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ABSTRACT

The diffusion of two fluids is studied from a particle point
of view. Only gravity and repulsion are included in the dynamical
formulation. Examples illustrating diffusion and turbulence are

presented.






A NUMERICAL STUDY OF THE MIXING OF FLUIDS
WITH AN EXAMPLE OF DISCRETE TURBULENCE

1. Introduction.

The development of the high speed digital computer has re-
juvenated discrete approaches to the study of fluid motions (see,
e.g., refs. [1],[2],[4],[5]). Using such an approach, we will
formulate and study in this paper a discrete model of the mixing of
two fluids. Fundamental to the discussion is the assumption that
in dealing with a fluid which consists of, say, 1030, molecules,
a discrete model which consists of many fewer particles may be as
revealing with regard to fundamental physical mechanisms as a
continuous model which consists of an infinite number of particles.

Consider then a square region ABCD, as shown in Figure
1.1, For b> 0, let the line y=b meet AD and BC in E and
F, respectively. Initially, let fluid L, be contained in area R

1 1

of rectangle CDEF, while fluid LZ is contained in area RZ of

rectangle ABFE. Under the assumption that Ll is more dense

than LZ, the problem is to describe the resulting mixing motions

of Ll and LZ'
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2. The Discrete Model.

Let the mass of each particle of 1L, be denoted by m(Ll),

1

while that of each particle of L is denoted by m(LZ). Assume

that

m(L,}) > m(L.).

) 2

Let Ll consist of n particles P 'PZ""’Pn' while LZ consists

1

of N-n particles P If the mass of an arbitrary

n+1’Pn+2’°"’PN'

particle Pj is denoted by m],, then, of course, m], is necessarily

one of m(L,) or m(L.).

1 2

Initially, let each P],, j=1,2,...,N be located, or, more
precisely, have its center of mass located, at (x.], O’yj O)' have

velocity (v ), and have acceleration (a

)e

IV' 0 Ia-
j,0,x" j,0,Y i, 0,x" 3,0,y

> t :k k‘: . eoe g .t». . ’ . 14
For At> 0 and K At, 0,1,2, the position (lek y;,k)

the velocity (v ), and the acceleration (a], K !

. I: v-
jok+3,x" i, k43, Y

a]. K o) of each Pj for each value of k are assumed to be related
by
—A__E — — -
vaOIX+ 2 (a],o’x), k’O’ ]~l,2,.,,,N
(el Yy ke x T
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The force ( ) on Pj at t  is assumed to be related to

F . F,
jlklx Jlk‘ly k

the acceleration by the discrete Newtonian equations

205 = j = o0 0 [

(2.5) ™3 k,x T By kx F=li2ieee N

2.6 m, a, = F, ’ .:llzlooo,N.

(2.6) i d.kyy .k, y J

Once F, and T, are defined, then (2.1)—-(2.6) determine
j.k,x i.key

explicitly the motion of each Pj from given initial data Xj 0 y]_ 0’

and v, j=1,2,...,N. Therefore, we proceed next

Y5,0,x i,0,v’

to describe the nature of the forces to be included in the model,
namely, gravity and interparticle repulsion.

) at time t, , then the

For Ax> 0, if Pj is at (x L’

ik i,

subset of particles whose centers of mass (x,y) satisfy

(x - AX) < X< (X,

i,k je TAX 0=y <y




It

is called the support set of Pj and is denoted by S(l’j). Physically,
each particle in the support set of Pj is considered to be, at least
in part, "beneath" Pj and thereby can contribute to preventing it
from free fall., The gravitational force g], Xk acting upon ]E’j at time
tk is then defined as follows,
Let K be the largest nonnegative integer such that yj X > KAx

and let dj be a positive measure of the width, or volume, of Pj'

If K=0 and y], ksdj' then set g,

= 0, while if K = 0 and
ik

yj K > dj , let A be the total area of S(Pj) in the rectangular region
defined by
AXx AX
= - i _ - c)

v-max[xj,k > ,O]gxgmm[xj,kJr 5 |AB| ] = ¢

and define gj X by
A

2.8 , = -980 [1 - W] .
(2.9) %, x (‘5"3/)3/]. K

If K> 0, consider the set of K congruent rectangles beneath Pj

which are bounded by

: AX AX
_ yie.S : L BX -5
Y max[xj,k > ,0]<x< mm[xj’k F |AB| ]

pAx; p=20,1,2,...,K.

"
i
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If the intersection of any one ol these rectangles with b’(Pj) is
empty, set gj . -980, But, if each of these squares has a nonzero
intersection with S(PJ.) and if A is the total area of these nonzero

intersections, then set

' L _ A
(2.9) gj,k* 980 [l (5—V)KA}{] .

From (2.9), note that if A = (6-vy)KAx, then Pj has no
gravity acting upon it, that is, it is supported fully by particles

below it. However, if A< (5—”y)KAx, then gj K is proportional to

how much support is below Pj’ while if A > (§=VY)KA x then many
particles have been compressed beneath Pj and the resulting force

will be antigravitational. Similar conclusions hold with respect to (2.8).

l'o simulate repulsion between the particles, whether it be
due to collision or electrical forces, we will proceed as follows.

