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DISCRETE BARS, CONDUCTIVE HEAT TRANSFER,
AND ELASTICITY

1. Introduction

Though the study of bars, or rods, is basic in structural analysis,
heat transfer theory, and elasticity theory (see, e.qg., refs. [1,3,4,
9-14] and the numerous references contained therein), most of the re~
lated models have been continuous and/or linear in nature. The intent
of the present paper is to initiate a general computer oriented model
which is discrete and nonlinear. For simplicity only, we will restrict
attention to two dimensions, and, for convenience, we will describe

an arithmetic, energy conserving n~body interaction model first.

2. Discrete n=Body Interaction

For positive time step At, let t =kAt, k=0,1,2,... . Attime
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are assumed to be related by the typical, discrete formulas [5,6]:
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If Fi,k (i,k,x’Fi,k,y) is the force acting on Pi at time tk' hen

force and acceleration are assumed to be related by the discrete dy-

namical equation
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In particular, we will choose ? to have a component of attraction

i,k
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o and a component of repulsion which behaves

which behaves like

like <4 where p,q,0 and B are non-negative parameters with
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a>2, B>2, and where r is the distance between a given pair of

particles. For this purpose, let r,,

be the distance between P,
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= Then ?i the force exerted on Pi by the remaining

particles, is defined by
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The particular value of (2.4) lies in the observation that if one

defines system work W from tO to tN by
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system kinetic energy Kk at time tk by
n
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and system potential energy Vk at time tk by
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then, as in [5] and [6],

KN+VN:KO+VO, N=0,l,2,... ,

which is the classical law of conservation of energy.

3. __The Solid State Building Block

In modeling a solid, we will attempt to simulate contemporary
physical thought [2,8], in which molecules and atoms exhibit small
vibrations within the solid. For this purpose, consider first a system
of only two particles, Pl and Pz, of equal mass, which interact
according to (2.4). Assume that the force between the particles is

zero. Then, from (2.4),
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But, if there is zero force between the two particles, then rij K =
7

rij,k+l' so set rij,k = rij,k+1 =r in (3. 1) to vield
a-2 p-2
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Thus, for B> a,

- pr %a-1) +ar Pe-1) = 0,

or, finally,

(3.3) r

Consider next a system of only three particles, P1 . P2 and P3, of
equal masses, whose mutual distances apart are given by (3.3). Since
no force acts between any two of the particles, it follows that there is
no force acting upon any one of the three. Such a configuration of

particles is therefore exceptionally stable and will be called a triangular

building block.




When considering a solid we will decompose it into triangular
building blocks. In this fashion, the force on any particular particle
due to its nearby neighbors will be zero. By an appropriate choice of
parameters, the force on any particle due to more distant particles will
be made small, thus achieving the small vibrations desired.

To illustrate, let the six particles Pl’ PZ’ P3, P4, PS’ P6 be
located at the vertices of the four triangular building blocks of the
triangular region OAB, shown in Figure 3.1. Assume that mi_=. 1,

p=g=1, a=7, and B=10, sothat r= 3 1.5 The particles' initial

positions are, then,

\2 B
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Py Pq
p
(TAL 5 P > X
\6’ U/ \A/

Figure 3.1



P : (1.14471, 1.98270)
P_: (0.57236, 0.99135)
P_: (1.71707, 0.99135)
P: (0, 0)

P_: (1.14471, 0)

P,: (2.28943, 0) .

Assign to each particle a _0+ initial velocity. Finally, let particles
P4 and P{3 be fixed and allow the remaining particles to move under
force law (2.4). For At = 0.05 and for 2500 time steps, the motions

of P, P

10 Py P3 and P5 were generated from (2.1)~(2.4). P, and P

1 5
exhibited small oscillations inthe vertical directly only, while P2 and
P_ exhibited small two dimensional oscillations. The maximum dis-

3

tance, for example, that P. moved from its initial position was

1
approximately 0.02, and this occurred at approximately every one

hundred time steps. The running time on the UNIVAC 1108 was 4 minutes.
The basic computer program used, which is also typical of all examples
which follow, was that of Jones [7].

