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DISCRETE SOLITARY WAVES

1. Introduction

Wave motion is of fundamental interest to mathematicians, phy-
sicists, and engineefs. Besides experimental methods, both analy-
tical and numerical mathematical techniques have been, and are
being, applied to the study of related linear and nonlinear problems
(see, e.g., refs. [1-5, 8~14] and the numerous additional references
contained therein).

In this paper we will develop a discrete numerical approach for
the study of a special class of solitary waves, that is, those which
can be generated by applying a whiplike motion to an elastic string.
Our strings will consist only of a finite number of particles, each of
whose motion is determined by a dynamical difference equation [4,5].
The primary advantage of such an approach is that we will be able to

solve both linear and nonlinear initial value problems with equal ease.

2. Discrete Strings

A discrete string is one which consists of a finite number of

ordered particles PO’ P, P P , each of mass m. It is assumed,

1 FpeeeeadPy

without loss of generality, that PO is fixed at (0,0) and Pn is fixed

at (2,0)., If X, denotes the x cooidinate of Pi’ then let xi =

.
iAx:;l", i=0,1,2,...,n.



For positive time step At, set t =kAt, k=0,1,2,..., and,

k

assuming that P, ,P P can move in the y=-direction only,

172" " ""n-1

let us denote the y coordinate, the velocity, and the acceleration

of Pi at t, by yi,k' Vi,k' and ai,k’ respectively. Let ]Ti—l,i,kl
be the tensile force between Pi—l and Pi at tk. For g> 0 and
a > 0, then, each ai K is defined by the dynamical difference equa~
tion
Y, =Y,
i+l,k “ik
e Mand e e
Yinl,k Vi
It | YikYielk
i-1,i,k 2 _ 2.1/2
[0 24ly; =iy )7
—avi,k -mg; i=1,2,3,...,n-1.
From (2.1), each Vvi K4l is then determined from the special formulas
[6]:
Vi,l = vi'0 + (AL) ai,O
(2.2)
\Y% =V + (At ('?la -"1“a ), k=1,2
i, k41 = i,k ) 2 i,k 27i,k-17r T et

while, with the aid of (2.2), each Y, K41 is determined from

At
@3 Yk T Ykt 2 Yk




From initial data yi 0 and vi i=1,2,...,n-1, then, the
’

.0’

motions of P., P.,...,P

17 Foe are determined recursively at each time

n-1
step by (2.1)-(2.3). The particular value of (2.2) with regard to con-
servation and stability is discussed in [6].

It only remains then to discuss the class of tension formulas to

be explored in the computer examples which follow. In this paper we

will limit attention to tensile forces of the particular form

ri i+l k 1Fi i+l ,k
— - VS5 TR Al K
(2.4) |Ti,i+l,kI - T0 [a E)( AX ) * E’( Ax > 1.

where 0 < €< 1, where TO is a reference tension, and where

2.1/2

2 _ ) ]
Vi, k" Yix .

(2.5) [(Ax)%+(

5,4,k T
Formula (2.4) is nonlinear if and only if € Z 0. If € = 0,

(2.1) takes the particular form

M3 = Ax Vien kT2, k P Yion 1) TV x T MY
which we will call Hooke's law. If yi K = 0 for i=1,2,...,n~1,

so that all particles are on the X-axis, then (2. 4) yields

ITi,iJrl,kI =Ty 1=0,1,2,...,n-1.



3. Examples.

In all the examples which are given now, the parameters n, m,
TO, a, g, and Ax are fixed as follows: n =100, m = .01, TO =10,
a=g=0, Ax = 0,02. Since the effects of viscosity and gravity have
been explored in some detail in [5], they are being neglected here in
order to facilitate our study of the nature of wave interaction. The
motions resulting from the choices ¢ = 0, 0.02, 0.1 will be called
linear, mildly nonlinear, and nonlinear, respectively. All particles
are fixed initially on the X-axis.

In order to generate a solitary wave, one need only prescribe

nonzero velocities to particles near either end of the string and zero

velocities to the remaining particles. In Figure 1 is shown the linear

motion of a solitary wave at t15, thO' t200' t300 and t400 for
At =0.00], Vl,O = 60, VZ,O = 50, v3,0 = 40, V4'O = 30, v5,0 = 20,
Ve o T 10 and Vio*“ 0, 7<1i<100. The development in time of

numerous trailing waves is accompanied by a relatively small decrease
in the amplitude of the solitary wave.

