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The research described in this thesis concerns the application
of pattern recognition and learning to natural language processing.
Using the techniques of learning and pattern recognition, a program
has been written to learn and to demonstrate its knowledge of natural
language by trying to transform language strings from one form to
another, and to answer questions based on the information it has
learned.

In a departure from the usual approach to question answering
and other natural language processing, this program avoids using built-
in linguistic or logical information or techniques. In addition, sev-
eral types of language behavior are attempted in the same single pro-
gram, including transformation or translation of language strings,
information learning and organization, and question answering. Em-
phasis is given to this program's ability to learn a memory net struc-
ture and to categorize the nodes in it into general behavior classes.

A1l inputs are in the form of unstructured, unsegmented strings
of natural language. In a general and uniform way, the program pro-
cesses these strings and incorporates its knowledge into a net struc-
ture which acts as its permanent memory. Learned language wmits are

interrelated and organized in the net by a general process of categor-




izing them into classes according to feedback as to "correct" usage
received interactively from a human trainer. Weights are used for
learning and wnlearning relationships.

Using only the information which it has thus learned and repre-
sented in the memory net, the program accepts natural language input
strings, processes each string according to the requested task, and
outputs in natural language a response, which may be a) a transla-
tion or other transformation of the input string, or b) an answer to
a question input by the human.

The purpose of this research is not to try to produce high
quality language translation and question answering; rather, it is to =
experiment with a memory structure which, with the aid of a set of
simple and general heuristics, demonstrates an interesting kind of
learning for natural language manipulation.

The program is currently running interactively on the Univac
1108 (Exec 8) Timesharing System at the University of Wisconsin.

Coded in Portran V, the program includes a string-matching list pro=-

cessing language written by the author especially for this research.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1. Introduction

Two basic interests - in learning and natural language process-
ing - converged to produce the language learning program which is
described in this thesis. Using the techniques of learning and pat-
tern recognition, the program learns and demonstrates its knowledge
of natural language by trying to transform it from one language to
another and to answer questions based on the information it has
learned.

In a departure from the usual epproach to natural language pro-
cessing, and to question answering in particular, the program makes
a point of using no built-in linguistic or logical information or
techniques. All its inputs are in the form of unstructured, unseg-
mented strings of natural language.

In a general and wmiform way, the program processes these strings
and incorporates its knowledge into a net structure which acts as its
permanent memory. Iearned language units are interrelated in the net
organized by a general process of categorizing them into classes ac-
cording to observed usage. Weights are used for learning and unlearn-
ing relationships. The program can then operate on other input strings
by using pattern recognition techniques to enter the memory net and
access the learned information in it in order to produce natural lang-

guage responses.




Pattern recognition and learning techniques provide an interest~
ing approach toward intelligent manipulation of language. Natural
language, in its rich complexity, provides a challenging medium for
experimenting with learning processes, and has the potential for
stretching any learning technique to its limits. On the other hand,
learning may be the only way to approach a fairly general language
manipulator, one which will work with any language(s) on various tasks.

Our wnderstanding of human language is still incomplete at best,
and one cannot hope to program expliclt grammar rules and some sort
of dictionary for every language which might be seen. Consider the
problem of a child learning to commmicate with the people around him.
He is not supplied with a precise grammar and lexicon package with
which to face the world. Instead, he must slowly and haltingly learn
to recognize the meaningful wnits and patterns in the (usually spoken)
language that he perceives and to associate them with the objects and
acts of his daily life. By observation and experience, he learns to
use the patterns of the language with increasing sophistication wntil
he achieves some sort of linguistic maturity, at least as a user of
that particular language.

In much the same manner, the program to be described here learns
to use the languages it sees. By analysis of its experience, it tries
to learn the meaningful patterns of the languages and how to manipu-~

late them correctly.



2. Major Approaches to "Understanding" Natural Language

Language learning might be viewed as learning to "understand"
and manipulate language to produce some desired goal of behavior.

The learning and understanding of language by computer can be demon-
strated in different ways. We will briefly outline several different
approaches.

First, the computer can demonstrate its understanding by ac-
cepting a natural language input and outputting a paraphrase of its
content. This was the approach of Klein [1965], whose program accepted
as input short essays and used dependency analysis to produce an essay-
type paraphrase which summarized the content of the source text. )

The computer can also indicate its knowledge of a language with
the ability to translate it into another language. Because of the
great complexity of natural language, however, good translation has
been en insurmountable task. TFew research efforts along these lines
have even been attempted in recent years. However, Unr [196L4] des-
cribed three programs which use pattern recognition in an attempt to
translate from one natural language to another. These programs (from
which the research described in this thesis evolved) will be described
in Section 4.1. Along similar lines, Siklossy wrote a program which
tries to translate from a functional language to a natural language;
his work also will be discussed in more detail in Section k.1.

Another interesting method of demonstrating understanding of a

language is to relate an input to previous knowledge and discuss and




explain its relationship. This is the approach of Quillian's Teach-
eble Language Comprehender [1969] which operates with a semantic net-
work memory capable of representing factuai assertions about the world.
;. The most frequently attempted task which (incidentally and very
convincingly) demonstrates knowledge of a language is to answer
natural language questions. Question answering (QA) in general is a
very large and active area of research, possibly because of the obvious
usefulness 'of any successful large-scale program for handling large
information files. There are many aspects of the question answering
problem, with much research involved in each area, but our interest

centers on the problems of understanding and manipulating natural .

language. We shall mention several QA efforts in Section 4.3.

3;’”Thé”Appf6ach Taken in the Current Research

Our approach to the natural language learning problem is differ-

ent from the other attempts which have been reported in the litera-

tp;g,_?erhaps becau§§Aour purpose is diffgrgpt.“‘Although our research
is_similar in many respects to that of Uhr [1964] and Siklossy [1968],
in the current program there is much more emphasis placed on the memory
structure, and more types of behavior are attempted in the same program.
The program is given the ability to learn a memory net structure
and to categorize the nodes (e.g., words) in it into general behavior
clagses_according to the usage it infers it must make of them. Using

only the information which it has learned and represented in the net,

the program accepts natural language inputs and tries to perform the



requested task, which may be a) to translate to another form or an-
other language (and possibly also to learn the information in the
string) or b) to answer a question. Thé translation or answer is
then output in natural language.

Much as with the Uhr programs [1964], the language translation
task is approached as a pattern recognition problem with contextual
interactions of great complexity. Once the program has gained entry
into the memory net (by means of pattern recognition), the tra-
versals from node to node are strongly influenced by contextual con-
straints. Very simple, the translation or transformation problem is
to find a combination of words which "covers" the input and then to -
transform those words to a target form suitable for output. Some
transformations may involve changing the order of the segments as
they appear in the string. The program must do all this without the
aid of linguistic information about the words it is processing.

The approach to question answering is similar, but slightly more
complex. In this case, the program is attempting to find a combination
of facts which are related (in the network) and suitably account for all
of the question. Since there is no pre-programmed linguistic informa-
tion, the program cannot know the nature of the relatedness of the two
facts, but must use the collection of facté assembled by various heur-
istics. Also, since there is no logical processing, the program cannot
check to see if the correct answer can be logically deduced from the
collection of facts. All it can do is output an answer based on the

relationships it has learned, and try to correct its information if it




discovers that it was wrong.

The purpose of this research is not primarily to try to produce
high quality language translation and question answering; rather, it
is to experiment with a mewmory structure which, with the aid of a set
of simple and general heuristics, demonstrates an interesting kind of

learning for natural language manipulation.

4., Previous Relevant Research

In this section we will survey research in three different areas
which are most relevant to the work described in this thesis. The
research to be discussed involves language learning, memory networks,

and gquestion answering.

4,1 Language learning programs

Research in this area is probably the most relevant in all of
artificial intelligence to our research. The first learned behavior
sought by this program was an understanding of natural language, as
indicated by the ability to translate it into some other form for out-
put. A few other programs have attempted to learn or translate nat-

ural langﬁage.

4.1.1 Siklossy's ZBIE

The research of Siklossy [1968] is based on much the same idea
as the books which propose to teach a language through pictures. By
inspecting a picture of a simple situation and studying its descrip-
tion in a foreign language, the student is supposed to learn that

foreign language directly from the "real world". Thus bypassing his



native languasge, the student is supposed to avoid the problems of
translating from one natural language to another.

In place of the (allegedly) universally understood pictures,
Siklossy's program (called ZBIE) represents situations with a func-
tional language in which the "sentences" are usually tree structures.
By requiring such a structured functional expression as input for
translation to a natural language, ZBIE avoids many of the problems of
learning or translating from a natural language which is input as an
ustructured string.

7ZBIE compares the functional language representation of a situa-
tion with the representation of the situation in some natural language-
usually Russian. By successive comparisons of situations represented
in these two languages (one strongly noninflected, one natural), ZBIE
tries to learn how to express other situations in the natural language.
Then ZBIE can indicate its learned knowledge of a language by output-
ting a description of some new situation in that language.

Although ZBIE is an interesting and fairly successful program, it
avoids many of the problems which our program tries to solve. Whereas
our program accepts unsegmented, unstructured strings in one natural
language (L1) for translation into another natural language (L2), ZBIE
starts in the middle and accepts for translation only presegmented and
structured strings in the special functional language, thus avoiding

the problems of I1's idiosyncrasies.

4L,1.2 The Autoling system

The Autoling system of Klein's group [Klein et al, 1968] learns




a language in the sense that it automatically produces a phrase struc-
ture grammar of (a subset of) some natural language during teletype
interaction with a live informant in that language (the informant must
also know English). The phrase structure heuristic learning program
accepts as inputs sentences written with spaces between morphological
wmits. The program tries to parse the sentence according to the gram-
mar it has built so far. If no complete parses are found, then Autoling
tries to adapt its current provisional grammar so that the sentence
will parse correctly. The top nodes of any incomplete parses which
were found for the sentence are ordered and used as input for a set
of rule building heuristics. Using these heuristics, Autoling tries -
to modify a relevant grammar rule so that it applies also to the se-
lected top nodes and thus gives a complete parse. Before the pro-
visional grammar is actually changed, however, the program uses the
altered portion of the grammar to generate a test sentence for the
informant. If the informant approves of the test sentence, then the
grammar is actually changed; otherwise, the test sentence is remembered
as "illegal" and Autoling tries another heuristic. If all the heur-
istics fail to satisfactorily adapt existing rules of the provisional
grammar, then the top nodes of the best incomplete parse are added
as a new rule.

Our present research is similar in many respects to Autoling,
especially the techniques of finding the most relevant rule (or node)
in the memory and modifying it so as to generalize its usage to the

current input case. Although our program can have no explicit gram-



mar, the program is, in effect, "parsing" an input string as it pro-
cesses it through the implicit grammar of the memory net.

One of the goals of Autoling is to réplace the linguistic field-
worker. The program does quickly produce a grammar for a given sam-
ple corpus, but the quality and completeness of the grammar do not

yet compare with that of the grammars produced by human linguists.

4.,1.3 Uhr's pattern string learning programs

The series of three program described by Uhr [1964] form the
basis from which the present research evolved. Each program exper-
iences a set of string inputs in some natural language L1 and uses
its memory to recognize segments of the strings and translate them N
into strings of some other language I2. Recognized segments are assoc-
iated with each other in the memory graph by one-directional learning
rules. Classes of segments can also be generated and used to write
"restructuring rules" in the memory graph. The structure of the mem-
ory is not emphasized, but can be thought of as a graph defined ime
plicitly by the "learning rules", in which pattern nodes are connec-
ted by several types of edges representing different relationships.

The second and third programs must learn to recognize segmental
patterns in continuous strings that may not have any indication as
to where the segmentation should occur. The first program, however,
uses rote learning techniques on strings already segmented by spaces.
It can learn to recognize and translate any sentence generated from

its vocabulary, as long as there are no interactions between words

in the vocabulary .
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The second program can handle simple interactions between words
by putting them into equivalence classes and generalizing a rule
learned sbout a specific pair of words to the class as a whole. Thus
it can build up simple combinations of patterns and can classify pat-
terns for purposes of deciding between ambiguous alternates and
changing the order of patterns in the string.

The third (projected) program attempts to strengthen the rules
of the second program by using as context not just a single word but
a group of words. Thus, it combines classes into classword patterns,
handles much more complex classes as contexts, and handles discon-
tinuous interactions more efficiently.

The program reported in this paper uses a general memory network
and learns all the behavior mentioned above, with certain added abili-
ties, such as wlearning incorrect information. In addition, the new

task of question answering is attempted.

4.2 Memory networks

An important element of the research to be described in this paper
is its memory structure and the techniques by which the program ac-
quires its knowledge and represents it in a learned semantic memory
network. We are interested not in just a data structure suitable for
retrieving information, but in the relationships inherent in natural
language itself. Two such memory structures will be described bhelow.
Although they are not learned structures, both systems have interesting

properties which are relevant to this research.
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h.2.1 Quillian's semantic memory

After a well-developed background discussion of semantic memory,
Quillian [1968] describes his own semantic memory model. The model
consists basically of a mass of nodes interconnected by different
kinds of associative links. Although each node can be thought of as
named by some English word, the important feature of the model is the
distinction between the two different ways that a node can be related
to the true meaning of its name word. A type node relates directly to
the configuration of other nodes that represent the meaning of its name
word. A token node, on the other hand, refers indirectly to its name
word concept by having a certain kind of associative link that points i
to the name word's type node. For any word concept, there is exactly
one type node in memory; the nodes which define the concépt of this
type node are token nodes, each of which points to its own wnique type
node. In general, there will be many token nodes pointing back to
each type node. Note that no word concept can be thought of as a
"primitive" in the system, each is defined in terms of the others.

The node configuration defining a type node's concept can be
thought of as a plane in memory. As opposed to this "immediate de-

finition" of a word, Quillian defines a full word concept in his model

to be all the nodes which can be reached by exhaustively tracing out
through all links from the initial type node of the word, together
with all the relationships among these nodes specified by local, within-

plane links.




Quillian holds that such a memory organization is useful for
semantic tasks and as a reasonable description of the general organi-
zation of human semantic memories.

The memory structure described in Chapter 3 is similar in many
respects to Quillian's semantic memory; a comparison of the two mem-

ories is made in Chapter 3, Section 3.

4.2.2 Lamb's linguistic and cognitive network

According to Lamb [1969], the types of relations and the con-
figurations of relations which have been observed in linguistic data
are also present in what he calls "cognitional data", that is, rela-
tionships and facts about the real world. To demonstrate this, he
describes a single, stratificational network of relationships which
accommodates both linguistic and cognitional data.

Starting at the level of the basic phonological components of
somnd (e.g., labial, closed, voiced) which he calls phonons, Lamb
shows how different layers of sign patterns (e.g., at phonemic,
morphemic, lexemic, or sememic levels) are connected into one complex
network. Crossing the vertical connections of the strata are "planes"
of syntactic patterns (e.g., lexotactics, semotactics, morphotactics)
which choose among alternate realizations of different network ele-
ments and determine the ways in which the elements can combine. A
tactic pattern is shown to act as a filter in decoding a sentence,
filtering out tactic anomalies and resolving ambiguities to the ex-

tent possible at the particular tactic level.
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Residing at the top level of a complete linguistic system are
the elements for concepts. Lamb argues that if we inspect cognitive
data in the same manner as linguistic data, we will find that cog-
nitive data also fall into a network of relationships, starting from
simple concepts. Thus, relational cognitive data can be viewed as
another stratum lying on top of the linguistic network. Example re-
lational segments are given for the game of baseball and animal tax-
onomy. Lamb contends that the resulting network can be viewed as a
model for (at least some of) the knowledge that a human has stored in
his brain.