Let Pi have mass mi and be located at (x at time t

1k Yy k! K

Let P have mass m, and be located at (x, , ,y, ,) attime t .
j j (5 Y5 x K

Lt r,, be the distance between (x and

ijx ik Yy, K (% ¥y )

Then, the force of repulsion on Pj exerted by Pi is defined by

AX, - MAY."Y,
2.10) F _ . mi mJ( i Xi) o F B O('mlmJ(y] yl) .
T jlklx B Pyr.. +£ ! i,k N ris L +F b
ST/ AT19 S0 B EL TS BTy K
( ij,k ) ( 4 ) (rij,k%’) (

. d
J J
where « 1is a nonnegative constant, £ is a positive measure of

how close the centers of two particles are allowed to be, p is a




positive exponent of repulsion, and f is a nonnegative exponent

of repulsion which is zero except when r,,

< d,, at which time
ij,k j

it is positive. The effect of B is to greatly increase the force of
repulsion when two particles are exceptionally close, as when, for
example, they have collided,

The equations of motion of each Pj are then defined by (2. 1)~

(2.6) with
N ami(x,j-xi)
(2.11) a, = Z . ’ j:].,z,o.c,N
ik, x . r,, . +E& B
' izl (r,, k+€)p( ij,k
izfj 1}, dj
N Otmi(yj-yi)
(2.12) aj,k,y:gj,k+ 5 B j=1,2,...,N.

i=1 (r,. k"'@p(f_ii_:_}ijé
i£] Y d,
]
Collision at the wall will be treated simply by assuming that
the angle of incidence is the same as the angle of reflection, and

that the reflected speed v is related to the incidence speed v,

by

(2.13) lvr] :a;lvil , O<w <1 .

The initial velocities of Pl’ PZ' cve 'PN will be determined as

random quantities in the ranges



where V is a fixed positive constant,




3, Examples.

From the large number of examples run on the UNIVAC 1108
at the University of Wisconsin, we will describe now two which
are both typical and physically reasonable. In each case, the
choices {AB[ =100 and b = 75 were used for the square shown

in Figure 1.1,

Example 1, Consider a sixteen particle configuration with n = 4,

) = 10, Ax:zs,At:10"3,d =d = 20,

1) = 25, m(L

a=1, £=0,p=2,B=5, w= 1, and V = 100, The initial

positions and initial velocities were

(12.5, 87.5) , v ==-2,90 , v = 48,91
X Y

(37.5, 87.5) , v = 98,43 , v = —-87,83
X Y

(62.5, 87.5) , v = 22.21 , v = 41.44
X Yy

(87,5, 87.5) , v = =27.61, v = 47.97
X Yy

(12.5, 62.5) , v = 46,99 , v =~-1,53
X Y

(37.5, 62.5) , v ==99,65 , v = =16,10
X Y

(62.5, 62.5) , v = 26,14, v = 80,82
X Y

(87.5, 62.5) , v = ~42.70 , v = 56,75
X Yy

(12.5, 37.5) , v = 27,02 v = =75.35
X Yy

(37.5, 37.5) , v = 98,66 , v = =69,.15
X Y

(62.5, 37.5), v = 93,48 , v = -85,65
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(87.5, 37.5) , v = =46,35 , v = 88,20
X Y

(12.5, 12.5) , v._=-9.09 , v =90,73
X Y

(37.5, 12.5) , v = -6,56, v = 95,21
X 4

(62.5, 12,5) , v =-13,07, v = -49.69
X Y

(87.5, 12.5) , v._=50.50, v = =13,84,
X Y

Figures 3.1 - 3.9 show the relative positions of L1 and L2

’ i i = 00 ,8n
at the consecutive times t160+240k' k=0,1,2,3, The

particles of L. are labeled A while those of Lz are labeled B,

1

Figure 3.9 shows the complete interchange of the relative positions

of Ll and LZ' so that the "heavier" fluid has settled to the

bottom. Thereafter, until t all the particles continue to be

3040’

in motion, but at least three from L1 always remain at the bottom,

Examples with N = 16 were not run past t3040 in order to save

computer time for larger values of N.

Example 2. Consider a 256 particle configuration with n = 64,

N =256, m(L)) =1, m(L,) = 0,25, Ax=6.25, At= 1077, d;=d=5,
£=0.1, p=pP=2, w=0.9, V=500, The computation of acceleration
components (2.11) and (2.12) was simplified by assuming that each

particle was acted upon only by '"nearby" particles. This was impli-

mented by defining o as follows:
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0, if r. . >2d = 10
ij, k —

L‘l, if rij'k<2d:10.

The initial positions of the particles were fixed at the points

(3.125 + 6. 25U 3.125 + 6,25u.), u, =0,1,2,...,15,u_=0,1,

1’ 2 1
2,.0.,150

Figure 3.10 shows the initial interaction between L1 and L‘2

at t The particles of L, are labeled A, while those of L. are

2° 1 2

labeled B. An arbitrary boundary has been drawn between L1 and

LZ to indicate the type of motion in progress. TFigure 3.11 shows

the state of diffusion at time t69 by the setting of circles around

the particles of Ll' This diffuse character persisted during the

entire calculation. At approximately t =t the small damping

250

effect incorporated in (2.13) became evident in that the particle
velocities had decreased noticeably. Tigure 3.12, then, shows noft
only the state of diffusion at time t300’ but also shows the onset
of a "thinning" of particles in the upper portion of the region and a
"condensation" of particles in the lower portion, due probably to a
resultant loss of energy in the system. Figure 3.13 shows the

position, and resultant motion, at times t k=20,1,2,...,30,

10k’

for the particle whose initial position was (53.1, 46.9) and whose
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initial velocity components, generated, of course, at random, were
v = 63.0, vy = 133,9, The figure not only shows the strong effect
of gravity, but, as can be seen from the lower right hand corner,
also shows the strong effect of repulsion. Figure 3.14 shows the
vector field defined by the directions of the particles at time t92'
If one interprets the indicated oval areas, with respect to which all
nearby vectors have the same relative orientation, as vortices, then
these patterns of vortices are in a constant state of formation and
decay, due to the relatively independent motion of each particle.
This rapid appearance and disappearance of small vortices is, of
course, a fundamental characteristic of turbulent motion.

It should be noted that automatic graphing limitations did not
allow for the superposition of letters so that, in Figures 3.10-3.12,
when two particles were exceptionally close, only one letter, A
or B, was printed. In cases where a choice between A and B had
to be made, A was always printed.

