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1. INTRODUCTION

It is characteristic in fluid model theory to separate flows into
two categories, laminar and turbulent (see, e.g., refs. [3,4,6,10,
14~16] and the numerous additional references contained therein.)
Laminar flows are usually studied by means of deterministic, con-
tinuous models, and, though a modicum of successful mathematical
analysis has emerged, there is still, nevertheless, no analytical or
numerical method for solving the full Navier-Stokes equations for
arbitrary Reynolds number [3,16]. Turbulent flows are usually studied
by means of probabilistic models and, except for homogeneous formu-
lations, have resisted all mathematical analysis [15,16]. Unfortun=-
ately, our level of understanding seems even further diminished by
the observation that most flows in nature and in technological de-

vices are turbulent [5, p. 83] and inhomogeneous [15, p. 492].

In this paper we will initiate a new, deterministic approach to
the theory of fluid behavior which will be of such generality that both
laminar and turbulent flows will correspond merely to different degrees
of flow ijrregularity. The model will be developed in the spirit recom-
mended by von Neumann [11] and will be computer oriented in that
(a) a fluid will be thought of as consisting of a finite number of par~
ticles, (b) the motions of these particles will be determined by dy~

namical difference equations, or, in effect, by recursion formulas,



and (¢) the difference equations will be solvable in a constructive
fashion by means of modern digital computers. Moreover, not only
will this high—~speed arithmetic approach be simpler and more compre-
hensgive than the specialized methods developed by Lax [7] and Popov
and Samarskii [13], who neglect both viscosity and heat conduction,

but it too will be conservative.

2. n~Particle Fluid Dynamics

For positive time step At, let tk =kAt, k=0,1,2,... . At

time t, , let particle Pi of mass m, be located at .>i,l .
,l\.
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Position, velocity, and acceleration are assumed to be related by the

fundamental formulas [2]:
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If ?, = (F, T, .|, ) is the force acting on P, at time
ik Lk,x" ik, vy ik, z i

t},r then force and acceleration are assumed to be related by the dis-
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crete equation
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(2.3) Fi,k = mi ai,k .

In particular, in addition to gravity, we will structure the force be~
tween each pair of particles to simulate classical fluid molecular
forces, so that there will be a component of attraction, which behaves
like p/(r%), and a componentof repulsion, which behaves like

q/(rB), where p, g, o, and 3 are nonnegative parameters which depend



on the particles, and where r is the distance between the particles.

Thus, if r

is the distance between PJ_ and Pj at time t , while

i,k k

pij , qij are constants determined by the pair of particles under con-
. ( ,
sideration, we define F, ., the force exerted on Pi by gravity and

ik’

by the remaining particles PJ., i=1,2,...,1-2,i-1,i41,i+2,...,n, of
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where v = (0,0,1).

In place of approximations like the Navier~Stokes equations [4],

our dynamical equations will be the primitives (2.1)-(2.4).

Let us show now that the arithmetic formulation (2.1)-(2.4) is

energy conserving. To do this, define the quantity W by

n
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Then, (2.1)=(2.3) and (2.6) imply
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If kinetic energy KiJ{ of Pi at t is defined by

k
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then

(2.7) VVi = Ki,N'n Ki,O .

If then the kinetic energy X, of the system at t,_ is defined by

k k

n

(2.8) K, = y Ki,k’
i=1

then (2.5), (2.7) and (2. 8) yield

(2.9) W = K ~-K
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which, interestingly enough, is independent of the particular struc-
ture of the forces involved.

For (2.4), in particular, set
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If '\lk , the potential energy of the system at tk due to gravity is defined

by
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Defining the potential energy component Vij



at time t, by
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so that
I 3 - .
(2.18) W \/‘N 4 ’\/'O
Thus, (2.9) and (2.18) yield
KN+VN = I’\‘O-FVO,N:O,I,Z,... '

which is the classical law of conservation of energy.