The memory described in Chapter 3 shares certain characteristics -
with Lamb's network, since it stores its learned word "lexicon" and
factual information in the same single net structure. Further com-

parison will be made in Chapter 3, Section 3.

4.3 Question answering programs

The second task chosen to be learned by the program was question
answering. Although the problem is attacked in a way very different
from most efforts, a few question answering (QA) systems will be
briefly discussed with respect to the use of natural language and the
generality of the memory structure.

One of the main difficulties in QA systems is how to deal with
the complexity of natural language. Some research projects have
simply bypassed the language problem in order to concentrate on the

logical processing of information or the internal structure of the
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data base. For example, the SAMENLAQ II system [Shapiro and Woodmansee,
1969] accepted as inputs only relational triples of the form xRy so that
the authors could concentrate on developing a powerful data structure.
In some early cases a QA program would accept natural language input,
but only in the format of a small subset of English sentences from which
key words and relations could be easily picked out. Examples are the
SIR [Raphael, 196L4] and STUDENT [Bobrow, 1964] systems.

The Protosynthex I system [Simmons, Klein, and McConlogue, 196k4]
accepted natural language questions and used the content words in them
to index into a corpus of English text and extract information-rich
sentences from it. Our program uses a technigue very similar to this -
(see Chapter 9). The extracted sentences were then dependency analyzed
and put through semantic evaluation before being chosen as answers.

The current program does not use these linguistic procedures, however.

More recent attempts to process natural language questions all
seem to have made further use of linguistic information, with built-in
grammars for processing inputs, aided by lexicons giving linguistic
word properties. Examples are the DEACON system [Thompson, 1966; Craig
et al, 1966], the CONVERSE system [Kellogg, 1968] and Protosynthex III
[Simmons et al, 1968]. For these systems, a natural language input is
parsed by filtering it through coordinated syntactic and semantic pro-
cessing to some internal form which can access the data base.

The current program also works with natural language inputs, data
base and output, but contrary to the above mentioned efforts, it tries

to do it all without built-in linguistic information procedures.
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Most early question answering systems achieved success by oper-
ating on data bases structured specifically for their content. Sys-
tems like BASEBALL [Green et al, 1963], SIR [Raphael, 196L4], and
Lindsay's kinship-relations program [Lindsay, 1963] worked only with-
in a narrow range of subject matter.

Later efforts have been directed at building systems which are
useful for data bases with different structures or contents. For
example , the DEACON system could handle any subject matter which
could be stored in its interrelated ring structures. The CONVERSE
system was designed for use with large, formatted information files
concerning any suitably organized subject matter. Then the ability
to answer a question would depend on how closely it matches the inter-
nal structure of the data, and whether the desired information is
accessible from that direction.

The gquestion answering system designed by Woods [1967, 1968]
achieves independence from the data structures, subject matter, or
manner of data retrieval by operating at a higher level in terms of
primitive functions and predicates. The user of the system would
have to provide the primitives appropriate to his data base. In con-
trast to this approach, the SAMENLAQ IT system system of Shapiro and
Woodmansee [1969] tries to achieve maximum generality and gquestion
answering power in the data structure itself. The memory used is a
net structure with nodes related by labeled, directed edges. The
relations used as labels are also nodes themselves, so that the mem-

ory can store and use information sbout its relations as well as the
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items relsted.

The memory of our current program is somewhat similar to that
of SAMENLAQ IT, in that both are node networks connected by labeled,
directed edges. In contrast to SAMENLAQ, however, our program has
no way to tell which portion of an input information string might
be a relation, so all string segments are stored in the same way

(see Chapter 8).

. Summa

The goal of the present research is to learn to transform nat-
ural language strings and answer questions, using only learning tech- -
niques, the natural language strings of the program's experience,
and a memory network which is independent of subject matter. Built-
in information and special techniques from logic and linguistics are
expressly disallowed. As its main technique, the program is allowed
to categorize the nodes of its memory into behavior classes according
to the language usage which it observes. Although the methods used
are different from those of any system mentioned above, we feel that
the resulting behavior provides an interesting study of learning and

the relations inherent in natural language.



17

CHAPTER 2

OVERVIEW

1. General Overview of Program

In this thesis we describe and outline the operation of a large,
interactive computer program, which we will refer to as METQA, (for
MEchanical Translator and Question Answerer). Running interactively
on the computer, METQA accepts intput strings of natural language
from a human trainer and, after processing each string, outputs a
natural language response. The processing of the string may involve
transforming (or translating) it to some other form in the same or
ancther language, or it may involve answering an input question based
on information previously learned by the program.

The program can operate in any of three modes at the command of
the humean trainer. The first mode is the transformation mode, in
which METQA acquires vocabulary and uses learned vocabulary to trans-
form strings to some other form or language. While METQA is still in
this mode, the human trainer msy optionally turn on another mode,
which tells METQA to learn the factual information contained in the
input strings as well as their transformations. We call this the
learning mode. In the third mode of operation, the gquestion answering
mode, the input string is marked as a question asked by the human,
and METQA uses the information learned into its memory to try to pro-

duce an answer.
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METQA decides what to learn by comparing the response it has
output with any (specially marked) feedbagk string the trainer may
wish to give. A feedback string is taken to be the correct response
which METQA should have given to the original input from the trainer.
By comparing the feedback with the response, METQA tries to deter-
mine which (if any) portions of the original input string were pro-
cessed incorrectly so that memory modifications can be learned.
Learned information and relationships are represented and stored in
a memory network which serves as the permanent memory of METQA.

METQA learns by adjusting and reweighting the links which con-
nect the nodes of its memory. New relationships are hypothesized and ~
built into the net with some initial, neutral evaluation weight on
each link. The hypotheses are tested by using them to direct future
behavior; the links are reweighted according to the success of the
behavior. If some hypothesis is downweighted to a certain minimum
because of bad behavior, then it is discarded or forgotten.

By thus learning and adapting its memory net from its experience
over time, METQA tries to produce a memory which yields intelligent

manipulation of language.

2. Program Specifications

METQA is currently running interactively on the Univac 1108
(Exec 8) Timesharing System. The program is written in Fortran V
and is about 7000 lines long, including the string-matching list

processing language (called SMALL) which was written by the author
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especially for this program (see Appendix for explanation of SMALL).
The system consists of a large driver program commanding about 80
subroutines. In the computer, METQA occupies about 31,000 words of
core plus an available space array, which has ranged from one to five
thousand words.

The available space array is set up as a doubly-linked list of
2-word cells, in which two available space mechanisms opersate, one
from each end. METQA's permanent memory is constructed in the lower
end of the array, while the upper end is used as an erasable work
space by the program (see Appendix for more details on available
space).

Except for the distinction between memory space (which holds
METQA's memory net) and work space (which temporarily holds the pro-
gram's work lists), no knolwedge of the SMALL system is required of

the reader.

3. Conditions Set for the Program

The main objective of the present research is to see how well
an adaptive program can produce "intelligent'" manipulation of language
without eny prior knowledge of it. The program has the abilities to
form a general relational net structure and to form classes or cate-
gories of the nodes in this net for use in distinguishing different
behavior situations. Given only a net structure and the general pro-
cedure of categorizing its nodes in order to determine behavior, just

how well can METQA learn to handle language tasks such as translation
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end answering questions?

With the above question in mind, we set certain important con-
ditions for the program. Both input and output information should
be minimized: There are no large files for dictionaries or grammars,
which would be limited in use to just the language for which they
were written. There are no built-in encyclopedias or fact files.
METQA tries to learn everything on its own (with rare exceptions to
be discussed in Chapter 9, Section 9).

Another important goal was to maximize the generality of the
program so that it could adapt easily to different tasks. The pro-
gram should handle any language (or potentially any form of communi-
cation) and any subject matter by trying to acquire the appropriate
"world view". It must adapt its memory to reflect whatever experience

it has had.

4, Behavior Goals for the Program

Within the above framework, METQA must attempt its various tasks.
First, it tries to learn totransform some input string (called the
source string) to some other desired form (called the target string)
as directed by a human trainer. This might involve translation from
one natural language to another, or transformation from active to
passive voice within a language, or converting a (digitized) spoken
input to a written output -- in brief, transformation between any

forms which can be suitebly input. METQA's only requirement for its
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input is that it be a string of discrete synbols.*

In order to correctly transform input strings, the program must
learn the different external forms of the same memory node which
comply with different contextual situations. For example, this might
involve learning a feminine form of some adjective when in the con-
text of feminine words, or perhaps learning a special plural form of
a noun when in a plural context. METQA must also learn any segmental
permutations necessary for correct transformation between different
representations. Such permutations typically occur because of word
order differences between languages (e.g., adjective and noun trans-
position between English and French).

In addition to transformation of strings, METQA must also try
to learn the information contained in the strings it processes, so
that it can answer questions related to this information. Considering
the information retrieval continuum, with document retrieval on one
end and sensitive, specific answers to complex questions at the other
end, it is of course desirable to come as near as possible to true
question answering. METQA is limited here by the fact that it has
no knowledge of linguistic structures or word properties, and cannot

definitely determine the relationships among a particular set of words.

)
This requirement does not preclude two-dimensional pictures or

& sound spectrum, however. It requires an initial processing through
a two-dimensional pattern recognizer or spectral analyzer, with out-
put of a string of recognized units to be used by METQA as its un-
known input.
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Consequently, as a beginning, METQA simply tries to output a small
set of one or more related facts which include a question's answer,
at least implicitly.

METQA is in part a pattern recognition system, too. Thus, it
must accept imperfect input strings, allowing for misspelled words
or garbled or missing characters and trying to do as well as it can.
With the general pattern recognition techniques discussed in Chapter
L, METQA tries to recover the missing information by inspection of the
context, much as would a human.

Given all these goals and requirements for operation, how does
METQA process any given input string? The procedures involved will
be briefly indicated in this chapter, and discussed in much more de-

tail in succeeding chapters.

5. The Learning Technique Used

Perhasps the most important feature of this program is its use
of learning. There is no direct attempt made to simulate the human
mind, either in the form of semantic memory network used or in the
manner in which METQA learns. Instead, we are interested in a sys-
tem which can represent and store semantic information in a simple
end general way, and which can adapt itself, or learn, based on its
experience.

As will be explained in Chapter 3, the memory consists of a
network of nodes connected by labeled, directed links. A link may

have an associated list of restrictions or conditions which must be
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satisfied before that link can be traversed. Because of METQA's
operation as an adaptive system, each link and each restriction on

a link has an associated weight that both serves to choose paths and
aids in evaluation of its usefulness. At the surface of the memory
net, the description of a word as a character string may be composed
of several short string segments; here, each segment has an associated
welght to evaluate the segment's importance relative to the whole word
description.

Thus, for example, the string for "telephone" could be segmented
as "TELE(2)-PHONE(8)", where the segment weights are shown in paren-
theses. Here the weights show that METQA has learnmed that the second -
segment is much more important for recognition than the first.

An evaluation weight 1s a small integer which can be changed by

the program to reflect the success of using the weight's associated
link, link restriction, or string segment (the readjustment operation
is the same for all).

The adjustment of evaluation weights is carried out as follows.
If a certain link was traversed and led to an incorrect response by
the program, then that link is penalized; its evaluation weight will

be reduced by some small amount (we call this downweighting). If

METQA traversed this bad link because the input satisfied some restric-
tion on that link, then the evaluation weight of that restriction is
also reduced. On the other ﬁand, if METQA needs to reinforce the
knowledge of some link which leads to correct behavior, then that

link's evaluation weight will be increased (we will refer to this as




2k

upweighting the link).

Suppose some link (or restriction) has repeatedly led to bad
behavior, and its evaluation weight has been reduced to zero. Then
METQA will decide that it was incorrectly learned, and the link (or
restriction) will be erased -- completely removed from the memory.
This downweighting and discarding is also known as "forgetting".

This weight adjustment technique allows METQA to evaluate what
it has learned before, based on the success of its later behavior.
All hypotheses are given the same preset neutral value for their
initial evaluation weight. If the initial hypothesis was incorrect,
then repeated downweighting will ultimately cause that learned item
to be unlearned, i.e. erased from memory. A correct hypothesis,
however, will produce correct behavior and will be upweighted often
enough so that there is no danger of its being "forgotten". Other
programs which have successfully used this weighting technique in-
clude the pattern recognition systems of Uhr and Vossler [1963] and
of Uhr and Jordan [1969].

For this reason, it is quite reasonable for METQA to generate
a whole parallel set of multiple hypotheses to explain some exper-
ience. Since there is often no way to determine which of several
alternate hypotheses is the best, METQA learns all of them and then
depends on its later experience to reweight and thus unlearn the bad
hypotheses and reinforce the good ones.

This, then, is the general basis of the learning process which

will be referred to throughout this paper. After analyzing the cur-
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rent input string from the perspective of its accumulated experience,
METQA hypothesizes one or more relationships and incorporates them
into the memory. Each hypothesis receives a neutral initial evalu-
ation weight. The learned relationships are tested by using them

to direct the behavior on future experience. Then according to the
success of its behavior, each hypothesis will be modified, reweighted,
or even "forgotten". By this process, the correct and useful hypoth-

eses should survive and the erroneous ones should be discarded.

6. Learning from Labeled Input Pairs

In order to decide what relationships to learn by the abdve
technique, the program makes careful comparisons of pairs of input
strings. The human trainer provides labeled input strings for this
comparison.

An unmarked input (i.e. with no preceding special symbol) such
as "THEDOG"® directs METQA to simply transform that source string
through the memory toward some target string which is the translation
of the source string. As its response, METQA outputs either the com-
pletely translated target string (e.g. "LE CHIEN"), or else a partially
translated string, along with an indication of any part of the source
string that it could not recognize (e.g. "LE U(DOG)", where "U"

means "unknown").

¥
A1l input strings are followed by a special termination symbol
("<") which delimits the string for METQA.
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The next input received might be another string to be trans-
lated, but the trainer may instead wish to give METQA feedback to
its response. If so, the string is marked with a special symbol ("=")
at its beginning (e.g. "=LECHIEN"), so that METQA will compare this
string with the previous one in order to learn transformations (as
described in Chapter 6).

Mternatively, any input might be marked as a question to be
answered by the program (see Chapter 9) or as a special "metacommand"
to change some parameter value in the program (see Chapter 10, Section
4). However, only a feedback string can "connect" with the previous

¢

input and initiate METQA's learning procedures.

T. Use of Context Classes

Another very important feature of the program is its use of
context classes or categories. METQA groups together into a class
or category any one or more nodes whose usage it would like to char-
acterize in a general way. Thus if the program discovers some special
behavior pattern in the context of (i.e., in the input string close
to) the word "fille", then it will try to characterize this context
(or input situation) by forming a class with the word "fille".