Finally, note that, for this example, the total running time up

to t300, that is, for 30000 time steps, was only 72 minutes.,




13

091, - g

T°¢

2ITSTd

g

<L

v

o




14

cmmwu I "V°¢ sanSty

079y - ; ‘¢ce¢ eamstg




0cTT

omm.hu.n I ‘9°¢ oanftd 3 =1 ‘G°¢ danftd

¥ o~ S ¥, £ lﬂ\ 0.8 o ey o vy e 2 o
a s 9
. a
v v
a
| a
a i ¢ - o
: &
A
- — g . S e
H 1 v
g
e e - g . .
a
2 e a vy D




16

o.vmm,.u I "8°¢C 8In?Td

009Ty =5 -L°¢ eanfrd

v
4

g




17

Gy = 1°0T°¢ oIn3Td

omom& -1 6°¢C °INSTJ

& o P & b Y A & LP\»I&‘ & P 3. & ry
v Y
_ v I g e i S
g 2
S -—— — o i ————— m
q g
q
- ' e .
3
¢!

. . e




) (&) 0 , ] ]
2 ® a®
4 b o] o [0 o] 3
: 0 = 9 « -
0
P 0 fes ] [ o T 2 T 4 fas) 4
D o o) © : @ o 3
3 n fs 3
) o 1] n m
4‘
m o) @ ™ @é :
3 m ! jos] l
@ o '] (<) x
: 2 9 _208287@,~ |
@ om~aYn>m
P o I o o 3
@ @ ® 2 o @o ®
3 [+ o i o p
{ > jae} D ‘ %m o I o]
T & ‘
o
¢ @ o o o o je1 0} b
o M m o @
P el n n m - 3
n 0 0
® @ o sa @ @« @ o o é
o @
4 "5 o @« o @ m b
@ m ‘
t « @ © & ® Qo ¢
@ @ @ no m , ® |
P @ fas] n 0 b
o o © : @ ©
o o o] s
S © "o © @
o n o ® @ !
@ ®
© . g~
1 ® o o = iy
. . 4
B2 o s o @6
9 s @ os] @ @ @ @ <
m o}
® S
@ 9 o
Q P o« @ @ §m !
@
<) B = @ &% o »
n @ ® o)
1. .o (5] o 4
- gy Ly ey o g
] | w [ : 1 i ] -
: fay : | 0 '
] | L m oy m o e !
@ } [ m ay m i . i m
s ; o I m ; m , @j g
| i ' B : i
(& H ¢ i i
b @ @ i " @ .7 i@ , N i :
| ® Q |w | ]
3 @ ;o m v : j ' ! 4
o o é) i o @ i j Com g 5
4 @ ‘ , é ‘ : o o o 4
J ' [X8] . i (€9
» m @ ) : ‘ i
o : ! [gb SV o) ;
3 | | | M ; . : |
s (L ;U)o 1 o) @ ! :
b ! : ! a8 Lo o 40}
I : () 53 ! ; ; : i
> E €5 @ @ : P |
] 1 i () ) f feN
4 @ wid 1y uid : : (L)
| ¥ ¢ I €y o
oy m @ : : ! i 03} ; ;
B @O |« < . o
’@6 ' L | Lo @ @ z 5
j ! e ; z
p: : I It M W ] m o ;
" ! : o3 ay , 1) i g
) @ ' SN 0| ]; ; | 0! 1
m : @ : : oy i i A : w :
4 : (1 : w e @mi oM ! 4!
@) SECEI ! ) % i | 0 m i i
88} ! { ] ¢y [§9 s}
@ 9 @ o] 4’4 ]
e | S " ]
~y . Loy fan i L0 ml T I
' G’ ‘ ! ,-~1‘ : i S T @ |
) w | m @ D | ! %
(51 i A H 1 ” :
| @ [ . ‘, Poom : )
! P i )
# | HES . ! (1) i
m i ‘ ) X : b
(D) " i i . ; Q o ol |
M i ) P mi ! Pomym i | |
@, " : Y M (1 I35 i
w oy i i m oy : 5 B d
v (i} ' : oy @ ok} ml |
@ @ : o oM o L ay o ]
: e Py : ; i
+ ' ! i | | oomtar 4§,
o 3 R W = ; RGPy -I . A4 Lt ¥ : ¥

3.12.

aure

.
4 -
g

o]

F

Teg

sure 3.11. 7T

Fiz




i
;
-
e e
o~
(o)
3
1
|
;
'
e et
i
i

; o
' i

M

e e e e e —— e e

' Pipure 3,13’

o o

L
! :
1 H
o S 2
i .
‘“ 3 T T et - o
L. - T T
i - v.v T o e -
i : -
i - e - - - -
i T T - o
i ) e I
i — L . L
” - p— — e PR U U
m _
- i
) i
i il ! - S
| L : i
' : . H
i . : -
! IR
: H
!
1 : B _
! :
— e e
¥
1
i - .,m - -
i ~ .
t
! .
: ; -
_ .
| B |
=
+ ¥
i ; m, m
e e - : -
i § o _ H H
! ! o ;
i ) i )
: 3 | 1
| | : - -
* M 1 i
i H H “
i | §
i i _ g}
| w .
i : w i




H
¢
H
3
H
H
i
i
i
H
T
i
s
i
i
i
f
H
]
}
i
t
t
I
i
3
H
H
|
{
i
!
1

o e ¢ e

B
i
: |
_ i
: S §
b ;
. 2 N
.xxx.lle‘ . —
o
li
; ! -
; 2
i : H
: s
; : 1
R i -
: 0. i
A WY i .
\ R A P
- . SO :
y. . T .
. DR X oo . .
L - PR H . S :
[ ml




