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THE PERIHELION OF MERCURY
by

Ramon E. Moore and Donald Greenspan

Abstract. Local finite Taylor series expansion is shown to be an
efficient numerical method for the study of the n-body problem.

Application is made to the accurate determination of the motion of
the perihelion of Mercury according to Newtonian celestial mech~-

anics.

1. Introduction.

Let _)_c__i (i=1,2,...,n) be the respective positions in three-
dimensional EBuclidean space of n bodies Pi with respective
masses mi. Let v, be the velocity vector associated with Pi'

Thus dgc_i/dt = V.. Newton's law of gravitation states that

n
Gm,
dv,/dt = - 3 j (2, -x), (1=1,2,00.,0) (1.1)
1 . 1 ]
j=1 r3
j#1 ij
where I = H_}gl - éj | . G is the gravitational constant, and rij

is assumed to be non-zero.



Recursion formulas will be developed for the determination of
Taylor series coefficients to be used in the numerical solution of
the system of equations (1.1). A procedure will be given for the
automatic selection of variable step size to be used in successive
finite (truncated) Taylor series expansions and we will discuss the
choice of order to be used. The resulting methods are applied to a
detailed study of the motion of the perihelion of the planet Mercury

over a 100 year period (the Julian century 1850,0~1950.0).

2. Recursion Formulas for Taylor Coefficients.
For scalar and vector valued functions of time we define the

notation

Notice that (u) . = u(t)., Thus (u)
of u at t.
The following general recursion formulas are required (see:

R. E. Moore, "Interval Analysis", Prentice-Hall, N.J., 1966, chap. 11)*,

*The formula (11-14) on p. 114 of reference should read:

-1 :
a 1 _i(a+1) a



(ot v), = (), + (),
= W = )
(uv), = qio (u)q(V)k_q (2.1)
@h, =+ E; @- A W) ) who, e s

a real constant)
(W), = k), (=1,2,..0) .

We will use the notation (u,v) for the inner product

(u,v) = ulv1 + uzv2 + u3v3 .

Using (2.1) we can derive the following recursion formulas

for the Taylor coefficients of _>gi satisfying (l.1).

1
®) = W

k-1
- ~ 9y, - -
ij | a=0
0, if k=1
k1 q
-l = - i 2.2
(1= ij)q(rij)k_q, if k>1 (2.2)
q=1
k-1
— 1 2 —_
(r3) =5 (-3 +-f“)(ri.)k_ (ri.3)
ij ij g=0 ij'k=qij 'q
;B k-1 -3
(w), = -+ = Gm( 5 (%) - (x) )@ __)
i'k k,j:1 ]q:O i'g g’ i Tk-1-q
i#1
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Using (2. 2) we fill out an array of values beginning with

initial conditions for X !i and calculate, for a given value of k,

-3

the quantities: (g{_i)k, (rij)k’ (rij )k’ (_\11)k from stored values for all

previous values of k beginning with k = 0, TFor the quantities

(r énd (rij )k we need only use (2.2) when i< j. We can fill

ij)k

out the remainder of the array by using the relations

e = Iyl
-3 -3
(rji )k (rij )k .
. -3
The quantities (rii)k and (rii )k do not appear.

Using the coefficients obtained in this way, we have the

following Kt order (finite) Taylor series expansions

K

x(t+h) = 2 (x) b
q=0 ¢
K q

Ziﬁ~kh) = X (zg h (2.3)
q=0 ¢
K q

%Jt+h)= % (r..) h™ .

j g=0 H'd

Of course, we can find r;].S(t+b) from

-3 -3
%j@+h): uﬁﬁ+hﬂ .

The coefficients and series (2.3) are evaluated again at t+h



to carry the solution further, The method proceeds in this way in a

step~by-step fashion,

3. Step Size and Order,

Numerous theoretical and experimental studies™ have shown
that, in general, an approximately "optimal” choice for successive
step sizes ht in successive applications of a step~by=-step gth

order method such as that given by (2.3) is as follows

where Nt is some functional representing an estimate of the coeffi-
cient of a leading error term of interest and ho is the initial step
size., This has the effect of maintaining nearly constant "local
truncation error, "

In "Interval Analysis," (chap. 12) it is shown that an efficient
choice for the order K in using kth order Taylor series to achieve

approximately d decimal digit accuracy locally is K = d.