METQA could just learn to behave in a certain way in the con-
text of "fille", but such a learned rule is entirely specific and
would require learning the special behavior separately for each word
which causes that behavior. It is far more efficient to form a

general class, say Cl, whose first member is the word "fille", and
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thus to learn a more general rule: to behave that certain way in

the context of Cl (i.e. words like "fille"). Then whenever METQA
observes the same behavior pattern in the context of some other word
W, it can conclude that W is another one of those words like "fille".
Thus W would be added to the class Cl as a new member, and the
more general rule mentioned above would still apply, but now to a

larger class of words.

T.1 Tormation of context classes to disambiguate

Context classes are built for two main reasons. The first is

for disambiguation -~ to enable METQA to choose from among alternate -

behavior possibilities. For example, suppose METQA knows that "le"
is the French translation of "the". Then on some feedback, it dis-
covers that "the" should have been translated to "1la" in the present
case. This means that there is an ambiguity; "the'" can transform
to "le" or "la".

In order to determine in the future which alternate should be
chosen, METQA tries to find the distinguishing characteristics of the
current input. That is, what caused this input to require a different
behavior from that which METQA already knew? To answer this question,
METQA forms a class for each word near the ambiguous word in the in-
put (two words on each side). Hopefully, the trainer has learned to
be sensitive enough to the program so that at least one of these
classes contains the necessary distinguishing context. (The other,

false inferences will gradually be unlearned as distinguishing con-
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texts, as described in Section 3.)

These new classes are listed together as a context class condi-
tion on the link to the new alternate behavior ("1la"). This context
class condition acts both as a restriction and a selector. Use of
this alternate behavior form ("la") is restricted to cases where a
member of at least one of the context classes listed is present near-
by in the input. On the other hand, the satisfaction by the input
of that desired contextual situation causes this restricted link to
be selected over the other alternate behavior ("le"). (This use of

context classes will be discussed again in Chapter 5, Section 5.)

7.2 Formation of context classes for permutation rules

Context classes are also built to handle the description of
input situations where segmental permutations have been discovered
to occur. If METQA discovers a difference in word order between
input and feedback strings, then it will try to learn a rule govern-
ing the permutation of parts so that the string can be output cor-
rectly next time. That is, it will try to characterize (by means
of context classes) each segment involved in the permutation and
indicate the position which that segment should have after the per-
mutation. (Permutation rules are discussed in Chapter 7.)

For example, suppose METQA receives the input string "BROWNDOG"
and outputs as its response "BRUN CHIEN". Next the feedback string
"CHIENBRUN" is received, and METQA discovers that the two segments

should have been permuted. Therefore METQA will try to use contexts
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to describe this input in order to build a permutation rule.

Context classes will be formed to contain "brun" and "chien";
then these (internal) class names will be used in the following rule
(1et "M/C(word)" ©be read as "some member of the class containing
'word'"):

If M/C(brun) is immediately followed by M/C(chien),
then permute the segments so that the second segment

comes first (i.e., switch the two segments arowumd).

Since METQA operates from any source language to any target language,
a complementary rule would be built, from output to input language,
for M/C(dog) followed by M/C(brown). |
As explained in Chapter 7, a permutation rule is altered and
generalized in further experience so that, hopefully, its context
classes will approach the actual linguistic classes involved (e.g.

French adjectives, French nowms).

8. Generalization of Context Classes

When METQA needs to characterize an input string for descrip-
tion or disambiguation purposes, it uses already existing context

classes wherever possible. We refer to this as generalization of

learning. In this way, the total number of classes is minimized,
and the classes become more general in usage.

Generalization occurs in two types of situations. In the first
case, METQA generalizes some class membership to a new node because

it behaves like a member of that class. For example, suppose METQA
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kinows that "the" transforms to either "le" or (in the context of
class Cl, which at the moment contains only "fille") "la". Then it
would transform "THEWOMEN" to "LE FEMME". When feedback indicates
that "the" should transform to "la'" in this case also, METQA must
adjust the memory so that a context of "femme" also elicits "la'.

ii: .. Instead of forming a new class to contain "femme", METQA general-
dges membership in class Cl to "femme" for the following reason.

Ef the Iink restricted to Cl1 should have been followed, that is if
"femme' should have caused the same behavior as a member of class Cl,
then perhaps "femme" should be a member of Cl. As a result, class
‘GI -now has -at least two members ("fille" and "femme"), and METQA is
or-its way-to forming a class of feminine words. . Note that the con-
‘dition for transforming from "the" to "la" is still the same.
il:i:_In the second type of generalization, METQA generalizes a new
“context condition for the usage of some word form (that is, for the
traverssl OFf ‘somé link) from some already classified word which
{(ree€dback says) should elicit that word form. This type of general-
‘ization changés not the class membership of a node, but the condi-
*tions for traversal of some link.

o For example, suppose METQA knows both class Cl from the previous
éxample and that "small" transforms to "petit". Then an input of
WSMALLGIRL" will be transformed to "PETIT FILLE", but the feedback
‘string will be "PETITEFILLE". After comparison of the strings, one

of METQA's hypotheses is that a new form "petite" occurs in the con-

text of "fille". (For more details see Chapter 6, Section 5.2.)
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Hence a new node for "petite' is built and connected to the other
"small" nodes, but its use must be restricted to this contextual
situation. As we have seen, "fille" has already been assigned a
class membership (in Cl) for other reasons, so METQA will generalize
from that class membership and hypothesize that class Cl must be the
distinguishing context which should here elicit the form "petite".
Hence the link to "petite" will be restricted to contexts of class
Cl, and the class membership of "fille" is unchanged.

Notice the result of this generalization. Even though METQA
has not seen the input "SMALLWOMAN" before, it will now output the
feminine form of "small" in its response "PETITE FEMME" because
"femme" is now a member of class Cl. Thus as a result of learning
a pgy form (or g new usage of an old form) in the context of one
classified word, that learned behavior will generalize across the
whole clsass.

Of course, it is possible to generalize too much. For example,
if "fille" had membership only in the class of French nouns, then
METQA would have learned that "small" translates to "petite" in the
context of all French nouns, which is obviously false. If such an
erroneous generalization does occur, METQA has to unlearn it through
experience, downweighting and ultimately discarding the bad context
restriction. Meanwhile, it will extract other class memberships
frop other words, or generate new ones if necessary, and eventually
arrive at a better set of context restrictions. (Examples and dis-

cussion of generalization will be found in Chapters 6 and T.)




9. Uses of Context Classes for Question Answering

Besides the major uses of context classes for disambiguation
and description of contexts, there are some convenient "side effects"
for question answering as a result of the categorization of METQA's
vocabulary.

In Chapter 3 (Section 2) and Chapter 9 (Section 4) we explain

the concept of an extended meaning, which is very useful in extrac-

ting from the net a richer selection of information about some word
than just those facts that the word alone could. Briefly, the ex-

tended meaning of some word W includes not only W, but all words

rLs

which are class members of W and all words of which W is a class
member. Thus the extended meaning of "fruit" might include "orange",
"peach", "food" and "plant", as well as "fruit". Hence any context
classes which METQA forms can cause its knowledge (or literally, the
nodes in its net) to become more interrelated and thus more accessible
from different directions.

Another important use of word categories is in the processing
of interrogative or "question" words (such as "who", "what", "when"),
which appear in questions to be answered by METQA. Using the class
memberships known for the question word itself, METQA searches for
some word which has one of the same class memberships to use as the
referent of the question word. Thus, 1f METQA has a fairly well
developed context class structure, the referent for the guestion word
"

who" might be "Mary" or "boy" or "aunt" (perhaps because all are

members of the class of persons), but it could not be "table" or
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"small".

10. Preview of Coming Chapters

The next chapter will discuss METQA's semantic memory net struc-
ture and explain the various types of links and nodes in it. In
Chapter U4, the pattern recognition technique used to recognize char-
‘acter strings is e;plaingd and illustrated. Several methods for
learning string patterns are discussed, along with the problem of
recognizing relevant information.

Chapters 5 through 9 explain the actual operation of the pro-
gram for its tasks of translation and question answering. In Chapter:
_§} the transformation process is examined. Word patterns are recog-
nized in the source string and the words are combined to form "parses"
.9?«?§? §ﬁ;ingf' Then §gph'rggggpizgd word follows some path through
the nodes of the memory net (as allowed by contextual requirements)

- toward the desired target string. Appropriate transformations and
segmental permutations occur along the way.

The learning of transformations is explained in Chapter 6. As-
sume some source input string has been processed to its target string
and its word paths are still threaded through the memory network. A
feedback string is processed in similar fashion, but the goal of each
feedback word path is to quickly join or intersect a path from the
source input. The reason for this is that METQA wants to know if it
was correct in its processing of the source string. If it was, then

the source input and feedback paths should overlap immediately. It
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is these intersected paths that METQA uses to associate and learn
string transformations.

Since there are often differences in word order between two
languages or between two equivalent strings in the same language,
there must be rules to describe the conditions under which string
segments should be permuted. In Chapter T we discuss the learning
and use of these permutation rules, with attention to how METQA can
generalize the rules.

Next, we turn to METQA's task of answering questions. Chapter
8 explains how information is learned and placed into the net as
"facts". Then in Chapter 9 we examine the process by which METQA
finds an answer to a gquestion. Using the words found in a question,
METQA selects an initial set of facts from the memory net. The
initial facts suggest other facts, and these in turn suggest other
information, and so on. The facts are linked together into "chains"
of information which METQA assembles in an attempt to "account for"
(with information) each word in the question. Next comes an explana=-
tion of the special treatment of interrogative words, followed by
examples showing the use of these techniques.

Various topics are covered in Chapter 10. Special problems are
discussed, along with proposed remedies. In particular, we discuss
the problems which arise when METQA is transforming in only one lan-
guage and in more than two languages. Also examined is the issue of
"metalanguage"-~commands directed at METQA and not at its memory net.

Such commands are used to change program parameters and switches; if

o
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it is advisable, they could also be used to modify the memory itself.
Among the future extensions discussed are the trestment of pronominal
reference, specilal types of questions, and question answering feed-
back.

Finally, the results of the work so far will be shown in Chapter

11, with sample runs illustrating how METQA learns.

11. Comments About the Examples

In order to illustrate METQA's procedures, many examples are
given, with some showing small segments of a memory net. The reader
should note that, although only a few nodes may be shown, the sample
net may be just a small part of a very large memory net. Usually,
only the nodes relevant to the example are shown.

The translation examples are mostly between English and French,
with a little German here and there. Although METQA is programmed
to handle any language, in its current state it gets confused about
the target direction when working with more than two languages at
the same time. This confusion may be only temporary (until it has
learned the necessary context classes), but we found it more conven-
ient to use only two languages at a time and to concentrate on the

problems of learning and generalization.

12. Present State of the Program

It should be emphasized that this thesis is a report on a con-

tinuing research project. The algorithms for the entire program are
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described in detail; they have been completely programmed and are

now running on the computer. However, the guestion answering routines
have not been tested out and debugged. Tﬁe translation routines are
operating as shown in Chapter 11, but both parts of the program are
quite large and complex and hence will need more thorough testing and

exploration as the work with METQA progresses.
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CHAPTER 3

THE MEMORY STRUCTURE

1. General Description of the Memory Net and Its Links

In order to achieve as much generality as possible, the only
built-in structures given to the program are the capacity to build
a node network connected with an expandable set of labeled, directed
links, and the general procedure of categorizing memory nodes into
classes according to their behavior and usage. All the permanent
knowledge gained by METQA's experience is represented in this one
semantic memory structure. The permanent memory net (and its net
directory list containing the addresses of all surface nodes) should
not be confused with the entire available space list, which holds
all METQA's temporary, erasable work list space, as well as the
memory net (see Chapter 2, Section 2).

Each "node" in the memory network is a list representing a
state of some word or phrase during its processing. The nodes are
connected by directed links that represent various basic relation-
ships indicating class structures, transformation possibilities,
how a word has been used, and so on. A sample memory net segment
is shown in Figure 3-1.

Perhaps the most common link used represents the transform
relationship. Transform links connect nodes representing the same
word or idea, but in different states or external forms. For ex-

ample, the memory shows that the English word "dog" can be transformed
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Figure 3-1. Sample Memory Net
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into the French word "chien" or the German word "hund". That is,

by following just transform links one can "translate'" one of the above
words to either of the other two by passing through the central node
representing the internal idea of "dog". Unlike other relations,
transform links between nodes usually appear in pairs, allowing
traversal in either direction.

Combination links are used to connect the internal nodes of
various words to one node that represents a fact. Description links
are used to connect fact nodes to their component words and to con-
nect each word node to a list containing the string description (that
is, the literal character string) of the word involved. (Class links
connect any word node to nodes representing the classes or categories
which METQA has formed including that word. (The terms class and
category will be used interchangeably throughout this paper.) Simi-
larly, a class node is related to all its member or subset nodes by

membership/subset links. A permutation rule link relates a node to

each permutation rule (represented as a node list) which might apply
to situations including this node (see Chapter 7). Another type

of link (eguivalence) connects a node to some other, different node
by which it can be replaced in usage (a synonym, for example). See

Figure 3-1 for examples of these links.

Any link (except a description link) can be modified, or re-
stricted, by a context requirement which limits use of this link to
certain situations. A context requirement list can have several

options, at least one of which must be satisfied for traversal of
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that link. If METQA can find, nearby in the input string, words
whose class memberships satisfy all the context class requirements
of some option, then that link can be followed.

Thus for example, context requirements can prohibit transforming
to the French word "la'" unless the input has nearby a member of some
usage class, say class Cl, containing feminine words (see Figure
3-1). In this manner, the program can learn to choose among multiple
links at some node by discovering the disambiguating contextual word
classes which typically appear for each situation. This process
seems similar to the one by which a humen, on perceiving the word
"dog", would only in the context of "hot" think of food.

Each "node" of the memory could be thought of as an attribute-
value list whose attributes are some selection from the set of rela-
tions. The values are then pointers to other nodes having the attri-
bute's relation to the original node. Most of the attributes (again
excluding the description relation) can have more than one value,
that is, more than one pointer to other nodes or lists. Of course
this is necessary, since any word can combine to form more than one
fact, or can have any number of class memberships, and so on.

A node in the semantic memory does not have a particular iden-
tity or name as such, although conceptually a node can often be

*
thought of as a given word or idea. Actually, every node is just

*Throughout this paper we shall name or refer to terminal nodes
by using the lower case word which is represented in the node's des-
cription string. That is, "DOG" represents the string of characters
D,0,G; "dog" represents the terminal node which can be entered by
matching the string "DOG".
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a collection of pointers which show certain relationships to other
nodes and which indicate the usage of the node in METQA's experience.
Thus any node, say for a word or phrase, is defined not explicitly,
as in a dictionary entry, but by its usage in the information set;
that is, it is defined by the links which can be followed from it to

other word, phrase or class nodes.