3.  Examples

We show now, by some simple examples, how fluid flow deter-
mined by (2.1)-(2.4) and given initial conditions can be affected
radically simply by varying a velocity parameter.

Consider, for economy, a two~dimensional fluid in motion, a

small portion of which is shown in Figure 3.1. Let particles Pl - P11
he called the first row - ~ -

e called the first row, P12 P23 the second row, and P24_ P34
the third row. Let pij = qij = mi =1, i=1,2,...,34, and let us

simulate a discrete Lennard-Jones type potential by setting o = 7,

B = 10. The initial positions of Pl - P3 are set so that Pl 3 P

4 : 22
are centers of regular hexagons of radii r = \?/) 1.5, while the remaining

particles are centered of the vertices of the hexagons. This choice of

r is one of relative configuration stability, since, by (2.12), a force
e 2 .
Fi( 3) =0 exerted by a single particle Pj on Pi implies rij 0= ¥ 1.5,

Now, for fixed positive constants V and J, assume that the

initial velocity of each Pi is given by

v, =V + g, , Vv, = g,
i,0,x 8.1,1 i,0,y E1,2’

where € 1 and € 5 are random numbers, independent of V and 7J,
L *a

which satisfy

| < (v = -2

e 100 °

1,j

Fixing the parameters J and V then determines the motions of

P1 - }?’34 in the following recursive fashion. TFor fixed k, —gi K is
determined from (2.3) and (2. 4); P and 7}}_ are then deter-

i, k+1 i k+1
mined by solving the system (2.1) - (2.2) by Newton's method.

In the examples which follow, our interest will center on increasing

values of V andon initial time steps only. TFor these reasons, we will
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neglect the effect of'gravity by setting g = 0 in (2.4). Also, only
one set of random numbers is generated for the velocity components
of each particle. These are normalized for each example so that the
maximum IE’ijl always gives equality in (3.1) with J =1, which is
also used throughout. Finally, one can view the examples as the
portion of a gas emitted from a jet when the particle velocities, upon
emission, are perturbed Ei,j 'by various factors, like collision with
a wall, previous to emission.

Figure 3.2 shows the particle's motion for V= 50 and At = 0.02
at t=0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4. A gentle wave motion
develops in each row while the rows maintain their relative positions.
The flow is essentially of a classical laminar nature. Figure 3.3
shows the motion for V=300 and At=0.02 at t=0.2, 0.4, 0.6,
0.8, and 1.0. Repulsion between the particles has assumed a greater
significance and, though the rows still maintain their relative positions,
the moticn is becoming more chaotic. Figure 3.4 shows this same motion
from a direction field point of view and exhibits quite clearly the strong
effect of repulsion. For example, following particle pairs like Pl and
Pll' or PZ and Plz' or P17 and P26 through the time steps shows
almost complete reversals of motion due to repulsion. The rotational
effects evident in Figure 3.3 also become more reasonable when viewed
from this direction field point of view. Figure 3.5 shows the motion for
V= 1000 with At=0.1 at t=0.2, 0.4, 0.6, 0.8 and 1.0. So much
motion results that the choice At = 0.1 was necessary for the conver-
gence of Newton's method in solving (2.1) - (2.2). Here, the laminar
character of the flow has disappeared in that the rows no longer main-
tain their relative positions, and the motion becomes relatively chaotic.
Thus, with the increase in velocity, particles can come nearer to other

particles, which results in incrcased repulsive forces and more complex

motion.
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Now, in the examples presented thus far, we have assumed
that velocities of particles had been perturbed by, say, collisions
with a wall. Let us then look at some simple examples which ex~
plore such interaction, since, for example, the action of filuid
particles which are near the particles of a solid boundary can result
in a transfer of kinetic energy for that boundary, thus vyielding a
viable model of friction [6], which, in turn, suggests a mechanism
for boundary layer development in a liguid and shock wave develop~-
ment in a gas.