*See R, E. Moore: "Interval Analysis, " pp. 101-102; also
Jo W. Daniel & R. E. Moore: "Computation & Theory in Ordinary
Differential Equations", W. H. Freeman & Co., S.F., 1970, chap. 9.



Thus the most efficient order K for maximum possible
accuracy in single-precision on the UNIVAC 1108 (8 decimal digits)
is about K = 8. In double-precision on the UNIVAC 1108 (18 decimal
digits) the most efficient choice of K for maximum possible accuracy
is about K = 18, For p < 18 decimal digit accuracy (locally; that
is, at each step) we can take (in double precision computation on

the UNIVAC 1108)

1
hoo- s (3.1)

t 10N, (x;)

in order to maintain a local truncation error of about Nt(gg_) hf: 10_p
in the term §i(t). We can select, in this way, one of the n

bodies in (1.1) for our particular attention. For Nt(gc_i), we can

use

N (x

(&)= eyl - (3.2)

2y
After a number of trial calculations of the perihelion motion
of Mercury using K= 8, K=12, and K = 18 we settled upon the
use of double precision (18 decimals) and K = 12 as a reasonable
compromise between speed and accuracy for the main calculations

to be reported on in the next section.



4, The Perihelion of Murcury

In 1947, G. M. Clemence* announced agreement of a predic-
tion of Einstein's general theory of relativity concerning the motion
of the perihelion of Mercury with long, existing discrepancies be-
tween observation and calculations based on Newtonian celestial
mechanics.

We have undertaken carefully to verify or repudiate that claim
by carrying out highly accurate computations based on a Newtonian model of
motions of the solar system, using the exceptional power of modern
computers., Indeed, the method we have used, based on the formulas
presented in the previous sections, is particularly well suited for
stored program computers, but hardly ideal for hand computation or
desk computers, since it requires the intermediate storage of a rather
large amount of data and the use of a fairly complicated set of formulas.
The probject to be described now was carried out using FORTRAN
programming for the UNIVAC 1108 at the University of Wisconsin,

According to Ghebotarev’{ accelerations relative to the center
of the galaxy on objects in the solar system due to the motion of

the solar system about the center of the galaxy amount to about 2 10-—9

*G. M. Clemence, "The Relativity Effect in Planetary Motions, "
Reviews of Modern Physics, Vol. 19, No. 4, Oct, 1947, pp. 361-64,

F{G. A, Chebotarev, "Analytical and Numerical Methods of
Celestial Mechanics," Elsevier, N. Y., 1967, p. 28,



in the units we will use: A. U., "Astronomical Unit" for a unit of

distance, and 10 days (= —3;—(—)-1;2—5 Julian years) for a unit of time,
As will be seen from comparison with numbers to follow, we can
neglect these accelerations and consider the solar system to be in
an "inertial frame of reference" with its center of mass at the origin,

For our first computation, we started at 1951.0 and ran
backwards in time to 1850,0. As can be seen from (1,1) the solu-
tions are invariant with respect to a simultaneous change in sign
of t and Xi'

In what follows we will take X, Y, Z to be an inertial co-
ordinate system with origin at the center of mass of the "solar
system" (which we will take to include only: the sun, Mercury,
Venus, Earth, and Jupiter since these are the major influences on
the perihelion motion of Mercury). The X-axis will point toward
the vernal equinox of 1951.0. The X,Y plane will be parallel to
the plane of the Earth's orbit around the sun at 1951.0. The Z-axis
will be normal to the X,Y plane to make X, Y, Z a "right-handed"
coordinate system. The equations of motion (1.1) are assumed to
hold in the X, Y, Z coordinate system.,