2. Different Tyves of Nodes

Again using Figure 3-1, let us look briefly at the different
types of nodes which appear in the memory net. Terminal nodes, or
surface nodes, are the only nodes through which one can enter or
leave the memory net. Each terminal node has a description which
contains the external, character representation of the particular
word; this character string must be matched (by pattern recognition
techniques described in Chapter 4) before one can "enter" the node.
Transform link(s) connect it to the internal memory nodes associated
with that word. No terminal node has combination links to form facts,
however; only interior nodes may combine. In Figure 3-1, only the
terminal node for "the" shows its description string.

An idea node is the internal node providing the common link be-
tween the various external representations of the "same" word. It
has transform links to all the external forms it can assume. For
example, the internal idea of a domesticated canine might be repre-
sented by a node which can transform to the nodes for "dog", "chien",

or "hund" (if those are the forms which METQA has experienced and

o
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learned). In addition, an idea node has combination links to all the
known facts which use that word or idea. Thus terminal nodes link to
idea nodes, and idea nodes are the enftry points to the information
area of the net -- the facts which are used to answer questions.

A fact node is described by the string of idea nodes whose words
would externally state that fact. Any fact may in turn have combina-
tion links up to some larger fact whose representation includes it.
fﬁageﬁe}éi, a faét ﬁodé aoes not have any transformation links; to
?translate" the fact to some external form, METQA must go down (des-
cription links) to the idea nodes of the component words and follow
transform links from there. Thus a piece of information learned in
some language is always accessible by way of any language METQA
learns.

A p-rule node (permutation rule) is a list describing (by means
of context classes) a situation in which string segments should be
bermuted; see Chapter T for an explanation of p-rules.

Virtually any node in memory can have class links to nodes repre-
;enting any usage c}asse; ip wh%ch METQA has placed that node. Also,
there might be equivalence ;inks to other nodes which can replace
this node; these might be synonyms or implications of the original
node, such as small/equiv/little, or hot + dog/equiv/frankfurter.

A concept which has proved very useful in METQA's operations

has been that of the extended meaning. In a simple search for the

facts using some word node W, we would consider only the combina-

tions of W into fact nodes. If we want a richer and more powerful
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selection of information from the net, however, we might consider

the extended meaning of W. This would include not only W, but
also the nodes which are connected to W by other types of links
(class, membership/subset, equivalence). Using the combinations of
all these additional nodes, we get a much larger but still related

set of information.

3. Memory Content

The content of the memory network is the only information avail-
able to METQA. Hence at any given time, METQA's knowledge is only
as complete as its prior experience. The absence of a desired pilece
of information from the net means not that it is false, but only that
METQA does not know it. If some "fact" is false or badly learned,
successive downweighting because of bad responses would cause it to
be discarded. By the same process, some fact which is consistently
useful in producing good (reinforced) responses would be upweighted
to the extent that it might be regarded as a basic tenet. In this
way , even though the memory can contain mistaken information for a
time, experience will tend to direct it steadily toward the rein-
forced and hopefully consistent world view presented by the human

trainer.

3.1 Comparison with Quillian's memory model

The structure of this semantic memory is similar in many re-
spects to Quillian's memory model [Quillian, 1967], but has several

major differences. Whereas Quillian's memory model is built by
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humans who encode entries from a dictionary, aided by their own se-
mantic memories, METQA learns its semantic memory. A word in Quillian's
model has its own delimited entry or definition plane, but the meaning
of a word in METQA's memory is the more amorphous (and perhaps more
human-like) collection of all that has been said about or with the
word. Whereas Quillian's memory model differentiates between type
nodes (which define meaning) and token nodes (which refer indirectly

to their parent type nodes), there is one and only one node for any
word in METQA's memory; token appearances are not separate nodes, but
form part of the node itself. One might possibly think of the link
pointers within some node to other nodes as token appearances of the *°
other nodes, however.

As the reader may have noticed, the extended meaning in METQA's
memory is similar to the "full word concept" of Quillian's memory
model. But since METQA's task is to retrieve specific information
to answer some question, the limited extended meaning is more manage-
able and useful than the unlimited full word concept. For a discus-
sion-type question, however, METQA can follow all links out from a

node with an effect similar to the full word concept.

3.2 Comparison with Lamb's linguistic and coegnitive network

The linguistic and cognitive network of Lamb [1969] has a con-
ceptual similarity with the memory network of METQA. Lamb argues
that linguistic and cognitive data exhibit similar types of relation-

ships and can be incorporated into a single, stratified network of
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relationships which can be viewed as a model of (at least some of)
the knowledge of a human. He discusses his network from the level
of phonological components of the phonemes up through the different
strata to the concepts, which are interrelated to form the cognitive
stratum.

Although Lamb's network has more levels than METQA's, there is
a strong similarity between them. In METQA's memory, the character
representations of the terminal nodes function, like the phonemes of
Lamb's network, as the basic entry points of the net. Going up through
different levels (strata), we reach the idea nodes, which correspond
to the concepts at the top of the linguistic portion of Lamb's network.
The idea nodes, or concepts, are in turn related to the fact nodes, or
cognitive stratum, which hold factual information about the world.
Finally, the context requirement restrictions on the links of METQA's
memory network have a very similar function to that of the syntactic
pattern "planes" which cross the vertical connections between strata
in Lamb's network.

In conclusion, the hope is that this semantic memory is simple
and general enough to be produced and manipulated by the learning
program, but still complex and rich enough to develop a useful "world

view" and to provide interesting behavior.
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CHAPTER U

PATTERN RECOGNITION

1. Introduction

In order to enter and traverse the memory net, METQA must
first recognize some string of characters as a known wunit. For each
terminal word or segment in memory, there is a description list
showing the external character string representation of that word.
The description takes the form of an ordered n-tuple of characters,
each tuple part having associated with it certain information (ex-
plained below). The program performs a threshold match on the n-
tuple character pattern and uses its matching score as weight for
its attempts to follow transform links from that node. After con-
sulting a directory for a list of which nodes should be matched
against (typically because of same initial letter), METQA attempts
to match all the nodes indicated and retains for processing any node
which matched sufficiently well to transform. The details of further

processing will be discussed in Chapter 5.

2. Pattern Recognition Method Used to Enter Net

The pattern match operation is essentially the same as the
n-tuple threshold match for two-dimensional patterns discussed in
a previous paper [Uhr and Jordan, 1969]. These programs learn and

adjust their own pattern characterizers, in the tradition of the
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Uhr and Vossler programs [1963]. Each part of the tuple has several
bits of information used to determine its treatment. There is an in-
dication of where to look for the string hunk (along how many char-
acters) and METQA is allowed to slide its search template back and
forth a certain amount (a "wobble" tolerance) to allow for garbled,
added, or deleted characters. Each part has a weight which is ad-
Justed over time to indicate this part's importance, relative to the
whole pattern.

For example, suppose we have a terminal node for "bicycle",
whose description is the 3-tuple BI(4)-CY(2)-CLE(3); the weight of
each part is in parentheses following the part's string segment. If
a pattern subpart matches the input stream in the position indicated,
the part's weight is added to a cumulative weight for the match.
After all the pattern's subparts are attempted, the accumulated weight
in the tally indicates the success of the match. Thus given the in-
put string "BICICLE", METQA would match the first and third tuple
parts for a total match tally of b+ 0+ 3 =T, Given the string
"BYCYCLE", however, the last two parts would match, resulting in a
tally of 0+ 2+ 3 =235,

Next comes the match judgment (using the combined weights) on
the node METQA just attempted to recognize. Every transform link
from a terminal node has an associated threshold value; this 1s the
minimum weight the match must achieve in order to be eligible for
that link. One by one, the possible transform links emanating from

this node are consulted as to what threshold of weight must be ex-




L8

ceeded in order to traverse that link. If at least one link's thres-
hold requirement is met, then the node is considered to have been re-
cognized. |

Suppose there is only one transform link from the terminal node
for "bicycle", and its threshold value is 6. Then the input string
"BICICLE", having a tally of T, would exceed the transform threshold
and would be recognized and transformed. The input string "BYCYCLE",
however, would fail. Its weight tally of 5 would not meet the
threshold requirement of 6, so that the string would not even be con=-

sidered recognized.

3. Multiple or Overlapping Matches

As mentioned above, METQA will attempt to match any number of
nodes, starting at a given character position. It is possible and
quite acceptable that more than one match will occur at a given point.
If the input is ambiguous, we want to recognize and pursue all inter-
pretations. If, on the other hand, a spurious match occurs, it will
probably be overruled later, either by a node which gives a better
"pit" of the input string, or by lack of the proper context to traverse
some restricted link associated with the badly matched node.

These pattern recognition attempts are made at every character
position throughout a given input, so that METQA becomes aware of
every node which matches the input, whether the node strings overlap
or not. In the input string "THEREDEAR", for example, METQA might

successfully match the nodes for "the", "there", "her", "here", "red",
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"Jear" and "ear". In the human, this corresponds to the initial,
meonscious unscrambling of a message necessary to determine all
possible meanings before our built-in semantic and syntactic parsing
"weeds out" the spurious messages. Similarly, at a later step, METQA
"parses" by finding the best combinations of the matched nodes ac-

cording to spatial and contextual constraints.

L, Importance Given to Pattern Recognition in This Program

In a program dedicated mainly to pattern recognition, much
learning effort can be directed at extremely fine adjustment of the
weights and separate parameters associated with each small tuple
part. Our experience with these methods is documented in the paper
mentioned previously [Uhr and Jordan, 1969]. Although METQA has very
general pattern recognition capabilities, most of the actual testing
has been directed at operations within the memory net, so fairly
simple pattern representations, where words are always correctly
spelled, have been used.

The method used for learning the node description patterns can
also vary with the emphasis of the program. During the testing of
METQA, the pattern learning has been programmed to consist of simply
bundling an entire word or meaningful unit into a single tuple part,

with initial weight and link threshold requirements determined by

the character string length (typically, weight=2x(number of char-
acters), threshold=.8%(weight)). But in order to really test the

power and generality of METQA's pattern recognition procedures,
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more sophisticated pattern learning procedures must be used. Let us
briefly discuss several possible such procedures (which would require

moderate programming changes).

5. String Learning Procedures

One simple technique for learning string patterns is to allow
METQA to segment the pattern string impartially and automatically
into small character hunks of a certain length, say two characters
long, or a randomly chosen length. Each hunk could initially receive
the same weight, but the weights could then be modified according to
the program's experience to reflect the relative importance of the
different hunks. Thus to continue with the "bicycle" example, METQA
might automatically segment the string into BI(3)-CY(3)-CL(3)-E(1)
or BIC(5)-YCL(5)-E(2). In addition, the program might try different
partitioning lengths and decide based on its experience which is the
most successful hunk length to use at a given time. Such testing
and evaluation of learned characterizer sizes would be analagous to
the tuple variations studied by Bledsoe and Browning [1966]. Hunks
could also be made to overlap. This method gives some tolerance for
misspelling of input words, but is still a somewhat artificial way
to segment a string.

Another segmentation procedure which is more responsive to the
actual character string wmder consideration would depend on the pro-
gram's continuing analysis of the statistical distribution of differ-

ent characters, using the idea that rarely occurring characters or
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or character combinations convey more information than characters
which are frequently seen. (Used for whole words, this same idea

is a basic feature of the question answering routines discussed in
Chapter 9.) One could build into the program a letter frequency
table based on some of the information retrieval studies [Luhn, 1958;
Maron and Kuhns, 1960; Meadow, 1967, pp. 86-103]1, but this would
assume that the frequencies will not vary for the different languages
to be processed, and that the program will be concerned with inde-
pendent frequencies of single letters. If METQA were trained on a
large enough corpus of words, it could calculate the frequencies for
its own experience.

A more pleasing (but probably very slow) approach would be to
allow the program to discover which characters or clusters appear
rarely enough to be considered meaningful and important. Such dis-
covered information would then be used to isolate and highly weight
very distinctive portions or a word, while giving the less important
characters a correspondingly lower weight. Thus "bicycle" might ulti-
mately be segmented as B(4)-I(1)-CYC(6)-LE(2), and "refrigerator" as
R(4)-E(2)-FRIG(9)-E(1)-RA(L)-TO(2)-R(2). Perhaps the program could
also learn not to break apart by segmentation some sequence of char-
acters which are very distinctive when they appear in a certain order
in a string. Examples might be -ngth (as in length, strength), -vis-
(as in visible, television), ete., which are important since rela-

tively few words contain the full sequence.
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Another possible pattern learning procedure would be to ex-
tract for the n-tuple the most indicative segments of a word (perhaps
the consonants) and some directions for their proper placement and
weighting. Our "bicycle" and "refrigerator" examples might thus be
represented as B(L4)_C(3)_CL(3)_ and R(3)_FR(4)_G(3)_R(2)_T(3)_Rr(2).
Thus the wmimportant characters would not have any weight in the
recognition. Here a problem would arise, however, when METQA attempts
to output that node's string, with only an incomplete designation of
the string. Since METQA's net must function for operations in any
direction, it seems best to always have the complete pattern avail-
able. Hence one solution would be to include the entire string in N
the description, but to give a zero weight to the unimportant char-

acters.

6. Indirect Reference to Pattern Descrivotions

Whatever particular method of pattern extraction is used, METQA
tries to make use of already known patterns if possible. 1If some
part of the pattern string was matched by a known node, the newly
learned pattern will refer indirectly to the description of the al-
ready learned (sub)pattern. This is done not only to make efficient
use of memory space, but also because it seems desirable to use old
knowledge to learn new words or concepts. At the proper place in
the pattern description being learned, instead of a literal character

string there is a reference to some other node's description string,
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with an appropriate weight attached. See Figure 4-1 for an example

of indirect reference.

"therefore"
D
) " 13)
there Q (1)-__ <s)-E<2D
"th 1" I I
© D
(—(5)-rE(k) "o gt

C — 6/ DJ_Q

(_ rore) )

Figure 4-1. Example of indirect reference for pattern description
strings. The four terminal nodes shown have nested indirect re-
ferencing. "D" marks description links; "I" signifies indirect
reference pointer.

During an attempt to recognize such a node, the discovery of
an indirect reference causes a recursive push-down in order to re-
cognize the embedded node. When the whole embedded node description
has been attempted, then METQA pops back up to tally the success
weight of the match and to finish processing the original (calling

or referring) pattern.
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T. Recognizing Relevant Information

The use of pattern recognition to find memory nodes containing
information relevant to a given gquestion is quite different from the
procedure for recognizing nodes by which to enter the net. 1In the
string matching case we seek a close, ordered match, and the nodes
themselves (by certain weight requirements) determine whether or not
they have been matched by a string.

The matching of relevant information, however, is a much looser
process. Using a "Pandemonium" type procedure [Selfridge and Neisser,
1963] each content word in the gquestion being processed is polled as
to which information nodes it considers relevant, and to what extent
(weight). Each component word of a fact node contributes a certain
amownt of weight to it. All the suggested nodes are merged into one
list and are ordered according to their combined weights. Then METQA
chooses the most relevant (highly weighted) information to process in
trying to produce an answer to the question. A cut-off limit is used
at this point, typically requiring a fact to be suggested by words
comprising at least half of its total possible weight in order to be
relevant enough to use in trying to find an answer. (The question
answering process will be described in Chapter 9.)