In Figure 3.6 is shown a fluid particle P1 of mass m1 ap~

proaching wall particles P2 - Pg' each of mass m, . The speed of

Pl is |v| and its initial motion is in a direction determined by the

angle 0, as shown in the figure, measured from the velocity vector
——
v to the horizontal. The distance between any two consecutive wall

particles is set at 3/1_.—5, and PZ and P8 are allowed no motion at all.

Then, for P. positioned initially at (0.1717, 0.9914), and for the

1
parameter choices m

= 0.1, m, =10, |v| =10, 8= 30° a=7, B=10,
g =980, p=10"2

1
, =10 5, and At = 10"4, Figure 3.7 shows the

motion of P1 from 1:0 to tZOO'

results in a relatively gradual fall of the particle, due to gravity, inter~-

The interplay of gravity and repulsion

spersed with several small rises, due to repulsion. In Figure 3.7 is

shown the graph of the x~component of velocity of Pl from tO to tZOO'

The initial value v1 0 x° 8.66 is maximal, while subsequent values
7 1

indicate relatively nonuniform behavior. Were fluid particles above P1
to maintain horizontal velccity components of approxim tely 8. 66, then
Figure 3.8 implies that fluid motion near the wall would be relatively
slower.

Finally, let us examine the possibility of P1 , in the above example,

moving at an exceptionally high velocity. To do this, Pl is positioned
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at (.40065, .09914) and an additional wall particle, PlO’ is positioned
at (.40065, —-.09914), as shown in Figure 3.9. Again, P2 and P8
are allowed no motion at all, and the only changes in parameters from

the above example are |v| =1000, 0= 90°, At = 1077, Figure

3 - o ~ 3 3 D
3.10 shows the resulting motion of Pl’ P4:, 15, P6’ P7 and PlO at

and t The velocity of P’i was chosen sufficiently

Yo Y50 Y 25"

large this time to break the bonding of the boundary particles, and Pl

has penetrated the wall. At tZS’ P1 has arrived at the stationary
position (.40065, -.05244), has transferred its kinetic energy to the
wall particles, and has "dented" the surface.

Note, with regard to all the examples of this section, that the
Fortran program is available in [5], while no example ever exceeded

10 minutes of running time on the UNIVAC 1108.
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4. Remarks.

Though a variety of examples were run with parameter values
different from those given in Section 3, insufficient funding actually
prevented th'e study of large scale examples. It would be of interest
to generate computer examples to test the apparently contradictory
conclusions ofvon Neuman [11] and of Pasta and Ulam [12]. Von
Neuman concludedthat one could simulate the action of 1024 mole~
cules of a hydrodynamical model by considering only 10-100 particles
provided the intramolecular forces were scaled up., Pasta and Ulam
concluded that one would need a minimum of 200,000 particles in
order to assure an error of the order of magnitude of 5%. The theory
of this paper does allow simulation as suggested by von Neuman.
Fluid dynamicists would have to pressure computer manufacturers to
develop specialized computers in order to apply the theory of this
paper as recommended by Pasta and Ulam. However, if one wants
to modify the methods described here, it is possible, using present
day computers, to simulate models with 120,000 particles [9] in
reasonable computing times. Such modifications, however, are non-
conservative.

It would also be of interest to compare the methods of this
paper with the nonconservative, molecular~dynamics approach of
MacPherson [8] and with the popular particle-in-cell method [1], which

is nonconservative and which also restricts particles to nodal positions.
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C FORTRAN PROGRAM FOR DISCRETE FLUILS
THMPLICIT DOURLE PRECISION(A-H:#e0-2Z1)
DTMERSION XO(I0 e YOUI0eVXOCID e VYDR(ID) e X(I0e3 )Y L1063y VAELI0y 3) s
IVYE1De 31 FX {10 FYLLD)
CIMENSION RO1IDs20e21eM 10}
DTHENSTION GAMHMALLOD
DIMENSTION XKD IO
1001 “Oﬂuu‘f’FlDaUP