Note that the magnitudes of the oscillations described above can be

controlled completely by the appropriate choices of p, g, a, and B.

4., Flow of Heat in a Bar

Let us now develop the basic concepts of discrete conductive heat




transfer by concentrating on the prototype problem of heat flow in a
bar. Physically, the problem is formulated as follows. Let the region
bounded by rectangle O0ABC, as shown in Figure 3.1, represent a bar.
Let |OA| =a, |0C| =c. A section of the boundary of the bar is
heated. The problem is to describe the flow of heat through the bar.

Our discrete approach to the problem proceeds as follows. First,
subdivide the given region into triangular building blocks, one such
possible subdivision of which is shown in Figure 3.2 for the parameter
choices mi =1, p=g=1,a=7,p=10, a~1l1, c~ 2. Note that
from (3.3), r~1.1447142426.

Now, by heating a section of the boundary of the bar, we will

mean increasing the velocity, and hence the potential energy, of some

of the particles whose centers are on OABC. By the temperature Ti K
of particle Pi at time tk’ we will mean the following. Iet M be a

fixed positive integer and let Ki K be the kinetic energy of Pi at tk.
i

Then Ti K is defined by
k
1
T, = = F K, .,
bk Moy M

which is, of course, the arithmetic mean of Pi's kinetic energies at
M consecutive time steps. By the flow of heat through the bar we will
mean the transfer to other particles of the bar of the kinetic energy

added at the boundary. Finally, to follow the flow of heat through the



bar one need only follow the motion of each particle and, at each time
step, record its temperature.

To illustrate, consider the bar shown in Figure 3.2 with the para-
meter choices given above, that is, mi zl,p=qgq=1,a=17, B=10,

a~1ll, c~2. Assume that a strong heat source is placed above P

6’
-z /2
and then removed, in such a fashion that _\75 0 = ( \—é——- . ‘ZZ—),
v 0, -1), v = (A@ /2 ), while all other initial velocities

Ve,0 " Va0 7 T2

are _6 With regard to temperature calculation, assume that the

velocities of all particles prior to t. were —6 As regards the choice

0

of M, which is a difficult choice to make, one would usually wish to
choose it relatively large, since the use of an average is, generally,
more meaningful when the number of quantities being averaged is
relatively large. We shall arbitrarily set M = 20. From the resulting
calculations with At = 0,025, Figures 3.3 - 3.7 show the constant

temperature contours T = 0.1, 0.06, 0.025, 0.002 at t5, th’ t15,

tZO and t?5, respectively. The resulting wave motion is clear and

Figure 3.7 exhibits wave reflection. It is interesting, also, to note

increases, until t at which time it is a

that the temperature at p 20"

6

maximum, and only then does it proceed to decrease. Figures 3.8 -
3.12 show the constant kinetic energy contours K = 0.1, 0.05, 0.01,

0.001 at each of the times t , respectively, and

5° th’ t15' tZO' t25

indicate the magnitude of the particle velocities at these time steps.




Other heat transfer concepts can be defined now in the same
spirit as above, as follows. A side of the bar is insulated means
that the bar particles cannot transfer energy across this side of the
bar to particles outside the bar, while melting is the result of adding
a sufficient quantity of heat so that various particle velocities attain

sufficient magnitude so as to break the bonding effect of (2.4).
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5, QOscillation of an Elastic Bar

Next, let us develop the basic concepts of discrete elasticity by
concentrating on the vibration of an elastic bar. The problem is formu-
lated physically as follows. Let the region bounded by rectangle 0ABC,
as shown in Figure 3.1, represent a bar which can be deformed, and
which, after deformation, tends to return to its original shape. The
problem is to describe the motion of such a bar after the external force,
which has deformed the bar, is removed. Equivalently, the problem is
to describe the motion of an elastic bar after release from a position of
tension.

Qur discrete approach proceeds as follows. The given region is
first subdivided into triangular building blocks. Then, deformation re-
sults in the compression of certain particles and the stretching apart
of others. Release from a position of deformation, or tension, results,
by (2.4), in repulsion between each pair of particles which have been
compressed and attraction between each pair which have been stretched,
the net effect being the motion of the bar.