As mentioned in Chapter 2, a limiting factor on METQA's ability
to answer questions will bhe its ignorance of linguistic structures
and its consequent inability to determine relationships (other than

cooccurrence) among the words of an input. Furthermore, word order
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alone is unrelisble from language to language, or sometimes even from
sentence to sentence within a language. For these reasons, word order
is not currently used in recognizing information. Instead, METQA must
depend on cooccurrence of words, contextual restrictions to weed out
erroneous choices, and word permutation rules to put things into pro-~
per order.

In the event that this proves inadequate, it might be necessa;y
to try considering local word order in choosing information. That is,
we might consider different pairs or triples of content words from
the question and note their relative order. Then a fact containing
a given triple of words in the proper order would receive a higher
relevance weight than if the order was different.

It is not clear to what extent this measure would help. Con-
sider the question "Did Tom give Jerry's apple to Mary?". Using local
word order with the triple (Tom, apple, Mary) would enable METQA to
choose the fact "Tom gave the book and the apple to Mary" over, say,
"Mary and Jerry like Tom's apples". But unfortunately, the sentence
"Tom and Jerry throw apples at Mary's dog" would also pass the local
order test, and we would again be dependent on the other methods to
select the desired information.

In conclusion, METQA uses pattern recognition techniques as
a8 means of finding the proper starting positions in the memory net
before initiating other processes. That is, before beginning to
transform or translate an input, METQA must know which nodes to trans-

form from. And before finding the answer to a question, METQA must
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recognize which information should be used to build the answer. In
each case the problem reduces to one of recognizing the proper pat-

terns.

1"



5T

CHAPTER 5

THE TRANSFORMATION PROCESS

1. Formation of Paths through Memory

Suppose METQA receives an input string of characters in some
language. Starting at each character position, METQA consults the
net directory to see which nodes might possibly be matched from there.
For every letter of the alphabet, the directory contains a list of
pointers to every learned node which begins with that letter.

Given the list of suggested nodes, METQA attempts to match

o

each one, using the n-tuple pattern, threshold match techniques des-
cribed in Chapter 4. By looking for all possible node patterns at
every possible character position, METQA exhausts the node match
possibilities throughout the input string.

Now METQA starts processing every node which matched the input
well enough to satisfy its transform link's threshold value. In
order to keep a record of where it has been in the memory net, METQA
forms what we will call a path list. A path is a list of the nodes
traversed by following transform links from node to node in memory,
as allowed by the context in which the path appears. For every
matched node, METQA will keep a special path list in the "working
space" of its memory. Note that every path has an associated position,
the position of its matched node revresentation in the input string.

Now let us examine the formation of paths by means of an ex-
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ample. Suppose we have a very small memory net, as shown in Figure
5-1. METQA at this point knows five words, with as many as three
representations for each, and one context class which has two members.
The resulting directory contains a node pointer list for the nine
initial letters. (A later example will show how such a memory might
have been formed through learning.) Although there are a dozen ter-
minal nodes, for only one group (nodes N1 - Ni) do we show the des-
cription pointers to their external representations "THE", "LE", and
"TA".

Given an input string "THEDOG", METQA consults the node direc-
tory for every letter. Starting from the "T", node N1 is success-
fully matched against the first three characters. No words are known
which start with "H" or "E". Starting from the "D'", METQA success-
fully matches node N7 ("dog"). No known words start with "O", and
there is not enough room in the input string to match the suggested
node N11 ("girl") for the final "G". Thus METQA is able to form
two paths, one for "THE" and one for '"DOG".

Now the paths can follow transform links. Node N1 transforms
to node N2, the "idea" node for different forms of the definite article,
but from that point there are two possible links to follow. The (newer)
transform link to Ni is restricted to context of class Cl; that is,

a member of class Cl must be found "nearby" (currently, this means
within two paths in either direction) in the input in order to follow
that link. Since the desired class member is not present (the "dog"

nodes have no class membership), the path from N2 can go only to node



Directory Links

C » N5 T ~ transform

D - N7 CL - class

F > N10,N13 M/S -~ membership/subset
G - N11 D - description

L > N3,NL

P -+ N16,N17

S - N1k

T - N1

W > N8

Figure 5-1. Formation of paths in a small memory.

29




Sample transform paths through net:

Input: THEDOG
Pathl THE N1 - N2 - N3 - IE
Path? DOG N7 - N6 - N5 - CHIEN
Input: THEWOMAN

Path3 THE N1 - N2 - (C1) - Nk - 1A
Pathh WOMAN N8 - N9 - N10 - FEMME, FEMME

Figure 5-1. (Continued)

€
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N3, which is terminal with the external representation "LE". Simi-
larly, a path is formed from*"DOG" to "CHIEN".

Now consider another input string "THEWOMAN'. METQA matches
and forms paths for "THE" and "WOMAN". Note that in the "woman" group
of nodes, node N10 ("femme") is a member of context class Cl. Thus
when the path for "THE" reaches node N2 and must choose between two
links, the class Cl context restriction on the link to Nk will be sat-
isfied. Thus METQA will note the context class and extend the path
to node N4 as shown, and hence on to the external representation "LA".
Thus the formation of class Cl, which contains words of feminine gen-
der, has allowed the program to choose the correct (feminine) form
of the definite article. (Chapter 6, Sections 3 and 7 will show how

this class can be formed.)

2. Comment on Input Strings

As the reader may have noticed, the input strings given to the
program by the human trainer contain no spaces between words. This
mode of input was chosen in an effort to be as general and realistic
as possible. The program was written to handle any language in any
form which can be suitably input as a string of symbols. These forms
might include printed words, digitized speech sounds, or recognized
hand printed characters. Only in written language are spaces pro-
vided to isolate words for the reader. In speech there are no such
aids; a whole sentence can sound like one unintelligible stream of

sound, if the language is wmfamiliar. Just as a young child must

o
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learn to recognize the meaningful units and grammatical patterns in
the language he hears around him, so METQA must operate on the input
strings it receives. Unsegmented input makes the problem more diffi-
cult, but results in a more powerful and useful program. METQA in-
serts spaces between the words it outputs, however; this is not nec-
essary, but is done for convenience and clarity to the human.

Note that METQA will learn from strings with spaces. It will
learn the space as a word, and this will serve to segment strings,

helping it to recognize and learn other words.

3. Combination of Paths into Covers

After paths have been formed for all the matched nodes anywhere
in the input, then METQA must decide how all the pieces fit together
in order to best‘account for or "cover" the input string. We will
define a cover as an ordered collection of paths (gathered into a
work list) which account for nonoverlapping segments of the input
string. Any single path can be used in more than one cover list.

The only restriction is that no character of the input may be used
by more than one path in the same cover; that is, paths may not over-
lap.

There may be characters left unaccounted for between two matched
paths in some cover; we will refer to these characters which are un-
recognized and untransformed by a cover as garbage. In assembling

a cover, the goal is to minimize the number of garbage characters.
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Finding a complete cover of an input without any garbage is analagous
to finding a parse of a sentence; notice, however, that an input is
often not a sentence.

Using all the available paths, METQA considers all possible
covers of the input. Only the best covers, those with the least a-
mount of garbage, are kept in the work space for further processing.

As a contrived example, consider the input shown in Figure 5-2.
Given a current vocabulary which includes the indicated list of words,
suppose the input string "THEREDDOGMAYBARK" is received. METQA re-
cognizes and forms a path for each word in the list, then starts to

build covers.

Input: THEREDDOGMAYBARK Current vocabulary includes:
X X bark may
X - dog the
e dogma there
X X X here
X X
Possible covers: Garbage count:

CVli. THERE U(D) DOGMA U(Y) BARK
Cv2. THERE U(D) DOG MAY BARK

CV3. THE RED DOG MAY BARK

cvh. U(T) HERE U(D) DOGMA U(Y) BARK
Ccvs. U(T) HERE U(D) DOG MAY BARK

NDw o+

U( ) means enclosed string is unknown or unrecognized.

Figure 5-2. Formation of covers for an input string.
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As a rule, from any given position, the path with the longest
matched string is used first. Thus the first cover found is "THERE
u(Dp) DoGMA U(Y) BARK", with two characters unaccounted for. (Note
that "U( )" means that METQA could not recognize the enclosed string.)
Any later covers are therefore allowed at most two garbage characters.
The second cover built is "THERE U(D) DOG MAY BARK", which reduces
the maximum garbage allowed to one character. But later, cover Ccv3
("THE RED DOG MAY BARK") is built with no garbage at all. Any suc-
ceeding covers will be rejected if they have any unaccounted for

characters. Thus covers CV4 and CV5, although perhaps acceptable be-

(2

fore cover CV2 was found, would now be rejected immediately. As a
result, METQA has only two covers to process through memory.

It is possible and quite acceptable to have more than one per-
fect cover (i.e. with no garbage) of an input string. In such cases
of ambiguity, all the "parses" are developed and processed through
memory.

The few covers resulting from the formation process are then
cycled repeatedly through a group of procedures to check covers for
satisfaction of required context, to transform all paths another level

farther, and to try to apply any suggested permutation rules.

L, Check for Needed Context

At every cycle, a context check is made in case some cover

path has been transformed along a link which was restricted to cer-
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tain contexts. For each cover, the latest node of each path is in-
spected for presence of a new context requirement. If such a list of
context class requirements has appeared, the rest of that cover is
searched for node(s) having the desired class membership(s). Failure
to find the necessary contextual situation in the input means to
METQA that this cover of the input is anomglous and must be destroyed.
A successful search, however, means that transformation to the re-
stricted link's node was consistent with the context classes of the

cover, and this cover remains useful.

S. Transform Down to Another Level

So that the progress of a cover through the memory net is care-
ful and even, with status checks at every turn, each path is trans-
formed down only one link per cycle. If there is only one link to
follow from the current node, the path is simply extended to that
node. In case of multiple links leading from a node, however, METQA
tries to resolve the ambiguity and choose the one best link.

In the initial stages of testing, METQA was allowed to pursue
all possible links from each node in order to obtain all possible
covers and to check for consistency later on. But this resulted in
such a time-consuming proliferation of nonsense and/or identical par-
ses, that METQA was constrained to disambiguation node by node.

Whenever there is more than one link to follow, METQA makes
its choice according to a hierarchy of disambiguation rules. The

first criterion applies only if this string is marked as a feedback
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to the previous input. In that case, as will be explained in Chap-
ter 6, METQA is looking for an intersection of paths from this feed-
back path with some path from the original input. That is, if one
of the link choices from a feedback path node leads to a node which
was occupied by a path of the original input, then that intersection
link would be chosen above all others. Path intersections receive
first priority because they end the uncertain groping through memory
for the correct path. The paths formed for original input and for
feedback should ideally be just reverses of each other, so the earlier
a path intersection is found, the better. |

To illustrate, let us use the small segment of a memory net
shown in Figure 5-3. Suppose that METQA had previously processed the
input string, "THEBOOKISTOOSHORT" and had output, say, "LE REGISTRE
EST U(TOO) COURI". Then there is a cover path saved from node N7
("book") through N6 to N8 ("registre"). The next input is the feed-
back string, "LELIVREESTTROPCOURT". Now when METQA recognizes the
string "LIVRE" at node N5 and starts to transform from there, it must
decide between the two links to nodes N9 and N6. Since the current
string is feedback, the first step is to look for a path intersection.
Node N9 was not a member of any input cover path, but node N6 was.
Consequently, METQA chooses the link to N6 and has thus connected a
feedback word with its corresponding input word. (See Chapter 6 for

e more complete discussion of feedback and path intersections.)

If the current input string is not feedback (or if no inter-

sections were found), the next criterion for disambiguation is choice

(X}



Figure 5-3.

Segment of memory net with ambiguous "livre"
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by contextual "selection". That is, if there is a contextually re-
stricted link whose context requirements are satisfied by the input,
then that link has priority over other choices. Whenever there is

a choice between an unrestricted path and contextually restricted
path, the presence of a member of the desired context class(es)
causes the restricted path to be chosen. Thus the context of an
input chooses a restricted path if possible. The reasoning behind
this is that satisfaction of a required context implies some previous
knowledge of this type of situation and therefore of the correct

transformation. It may happen that on this basis, the wrong branch

(X}

is chosen because of incorrect or insufficient context restrictions.
In that case, METQA will consult the feedback string and adjust the
restrictions on both the correct and incorrectly chosen links.

As an example, let us again consider the memory segment in
Figure 5-3. Suppose METQA receives the input "LALIVREESTUNEMESURE
DUPOIDS". When the string "LIVRE" is recognized, there is an im-
mediate ambiguity. The input was not a feedback, so METQA tries the
second criterion. The link to N9 is contextually restricted, so
METQA searches the input string for a member of one of the desired
classes (Cl or C3). Adjacent to "LIVRE" in the string is '"IA",
which is discovered to be a member of Cl (class of feminine words).

This context selects the link to node N9, so METQA extends the
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"LIVRE" path on to that node, and later on to node N10 ("pound").

If the multiple links include some contextually restricted
link(s), and METQA is currently unable to satisfy the context required
by any restricted link, then the path is flagged as "waiting". Tt
is possible that some path will reach a multiple link decision point
before its companion paths in the cover have traversed the net far
enough to discover the context classes needed to disambiguate. Then
transformation of that path is suspended temporarily so that it can
wait while the other paths in the cover proceed through the transfor-
mation cycles. It can happen that a deadlock is reached, with several
paths in a cover caught waiting on each other, and no further trans-
formation possible. In that case, METQA throws a switch and forces
the choice of the highest weighted link for each path in order to
avoid indefinite looping.

Suppose that an ambiguity occurs and neither of the first two
criteria can apply; that is, the input is not feedback and METQA was
msable to select a link by the cover's context. Then the only alter-
native is to choose from the remaining transforms that one which is
most highly weighted. Thus by traversing the link which has been
most successful or most frequently correct in the past, METQA tries

to make the best choice now with insufficient information.

6. Try to Apply Any Suggested Permutation Rules

As will be explained in Chapter T, METQA learns permutation

rules (p-rules) to govern the segmental permutations noted between
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input and feedback strings. Any node along a path may at some time
during translation have been involved in a word order permutation.
Then every time that node is used again, METQA is alerted that the
indicated permutation might be involved here again. Thus during each
ecycle, it is possible that several permutation rules may be implied
or suggested by the nodes traversed. METQA remembers all these, as
well as the rules suggested by previous cycles. Then after the trans-
formation phase is completed, it tries to apply the rules to the newly
extended covers. If the class lists required by some p-rule are suc-
cesgfully filled by the input, the indicated permutation of the seg-
ments is performed. Then the program finishes checking other p-rules -

eand continues cycling.

T. Criteria for Stopping Cycles

The program repeats the above cycle of operations while pro-
cessing the covers of the input. Context checking 1s followed by
transforming each path down a nodej; next, any indicated permutation
rules are checked for applicability. Then the covers are again checked
for contextual consistency. This process continues until each cover
reaches some desired status determined by the current linguistic task.

If METQA is attempting to translate an input string, then cycl-
ing must continue until each path in each cover has been transformed
from the matched source terminal node all the way through memory to
the target terminal node with its desired external representation.