In a second, "heliocentric", x, v, 2z coordinate system -

with the sun at the origin and with the axes parallel to the corre-

sponding axes in the X, Y, Z system - the Earth is initially (at



1951.0) moving in the x,y plane. Again the x axis is pointed to-
ward the vernal equinox of 1951,0. 1In this coordinate system the

orbital elements of the (relevant) planets are given by Krogdahl™ as

PLANET a e i Q w T

Mercury  0.387 0,2056 7°90'14"  47°45'  28°957" 1950,993
Venus 0.723 0,0068 3023'39" 76%14'  54%39" 1950,700
Earth 1.000 0,0167 0° 0° 120°6' 1951.008

Jupiter 5.203 0, 0484 1°18'21" 99957"  273935' 1951.891

The "elements" given are: a, the semi-major axis; e, the
eccentricity; i, the inclination of the planets orbital plane to the
"ecliptic" (Earth's orbital plane); Q, the longitude of the ascending
node; w, the longitude (in the planet's orbital plane from the as-
cending node) of the perihelion point; and <, the time of perihelion
passage,

A set of transformations from the orbital elements to the rec-
tangular heliocentric coordinates x,y,z are given (and were pro-

£

grammed) as follows” (the subscript i denotes the planet: i=1,

*W. S. Krogdahl, "The Astronomical Universe", The Mac
Millan Co., N, Y., 1952, p. 95.

7{See, €.9., A. E. Roy, "The Foundations of Astrodynamics",
MacMillan, N.Y., 1965, p. 106,
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sun; i =2, Mercury; i = 3, Venus; i = 4, Earth; i = 5, Jupiter -~ to

avoid confusion, we will denote "inclination* by "I").

2,3,4,5, we have

n, = (Gm
i

1

+ Gm,
i

)1/2 ai-s/z

E,-e,sinE, =n(t - T1,)
i i i i i

b4

n

Y/

1,1

1,1

1,1

2,1

m

n

2,1

2,1

b.

1

= cos) cos W - sti sin w, cos I,
i i . i i

= sin 2, cos ®, + cos &, sin W, cos I,
i i i i i

= sin ®, sin I,
i i

==cos , sin ®, - sin &, cos ®, cos I,
i i i i i

== s5in &, sin ®, + cos . cos ®, cos I.
i i i i i

= cos ®, sin I,
i i

i

a, n, .
i1,
2
i

1,1

1,1

cosE, +b m
i i

cos E, +b,n
i i

(x, + yi + ziz)l/Z

2

= a,(l - ei‘z)l/2

,cos E, ~-a, s
i i i

14
2,1

2,1

.cos E, -a, m
i i i

., cos E,-a, n
i i i

cos E, +b, 4, ., sin E,
i i~2,i i

sin E, ~a,e,m
i i’i

sin E, —a,e,. n
i i

1,1

14

1,1

1,1

-a,e, b, .
i7i71,1

1,1

il,i

sin E,)
i

sin E,)
i

sin E,)
i

For 1=

(4. 1)
(4. 2)
(4. 3)
(4. 4)
(4. 5)
(4. 6)
(4. 7)
(4. 8)
(4.9)
(4.10)
(4,11)
(4.12)

(4.13)

(4.14)

(4.15)

(4.16)



11

A few comments are in order concerning the transformation
formulas. Equations (4.1) through (4.9) introduce auxiliary variables.,
Equation (4. 2) defines Ei’ the "eccentric anomaly" of planet i,
implicitly. We use "Newton's method" to find Ei; putting E? = ni(t—fri)
where t =1951.0 (after converting time to units of 10 days) we

iterated the formula

(p) . o(P)
. - . - t=T,
E(pH) i E(p) ) Ei ei sin Ei ni( ’rl)
i i 1 - e, cos Egp)
i i
p=0,1,2,... , until® |£€p+1)— E§”|< 107%, and then took
Eipﬂ) for Ei' The resulting heliocentric initial conditions were

(from computer print-out).

