINE wHICH CALCULATES VALUE OR R DERIVATIVE OF A LENNARD«
2 C JONES POTENTIAL, WITH PARAMETERS EPSILOM = I, SIGMA = |
3 , SUBRGUTINE pDISPOT (R,POT? , , B
Yo C CISPOT 18 ENTRY POINT FOR EVALUATION OF THE POTENTIAL ONLY
5 € 1HE VALUE OF THE POTENTIAL FOR _RADIUS R IS RETURNED IN POT._
6@ Isw = |
Je 100 Ré s lo/Rewg
8 POT = 4.%Rbée(R&E = 1)
Yo NPOT = MPOT ¢
10 Gu TO (200,300),18¥
Clle 200 RETURN o ,
12 C DEPUT 1S THE ENTRY POINT FOR OBTAIMING gOTH THE POTENTIAL anD 175
136 C R DERIVATIVE (RETURHED IN F)
14 ENTRY DFPOT {R.F sPOT)
1156 Isw = 2
166 60 10 133G
17 300 F o= 24esF6%{)ls = 26%R61I/R
18¢ RETURN
19 C THIS ENTRY WILL STORE IN KOUNT THE TOTAL NUMBER OF CALLS TO E[THER
200 C DISPOT OR DFPOT
210 ENTRY FIMNAL (KOUNT)
220 KOUNT = NPOT
23 . HPOY = o
24 RETURN
25, END

FNn OF COMPILATION: NG DIAGNOSTICS,
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