Thus the translation process goes from one (input) surface character
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string to another (output) surface character string, perhaps with
some segmental permutations performed along the way. In the event
that some input string segments are not recognized or matched by
any node, they are carried along and output without change.

If the current input is feedback to the previous input, then
METQA operates on it as if translating it back toward the original
input, but always searching for path intersections between the original
input and feedback strings. Thus for translation feedback, cycling
continues until every path either has intersected an input path or
has emerged at the surface of the net again at a terminal node.

Suppose METQA is attempting to answer a question. In this case,:
the goal is not some other terminal string, but access to the infor-
mation contained in the memory net. Thus the covers should be trans-
formed only until every path has reached its idea node, from which
the memory's facts are accessible. At that point, control is trans-

ferred to the question answering portion of METQA (described in Chap-

ter 9) in an attempt to produce an answer to a question.

8. Qutput of Results

After all the covers have been transformed to terminal node
level again, METQA is ready to output the translation(s) of the in-
put. Although one cover is chosen and output as the best, all the
different translated parsings are shown. The best cover is chosen
according to the closeness of the fit (with minimum garbage), and

is saved in the work space by METQA in case the next input is feed-
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back to this one. In that event, the saved cover is compared with
feedback for use in learning correct translations. The transforma-

tion learning process will be described in the next chapter.

o
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CHAPTER 6

THE LEARNING OF TRANSFORMATIONS

1. Learning by Commarison of Strings

The learning of transformations between terminal strings is
based on a comparison of two strings provided by a human teacher or
trainer. The original input string is received and processed through
the current state of the memory net. METQA then outputs the result,
which we will refer to as the response (response = transformed input).

The next string can be something other than feedback (another
original input or a question, perhaps), in which case no transforma-
tion learning will occur. The appearance of a feedback string (marked
as feedback by a special symbol "=" at its start), however, begins
the learning process.

To learn, METQA must decide which segments of the two strings

(which we will refer to as input and feedback) should be associated

with each other. This chapter will be devoted to an explanation and

discussion of the techniques used to accomplish this association.

2. How Feedback is Processed

When a feedback string is received, certain flags are set to
establish a learning mode, but otherwise the transformation process
begins as if for any input. METQA tries to match segments of the

feedback string against nodes in memory, and forms paths and covers
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from these nodes as described in Chapter 5. Because of the feedback
learning mode, however, the goal is not so much to push through the
memory net to another surface, as it is to establish points of con=-
tact or association between the input and feedback strings. Thus
each feedback path steps through memory searching at each node for

an opportunity to intersect an input path. Whenever there is a choice
of links to traverse from some node, METQA gives highest priority to
any link which leads to a node occupied by a path from the original
input, and which would therefore result in a path intersection (ex-
amples will be shown in Figure 6-1). If such an intersection occurs,
that feedback path is considered ready for the learning process and
needs no more transformation during the cycling phase. When proces-
sing feedback, the criterion for stopping the cycle of transformation
and status checking is that all paths of all covers have either inter-
gsected or reached terminal level. At that point, control is passed
to a routine which compares the transformed input and feedback strings

and tries to learn the transformations involved.

3. Explanation of Path Intersections and Thelr Meaning

The significance of a path intersection between input and feed-
back strings is the establishment of an association between two string
segments. The Jjoining of two transform paths at some common node
means that here is a direct transform route between the terminal
strings involved. METQA gives links to path intersections the highest

priority because it seeks the shortest, most direct route through

et
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memory between two terminal character strings. If METQA bypassed an
intersection, then it is likely that any later intersection (there-
fore by a longer path) found would not gi%e such a short, direct path
route. It is even possible that no later intersection would occur at
all, if METQA toock a wrong turn and completely missed the connection
with the original input.

Path intersections are of two general types, terminal and non-

terminal. A terminal intersection has occurred if a feedback path

joins an input path immediately, as soon as the surface (intersection)
node is matched by the feedback string. Such an immediate match

means that the input path was correct all the way to the target ter- =
minal level string output in the response. Hence no memory adjust-
ment is made, since METQA is too cautious to tamper with the trans-
form links if all is going well.

We say that a nonterminal intersection has occurred if the inter-

section occurs on any feedback path node in the interior of the net,
past the terminal node recognized in the feedback string. Finding
a nonterminal path intersection at some node A means that METQA
processed the original input string segment correctly up to node A,
but at that point of ambiguity took a wrong link and arrived at an
incorrect terminal node. METQA must then adjust the links emanating
from node A, so that given the same situation again, METQA would
take the correct link toward the feedback string segment.

In general, this adjustment would involve lowering the weight

of the badly chosen transform link by some small amount as well as
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lowering the weight of any context reguirement used to choose the bad
link. In addition, METQA will raise the Weight of the good link to-
ward the feedback string by a similarly small amount, and will add
or upweight the context which would have caused the good link to be
selected.

If the good link G already has a context requirement list C,
but the current string's paths have no class memberships, then METQA
generalizes memberships of the context class list C 1o the current
string. The reasoning behind this goes as follows. The current path
should have traversed the good link G. ILink G 1is restricted to
contextual situations described by context list C. Then perhaps the .
context of this current cover also should be described by the list C.
Therefore the words in the current cover should be given the same con-
text class memberships described by list C. This procedure will be
illustrated shortly with an example.

At times, METQA must add a new context requirement option to the
existing restriction list of the good link toward the node matched by
the feedback string; this requirement should reflect the context of
the intersected path P in this particular cover, so that, given the
current situation again, the correct link would be chosen. When such
a context list is needed, METQA extracts a local context list from
the cover being processed. The context comes from combining the class
memberships of the path strings surrounding path P; if there are no
class memberships to use, METQA creates new node classes and assigns

the node neighbors of P as their members. These new classes are
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then used as the needed context.

To illustrate the use of path intersections, let us consider
the example input sequence in Figure 6-1. Suppose the memory net
contains at least the nodes shown. There is a usage class Cl, with
node N7 ("femme") as its only member. Given the string Input A,
"THEWOMAN", METQA forms Pathl and Path? as shown. Pathl goes from
N2 to N4 because the needed context class Cl1 was present (in
N7) and caused that link to be selected. METQA's response is "LA
FEMME".

Next comes the string Feedback A, "LAFEMME". The string "LA"
of node N4 is matched; METQA initiates Path3 and checks for path
intersections. Immediately there is an intersection with Pathl at
the terminal node N4 whose string representation "LA" was in the
response. The terminal intersection indicates to METQA that the
response segment output from Pathl was correct, and no learning is
needed there. Similarly, the feedback string segment "FEMME" is
matched by node NT, resulting in another terminal intersection,
this time with Path2. Since only terminal intersections were found
(and the order was not changed), METQA decides its response was en-
tirely correct.

The next string received is Input B, "THEGIRL". METQA matcheés
the string against nodes N1 and N8 and forms Path5 and Path6 as
shown. Since there was no class membership in the cover paths to
allow passage of the restricted link to N4, PathS had to go to node

N3 ("le") from N2. The response is "LE FILLE", followed by the input
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(feminine
class)

Links:

T
D -
M/S
CL

Input A:

Pathl
Path2

Response A:
Feedback A:

Path3
Pathl

Input B:

Pathb5
Pathb

Response B:
Feedback B:

PathT
Path8

Figure 6-1.

transform
description
membership/subset
class

THEWOMAN

THE N1 - N2 - (C1) - Nk » 1A
WOMAN N5 - N6 - N7 -~ FEMME, NT e C1

LA FEMME
LAFEMME

LA Nk -
FEMME NT -~

intersects Pathl terminally
intersects Path2 terminally

THEGIRL

THE N1 - N2 - N3 = LIE
GIRL N8 - N9 - N10 - FILLE

LE FILLE
LAFILLE

LA NL4 - N2 - intersects Path5 nonterminally
FILLE N10 - intersects Path6 terminally

Path intersections
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of a Feedback B string, "LAFILLE". Node NI matches the feedback
segment "IA", and PathT7 is initiated. METQA looks for a path inter-
section, but finds NU in neither Path5 nor Path6 of Input B. The
string "FILLE" is matched by node N10 and Path8 is discovered to

have a terminal intersection with Path6. Next, METQA transforms

Path? to the adjacent node, N2. Here, an intersection is fownd in
the interior of Path5, which had incorrectly transformed to "LE".
Faced with this nonterminal intersection at node N2, now METQA must
adjust the memory so that if Input B ("THEGIRL") was received again,
Path5 would transform to "LA" instead of "LE". Path5 should have

gone to node N4 from N2, but was prevented by lack of the required *
context class Cl. METQA conjectures that the string Input B, "THEGIRL",
should have satisfied the context requirement; therefore it assigns
membership in the class Cl to the only other path's node in the feed-
back, N10 ("fille"). Thus since "the" should transform to the feminine
form "la" when in the context of "fille" as well as of "femme", METQA
assigns "fille" to the same class Cl (of feminine words) which "femme"
belongs to. Hence, METQA will build a class link from N1O to Cl and

a membership link from Cl to N10. In addition to this adjustment, the

links involved will be reweighted as described earlier.

. Segmentation and Association of Transformed Strings

The basic problem of learning or discovering node transforma-
tions is to determine which segments should be associated with each

other. METQA's transformation learning routine operates by comparing
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the paths from transformed input and feedback strings. Using the
terminal and nonterminal intersections found, it partitions the strings
into successively smaller segments. A wofk list is built to show ex-
plicitly all the information about the intersections found and the
string hunks among them, and about how the intersections and hunks
pair off together or are left unclaimed between other intersections.
This list is then used to do the actual learning.

For convenience, we refer to terminal intersection partitions as
walls and to nonterminal intersection partitions as fences. Terminal
intersections represent correctly transformed inputs, so walls are more
substantial indicators than fences. A nonterminal intersection means *
only that the input was matched and started through the net correctly;
there is still more to be learned. Hence a fence is not as strong a
partition as a wall.

We shall refer to the regions of the string which lie between
walls as areas; an area can be empty. Any fences which lie in an
area divide that area into subareas. These subareas can be empty or
can be composed of any combination of wmrecognized character strings,
uintersected paths, and possibly other intersected paths. They are
inspected and, by various means, paired off to be learned as trans-
forms. An intersection or humk in the transformed input or feedback
strings which does not "match up" with its partner string within an
area or subarea (usually because of a permutation of string segments)
will be described as wclaimed.

A set of contiguous nonintersecting paths or unknown character
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strings in a subarea will be loosely referred to as a hunk. The -
recognized character strings are any string segments which were not
accounted for by the cover. Nonintersecting paths occur as follows;
suppose some (input or feedback) string segment matches some node

and i1s transformed all the way through memory to another surface
string. If the match is erroneous, there will be no associated match
in the other string (feedback or input) for this path to intersect
with, and thus we will have a nonintersecting path. Hence the re-
cognized but unacknowledged string segment must just be lumped in
with the rest of the humk to be learned as a new word. Typically,

an uwnintersected path occurs when some very short word (e.g. "le",
"is", "at") is recognized while embedded in a larger word that METQA
is about to learn (e.g. "table", "rise", "hat"). METQA simply treats
the whole subarea as one character string hunk.

Within the walled-off areas, matched nonterminal intersections
(fences) are learned with some adjustment of the existing memory
nodes and links. Subareas between fences may most simply be matched
hunks, which are learned as direct transformations. Each hunk is
learned as a terminal node; an idea node is created; and the terminal
nodes are connected to each other by transform links via the internal
idea node for that word pair. Any other forms of the same word(s)
will be attached to the same idea node by means of transform links
in both directions. If there are unclaimed intersecticns within a
subarea, any hunk lying on the left or right end of the subarea has

arbitrary priority to match with the hunk in the corresponding sub-




82

area. In any case, all wclaimed intersections are marked for later
permutation learning.

Consider Figure 6-2 for an example of straightforward learning.
METQA receives the input string "THETHINWOMANEATSBREADALSO". Suppose
that after transforming the recognized nodes as well as possible with

the current memory, the response output is "LE MAIGRE FEMME U(EATS)

PAIN U(ALSO)".

Input: THETHINWOMANEATSBREADALSO

Response: LE MATGRE FEMME U(EATS) PAIN U(ALSO)

Feedback: LAFEMMEMAIGREMANGEPAINAUSSI

INTEYORNEAS: /1R (MATGRE® (EATS)? (PAINY (ALSO)?
' #o#

A"} \B)G H \ LA MAIGRE/ (MANGE)?|\PAIN / (AUSSI)?

¢
-

# #

!
i
1
[]
\
shows terminal intersection

\
} shows nonterminal intersection
]

Figure 6-2. Learning transforms. Example of string segmentation
and association.

The feedback string received is "LAFEMMEMAIGREMANGEPAINAUSSI".

(The trainer has simplified the translation by omitting the "DU" of
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"DUPAIN".) Several feedback segments are recognized and path inter-
sections are found to associate the strings as shown in the drawing.
The nonterminal "LE" - "LA" intersection causes the usual readjust-
ment of those nodes. Terminal intersections partition off the rest
of the strings. METQA notes the permutation of the terminally inter-
sected adjective and noun paths; later a special routine will attempt
to learn the permutation, as described in Chapter 7.

The partitioning isolates two pairs of unknown character strings,
one on each side of the "PAIN" wall. For each pair, a terminal node
is made for each character string and a new idea node connects them
via transform links. In this simple manner, METQA is able to isolate -~
and learn any new words which are string hunks conveniently "walled

off" by path intersections.

5. Heuristics for Unclaimed Segments

Not ell new word situations are so convenient, however. A sub-
area, or even a whole area between walls, may of course be empty.
If only one subarea in a given input-feedback pair is empty, METQA
must seek some means of associating the remaining unclaimed hunks
with other segments for learning. There is a hierarchy of possibili-

ties from which one or more hypotheses can be chosen.

5.1 Permutation

First, an unclaimed wnknown hunk looks for a complementary (i.e.,

in the other transformed string) wnclaimed hunk in the adjacent sub-
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areas to left and right, to pair off with and be learned as a trans-
formation. A typical case where this heuristic is useful is shown
in Figure 6-3. Here the unknown character strings "BROWN" and "BRUN"
will be learned as transforms, since they were left unclaimed in

adjacent subareas.

Input: BROWNDOG
Response:  U(BROWN) CHIEN

Feedback: CHIENBRUN

A (BROWN )?
# # # #
B (BRUN)?
(Note: # means end of string.)
Figure 6-3.

5.2 Discontinuous transforms

Failing the first possibility, the unclaimed unknown humk next
looks in the adjacent subareas for matched unknown hunks which would
have already been learned directly as transforms of each other. If
successful, the program hypothesizes a split-merge transform in the
context of the intervening fence or wall segment.

Split-merge transforms are METQA's way of handling discontinuous
morphemes; they are used in cases where one segment in language Ll

is transformed to two segments in language 12, and vice versa. The
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trensform links among the three segments' nodes explicitly indicate
how the paths must be manipulated. The l;nk from the L1 node directs
the splitting of this path into two parts, each transforming to a
separate node of L2. Meanwhile, the links coming from the two L2
nodes in the other direction indicate that their paths must be merged

to form one path and ultimately, one string segment in Ll.