In Figure 2 is shown the linear motion of a solitary wave at t15,

Vv food

for At = 0.001, Vl,O: VZ’O: V3,O: 4,0

and t4

thO' t:200' tBOO’ 00

Ve o T 40, and Vio*© 0, 6<1i<100. The trailing waves in this

example are more erratic in nature than those shown in Figure 1 and

the amplitude of the solitary wave does, again, decrease moderately




with time.
In Figure 3 is shown the linear motion of a solitary wave at tlS’

and t for At=0.001, v

100’ f200° 300 400 =10, v. =20,

1,0 2,0
v3’0 = 30, v4'0 = 40, VS,O = 50, V6,0 = 60 and Vi,O =0, 7<1i<l100.
The trailing waves, again, are more erratic than those shown in Figure
1 while the solitary wave, this time, shows various qualijtative changes
as it moves. Most noticable are a widening of its base with time and
the development, and then the disappearance, of a small well in the
peak at thO'

Figure 4 shows the effect of changing ¢ from 0 to 0.02 while
leaving unchanged the other initial conditions prescribed for the motion
shown in Figure 2. The solid curve is that of the mildly nonlinear
motion, while the dotted curve is that of the linear motion, both at
t350. The resulting decrease in amplitude with the increase in ¢
followed also to other choices of ¢. Figure 5 shows at t350 this
same effect when ¢ is again changed from 0 to .02, while the
other initial conditions are those of the motion shown in Figure 1.
The solid curve corresponds to the mildly nonlinear motion, while the
dotted curve corresponds to linear motion.

To study the interaction of solitary waves, one need only generate

a wave at each end of the string and observe the resulting motion.

Figure 6 shows the results of the symmetric choices v1 0= v99 0= 60,
L4 14



\'s 50 = 40, v =V = 30, v =

4,0 95,0
=0, 7<i< 92. The

2,0 Y97,0° " V3,07 Vog,0

20 = 10, and v,

Vog, 0= " V6,07 V93,0 i,0

motion is mildly nonlinear, only the middle fifty particles are shown,

and the time step is At = 0.001. At t195 one sees the two solitary

waves begin to form the single wave shown at t At this

215° tZZO'

large wave begins to drop in amplitude and widen at the base. This

continues through t225 and at t230 one sees that the apex point

has dropped sufficiently and the base widened sufficiently to yield,
again, two solitary waves. However, after this interaction, in which
the original waves have passed through each other, the resulting
motions are no longer as uniform as before the interaction. As shown

and t the resulting solitary waves oscillate a

at t, 45 toss 300’

small amount in amplitude and in base width as they continue their
motion.

Figure 7 shows that the same qualitative results are valid as in
the above example when the wave on the right is replaced by a smaller
wave. This motion was generated, as above, merely by the change

of input parameters: v = 40 0 20 10,

99,0 1 Vg 07 300 Vgq 07 400 Vgg o 7

V95,O:v94,020.

In Figure 8 is shown the effect of changing ¢ to 0.1, changing

At to .0005, and leaving unchanged all other conditions for the

motion shown in Figure 7. At t350, then, one sees the larger wave
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approaching from the left and the smaller wave approaching from the
right. The trailing waves, however, are no longer insignificant due
to the relatively large decrease in amplitudes of both solitary waves.

At is shown the merger of the two solitary waves. A very com-

t380

plex behavior is shown at t in which the larger wave has emerged,

410

but the smaller one is still not discernable, due to interaction with the

relatively large trailing waves. However, at t one sees again

480

the reappearance of the smaller of the solitary waves, and the inter-
change is complete.

Last, in Figure 9 is shown the interaction of two solitary waves
which are generated like those shown in Figures 1 and 3, but whose
motions are nonlinear. The choice of initial velocities was v =
\% = 60 v =50, v =V =40, v =V = 30,

94,0 V2.0 V95,0 3,0~ V96,0 4,0~ V97,0

20 v =10, and v, . =0, 7<i<93. For

* V6,07 V99,0 i,0
At = 0.0005, Figure 9 shows at t

V5.0 V98,0 "

250 the standing waves approaching

each other. At t the interaction has begun and at t they have

340 380

formed a single wave. At t430 is shown their initial separation and
distortion immediately after the interaction. A deep well has formed

in the peak of the larger wave and, as they continue to separate, this
well decreases in depth while the motion of the trailing waves between

the solitary waves becomes very complex.