21

4, Remarks.,

Several remarks pertaining to the method and examples of this
paper are now in order. Other examples indicated that the character
of the fluid motion could be changed in an expected fashion by
appropriate variations of the parameters of the equations of motion,
Thus, for example, an increase in d invariably led to a decrease
in the rate of diffusion, while an increase in 8 could lead to in-
stability if At was not decreased simultaneously. If one wished
to choose At sufficiently small, then, indeed, one could actually
set d =1 and choose p and B so as to agree with the repulsive
part of any of the commonly accepted molecular potential functions
([3]1,[4]). Unfortunately, economic considerations limited the
number of particles and running times of the examples which could
be explored. Nevertheless, even the relatively simple examples
described in Section 3 serve to illustrate the viability of a direct
particle approach to the generation and study of turbulence, which

is the most common, and yet least understood, type of fluid motion

[6]. Finally, because of the experimental nature of the present work,
the computer program used is made available in [7], so that every

phase of the discussion can be reconstructed by the reader.
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aRUN

A=l

Appendix - FORTRAN Program For The Mixing Of Fluids - A. B. Schubert

SCHUBERTSETC.

ASSIGN INPUT AND/OR OUTPUT TAPE FILES TO BE USED THIS RUNe
TAPES ARE READ AND WRITTEN IN EBINARY MODE AT HIGH DENSITY(8CCEPI).

AASCeTH 1D0.7¢0158
DASG s TH 11 0Te31320
aREWIND in.
AREWIND 11l.

aFCR+ISZ s MIX

C

C
c

OO0

(@]

OO0 OO OO0

PARAMETERS TG BE SET FOR EACH RUN

N = TOTAL NO. OF PARTICLES IN THE CONTAINER
NROW = TOTAL NO. OF ROWS OF PARTICLES IN THE CONTAINER
PARAMETER N=2569NMLZN-LoNPIZN+LoNHZN®NML/ 20 NROW=Z16s NRM1Z

+ NROW-1oN4P1OZl4xN+10

INTEGER PsBLTAsOUTPUT» OUTTAF

REAL MASSIN)eML1eMLZ

EQUIVALENCE(DUMMY o XU)

DIMENSION XU(N)!YU(N)OVXG(N)vVYU(N)cX(NvZ)vY(NvZ)vVX(NvZ)vVY(NvZ)a
® GRAVCN)tACX(N)wACY(N)VAM(N)vDYK(NRON)QR(NH)'DUMMY(NQPlU)
CIMENSION ALIND cARIN) ¢BLIN) +BRIN)

DEFINITIGNS OF DATA VARIABLLS

£PS = SMALL POSITIVE CONSTANT USED TO AVOID DIVISION BY ZERG
ANG AS A RESOLUTION VALUE FOR FLOATING POINT UNTIGUENESS
MEAN ACCELERATION DUEZ TO GRAVITY. IN {CcM/5ECY/SEC

it

GCON
DATA EPSeGCON/1eE-30-3380./
DEFINITIONS OF XsYoVUXeVY ARRA®
FCR IZ192reeasN

X(Ivi) = X—COMPONENT CF PCSTITION CF PARTICLE I AT PREVICUS
TIME STEP

X{Isz) = SAME AS ABOVEs EXCEPT AT CURRENT TIME STEP
VX{Igi) = X-COMPONENT OF VELOCITY OF PARTICLE I
VX(TIel) = WITH DEFINITION OF SECOND SUESCRIPT

SIMILAR TO THAT GIVEN FOR X ABOVE

Y(Tsl) = SAME AS ABOVE EXCEPT FOR

Y{Te2l) = Y-COMPONENTS OF
VY(TIe1l1l = POSITICN AND VELOCITY
VY{IezZ) = OF PARTICLE I

READ INFRZGUENTLY-VARYING PRCOSLEM DATA.

NL1 = NGC. OF PARTICLES COMPRISING LIGUID 1



oo C

O

(@]

OO0 OO 00000000000 OO0 0O

g
-

AX = LEFT ECUNDARY OF CONTAINER IN X-DIRECTICN
3X = RISHT BOUNDARY OF CONTAINER IN X-DIRIZCTION
AY = LEFT EQUNDARY CF CONTAINER IN Y-DIRECTICN
BY = RISHT 30UNDARY OF CONTAINER IN Y-DIRECTION

READ(5933) NLL1vAXeBXsAYeBY

COMPUTE HCo OF PARTICLES COMPRISING LIQUID 2.
NLZ2=N-NL1

CCMPUTE CONTAINER SU3-BLOCK DIMENSIONS.
BLKXZIEX-AX)/FLCATINCOL)

BL.KXZ"Q J*BLKX

BLKY={BY-AY)/FLOATINROW)

BLKYZZ . 5»0LKY

COMPUTE Y-COCRDINATES OF LOWER EOQUNCARY OF EACH RCW CF SUB-BLOCKS.

DC 4 Iz-loNROW
DYKUI)=FLOATII-1)=3LKY
VELNPZ~2a#EP
NCOL=ZN/NHCUW
INITIALIZE TAPE I/G0 VARIAELES.
NRECZ=O
INTAP=D
OQUTTAPZ=O
INPUT CATA DEFINING ONE PROELEM CASE
NMAX = MAXe TIME STEF FOR WHICH POSITIONS AND VELOCITIES ARE TO
3 COMPUTED FOR THIS CASE
INCPR = TIME STEP INCREMENT FOR PRINTING OF POSITIONS AND
VELQCITIES
"NCPLT = TIME STEP INCREMENT FOR PLOTTING OF PARTICLE FOSITIONS
INPUT = CONTROL VARIABLE FOR SOURCE OF INITIAL DATA