i X, v, Z

i i i
2 -.14271822.10 0 30803245 . 26742133,10 ©
3 . 43322016 -, 58400374 ~.33198056.10 !
4 ~.15591831 .97088167 0
5 .47831822.100  -.13874603.10' -.10192802
" giving [EPP _g |~ 10712,
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.
[
.

t Xl yi Zl
-2 -1
2 ~.33735568 -.20254059,10 .30511267.10
3 .16112397 .11982741 ~.75903491.10 %
4 -.17267800 ~.27882252.10 " 0
-1 -1 -3
5 .20172708.10 .76103702.10 -.75267269.10

The gravitational constant was combined with the masses of
the planets and the following values were used (in accordance with

Clemence, Rev. Mod. Phys., 1947, p. 363.)

Sun: Gm, = .29591220.107" (A.U.>/(10 days)®)
Mercury:  Gm, = .4931870,10™°
Venus: Gm, = . 7252750.107

Earth: Gm, = . 898364,10 '

Tupiter: Gm, = .2825234,10 %

To find the X, Y, Z coordinates with respect to the center

of mass of the solar system, the following transformations are used

5
GM = } Gmnm,
. 1
i=1
. 5
§c = 6_1\7[ 2 Gml i
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° 1 2
£ T &M .Z Gm, X,

i=2
X, = X, =X
-1 1 -C

(13112131415)

V, = x, -3
1 1 -C

Let X, = (X,,Y,,Z,) and V, = (VX,,VY,,VZ.).
i 1T i IR R |

The initial conditions in the inertial

system which result are as follows:

planet

sun
Mercury
Venus
Earth

Jupiter

planet
sun
Mercury
Venus
Earth

Jupiter

Pt

—

(at t = 1951,0)

X, Y.
1 1
-2 -2
-.45629668,10 .13218465.10
~.18834788.10 ! .30935429
. 42865720 -.58268189
~.16048128 .97220352
.47786192.10°  -.13861385.10"
VX, VY,
1 1
-4 -4
.19056125.10 .72799117.10
.33737474 .20982050,10 2
-.16110492 ~.11975461
.17269706 .27955051.10 1

1

-.20153652,10 = -.76030902.10

1

(X,Y,Z2) coordinate

Z,
i

.97299666.10
.26839433,10
-.33100756.10
.97299666.10

-.10183072

VZ.

1
-,73143349,10
-.30511998,10

.75896176.10
-.73143349,10

.75194126.10

4

1

1

4

6

1

2

6

3



14

The signs of the initial velocities were changed, replacing
_\[i by —Mi (i=1,2,3,4,5) and dt was replaced by =-dt. The
system (1.1) then was solved, using the method described in
Sections 2 and 3, for the period from 1951.0 back to 1850.0. Numerical
results are given in the section following this,
In order to study the motion of the perihelion of Mercury

during the century in question, the following items were computed

and printed for each of 419 orbits of Mercury:

time at perihelion, T
position of Mercury at perihelion (XZ’YZ’ZZ)
longitude of perihelion, THETA

(relative to the vernal equinox of 1951,0),

perihelion distance, PD(= ]IXZ - % )

As a check on accuracy, all ten known integrals to the n-
body problem were computed and printed at each perihelion. These
quantities, which remain constant for an exact solution, are as

follows:
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5
c1 = Z G‘,mi X1
i=1
5
c. = Z Gm, Y,
2 \ ii
i=1
5
C3 = .z Gm Zi
i=1
5
04 = 2 Gml VX1
i=1
5
c. = 2 Gm, VY
5 , i
i=1
5
c, = L Gm, VZ,
6 , i i
i=1
5
c, = 'Z Gm, (X, * VY, =Y, * VX))
i=1
5
°g = L Gm(¥,  VZ -2 - VY))
i=1
5
Cg = L CGmy(Z - VX =Xt VE)
i=1
5 . 5 > 5 GmiGm.
c, = L = Gm, (VXTrvyZsvzé) - § —1
10 . 2 i i i i Lo R,.
i=1 i<j ij
where R. = |[X -X/| asin (1.1).
1] 1 ]

The gquantities ¢ are the coordima tes of the center

1 C27 3

¢, are the

of mass and should remain zero. Similarly c 6

4! CSI

vel ocity components of the center of mass and should also remain

zero. Now, c7, Cgr Cq are the components of total angular momen-

9

tum of the system and should remain constant and equal to their
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initial values. Finally c is the total energy of the system and

10

this should remain constant also and equal to its initial value.