Input: NOTEAT
Response: U(NOT) MANGE
Feedback : NEMANGEPAS
A (NOT)?
# # # #
B C (NE)? (Pas)?
Figure 6-L.

Figure 6-U4 shows a typical split-merge situation. The hypothe-
gized relationship assumes that if segment A appears in the context
of known segment D (wall or fence), then A's path would split into
two forks, B and C, which appear in the context of D', the trans-

form of D. Similarly, if paths B and C appear in the context

of path D', they would merge into one path A, which would have the
transformed context D. Thus given the situation in Figure 6-4 with
wnknown hunks A, B, and C, the program would hypothesize not only

A +>B and B+ A, but also A (in context of D) B + C and B+ C




(in context of D') » A. All three rules are put into
confirmed or denied by subsequent experience. By this
forms such as NOT - NE...PAS may be learned, but the
cautiously waits to test its split-merge hypotheses on

before also hvpothesizing the actual permutation rules
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memory to be
means, trans-
program
another input

involved.

Suppose that the above possibilities have failed because both

subareas adjacent to scme unclaimed wnknown hunk are completely empty.

In this case, METQA associates the hunk with the fence(s) or wall(s)

surrounding it, hypothesizing that in the context of one fence, the

other fence, say F, transforms to a form containing the unclaimed

hunk as well as the already learned transform of F.

Input: PRETTYHOUSE
Response: JOLI MATISON
Feedback: JOLIEMAISON
MATSON
# # # #
B E {MATSON
Figure 6-5.

Thus if wnclaimed hunk B appears between two walls A-A'

and C-C' as shown in Figure 6-5, the program will hypothesize:

A (in context of C) =+ A'B
C (in context of A) > BC'
A'B (in context of C') > A
BC' (in context of A') =~ C
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(Note: Underlining here implies representation as one node in mem-
ory.) Hence METQA would learn that "PRETTY" in the context of "HOUSE"
is transformed to "JOLIE" instead of "JOLI". Of course it will also
hypothesize that "HOUSE" in the context of "PRETTY" transforms to
"EMAISON"; but METQA depends on experience and reweighting to help
"wmmlearmn'" bad hypotheses. Using this last option for learning, the
program is able to discover words which change forms to agree with

their context, such as:

MANGE -+ EAT,EATS

PRETTY -~ JOLI,JOLIE

THE ~+ LA,LE,LES

FISH + POISSON ,POISSONS ®
6. Learning and Association of Permuted Intersections

After all the unknown hunks in the work list have been learned,
then METQA discards them and concentrates on those segments which
were recognized well enough to have at least nonterminal intersections
with the transformed feedback. Any permutations involving the newly
learned hunks will be dealt with on a future encounter, when the pro-
gram feels more sure of itself (and the wnknown hwumks have graduated
to the status of intersecting paths through memory).

Next METQA finds and labels the partners for any intersections
which were out of place and therefore unclaimed before. Since the
construction of the paths includes their histories and intersections,
this task is merely one of inspection and search along the work list.

The nonterminal intersections thus matched are learned by altering
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memory as explained before, so that the next time that situation
occurs, the correct choice will be made. Finally all that remains
to be learned are the rules governing any segmental permutations
which were noted between the input response and feedback strings.
This last stage of learning for the translation task will be dis-

cussed in Chapter T.

T. Example Learning Seguence

To conclude our discussion of transformation learning, let us
consider the example input sequence in Figure 6-6. Starting with
an empty memory, the example shows how the illustrated net segment
can be learned. The initial nodes and links are built up in a fairly
straightforward manner. When METQA does not recognize some string
segment, it is enclosed in parentheses and marked U (for "unknown")
in the response. Contextual link restrictions are not used until
there is some need to distinguish between multiple links. Then, as
shown in line L4, METQA extracts or creates a context class from the
current cover in order to categorize the cases where this new link
should be followed. Thus node N10 for "FEMME", the only other word
in the input cover, becomes the sole member of a new context class,
Cl. Then the new form "LA" receives a new node Ni, but the link
to it is restricted to situations involving the context class of Cl
(feminine) words.

Learning is again straightforward until line 6 of the example.

There a new transformation of "SMALL" appears, and METQA must decide



Sample input

petit

petite

(feminine
class)

sequence showing how the above net segment might have been

learned: )

Input Response Feedback Learned Behavior New Nodes
1. THE U(THE) LE THE <> LE N1,N2,N3
2. THEDOG LE U(DOG) LECHIEN DOG <> CHIEN NS ,N6,NT
3. FEMME U(FEMME ) WOMAN FEMME <> WOMAN N8,N9,N10
L.  THEWOMAN LE FEMME LAFEMME THE —{Cl)~ LA N

FEMME € Cl cl

5.  PETIT U(PETIT) SMALL PETIT  SMALL N11,N12,N13
6. SMALLWOMAN PETIT FEMME PETITEFEMME SMALL —{(Cl)> PETITE N1k
7.  GIRL U(GIRL) FILLE GIRL <> FILLE N15,N16,N17
8.  SMALLGIRL PETIT FILLE PETITEFILLE FILLE e Cl

Figure 6-6.

Example learning sequence.
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how to categorize the situations where this new form should be used.
The only other word in the cover, "FEMME", already has a contextual
category assigned to it, so METQA uses that class Cl. A node N1i is
built for the new form, "PETITE", but the link to it is restricted
to contextual situations involving class Cl.

One might gquestion the advisability of the above technique of
generalizing usage classes or categories across different input situ-
ations. In general, it seems to be a good practice; as in the ex-
ample, French feminine nowns act as French feminine nouns in a wide
variety of grammatical situations. If some category is used too
broadly, however, the resulting bad response will cause new categories~
to be learned and used, and the incorrectly assigned class memberships
will be downweighted and ultimately discarded.

Continuing with the example, in line 8 METQA receives the input
"SMALLGIRL". Since the "girl" nodes have no class membership yet,
the "SMALL" path is forced to take the restriction-free link to node
N13 ("petit"). Feedback shows that the correct form was "PETITE"
from node N1L. Since somehow the path was supposed to traverse a
link restricted to context of class Cl, METQA hypothesizes that per-~
haps the current context really is in the same category Cl; METQA just
did not know it yet. For this reason, node N17 ("fille") is made a
member of class Cl, so that on future encounters "FILLE" will occur
with the feminine form of "SMALL".

Thus we see how METQA can learn and generalize from experience,

and in so doing get concepts of the similarity in behavior of whole
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groups of words in certain circumstances. Different forms of any

word can be learned, along with the different situations in which to
use them. Of course, what METQA learns dépends strongly on the in-

put and feedback training sequence chosen by the human trainer, who

can alter the planned sequence or pause to repeat, if METQA stumbles

in its learning. As METQA categorizes more and more words, the classes
are not always intultively pleasing. It is still interesting, how-
ever, to watch how a learning "intelligence" structures the language

it experiences from the human trainer.
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CHAPTER T

THE LEARNING AND USE OF PERMUTATION RULES

1. Description of a Permutation Rule

Probably every person who has ever learned more than one lan-
guage has noticed that the word orders of different languages are
not identical. METQA, too, must learn and be able to reproduce these
different word orders. Thus in the final phase of learning from
feedback, METQA learns rules to govern any segmental permutations
which were noted between the input and feedback strings. The goal
is to categorize the situation in which a word order difference oc-
curs and describe the actual permutation so that it can be effected
in the future.

A permutation rule (p-rule) consists basically of an ordered

sequence of class lists or "slots", each of which has a position
number associated with it. The precursor of the p-rule is the
"restructuring rule" of the Uhr programs [196L4]. A very simple ex-

ample of a p-rule is:
RuleO: C(French adjectives)(2), C(French nouns)(1).

This means that if a member of the class of French adjectives is
found immediately preceding a member of the class of French nowns,
then the (slot 1) adjective is moved to position 2 and the (slot 2)
nown 1is switched to position 1. Each class list is a disjunctive

set of one or more class options (weighted for learning evaluation);
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each option is a conjunctive list of one or more usage classes. For
convenience, throughout this chapter we will omit any indication of
the weights on each option. The construction of these class lists
will be explained in more detail as we proceed.

For a given slot of a permuation rule to match an input, all the
classes listed in any one of its class options must be found on the
corresponding input node's usage class membership list. If all the
slots of a permutation rule are thus matched by consecutive input
hunks, then the p-rule is executed; that is, the segment matching

each slot is moved from its original position in the sequence to the

.

position indicated by the slot's position number.

These permutation rules, corresponding to the transformations
in transformational grammars [Harris, 196L4; Chomsky, 1964, 1965], are
necessary for the treatment of discontinuous morphemes (such as
ne...pas) and for dealing with differences in order between different
languages. But no p-rules are built into the program; they are learned
and reweighted according to their behavior, just as the other relation-
ships between memory nodes are learned. When a permutation of segments
is noticed between METQA's response and the feedback string, the appro-
priate p-rules are inferred from the input and feedback string segments.
Whenever possible, METQA attempts to combine and generalize existing
rules to handle new cases of segmental permutation. The goal is to
arrive at a minimal set of rules which adequately govern all the per-

mutations necessary for the language(s) in use.
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2. Preliminary Sketch of how a Pair of p-rules is Learned

The reader should recall from Chapter 6 that a learning work
list is built to explicitly associate the input and feedback strings.
METQA uses this list first to learn transformations and then to leam
any permutations discovered. ILet us assume that METQA has already
learned all the necessary transformations and that the work list now
contains only the path intersections, ordered as they appeared. Sup-
pose that there 1s indeed a segmental permutation involved, which
METQA will now attempt to learn.

First, METQA must isolate the permuted region; that is, the group
of segments which were permuted must be delimited and extracted from )
the work list for convenient inspection. Then the numerical "order"
of the permutation is determined. ¥For the simple example RuleO in
the preceding section, the numerical order is (2,1), since two seg-
ments are switched. Using this permutation order as an initial dis-
tinguisher, the program searches through all permutation rules already
in the permanent memory for one which could reasonably apply to the
current situation. If a given rule permutes segments to the correct
order, then the program attempts to match the class requirements of
each of the rule's position slots against the class memberships known
for the corresponding segment in the region under inspection. If at
least one slot matches (this requirement can be made more stringent),
then the rule is assumed potentially applicable to the current per-
muted region. For example, the sample RuleQ mentioned earlier would

be considered potentially applicable to some newly discovered permu-
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tation if the noun slot matched, but no class memberships were yet
known for the other segment. Hence METQA proceeds to alter the given
rule so that it could have been used to produce the desired permuta-
tion on the current region. This alteration procedure will be des-
cribed shortly in Section 2.2. But first, let us consider the case
where there is no existing rule which is applicable to the permuta-

tion currently being learned.

2.1 Forming a new p-rule

If no existing rule had the correct permutation order, or if no
rule of the correct order was judged potentially applicable, then -
the program builds a whole new p-rule by induction from this input.

In order to characterize this situation which requires permutation,
METQA must use the appropriate segment of the input string to produce
a class list for each position slot in the p-rule. If possible,
existing class membership information is used to set up the class
requirement list for a slot. However, suppose a particular input
segment has no class memberships listed in its terminal node because
there has been no need to distinguish or characterize it before.

Then in order to build the needed class requirement to describe this
situation in the p-rule, the program sets up a new usage class and
designates this segment's node as its first member. The new class
then becomes the requirement for the particular p-rule slot. Finally
the p-rule is assembled, the class list for each slot being associated

with a position number as determined by the permutation order.
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To illustrate the construction of a new permutation rule, let
us use the simple example in Figure T7-1 with intuitive class names
for easy understanding (METQA will generate its own internal names).
For convenience, we will assume that METQA has already learned all
the words involved. Suppose METQA receives the input string
"HEBREAKSTHEGREENCUP", transforms it, and outputs the response "IL
BRISE LA VERTE TASSE". The feedback string received is "ILBRISELA
TASSEVERTE". METQA finds terminal intersections for each segment,
confirming its knowledge of the words involved.

But there is a difference in the word order between response
and feedback. METQA isolates the permuted area and sees that "VERTE" ~
+ "TASSE" should be permuted to "TASSE" + "VERTE". Now suppose
"verte" is a member of the classes C(French) and C(adjective); let
"tasse" be a member of C(French), C(noun), and C(feminine). Then

METQA would use these memberships to build the rule:

Rulel: order(2,1)/[C(French).and.C(adjective)](2),

[c(French).and.C(nown).and.C(feminine) ](1).

This means that a French adjective followed by a French, feminine
noun would be permuted so that the adjective is in position 2 and
the noun in position 1. We will call this newly constructed p-rule

Rulel, so that we can refer to it later.

2.2 Altering an old p-rule

Now we have seen how new p-rules are built. Let us return to



Input:
Response:

Feedback:

Relevant ¢

verte

tasse

Resulting

Rulel:

Figure T7-1

HEBREAKSTHEGREEN CUP
IL BRISE LA VERTE TASSE

ILBRISELATASSEVERTE

BRISE (vErTE>
#
BRISE (ERTE)

lass memberships:

e C(French), C(adjective)

€ C(French), C(noun), C(feminine)
new rule:

order(2,1)/[C(French).and.C(adjective)](2),

[c(French).and.C(noun).and.C(feminine) J(1).

. Learning a new permutation rule.
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the situation where METQA is searching for an existing rule which
might apply to some permuted area isolated in the current input. If
some existing rule R permutes segments to the correct order, and

the current permuted area satisfies the class list of at least one
p-rule slot, then METQA decides that R 1is applicable and proceeds

to alter it so that it would have correctly permuted the current string
region.

This alteration of an old p-rule consists of adding a new op-
tion to the class list of any p-rule slot which was not satisfied
by the input segments. If possible, existing class memberships are
used. The new class option is the conjumection of all those classes
of which the particular segment's node is a member.

Suppose some input segment has no class memberships to use.
Then METQA follows the usual procedure of creating a new usage class
with this segment as its first member. This new class is then added
as the new class option needed to make the p-rule fit the current
situation.

Before adding a new option to the class list for a given slot,
METQA first tries to generalize the slot's class requirements as
follows. If the new option has (arbitrarily) two or more classes
in common with some older option, both the options are consolidated
into one more general option consisting of only the classes common
to the two. Thus the program attempts to derive more generally use-
ful permutation rules.

Let us illustrate the alteration of an o0ld p-rule with another
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simple example in Figure T-2. Suppose METQA receives the input string
"AHAPPYDOGJUMPSONTHEBOY". After recognition and transformation, the
program outputs the response "UN HEUREUX CHIEN SAUTE SUR LE GARCON".
The feedback is "UNCHIENHEUREUXSAUTESURLEGARCON". On comparison,
METQA discovers that all the words were transformed correctly, but
that there is a difference in word order between response and feedback.
After isolating the permuted areas, METQA determines that "HEUREUX" +
"CHIEN" should be switched to "CHIEN" + "HEUREUX"; a segmental per-
mutation of order 2,1 must be learned.