INPUT = 0 IMPLIES TAKE INITIAL POSITIONS TC EBE UNIFORMLY
SPACED IN THE CONTAINER AND GENERATE INITIAL
VELOCITIES RANDOMLY
IMPLIES TAPE INPUT. READ PROBLEM-DEFINING
PARAMETERS AND INITIAL POSITICONS AND
VELOCITIES FROM TAPE (FILE 10) IN BINARY MODE
INPUT «CT o1 IMPLIES CARD INPUT. READ PROBLEM-CEFINING
PARAMETERS AND INITIAL POSITIONS AND
VELOCITIES FROM CARDS IN THE FORMAT (3I5+8E8.3
/18E10.5))

INPUT

3]
P

CUTPUT = VARIABLE CONTROLLING CISPOSITION OF FINAL DATA FOR THIS

CASE
OUTPUT = 0 IMPLIES DCN®T SAVE FINAL DATA FOR THIS CASE
QUTPUT = 1 IMPLIES TAPE OUTPUT. WRITE PARAMETERS




(@]

(@]

C

OO0 O0000000000 o000

1085

NTO
PeDETA
27
ALPHA
DAMP

VELN

MLL

MLZ
XI

ey 1y 1

1

[ N

A=3

DEFINING THIS CASE AND FINAL PCGSITIONS AND
VELOCITIES TO TAPE IN BINARY MODE

GUTPUT «GT »2 IMPLIES CARD OQUTPUT. PUNCH PARAMETERS DEFINING
THIS CASE AND FINAL POSITIONS AND VELOCIVIES
CN CARDS IN THE FORMAT (3155s8E83/(BELD51}

STARTING TIME STEP FOR THIS CASE THIS RUN

EXPONENTS IN REPULSION LAW (SEE TEXT OF REPORT)

TIME STEP

COEFFICIENT OF REFULSIGN

VELOCITY DAMPING FACTCR IN WALL COLLISIONS

SAMP = O IMPLIES TOTAL DAMPING

pDAMP = 1 IMPLIES NC DAMPING

MAXIMUM NORM CF ABSOLUTE VALUE OF INITIAL VELGCITIES

WHICH ARE GENERATED RANDOMLY

MASS OF EACH PARTICLE IN LIGQUIC 1

YASS OF EACH PARTICLE IN LIQUID 2

CONSTANT ADDED 70 CISTANCE EETWEEN PARTICLES IN REPULSIOCN

LAW TG PREVENT ZERO DISTANCE BETWEEN PARTICLES

5 READI5538sNO-U0) NMAX»INCPR:INCPLT»INPUTO0UTPUTvNTUyPoBETAoDTv

* ALPHAwDAMPvVELNvMleMLZvXIvDIAM
IF(OUTPUT.EQs2} OUTTAP=1

GET INITIAL PGSITIONS AND VELOCITIES.

CALL

INITAL
WRITEtEeSU]) NleNLZvMLloMszDIAMvAX-EX:AY:BY
ARITEZ(B69393) DTvDAMP9VELN'ALPHAvPQBETAvXI

TEST FOR FAILURE TO FIND INPUT DATA ON TAPE IF EXPECTED TO BE
FOUND THERE.

IF(IFLAG.EG.C) GO TO 1uls
WRITE(S5.87)

G0 TG

[

po]

SET MASSES CF FPARTICLES IN THE TWO LIGUIDS. THE FIRST NL1
PARTICLES ARE ASSUMED T2 COMPRISE LIGUID 1.

i00% DO 105 I=LleN

IF(I.LE.NLL) MASS(II=MLI
IF(T0T-NLL1) MASSIINZ=MLZ
AM(I)=ALPRA*MASS (T

CONTINUL

RAD=.5*DTAM
DIAM2=Z %D IAM
CT2z.5207
NT=ZNTO

TRANSFER INITIAL DATA INTC WCRKING ARRAYSS

DO 8 IzZieN
X(Teldz=X0(I)
Y(Te1)zYO(I)
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VXtIsldzvxOi1)
VY(I.1)=vYOUI)

PRINT OUT INITIAL PARTICLE POSITIONS.
CALL PRINTI(1)

COMPUTE INITIAL ACCELCRATION, VELOCITIES AT °TIME STEP i72°
AND POSITIONS AT TIME STEP 1le.

NTZNT+1

CALL ACCEL

DC 9 J=ieN
VX(Je2)ZVXTJe 13 +DT2+ACKLJ)
VY (Je21zVYLJel)+DT22ACY L)
X{de2)1SX{ el )eDTaYXLIJdel)
Y(Js2)=Y(Jel)2+DT2VY(Js )

ADJUST PARTICLE POSITIONS AND VELOCITIES AT FIRST TIME STEP
TN CASE OF COLLISIONG WITH GONTAINER WALLS.

CALL WALCOL

TEST FOR PRINTING AND PLOTTING OF POSITIONS AND VELOCITIES AT
FIRST TIME STEP.

IF{INCPR.EQsi)} CALL PRINT(Z)
IFUINCPLT.EQs1) CALL PLOT

BEGIN TIMEZ STEP LOOP.

UPDATE TIME STEP COUNTER AND PARTICLE POSITIONS AND VELOCITIES
FOR PREVIGUS TIME STEP.

NT=NT=+1

00 12 I=1leN
X{Te1)=X(Iel)
Y{Teld}=Y{Ie2)
YX(TIe1)32¥XCIez)
YY{Tel)zVY(IelZd

COMPUTE ACCELERATION AT PREVIOUS TIME STEP AND CURRENT VELOCITIES
AND POSITIONS.