The time at perihelion - when the planet Mercury is closest

to the sun during an orbit -- is determined as follows, We keep

track of (R which is the time derivative of the distance between

1 Z) 1’
Mercury and the sun. During the evaluation of the Taylor coefficients

(2.2), (R ,)

(g=1,2,...,K), are computed, say at time t. Then

12'g’

we also evaluate

(R

K q-1
)y Eth) = Z: (Ry,) = a-h .

q-1 12°g

We are going to use Newton's method to approximate h1 such that

d
(R ;) (t+h)) = 0. Therefore we also need - (R;,), (t+h) or
f
2 = -
(R} ,), (t+h) e (Rlz)q(CI)(q 1)h .

We then find h1 as follows. First, to distinguish perihelion from
aphelion (farthest distance from the sun on Mercury's orbit) we test
to see whether the following two conditions are both met (where h

is the step size ht determined by the method of section 3, using

N = | 0]+ | ] + [ (B
1) (Rlz)1 < 0
2) (Rlz)l (t+h) > 0.
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When 1) and 2) occur together, there is an h1 such that (R, .)

12°1
(t +h1) = 0 and such that Mercury is at perihelion at time t + hl.

When 1) and 2) occur together, we put

(0) _
h1 = h
and iteratively determine h§p+1) (p=0,1,2,..,) from
(p)
ptptl) ) (R p)y (t4hy )
1 | (p)
Z(Rlz)z(t+h1 )
(p+1)

until ]hl - hip)l < 10—8. Then we take h1 = hipﬂ) (the

final iterate).

To find the position of Mercury at perihelion, we use the h1
just determined and evaluate the finite series with vector coefficients

K

a
X (t+h)) = ) (X)) hl,
2 1 g0 2a 1

or, in component form,

6

“In the single precision version we use [hipﬂ) -

(p) -
h1 ]< 10



K
q
X (t+h) = ) (X,)_h
2 1 q=0 2'qg 1
f q
Y_(t+h.) = (Y.) h
2 1 40 2’q 1
& q

Z_(t+h.) = ) (Z.) h* .
2 1 q=0 2'qg 1

To get the perihelion distance, we evaluate the three series

for the components of

K
X (t+h) = J (x,) h?
1 1 q=0 1'g 1
and compute
PD = [X,(t+h)) - X (t+h))]
o (X (t+h.) = X (t+h )% 4 (Y (t+h.) =Y. (t+h, N>
= (X (t+h) =X (t+h)) 4+ (¥, +h) =¥, 1
2.1/2
+ (Zz(t+h1)-—zl(t+h1)) ) .

The longitude of perihelion (relative to the vernal equinox

of 1951.0) is defined as the sum of the two angles ® and
mentioned near the beginning of this section (in connection with

the table of orbital elements of the planets). Actually, at any given
time the "vernal equinox is defined as a directed half-line in the

heliocentric coordinate system from the sun toward the "fixed stars"
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along which the plane of the Earth's orbit (the "ecliptic”) and the
plane of the Earth's equator intersect. In reality, the vernal equinox
is not fixed but moves relative to the heliocentric coordinate system
in a slow arc due to the precession of the Earth's axis of rotation.