1002 FORMATLLEIE)

2000 ”DRW&T(l“ivﬁ PROGRAM PARAMETEIRES®S

2003 FORMATIGY e OMEGAT S¢DET1eBXs "EPST FeDEoI/ENeYAZT ¥ sDE1ebXe "BT Ve
103G, *fgv.cpt ToDB.lr5Xe¥AT "o DELLAEXe?0TT T905.1/8% 0 "NDs PARTICLES
2THIS CASE= ®¢I1Z%

2802 FORMATISX. ’ﬁhRflCLE SPEEDT eDTol9® AT *4D12.%62°% RADIANST)

2006 FORMATI® WON~CONVERGENCE AFTER “el3e® ITERATICNS FOR TIMDSTEP %

1151

€ SPECIFY ITHPUT PARAMETERS

READ 12@‘9 IMEBAEPSvAe396

J?

READ L1002 eNeNMAXe T /Yﬁ;Pf INT e JJPRINTe IPUNCHsJPUNCHeIPLOT < JPLOT
READ 1001ePe8eMASSHOY
READ 1001+VELe¢THETA
AXT{Q={B~1)/iPx{A~1)} )« {l.0/{E-A})}
BY*DSOPT(”Y&fﬁwim 552X sx2)
OHMW=1.03-0MEIGA
DTZz PT/L&H
PI=3.10158250+00
2 THETAZPI®THETA/Z120.

GALL INP
UYXOE T Vo LsDCOS(THETAY
VYD (I ITVEL=DSINITHETA)

C PRINT PROCGRAM PARAMETERS
PRINT 2930C
PRINT 2003 +OMECAsEPSoAcBePeQeDTeN
PRINT 2002+ VELs THETA
NSTP=D
KPLOT=?2
IPRT=-1
IPNCH=C
IPLT--1
IF{JPLOT.EQ,03CG0 T0 10

€ INITIALIZE PLOT
CALL INITPLE{1L4,10.8)

iC CALL OUTP

IPRT-1
IPNCHZL
IPLT=1

C SPLCIFY INTTIAL CUESS FOR NEWYON®S ITERATIONFIRST TIMESTEP
D0 70 I=1eN
¥UTe3)XO(T)
Y{I«3)YDLI .
XTI e33¥XO0I)

TO VY(XeZdVYOLI

CALL RCALC

C UPDAYTE POSITIONS«VILOCITIESeDISTANCES--ALL TIMESTEPS
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75 NSTPzZRESTP+ 1
DO 85 TxlsH
YAT e Aot le 3
YELelITY(Te 3
VXET el FoVRLT 3
VY{I-202VY{Te 3
DO &0 JzieN

a0 FEIva1§:R£I¢J92§

85 CONTINUL

BEGIN XTERQTION L.ogP
DO 315 K=zl e

THA

UPDAYTE ALL VARIAZL
DO 90 YzIei
KEiTLeZ X {Tel3}

Y{ToeZ232YET 3}
VHEIT 2312V X{X:31)
OO0 VYT cZ2) VYT 3}
UPDATE ALL VARIAGLESs CURRENT TIMESTERPCURRENT ITERATION
DO 8% T=zIeN
IFVIT.UQ.2.0R.IEG.ZIGO TO 95
REL e 21 oOMUsY i e Z J2OMECASELTZ# VX (L2 4VXETel Y 4X(Te¢1))
Y Ze3 10N aY LT 23 +0MEGARIDT2 LYY I Le 234 VY {13} 4+Y{TIs1))
98 CONTINUL
CALL RCALC
CALL FCALC
UPDATE VELQCITIESs CURRENT TIMESTIP¢LURRENT ITERATION
00 100 IzIelN
IFriIeE0a.260RaTET.3360 TC 100
V¥ e 3ToOMUsYXET o2 k+OMEGAX(DT»FR(TI VAV I{Te1) )
YY{ZIe3IZoOMUYUY{ Io2¥+0HMEGA={DT#FY{IiI¢VYRITs1})
10980 CONTIKUL
TEST FOR CONVERGEN
DO 110 I=3e¢N
IFLABSIX{TIe3}-X{T92)31.0T7T.EPS}IG0 TO 115
IFCABSEY(Iv3i-Y(Ts2)} ) uCT-EPS)ICO TO 115
TFCADSTVXITI w3 VXITe2Y)aCGTEPSIGO TO 115
TF(ABSEVY (T e3-VYITs2))eOTEPSIGO TO 115
CONTINUE
S0 TO 120
CONTINUE
PRINT ZOODGe¢K«NSTP
50 10 135
128 gALL ouTe