CALL ACCEL

DO 15 J=1leN

VX EJpZ2 JoVX(Jdel}+0TeACX L)
VY(Jde2)ZVY(Je1)¢DT*ACYLY)
X{dp2)ZX(Jei 40T VX (Je2)
Y(Je2Z )Y Jel)eDT2VYL I )

ADJUST PCSITIONS AND VELOCITIES OF PARTICLES WHICH HAVE COLLIDED
WITH THE CONTAINER WALLS.
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CALL WALCOL

TEST FGR PRINTING OF CURKRENT POSITIONS AND VELOCITIES.
IF(MGDINTsINCPR)«EQ.O) CALL PRINTI2)

TEST FOR PLOTTING OF CURRENT POSITIONS AND ALSO TEST TC ENSURE
THAT POSITIONS TO BE PLOTTED ARE FIRST PRINTED

IFEMCDINToINCPLT) 6EG 0 <AND. MOD ENT+INCPR)NEO) CALL PRINT(Z)
IF(MODINT»INCPLT)EQ.0) CALL PLOT

TEST FOR MAXIMUM TIME STEP FCR THIS DATA CASE.
IF{NT«LToNMAX) GO TO 10

TEST FOR TAPTD OUTPUT OF FINAL POSITIONS AND VELOCIYIES FCR THIS
CASE.

IF(OUTPUT.E4.C) CO TO 5
IF(OUTPUT.EQ.1) GO TO 20

PUNCH FINAL DATA ON CARDS.

PUNCH 83. NT:PvBETAoDTvALPHAsDAMPvVELNvMLlaMLZvXIvDIAMa(X(IvZ)w
# YtIe2)sUX{Io2Z)oVY(IeZ)sI=1eN)

GG TO S

WRITE FINAL DATA OUT TO TAPE IN BINARY MODE.

20 WRITE(LIL) NToPvBETAcDTnALPHA-DAMPoVELNvMLl’MLZoXIoDIAMv(X(IvZ)o
# YUIg2)oVUXEIe2)eVY(Ie2)eIZ1oN)

UPDATE COUNTER OF OUTPUT TAPE RECORDS AND WRITE MESSACGE 10
PRINTER INDICATING THAT FINAL DATA FOR THIS CASE WAS WRITTEN
GUT TO TAPE.

NREC=NREC+1
WRITE(G688) NREZC
GC 10 %

TERMINATION POINT FOR PROGRAM. CONTROL REACKES HERE UFON
ATTEMPTING TO READ PAST LAST DATA CARD.

IF THERZ WAS NO TAPE OJTPUTe. TERMINATE EXCCUTIONS
OTHERWISEes WRITE END-OF-FILE GN AND REWIND OQUTPUT TAPE.

40 IF(NREC.EG.C) STCP

END FILD 11
REWIND 11

IF THERE WAS TAPE INPUTs REWIND THE INPUT TAPE.

IF(INTAP.NELC) REWIND i
STOP
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FORMAT STATCMENTS FOR MAIN PROGRAM SEGMENT

93 FORMATUIS5»10ES5.01

98 FORMAT(8I5s 8ES.E]

35 FORMAT{1X B8E1l6.6)

94 FORMATIL *INCo OF FARTICLES--IN L1 ="I&s2X*IN L2 =°I&s2X
« 'MASS CF PARTICLE--IN L1 =°F5.2 #2X°IN LZ =° F6e2 ¢2XYPARTICLE OI
» AMETER =Z°F6.2 /°OUCONTAINER BOUNDARIES--X Z'FGel #2X°TO® FEo.1 #5X
x 'Y Z'F5.,1 $2X "T0°Foal )

23 FORMAT(®0DT =Z°F7e5 » 4X *OAMPINC FACTCR =°F7.3 X
# "VELOC. NORM =7 FB.lo4X TALPHA =° FBa.ZoelX vp - T4.4X BETA =°
2 TaoelX °XI =% FHol//)

91 FORMAT{2I5¢13E5.0)

S0 FORMAT(1IX 1CFE.4)

89 FORMATt3I59¢8E8.3/18cils5))

88 FGRMATU(OFINAL PCSITIONS AND VELOCITIES FOR THIS CASE WERE OUTPUT
«T0O TAPE AS REZCORD NC.' IH/)

87 FORMAT(®*GINITIAL DATA FOR THIS CASE NGT FOUND CN TAPE. GO TO NEXT
«DATA CASE."/)

INTERNAL SUBROQUTINE FOR COMPUTINE DISTANCES BETWEEN PARTICLES

SUBROUTINE wlsT

K=D

DO 5 IzleNM1

IPl1zI+l

DO 5 JTIPleN

KZK+1
R(K):SGRT((X(Iyl)—X(Jal))**2*(Y(Ivl)—Y(Jol))**2)
RETURN

(%}

INTERNAL SUSROUTINE FOR COMPUTING ACCELERATION OF PARTICLES.
RESULTS STORELD IN ACX(J)sACY(J)sd=lreoorwNe

SUBROUTINE ACCEL
CALL DIST
CALL SUFQORT
D0 1 J=1N
ACX{J1=0o

1 ACYLJI=ZGRAVIY)
K=D
00 2 J=1loNMI
JPlzd=1l
DC 2 IzZJP1lsN
KzK+1

COMPUTE NON~-ZERC REPULSION EETWEEN TWGC PARTICLES ONLY IF THEY
ARE SEPARATED BY A OISTANCE LESS THAN TWO DIAMETERS.

TF({.NCT.{R{K).LT.DIAMZ2))CC TD 2
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TEST IF TWC PARTICLES ARE SEPARATED BY A DISTANCE LESS THAN ONE
DIAMETERs IN WHICH CASE A HIGHER DECGREE OF REPULSION IS ASSUMED
IN EFFECT THAN IF SEPARATED BY A DISTANCE GREATER THAN ONE
CIAMETER.

IFEoNCTe lRIK) oLT«DIAM) )Y DTUR(K}+XI)*P
IFIRIK) L TaDIAM) DT(RIK) +XT)+#Pe ({RIKI+XI)/DIAM)#=BETA
DINvVzle./D

TXZIXCJel)=X{Tel))&DINV
TYSUY(Jeid=Y(Iei)}=DINV
ACXI{JIZTACXIIIeAMITI=TX
ACXCIVIZACXCII-AMIJ)=TX
ACY{JITACYLJS)I«AMIT)=TY
ACY(IYZACYtI)—-AMJI*TY

CONTINUE

RETURN

THTS ROJTINE COMPUTES THE GRAVITY TERM IN THE FORMULA
FOR ACCELERATION IN THLC Y-DIRECTION.