As a particular example, let m, =1, a=17,PB =10, p=425, g = 1000,
and At = .025. From (3.3), r=1.52254. Consider, for variety, the

thirty particle bar which results by deleting P and P3 from the

11 2

configuration of Figure 3.2. The particles P1 , P12’ and PZZ' whose

respective coordinates are (0, 2.63711), (.76127, 1.31855), and (0,0),
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are to be held fixed throughout. In order to obtain an initial position

of tension like that shown in Figure 4.1a, first set P13, P14, P15,

P and P21 at (2.28357, 1.29198), (3.80588,

P16' P17' 187 P19' PZO

1.26541), (5.32632, 1.18573), (6.84052, 1.02658), (8.33992, .76219),
(9.81058, .36813), (11.23199, -.17750), (12.57631, -.89228), and

(13.80807, -1.78721), respectively. Any two consecutive points Pk’

P k=13,14,...,20, are positioned r units apart. The points

k417

P, -P and P23 - P31 are then positioned as follows: and

2 10 Pk-—lO

i i i : for
Pk+l1 are the two points which are r units from both Pk and Pk+1

each of k=12,13,...,20. Each consecutive pair of points in the

P2 - P],O set is then separated by a distance greater than r, while

each consecutive pair of points in the P__ - P_. set is separated by

23 31

a distance less than r. Thus, the points ]P2 - P10 are in a stretched

position, while the points PZ% - P are compressed.

31
From the initial position of tension shown in Figure 4.1a, the
oscillatory motion of the bar is determined from (2.1)-(2.4) with all
initial velocities set as -6 The upward swing of the bar was plotted
automatically at every ten time steps and is shown in Figure 4.la-w
from ‘to to tZZO' It is of interest to note that as the bar moves, each

row of particles exhibits wave oscillation and reflection.
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Fig. 4.1 continued
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Figc 4.1 cont,
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Pig. 4.1 cont,
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Fig. 4.1 completed.
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6. Remarks

A limited number of other examples were run, and these indicated
that square building blocks were less stable than triangular ones, while
the choices o =2, =5 and a=7, B=13 were less viable than
a =7, B=10. Generally speaking, any choice p> g resulted in in-
creased oscillations so that, for example, for the elastic bar model of
Section 4, the choice p =3, g =1 required a refinement of time step
to At = 10-3 in order to study the resulting oscillations. The major
handicap in all the computer examples run was the lack of adequate
funding to enable the study of models with large numbers of particles.

Finally, it should be noted that the writer feels that varying «a,

B, p and g in computer models with large numbers of particles will en-
able the researcher to produce viable computer models and to derive

insight into the actual parameter values for various physical solids.
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APPENDIX: FORTRAN Program for Discrete Conductive Heat Transfer
by S. T. Jones

FURTR AN FROCEAMY FUR DTSCKETE CONDUCTIVE HFAT TRANSFFE
TNGEY TG FRUGREM VARTABLFS
& = LLFHA

ANGLFUT) = ANGLF (IN NFGREFSY 0OF TNITTAL VFLOCITY VECTOR WITH
RFSFECT Tu FOSTITIVF X-AXIS

B = $FETA

GULETY = OTCSTANCF GF PARTICLE T FRCOM ITS INTTIAL POSTTION

DNMAY = MAXTMUM ALLUWASLE ATSTANCE OF ANY PARTICLFE FROM ITS INITTAL
PULSTTICH

DV = TIME TNCREMENT
FFS = CONVFREFNCE CRITERION FOR NFWTON®S MFTHOOD
Fx(I) = FQORCF COMPONENT ON PARTICLF I IN X-DIRECTTON
FY(T}) = FUKCF CUMFUNENT ON PARTICLF I IN VY-DIRECTICON
TAXTSOT) = 8 TF LFFTMOST PARTICLE TN ROW T TS ON Y-AXIS
T #le-1 TIF LEFIMOST PARTICLE TO BF SHIFTED RIGHT OR LEFT,
RESFECTTIVELY