TFENSTPLLYTLNMAXIGD TO 75
125 IF(JPLOT.EQG.CISTOP

CALL EMIPLY

STOR

SUBRCUTINE INP

XU(ﬂlfuojﬁaA

X0i2¥y=0.0

DO 112 IIz=3eN

D{YIy=X0{TI-11)+8X

112 CONTINUEL

D0 111 I=2eN

Se CURRENT TIUESTEP«PREVIOQUS ITERATION

L
A . L
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EEeC
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et

INT

93 B o]
[90 M up

INT

i

-

0

A3

YO{ri=g.0
VY”(”F*DGS
UYL{ Tl =0.
GAMNMALY

e DaD
METI=HASS

w6
§ w'V§*%fﬂ
t
Y
@
o

0o
=<

hg
V“alp}
YO(L1Cy=
RETURN
ERNAL SUBKCUTINE TO COMPUTE DISTANCES BETWEEN PARTICLLS
SUSROUTING RCALC

NMIZN~1

HIRY 7wq TIzledMl

T

[82]
e
3]
>

UO LLO JJ:IPleN
RETTedJe2 Y oSORTLINEIT e 2 Xt JdeZ a2 {Y IITe3 )Y EJJe3 ) Ixx2)
RIJJeITe2ITR{TIo S I 2}
CONTIRNUE

CONTINUE
RETURN

FRNAL SUBROUTINL TO COMPUTE FORCES

SUBRCUTINE FCALC

TAZA-L

5oo-1

D0 530 IIzleN

TF{ITeE0e2«0ReIIEQ.8IGC TO ESD

SUMX=G.0

SUMYZO.0

00 660 JJz=leN
IF(IT.EQaJJIGO TO EBD

SUMPI0.0

SUME=0.0

RIJZRITTI o d I LI+R{TIIvdI2 1}
PO GUD IZ2-1eTIA

SUMPTSUMP+ (RIITeJJel ) 2x{I2-1) )= {RIITIsJIJs2¥xx{A-{T2-11-2))
CONTINUE

DO 630 I2z1.18

SUMBZSUME+ (RETTeJde 122 (I2~1 132 {REITeJJe2 35 (B~(I2~1}~2})
CONTINUE

PRooRETTeddel s (A-T1}2REITedd 2o tA-2) 2RI J

SUMPZPaSUMP/PD

QRzREITI v el d 2 {B-T12R{IT ¢JJe2 e (B-1}1%xRLJ

SUMQ IxSUMB/QD

UMY S (SUMG=-SUMRPIAM (UL I# (X (T T3+ X ET1To 1) =X {JJeZ)~-X{JJdel) }FSUMX

JUHY (SUMQ~SUMP I sM{JJI = {Y (T T3+ YdTIol I~V IJJe3)-Y{JJel) I +SUNY
CONTINUE

FYXYLZIIDITM{IT Y =SUMX

FYCTIISMEITIY #(SURY-CAMMACTITI Y =G}

CONTYNULE

RETURN

INTERNAL OUYPUT SUBROUTINE
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SUBROUTINE CUTP
REAL JSCALX{LO 32 JSCALY {103 o KXXoKYY
DIMENSION XPLOLOOsYPLEIDOT e VAPLLZ0CY e VYPLEACU Y e AXLIMEZ)