SUBRCUTINE SUPORT

D6 101 J=lseN
ALGJIZAMAXIEAX s X tJds 1 )=-RAD)
AR{UIZAMINLISBX e XU Je i )*¥RAD)

1 (JYTAMAXLUAY»Y (Jel)=RAD)
BARUJITAMINIIBY s YL JeL)#RAD)

DC18 JPZ1lsN
XLZAMAXLCAXo X{JP 2 L)-8LKXZ)
XUZAMINLC(BXeX{JUPs 1) +BLKXZ)

5011 KZaoeNRMI

KAYZK

IFIY{JPel)al TeDYKIK+1)) 50 7012
CONTINUE

KAYZNROA

CG T31le

IF{KAY.GTa-1) GO TOlo
TFIY(JFs1)eCGTDIAM) GC TO13
GRAVIUP)IZO.

GC TO1¢&
ASTZARINTUIP o XL o XUsAY s YTUJP o1))
IF(AS.CT.le} GO TO1H
SRAVIJPIZGCON

GO TOlE
GRAVIJPIZGCUN*{1o~AS/IY{JP 1)« IXU~XL)+EPS))
GO 7018

AAzZOD.

DO17 K=ZeKAY
ASTARINTIJP o XL o XUeDYKIK-1) e DYKI{K))
IFtaNOT-{AS.GCT0)} GG TC1H4
AAZAA+AS
GRAVI(JF)IZCECUN#®* (1 -AA/IDYKIKAY)* (XU-XL)+EPS])
CONTINUE
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THIS ROJTINE COMPUTES THE TOTAL AREA OF INTZRSECTION OF ALL THE
PARTICLES WITH THE CHADOW REGICN FOR A SPECIFIED PARTICLE .

FUNCTICK ARINTUJPsX1leX2eY1leYC)
ARINT=Z0.

Ce 1 IZisN

IFUI.E3.J4R) 50 TC 4«
IF(AR(I)-LToXlaCR.AL(i)aGToXZ»ORaY(Iol)oGYaY(JFvl)) Go 70 1
T=AMINIIZRIT) ¢ Y2 I-AMAXLI(BLII) Y1)
ITF(eNCT(F1.GTaLod) GO 7O 1

F2=AMINLCAR(I) p X2 )-AMAXLLAL(Z) ¥ X1)
TF(NCTo{F2.6TCod) GO TO 1
ARINTZARINT¢F LeF2

CONTINULD

RE TURN

THTS ROJTINDC MCDIFIES THE NEWLY-COMPUTED PARTICLE PCSITICNS AND
VELOCITICS TO ACCOUNT FCR WALL COLLISIONS BY REFLECTINGs WITH
DAMPINCs FROM THE WALLS ANY PARTICLES WHOSE COMPUTED FOSITIONS
LIT OUTSIDE THZ BOUNDARIES CF THE CONTAINER.

SUBROJTIND WALCOL

DCTT7 J=ieN

CONTINUE

TFEoNCTo (Xl 92} aGTaBX)) 60 TG 32

TANTHZ Y 923 =Y{del)d ) /IX1Je2)=-X{Jr1)+3IGNIEPSeXT1Je2)-X1Jel))
XK(JeZ2)ZBX~CAMP#(x(Js2) -EX)

X2 el )X

YUJds2lTY(Jr2)+ X (Je2)~BX)#TANTH

Y1 Je2)=Y{Jri)-DAMP2IX(Je2)-3X)*TANTH

GO TG E&

TF{aNOToIX{Je2) el TaAX})) GO TG 44

TANTHZ (Y Cosid-Yedsll 1/ tX{Je2)-X(Jed )+STENIEPSeXEJs2Z)-XTJe1)})
X{J o2 1ZAX-DAMP # (X1 J92)-AX)

X{deildIAX

Yool )oYLJ 2 ¢ (X LJo2)~AX) & TANTH
Y(Js21=YClsi)~CAMP2 (X (Ue2)~AX)* TANTH

G6C TO &5

TF(oN3To(Y(Js2)o0T.BY)Y G TC &5

TANTHZ (XU e2)=X(Jo1))/7(Y¥(Js2)-YUJe L) +SIGNIEPSeY Js2)-Y1Js10))}
YCJsZ)ZBY-DAMP# (Y (Je2)-BY)

Y{Jel)ZBY

X(Jsl)oX(Jec)+ Y (Us2)-BY)*TANTH
X{Jel)oX(Jei)-DAMP&{Y(Js2)=3Y)«TANTH

GG TO €6

TEL.NOTelY(Je2)aLTaAY)) GO TO 77

TANTHZ (X (Ui d-X(Jedld 1/ (Y (Js2) =Y Js1)+5ICENCEPSsY EJe2)-Y Edell)]}
YUJs2)ZAY=DAMP *{Y(Js2)~-AY)

Y(Jds2)ZAY

X{JrldoX{de2 1LY Je2)-AY)xTANTH
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77

2201

SRS

XOJo2Y X0 oo a ) =0AMP2 LY (Js2)~AY)*# TANTH
SPICOTDAMP=SARTIYVXLJ e 2) %22+ YY (Jo2)*x2])

DICSINVIL o /(SGRTEIX U2 -X{Jdoi) )3 224 (Y{Jo2)-Y(Jel))x2Z)+EFS)
UXTJe2)25PCED2(XTUe2)-X{Jv1) )« DISINY

VY (Lo 2)ZSPEED» (Y (Je2)-Y¥(Je 1)} )*DISINY

G0 TC 22

CONTINUL

RE TURN

THIS RCOGTINE INPUTS THE PARTICLE MASSES AND COMPUTES CR
READS THE INITIAL POSITIONS AND VELOCITIES FROM CARDS OR TAPL.