PR INT FREINT-STFF INCHEMFENT
LFUNCH PUNCH-STFF INCREMENT
TROWIET) = NUMABFR OF FARTICLES TN ROW T

IFND = 18 TF ANOTHER DATA CASFE FOLLOWS
= 1 IF FiD UF RUN
TMAY = Max TMUM NUMAFK OF TTFRATIONS PER TIMESTFF FOR NFWTONG®S
MFTHOD

[START = it IF NFW DaTA CASFE
= 1 TF RFSTART
IVFLOTY = NUMBRFR CF FarTICLF TO BF GIVEN AN INITIAL VFLOCITY
PFUNCH = & TF NO FPUNCH REBUIRENs PUNCH OTHFERUISF
METY = MASS UF FARTICLFE T
N = NUMBEZR OF PARTTICLFS IN SYSTFHM
NAX TS = NUMBFR OF ROW ON X -AXTS
NFIx TUTAL NUMSERK OF PARTTICLFS T0 BE FIXD

N BX = MAY TMUM NUMBER CF TIMFSTFPS THTS DATA CASE
NFUTY = NUMBFR OF FARTICLF TO BF FTIXED

NROA T NUMBFR COF RUWS IN SYST#M
NSTF = TIMFSTFFP WUMBER
NVFL = TOTAL WUMBF R OF PARTICLFS 1O B8F GIVEN AN TINITIAL VFLOCITY

UMFGA = SUPCFSSIVF OQVFR-RFLAXATION FACTYOR FOR NEWTON®S METHOO

F o ATTRACTION FARAME TFR

G = REFFPULSTON PARAMFTFR

KlTewel)d = DTSTANCF BFTHEEN PARTICLES T AND J AT PREVIJUS TTIMESTEPD
RETeds?d = DISTANCF BFTHEFN PARTICLFS T AND J AT CURRENT TTIMESTFF
SKFITY = SUM OF KTNFTIC ENFRGTFS FOR PARTICLE T OVFR ALL TIMESTFPRS
TEMFUT) = MFASUKE UF TFMPERATURE OF PARTICLF T AT CURRFNT TIMESTEP
VELIIL) = MAGNTTUDY OF TNITIAL VFLOCTITY VECTOR

VXETel) = X-COMFUNFENT OF VFLOCTTY OF PARTTCLF Te¢ PREVIOUS TIMESTFEP
Ux{TsZ) = SAMF AS ABOVYF s CURRENT TTMESTFP, PREYTOUS ITFRATINN
VX({Ts 3) = SAMF AS AHOVFe CURRENT TIMFSTFPs CURRENT ITEFRATION
VXOULY = X-COMEQNFNT OF TINITTAL VELOCTTYs PARTICLE I

VY{Te 1) - Y-COMFONFNT OF VWFLOCTTY OF PARTICLF I.
vY{T,z2 ) = SAMF NEFTNILITIONS
VY(Te 2y = AS VX ({TIedle ABOVE

VYOl = Y-CUuMFONENT 0OF INITIAL VELOCTTYs FARTICLFE T
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A2

x(CIel) = ¥-COMFUNFNT OF POSITION DOF PARTICLF T
x(Tez) = SAMF DEFTNITTIONS

4T3 = 4SS X (Ied)

XL(T) = X=-TOMPUNFNT GF INTTIAL FPOSTTTON., PARTICLFE T
XKELT) = KINFTIC FNFRGY OF PARTTICLFE [ AT FACH TIMESTEP
YITel) = Y-CUMFONFNT OF FOSTTTON OF PARTIFLF I

Y{Tez) = SAMF DEFTNITTONS

Y(Te2) = A5 V(T ed)