IF{HSTP.NE . 0IG0 YO 720
T0D DO T1D LTIz=leN
XPLETII=XO(TIT)
YPLEZI =YR{IT)
VXPLOITIoVXD{ITY
VYPLEXITIZVYOLTY )
710 CONTINUE
GG TC 7Tu4cC
20 L0 T30 IizieN
HPLITII=X{XTe3}
YPLAIT =Y (I3}
VHXPLEITIZVXIITe 3
VYPLETITI=ZVY(IX o3}

T30 CONTINUE
740 IF(JPRINT.EG.CIGO TO 8&0C

IFLIPRTIVCD.800: 750
TEC IF(MOGENSTPIPRINTINE.D)GO TO 80O
GO TO 781
FEU PRINTY ZODIeMEL1}eMASS
GC T0 762
T61 PRINT Z00ZeNSTPeK
DO 251 IZIz1l+e¢N
KKECTITIzZO S (VHPLETI Fx#2+VYPL(IT )5 %2)
CONTINUE
00 780 IT=1eN
PRINT 3003« XPLLIII}sYPLIIT) e VXPLIII) e VYPLLTIT)eXKE(IT)
730 CONTINUE
800 IF(JPUNCH.EQ.0)GD YO 304
IF(IPNCHI2u0sC00¢820
820 IFIMODINSTPIPUNCHINEL0)30 TO 300
PUNCH REQUIRED THIS TIMESTEP
840 WRITZ{1e¢3CO4INSTP
WRTITECL« Z005(MUTIT o TT e}
DO 860 ITIzieN
HRITECI« IOC5IXPLATT Y e YPLITIT)
B6O CONTINUE
0C 880 ITzi:N
WRITELL v Z005IYXPL(TIT s VYPLITILY
880 CONTINUE
300 IF(JPLOT.EQ.OIRETURN
IF(IPLY)ISZ0:97C: 210
910 IFIMOD{NSTPsIPLOTI.NI-O)IRETURN
PLAT REQUIRED THIS TIMESTIP
COMPUTE MAXTIMUM COORDINATE RANGEZ FOR AXES SCALE
920 AXLIMEL1Y=YPL €T}
AXLIMI2IZXPLIL)

~ N
o Lt
N

N
#

001 FORMATI///7% INITIAL CONDITIONS®/5Xe®MASSES THIS CASE /10/s3510.3)
3002 FORMAT(// Y CONVERGCENCE FOR TIMESTEP ®¢IX3¢® IN ®e¢IZe¥ ITERATIONS®
3003 FORMATI(EDZ2%:,16

3008 FORMAT(IE)

I00% FORMATI2025,181%
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%)

CIPTDMINICAYLIMIT e XPLITD) o YPLETII

AXLIMCZYISDMAY I CAXLIN (2 e XP LTI e YPLCT L))
S30 CONTINUL

IF(Mo
CALL
KYY=B
GC 1O
KYY=D
UXXzZL
CALL
CALL
CALL
CALL

CALL

PLOYT POI

oy
551

270

pe <6
CALL
CELL
CONTZI
KPLOT
RETUR
END

DERKPLOTS2YNELOIE0 TO 30D
PAGE{B.5213.0="NORMALY ¢ *NONE )
e 15

“n
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€]
%3

oy e
&

(AR
o e

SCALEEAXLIM 2 SCALY ¢ "O0QUBLE®+ Qe [}
SCALELAXL TM2 2 JSCALY e “GOULLE 9D 0}
BASTISEHXA sHYYeJdSCALY ¢ Eclrles JSCALY ¢5.0:804 )
AVLINIJUSCALY+JSCALY v3o00s0e0sDe 0o "%5%7)
AXLINCISCAL Y s JSCAL X QD0 s Ce 0l Y83 %}

NTS

U ITIzleN

LOCATEIXPL (T o JSCALX »YPLUTITI o JSCALY e XP2YP o JDUM)
PLSYWBIXP ¢YFs 4o B 0hs Do FUP %)

NUE

SHKPLGT+L

N