We calculate w, the angle in the plane of Mercury's orbit
from the ascending node (where the plane of Mercury's orbit intersects
the plane of the Earth's orbit) and (0, the angle between the x-axis
and the ascending node. *

Strictly speaking this is not quite the difference between
the correctly defined "heliscentric longitude of the perihelion of
Mercury relative to the moving equinox" and the angle of precession
of the equinox. But the difference between o +{) as we have de-

fined it above and the correct version: o +Q + . - Ht - ) due to

t
motion of the ecliptic relative to the inertial frame is Q’c - Ht ~-Q,
where Qt is the angle in the ecliptic plane from the moving equinox
to the ascending node and Ht is the angle from the moving equinox
to the x-axis (equinox of 1951, 0). This difference is of the order

-8
1.6 ° 10 radians and does not affect our interpretation of the

numberical results,

“See, e.g., Krogdahl, Chebotarev,, or Roy.
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We turn finally to a description of our method for computing
the angles @ and Q. At any fixed time t the plane of the Earth's

orbit around the sun is defined by the vectors

XE = _}g4-—g_{l
and VXE:_\[4—y1 .

XM

It
P
1
P

and VXM

il
<
i
<

Thus a point V is in the intersection of these two planes (the line

of nodes) if for some a, B, v, 6
V = oXE + PBVXE = yXM + OVXM .

Let us define a unit vector on the line of nodes. If we choose t, XM,
VXM when Mercury is at perihelion, then (XM, VXM) = 0 and we

will have ||V|| = 1 if
2 2
o+ o ] ® = 1
We will assume that XM, XE, and VXE are linearly independent, then

VXM = ElXM+EZXE + 63VXE
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for some c,, ¢_, ¢_ (since we are in a three~dimensional space),

1" 72" 73
Then
(v+551)x1v£ + (552— Q) XE + (553— B)VXKE = 0

and so VY = -551 (and also o = 652, B = 553). We find, then,
that

. ( 1 )1/2

T\ vxm |2+ ef x| 2 '

and

V = S(VXM - ¢, XM) .

1

We need now to find c¢

1 We can do this by taking the inner product

of hoth sides of the equation

ElXM+52XE n E3VXE = VXM

with each of the three vectors XM, XE, and VXE. There results a

¢. which

system of three linear algebraic equations in 51, 52, 3

we can solve for El' A formal solution for 51, which we used in

the computations, is

A A

12 ) [ Za3
_ (A ) Bag ™ RR(Bg, <A ) Bod)
C

22
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A
12
Bis <A ) B3

22

A
23
B33 <A )Azs

22

where RR =

and where the Aij are inner products which are defined as follows:

All = (XM, XM)
Alz = (XM, XE)
A13 = (XM, VXE)
AZZ = (XE, XE)
AZS = (XE, VXE)
A24 = (XE, VXM)
A33 = (VXE, VXE)
A34 = (VXE, VXM) .
Finally, we have
(V, XM)
> = arc cos HV| . IXM“
= arc cos —E] ” XM”

[ veM - ¢, XM |
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Actually we used the arctangent function. If
o = arc cos Q, then w = arc tan

(45%)

so we take

where
- 51 |xM]
| VXM = ¢, XM|
The minus sign gives us the ascending node on the line of
nodes.
For ¢ we have
(/f —_11_2.)
0 = arc tan U P
where
VXI\/[l - c1 Xl\/[l
VM - ¢ xM||

and VXMI, XI\/I1 are the first components of the vectors VXM and

XM.
To study the motion of the perihelion of Mercury, we com-

pute and print out the change in longitude of perihelion
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THETA = o +Q - (cuo +QO)

where Wy and QO are the initial values of w and  for Mercury.
The results obtained for THETA vs. #orbits of Mercury
(perihelion to perihelion) are shown in the following figure. A lzth
order expansion was used at each step of the numerical integration.
Thus we used K = 12 in formulas (2.3). Double precision was used
(18 decimals). The computing time was 53 minutes, 25 seconds. The

ten integrals c¢ all remained constant throughout to

1, Cz,o-o ’Clo

at least 8 decimals.,
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A second set of initial conditions was then tried,

26

we took the orbital elements given for the planets at 1850.0 by

G. M. Clemence ["First order theory of Mars,

11

Astronomical Papers:

American Ephemeris, Vol. XI, Part 1I, United States Government

Printing Office, Washington, 1949, pp. 231-232].