Finally, note that no example described in this section used more
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than five minutes of Univac 1108 running time, and that, for the
convenience of those who wish to verify the computations, the

FORTRAN program used is given in [7].
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Appendix

REAL MASS
GIMENSION X{510)+Y1510)oV{i510:2) sA4S51Cs2)eRES1CD,TL(510)

1001 FORMATI161IS}

1002 FORMATIL 2F10.50315)

1003 FORMAT(BFL10 51}

1004 FORMAT{1eFc.0)

2000 FORMAT(1H1)

2001 FORMATISX "Nz ?oT395Xo? TENSION FORMULAZ 29110/ 05Xe®MASST *oF5.30
15Xe°T0= °9oFl ol s5Xo *ALPEFAT °oFE o3r/05X0"CT ®oFl4 ol oSN *EPST "o Fl o290/
205X e?DTZ ®9FT70505Xe DA 7 oF 5o 3)

2002 FORMAT(® TIMESTcPz °915)

2003 FORMATU(10F1GC.8)

2004 FORMAT(® VELCCITIESZD ®obFE.01

C SPECIFY INPUT PARAMETERS
READ 1003eMASSeGorALPHASLXTO
5 READ 1001oNITENSIEND
PRINT 200D
NMIzN-1
LXSEzpX=w?
9 READ 1CCZeDToEPSeITEPSeKMAXoIPRINTY
0720742 -0
C SPECIFY IMITIAL POSITIONSOVELOCITIES ACCELERATIONS
15 D0 16 Iz1¢eN
X{I)=(I-1)=0X
Y433z o0
ViIe2)Z0e0
BUTe2 320 .0
10 CONTINUE
READ 1C0LeIVedVeWVZ
READ 100804 VITIs2) eI=29dV)
REAU 10048V o2 lelzuV20100)
K=G
ISTEP=1
C PRINT INITIAL CONDITIONSPARAMETERS
PRINT 2001 oNeITENsMASSoTO s ALPHAe GeEFSeDToLX
PRINT ZC0C04e(V{Ie2)el=20JV)}
PRINT zub4 vV 8IeZ)delzuVZel00])
PRINT 2CC2eK
PRINY ZOUZes ¢YtIdeIzZloN])
C UPDATE VELOCITIES ACCELERATIONS
3¢ KzoK1
DO 40 Iz=1eN
VEIoldzWile2)
AlToel)TAL{Ie2)
40 COMTINUEL
C COMPUTE TENSION BETWEEN NEIGHBORING PARTICLES
00 50 Iz1e.NM1
IP1zI+1
REII-SORTIDASOs(YEIPII~YET1K)222)
50 CONTINUE
60 TC(859110 )0 ITEN
93 OMEZ1.0-£PS
DO 180 X=1eNM3
ROX=R{I)/DX
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TCI)-TO®¢OME*REXSEPSeRDX222)

100 CONTINUE
G0 10 13D

110 DO 120 I-1.NM1
IP1=1+2
DYDX=ABS{{Y{IP1)-Y(I)I/DX)
TCIN=TO2(1 04DYDXSEPSsDYDX#22)

120 CONTINUE

COMPUTE ACCELERATION

130 DC 14C I=2.,NM1
IP1=z1+1
IM1=I-1
ACIoZ)=TUINe Y 4IPII-YUIDI/REID-TQIMEI=EYCII-YEIPYI DI/R(INI)I~ALPEAS

1V {Ie2)-MAS52G

AlIo2)=A0I1e2)/MASS

140 CONTINUE

COMPUTE VELCCITIESoPOSITIONSsCURRENT TIMESTEF

GO TO(15Ce160) ¢ ISTEP

150 DO 158 IzzshM1
VIIo2)=VIIo1)40T3A(I2)

155 CONTINUE
ISTEP=?
€0 10 170

160 DO 185 IzzoNM1
VETIe2)zV (Il d9LT2¢1 58AlIn2)-Do5%A0T01)1}

165 CONTINUE

170 00 175 1=2«NM1
YOIV=Y(I)+DT28(VILIo2)2eVdIol))

175 CONTINUE
IF(MOD(K ¢IPRINT) MELD0)GO YO 180

PRINT
PRINT 2G02ZoK
PRINT 2003+¢Y¢I3s I=IeN)

180 IF{K.LT.KMAX)GO 10O 39
IF(IV.EQ.DJEC TO 15
IFUITEPS.EQ.0)GU 70 8
IF(IENC.EQ .6 1C0 T0 5
syop
END
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