JUTINEG INITAL
(3I5+8EE.2/(8E10.51))

—f
™M
1
—

&}

FCx POSSI3LE CARD INPUT.

IFIINPUT.LELL) GO TS 201

READ(543.CS) NTUsFeBETAeDT o ALFHAZDAMPeVELNoMLIeMLZoXIoDTIAMs (XOCTI'>
YO (I)edXOUI)eVYDUI)eIZ1laN)

RETURN

TEST FOR MEW FROELEM CASE VS ONE TO BE CONTINUEC FRCM AN EARLIER
RUN.

|

{INTAP.Z3.0) GO TC 11201
{INPUTenNESL) GG TO 3

TO 2201

{(GUTTAP.EG.0) GO TC 2201
TAPZL

OO b4 Q) b

MMMz O™

COPY ENTIRS INPUT TAPE FILE CUT TS QUTPUT TAPE.

READ(LD »ENDZ2201) OUMMY
WEITECIL) DuUMMY
NRICZNRICH ]

CC 70 101

REWIND 10

IFINTO.ZG.03 CC TC 3

SEARCH INFUT TAFLC FOR INITIAL CATA FGR PRCBLEM CASE 70 LU
CONTINUZD FRUCM AN CARLIER RUN.

READ(LOD4ENDZiL02) INTOeIP+IBETAsXDTeXALPHAGXDAMPyXVELNs XMLL1s XMLZ»
* XXTeXDIAMe (XUCTIoYOUINoVXO(I) o VYDUEI)oIZ19N)

IFLINTOSGeNTO 2ANDe IPEZGeP oANDe IBZTAEQeBETA LAND. ABS(XDT~DT)
# JLT.CELTA oANDo. AES (XALFHA-ALPHA) LT DELTA oAND. AESUXDAMP-DAMF)
# ol TeDELTA «ANDe AESUXVIULN-VELN) oLT«DELTA oANDe ADSIXMLI-MLI}oLT.
* DELTA JANC. ABSUXMLZ-ML2) ol T«DELTA oANDo ABSIXXI-XI).LT.DELTA
« oAND. ADZIXDIAM-DIAM)I.LT.DEZLTA) GO 7O 202
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G0 TC¢ 301

SET FLAG INDICATING INITIAL DATA FOR CURRENT PROBLEM CASE WAS
NOT FOUND ON INPUT TAPE.

IFLAG=L
REWIND 1C
RETURN

IF THIS I3 THE START OF A NEW PROBLEM CASEs COMPUTE UNIFORMLY
NTSTRIFUTED INITIAL POSITIONS AND GENERATE INITIAL VELOCITIES
RANDOML Y.

IFIASBSIVELN-VELNP)oLT.EPS) RETURN
VELNPZVELN

K=0

DO 5 IzloNRCW

DC 5 J=ieNCOL

KK+l
XOUKI=Z3LKXsFLCATL{J-1)¢3LKX2
YO(KIZBELKY#FLOATINROW-TI}+BLKYZ
VXOLKIZVELN={2. ¢RANUNIS5)~1s1)
VYOUK)ZVELN#{2 o RANUN(5)-14)
CONTINUE

RETURN

THIS ROUTINC PROVIDES A PRINTOUT OF PARTICLE POSITIONS AND
PARTICLE VELGCITIES AT A SPECIFIED TIME STEP (NT).

SUBRCUTINE FRINTIL)

FORMATU/1HO I4+16F7.1/5X 16FT7.1})

FOGRMAT( 1HO 4X 1€8FT7.1/5X 16F7.1)

FORMAT{1H1 °*VELOCITIES®)

K1zl

K2Z=NCOL

WRITE(Es93) NTs€Y(ToL)oIZKLloK2Io (XCIeblL)}esIZK1eK2Z)
DO 5 JxleNRM1

K1zK1+NCGOL

K2zK2+#NCOL

WRITE(E998) EY(TIoL)sIZKIoK2o(X(IeL)oIZKIoKZ)
WRITELE097)

K1=z1-NCGL

K2=0

DO 10 J=1¢NROW

K1ZKL+NCOL

K2zK2+NKCCL

WRITE(6998) (VYITIoL)oIZKLleK2) ol VX{Iol)eI=K1LrK2)
RETURN

THIS ROUTINE PROVIDES A PRINTER PLOT OF THE POSITIONS
OF THE PARTICLESy WITH DIFFERENTIATION BETWEEN PARTICLES
COMPRISINS .IQUID 1 AND THOSE COMPRISING LIQUID Z.
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SUBROUTINE PLGT
DIMENSIGN TITLECBYoXTITLE(B8) e YTITLE(BYsYPRIN)

DATA (TITLELI)eI=1+8)/%"A INDICATES LIGQUID 1 8 INDICATES LIQUI
*0 2 oo/ e XTITLE(L)YSYTITLECLY/EHY o0 t6HX o o /
DO 1 I=LieN

1 YPREI}=Z-Y(Is2)
CALL GRPHZN{YPR e'R7eX{192) 9*R%°e~NL1975X5°9~10009220e9009200wr
# TITLEeXTITLESYTITLES®A®)
CALL GRPHZVIYPRANLI+11, "R eX{NLL1+1+2)¢"R¥¢-NLZ29o*SAME"¢°B"*)
CALL CGRPHND

RETURN
END
axay
Gl e 100, D. 1CC.
60 2 2 1 1 3 2 2 01 l. 1. 500. Z2e 225 ol

FINAL REWINDING GF INPUT AND OUTPUT TAPES AND RELEASINC CF URNITS.

dREWIND 10.
aF REE 10.
IREWIND 11,
AFREE ile

AFIN