Planet i

Mercury 2

Venus 3

Earth 4
Jupiter 5
Planet 1

Mercury 2
Venus 3
Earth 4
Jupiter 5
Planet i

Mercury 2
Venus 3
Earth 4

U1

Jupiter

0,3870 986713
0.7233 322169
1.0000 00021

5.2028 03945
8[=0]

46° 33" 12.24"
75019 47.41"
OO

982 55' 58,16

€0

323011 23.53"

2439 57 44,19"

990 48' 18,56"

1590 56" 25,05"

0.2056 0396
0.0068 4458
0.0167 7126

0.0482 5382

I=w +§]

75° 7' 19,37"

129° 27 34.5"

100° 21" 36.30"

11° 54 26,72

seconds
n— )

year
538 1016.3893
210 6641,4171
129 5997.4496

109 256.6395

39 23" 35,26

1018" 41,81 "

This time
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The quantity S given here is defined by

€. ~wW -0 =n(t - 1),

0

in terms of our previous variables. We had to convert the given

values for n to our units of (@Ql.@_f_lé) . Calling the values in the
10 days
table r_i, we put
n

(36.525)(57.295779)(3600) °

Actually we did not need to solve for Ty but took, instead
€ 3 "'LL)i - Qi for the right hand side of equation (4.2), which is
used to determine Ei' We needed ni as well for equations (4.14) -
(4,16) to get xi, yi, Zi'

This time we integrated forward in time from 1850,0 to 1950.0,

Notice that we have, in this case, an inertial frame which puts the

x,y plane in the ecliptic of 1850.0 and the x axis is pointed

toward the vernal equimax of 1850, 0.

Again using double precision (18 decimals) and K =12 (IZJ‘:h
order Taylor expansions at each integration step), we computed the
perihelion motion for 1850,0 - 1950,0. The results are shown in
the next figure. There are only very minor differences between these
and the previous results (using the 1951, 0 elements and running

backwards to 1850,0), The total computing time was 54 minutes

27 seconds.,
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This time we are putting in orbital elements to several more
decimal places and so the results are based on more accurate initial
conditions. Again the integrals c1 ,cz, soa ’010 remained constant
to at least 8 decimals, Also shown on the figure is the value .002528,
reported by Clemence (1947, p. 363), for the motion of the perihelion
due to the Newtonian gravitational effects of Venus, Earth, and
Jupiter. Clemence (1947, p. 363) also reports a value for the "observed"
motion relative to a fixed equinox (leaving out precession of the
equinox) of .0027833, The effects of the other planets and solar

oblateness (due to their Newtonian gravitational influence) adds up

(Clemence (1947, p. 363)) to about .0000485, The general theory

of relativity predicts an increase of .000209 over what is predicted
by Newtonian celestial mechanics. The sum of the Newtonian effects
as computed by Clemence plus the relativistic term almost exactly
equals the "observed" value,

All that we have computed, of course, is the motion of the
perihelion due to the combined Newtonian influence of Venus, Earth,
and Jupiter. The value .,002528, given by Clemence for this contri-
bution, is in excellent agreeme nt with our results,

From our computed times of perihelion, we can derive values

for the sidereal period of Mercury. The average period for the 415

orbits (perihelion to perihelion) during 1850.0 - 1950.0 according to
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our calculations is 87.9697213 days (taking 1 vyear = 365,25 days).
Finally, in the last figure, the perihelion distance (Mercury
to sun at perihelion of Mercury) is shown (vs. # of orbits of Mercury).

There seems to be a small (secular) rate of decrease in addition to

the fluctuations from orbit to orbit.

A rough estimate from the figure of this downward trend is

.000008 A, U,
100 years

. If this were to continue, Mercuy would, perhaps,
collide with the sun within about 3.8 - 106 years!
On the other hand, there are some extremely long period

phenomena involved here too. For instance at the average rate of

radians

about ,0025 100 years

, it will take about 252,000 years for the
longitude of Mercury's perihelion to make a complete revolution of

27 radians., Thus the perihelion distance may also have some very

long period fluctuations,
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