YLOT) = v-COMFOUNFENT OF INITIAL POSITIONs PARTICLFE T

IMPLICTT DOURLF FPRFCISION(A-HeMsD=2)
DIMFNSTON XOCI0W o YUOIOU s VXU CIUD o VYIILIND) o X100 )eY (1000 3) e
VX ETO0 2T e VY CTOU 2V FX CLION Yo FY (LU s DDCTIOUY s XKECLOD ) o NP LLIOIT D) »
cR{4S oS w2 oM 1011
CIMENSTUN TRUW LS by TAXTSHUE )y TVFLU(E o VFL(E) c ANGLF (T}
DIMENSTON SHKFUSUY o TEMPLED)
161l FORMATLEDIG o)
102 FORMATI16TZ)
1L07 FORMATI WD IO alie T8
1y FORMATUTIE 42010.0)
ZULG FORMATCOLIHTLY
TIHET FORMATUIEX s "N s S X o "OMFCGA o8 X o " FEPSY g BN g " IMAX o/ T 7eF10eM49E8:1019)
ZLUEZ FORMAT (/o BX e "A o BX s "F o BX o "P s B8Xp "R 9 TX o " DT %0/ s4FQ,29FE0 43 )
ZNUT FORMAT(® TIMFSTEFP "9fBXe?M® gOXs "X gl UXe 'Y s 123X e DN?o13Xs"XKF' 9120
1°SKE® o 13X s "TFMF®s/ eZ2X%o 16}
Zutly FORMATILOXeF S s4F 15,10)
zulls FOGRMATC S NOCN-CONVFRGENCE AFTFR ', T2:°% TTFRATIONS FOR TTIMFSTEPRPZ ¢,
1Tee? NTZ "4F%,.7 )
ZLLE FORMATU® OSCILLATTION GEYOND MAXIMUM ALLOWABLF LIMTT OF 'sFEol)
€11 FURMATU(:DZE,.18)
FRINT Z00€
NSTFZO
RFED TULUT e OMFCRe FFSePMAR s DT
READ 1U0Z e NMAX s IMAX s TPRINT«TPUNCH o JPUNCHITSTART
RFAD T0OUZeNs NRUAoNFINNAXTSoNVFEL
KFAD 106 30As3eFeae TEND
FRINT ZUULeNosUMEGAe FFS e IM AN
DC z0h T=Z1 4N
XEE(TI)Y-[leN
INCT Iz .0
SKELTYou
TEFMECTIZOL0
20 CUNT INUFE
TFOISTARTE GaliIBU TO 1
FESTART
RFAD 10112 «NSTF
READ ZE0le IXLi(T e YliCIdoIZleN)
READ 7801 tVXCLIT) o VYO(TheT 1o}
KREAD ZULe(SKE(IIsIZ1oN)
GO 70 ¢
NFfu CASE-~-CALCULATE FGSTTIONS
1 RASEXZ{g*IR-1)/tF*{A-1)))ex{], ,11/(8B=-21))
BASEYZSURT(BASEXY s27=({|o5%RASFX )5 x7)
REAL TUHZe (IROUWATI o IARTISEI) e [T s NRQU)
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7Lzl
U=
NGO 3 Tl eNRGH
TUZTIUs TROW T
XSHIF TS «TAXTSIT)»BASE Y
USHIFTzNAXY IS =T
NO z J=ILTY
Uyl d-TLI=BASEX ¢ XS HIFT
YOLJ)IZUSHTIFT«BASF Y
Z CONTINUE
TezIutl
2 CONTINUF
¢ NEFWw CASF--CALCULATE VUFLOCITIES
T DG 4% T=Z1lein
VXUCI Iz 1)
VYL T Zie Ml
4 CONTINUF
IFINVELoFE LI} GU TO E
READ 1IN0 e LIVELUT e VEL{T IeANGLE(T)Y v I-1eNVFL)
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© CONTINUF
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T CONTINUE
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70 CONTINUF
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71 CONTINUE
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77 CONTINUF
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74 CONTINUE
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EC CONT INUE
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8¢ CONTINUE
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on CONTINUFE
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100 CONTINUF
STFPZNSTF
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SKFE(TTIZSKFLTINsXKF(TT)
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151 CONTINUF
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1£7 CONTINUE
WRTTF(L 92501 )USKEF(TI I sTIZ1 9N
107 CALL CUTF
10T TFINSTP.F . NMAXIGO TO 110
GO TO0 @&
1N FRTINT ZiflZeNMAX
CatL OUTP
1180 TFUTEND.FQ.DIG0 TUu 10
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N0 CONTINUE
RETURN
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RETURN
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