Before building a new p-rule, METQA searches through the perma-
nent directory list of the rules already in existence for one which
has the same permutation order and might (with modification) govern
this permutation. Rulel (learned in the example of Figure 7-1) has
the needed permutation order; it, too, switches arownd two segments.
Then METQA must check the class requirements of each slot in Rulel
against the current input. Now suppose "heureux" has class member-
ships in C(French), C(adjective), and C(goodthings) as shown; let
"chien" belong to C(French), C(nowm), and C(animal). The first slot
of Rulel requires a member of C(French) and C(adjective); obviously,
"heureux" satisfies this slot. The second and final slot needs a
node which has memberships in C(French), C(noun), and C(feminine);
"chien" cannot satisfy the full requirement.

Since at least one of the slots of Rulel was satisfied, METQA
decides to generalize the p-rule to apply to the current situation,

too. The first slot needs no alteration, since it already matches
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Input: AHAPPYDOGJUMPSONTHEBOY
Response: UN HEUREUX CHIEN SAUTE SUR LE GARCON

Feedback : UNCHIENHEUREUXSAUTESURLEGARCON

Relevant class memberships:

heureux € C{French), C(adjective), C(goodthings)

chien € C(French), C{noun), C(animal)

Previously existing rule:

Rulel: order(2,1)/[C(French).and.C(adjective)](2),

[c(French).and.C(nowm).and.C(feminine) ](1).
Rule after modification:

Rulel: order(2,1)/[Cc(French).and.C(adjective)](2),

[c(French).and.C(nowm) ](1).

Figure T-2. Altering an old permutation rule.
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the current input segment. The second slot must be altered to in-
clude "chien" as well as French feminine nouns.
Using the existing class memberships of "chien", a new option

can be added to the slot to yield the following class list:

[(c(French).and.C(nowmn).and.C(feminine)).or.

(c{French).and.C{noun).and.C(animal))].

However, before replacing the old option with this new list, METQA
checks to see if the requirements can be generalized. The new option
is compared with the old, and an overlap of two classes is discovered.
Consequently, both options will be replaced by a new combined option -
consisting of only the overlap classes. Hence the generalized class

list for the slot will be simply

[c(French).and.C(nowm)].

Thus METQA alters the old p-rule Rulel so that it can now be

represented as

Rulel: order(2,1)/[C(French).and.C(adjective)](2),

[c(French).and.C(noun)](1).

Very simply, this means to METQA that in French, adjective + noun
permutes to noun + adjective. Of course this rule has exceptions

in the real world; METQA will stumble onto these later, and try to
adapt to them by using the same techniques described above, developing

new classes to handle these exceptions.
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2.3 Complementary p-rules

When the alteration or construction of a rule is finished, the
memory nodes involved with the current input are adjusted so as to
indicate on future encownters that use of this p-rule should be con-
sidered. The program is still not finished with its learning, how-
ever. Since translation tranforﬁations are two-directional relation-
ships, each permutation rule must have a complementary p-rule to
handle segmental permutations during transformations in the opposite
direction--from the (current) target language to the (current) source
language. The usage classes may be quite different for different
languages, depending upon to which grammatical concepts (gender,
case, etc.) are represented in the external form of the language.

In addition, the numerical permutation order may differ for opposite
directions, as can be seen in the following example: ABC > CAB has
permutation order (2,3,1), while CAB - ABC has order (3,1,2).

The complementary rules are stored together, so that if the
program has Just finished altering an existing rule to fit the input,
it has only to retrieve the complementary rule and go through the
same alteration process to make this second rule applicable to the
feedback segments. Similarly, if the program has just finished
bullding a new p-rule by induction from the input, the complementary
rule must now be built in the same fashion by induction from the
feedback segments. The resulting pair of p-rules is stored together
in the list of all existing p-rules, ready to be tested, reweighted,

and evaluated according to future experience.
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Finally at this point, the program has learned all it can from
the input and feedback strings, and is ready to accept a new input
from its trainer. Perhaps it has even "learned" too much, and some
of its hypotheses are erroneous, but the constant reweighting of all
the program's knowledge according to its behavior will tend to cause
the downweighting and eventual rejection ("forgetting") of bad hypoth-

eses and the achievement of a more "intelligent" memory.

3. How a p-rule is Used in Transformation

The preceding sections have shown how permutation rules are
learned; now let us look at how they are used when METQA is trans-
forming some input string.

As indicated in Chapter 5, Section 6, a word node "remembers"
if it is ever used to learn or alter a permutation rule. Then any
time that same word is used again, it suggests to METQA that the p-
rule might be applicable for this new input. At that phase of the
transformation cycle where the suggested p-rules should be tried,
the program tries to apply every rule indicated to every cover being
processed.

Starting with the first cover, METQA tries to apply each rule
in turn. For each p-rule, the program steps through the cover from
the beginning,segment by segment, looking for a path with the class
memberships needed to satisfy some option of the class list for the

first position slot of the particular p-rule.
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If the first slot's requirements are satisfied, then METQA
pauses here and checks the immediately following segments to see
if they satisfy the requirements of the succeeding slots of the p~-
rule. If the succeeding slots are not satisfied, then METQA resumes
stepping through the cover, still trying to match the same rule.

A successful match for all the slots, however, means that METQA
must perform the indicated permutation before continulng with the
same cover. This is accomplished by moving the actual paths in the
cover around to the positions stated in the p-rule. A p-rule can
apply more than once to a single cover, so after performing the per-
mutaticn, METQA continues down the cover still trying to apply the
same p-rule. Each suggested p-rule is tested for applicability to
the cover; then METQA moves on to the next cover and tries to apply
each rule again.

In order to clarify the permutation process, let us consider
the simple example in Figure T-3. Assume that METQA still knows
the p-rule Rulel, which was developed in Figure 7-1 and modified in
Figure 7-2. Also assume that all the words involved are previously
known, with intuitively-named class memberships as indicated.

Suppose METQA is asked to translate the input "ADOGLIKESTHE
HAPPYBOY". Since all the words are known, METQA recognizes all the
segments, forms the paths shown, and builds a complete cover CVR.

The paths go through the cycle of procedures, transforming
node by node through memory. No permutation rules are implied or

suggested until Path2 reaches the "chien" node and Path5 reaches

t
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Figure T-3. Application of permutation rule.

Permuation rule:

Rulel: order(2,1)/[C(French).and.C(adjective)](2),
[¢(French).and.C(noun)](1)

Input: ADOGLIKESTHEHAPPYBOY
Paths Path Strings P-~Rules Suggested

Pathl A > WN

Path2  DOG - CHIEN Rulel
Path3 LIKES - AIME

Pathlk THE - LE

Path5 HAPPY - HEUREUX Rulel
Path6  BOY - GARCON

Class menberships assumed:

m € Clarticle), C(masculine)

le € C(article), C(masculine)

chien € C(noun, C(French), C(animal)

aime € C(French), C{verb), C{goodthings)
heureux ¢ C(adjective), C(French), C(goodthings)
garcon € C(French), C(masculine), C{noun)

Intermediate cover during first cycles:

CVR: Pathl -Path? - Path3 - Pathlk - Path5 - Path6

or, externally: UN CHIEN ATME LE HEUREUX CARCON

Application of permutation rule:

METQA tries to apply Rulel because suggested by nodes "chien" and

"heureux".

Rule match at Path5 - Path6; permute to order (2,1).

Final cover after successful application of Rulel:

CVR: Pathl - Path? - Path3 - Pathl - Pathé - PathS

Response: UN CHIEN ATME LE CARCON HEUREUX
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the "heureux" node. Since each node has previously been involved
with the permutation rule Rulel, each suggests that Rulel might be
applicable to this cover. Consequently, during the next phase of
that cycle, METQA tries to apply Rulel to CVR.

The first position slot of Rulel specifies matching a path whose
node(s) have membership in classes C(French) and C(adjective).
Starting from the beginning of the CVR, METQA looks for such a path.
Note that although the "chien" node suggested Rulel, the needed ad-
Jective is not there before it and so Rulel does not apply at that
position. When at PathS5 a French adjective is found, METQA pauses

"garcon" node of

to try to match the succeeding p-rule slots. The
Path6é satisfies the second and final slot's requirements for member-
ship in classes C(French) and C(noun), so METQA decides that Rulel
should be applied to the Path5 - Path6 area of the cover.

After the cover paths are permuted to the prescribed order 2,1,
then METQA continues to try more rules. There are no more rules and
no more covers, however, so the cycle is finished. Since all the
paths have reached target terminal level, METQA has finished the

trenslation and outputs the permuted Response: TUN CHIEN AIME LE

GARCON HEUREUX.

4,  The Role of the Human Trainer

In this chapter we have seen how METQA learns permutation rules
at the final stage of transformation learning, and how these rules

are used in the transformation process. The exact form of the re-
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sulting set of p-rules is a function of the experience received from
the human trainer. Given any instance of segmental permutation,
METQA will construct new classes if necessary and will try to learn
a pair of p-rules governing that particular permutation. If the
trainer is unaware of the internal class structure that METQA has
learned, this can lead to the learning of too many rules or "special
case" rules.

For example, consider Figure T-4, and suppose that no class mem-
berships are initially known for "yellow", "green", "chair" or "book".
Then if METQA receives Experience 2 immediately after Experience 1,
METQA will build the two separate rules shown to govern (what we would®
view as) the same type of permutation. METQA is not currently pro-
grammed to combine two existing p-rules, so even if both Rule2 and
Rule3 are later correctly generalized,METQA's permanent memory is
cluttered with two rules which govern the same permutation.

Thus we see how METQA can benefit from a carefully chosen input
sequence. To the extent that the trainer understands METQA's pro-
cedures, observes METQA's behavior, and infers what METQA has already
learned, then he can present permutations in a sequence which will
produce more general and intuitively pleasing p-rﬁles and classes,
and fewer of them, than if permutations are learned from a haphazard

input sequence.




Experience 1

Inputl: YELIOWBOOK
Responsel: JAUNE LIVRE

Feedbackl: LIVREJAUNE

Resulting new class construction:

Cl1 contains "Jjaue"

c2 contains "livre"
New rule:
Rule 2: order(2,1)/[c1](2), [cal(1)

Experience 2

Input2: GREENCUP
Response2: VERTE TASSE

Feedback?2: TASSEVERTE

Resulting new class construction:

C3 contains "verte"

Ch  contains '"tasse"
New rule:

Rule 3: order(2,1)/[c31(2), [ck](1)

Figure 7-4. Construction of two rules.

108

(Note that only half the

constructions are shown; complementary rules and their

classes are omitted.)
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CHAPTER 8

THE LEARNING OF INFORMATION

1. Conditions for Learning

When learning a new memory, METQA's early experience must be
devoted to acquiring a working vocabulary. Only after all the words
of an input have been learned can METQA consider that input as a
piece of information, as well as a string to be transformed.

There are three modes under which the program can operate.
First, inputs from the humen trainer can be considered simply as
strings to be transformed to some target form for output. In this
mode, METQA learns new words and their different transforms, con-
texts, and classes in order to translate input strings.

When the trainer feels that METQA has an adequate vocabulary,
he can set a flag so that future inputs are considered as potential
information. That is, METQA performs the usual recognition and
transformation of the input string and outputs a translation. Feed-
back strings are processed as usual. However, if the input was com-
pletely understood (i.e. recognized), METQA also represents the in-
put internally as a fact and adds this fact to the memory's store
of information.

This information learning mode can also operate without the
translation. That is, completely understood input strings can be

simply accepted and incorporated into memory without the need for
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either translation or answer.

In the third mode of operation, the input received from the
trainer is a guestion to be answered using the information METQA has
learned. In this mode, METQA consults the facts in its memory in an
attempt to produce the best answer possible, given the current state

of its knowledge.

2. How a Fact is Learned

Any input string which is to be learned as information will be

called a fact. A fact, then, is not necessarily a fact in the usual

-

sense of the word; it is simply any input which is learned as a basic
piece of information. Any fact is assumed to be true until repeated
bad responses reduce (the weight of) its credibility.

Some information processing systems have different classifica-
tions of information, based perhaps on whether the item is a piece
of specific data (e.g., "Tom is six feet tall") or a more general,
wmiversal truth (e.g., "A foot is 12 inches"). Examples are the
STUDENT system with its "global" and "local" information [Bobrow,
1968] and the CONVERSE system with its "general" and "specific" facts
[Kellogg, 1968, 197L]. For METQA, however, all factual information
is incorporated in the same way into the semantic memory net which
serves METQA as the permanent memory for all its tasks. This enables
the use of very general routines for both the learning and the use
of information in the net.

Just as it used character symbols as the basic units which com-
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bined to form the words in the terminal nodes of memory, METQA uses
recognized words as the basic combining units with which to form
facts. An input is learned as a fact by attaching a link to each
component word in the input from a single node which functions in
memory as the "fact node". In accordance with the basic conditions
of the program (cf. Chapter 2, Section 1), the facts are wumstructured
strings whose meaning is the combination of their relationships in
the memory net. No linguistic or logical structure is ascribed to
any fact.

The fact node has ordered description links to the idea nodes
of all the fact's component words. The description links are weighted
according to the relative importance of the particular word to the fact.
METQA determines the importance of each word by maintaining a frequency
count of its occurrence throughout METQA's experience. In general,

' words which have mostly a grammatical

the very common or "function'
function (e.g. articles, conjunctions, prepositions) are given lower
weights when building a fact, while less frequent "content" words
having higher information content are given greater weight. For
further discussion of this idea, see the paper by Simmons, Klein and
McConlogue [196L4].

Of all the fact's component words, only those words with the
relatively high information contents are in turn linked back to the
fact node. Thus for each content word, a combination link connects

its idea node to the fact node; the weight of that link indicates

the word's relative importance in the fact. There are no links from
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the common, function words to the facts which contain those words,
because the words are not meaningful enough to be good indicators
of the information in the facts. In addition, there would simply

be too many facts indicated by each particular fimction word.

Iinks from Fl: description links

Links to Fl: combination links

Figure 8-1. Sample fact node.

For an example of the links and weights involved in a fact node,
see Figure 8-1. The word nodes shown are assumed to be idea nodes.
Each description link has an importance weight shown in parentheses;

combination links are here assumed to have the same weights as their
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partner description links.

3. Combination of Facts

In order to make efficient use of memory space and to relate to
and make use of previously learned information, METQA combines new
facts with old ones whenever possible. For this reason, fact node
structures can be nested or can have class or group nodes as their
component nodes. That is, a component node pointed to by a fact
node's description link may be one of three different types: 1) a
simple idea node for some word, 2) a class or group node with two
or more member nodes, or 3) another fact node.

When there is a fact to be learned, METQA first searches mem-
ory to see if there is a similar fact to combine with. If there is
an existing fact (EF) which matches some sufficiently big (typically,
half or more of the total "word-weight"), connected subpart of the
new fact (NF) to be learned, then the program will build a nested
fact. That is, EF will still exist as a separate fact, but it
will also combine with other nodes to form the larger new fact NF.
The fact NF will have description links down to all of its component
nodes, one of which will be the complete, self-contained fact EF.
This nesting can be arbitrarily deep, on any node.

An example of a nested fact is shown in Figure 8-2. Assume
the nodes labeled with words are the idea nodes of those words. The
nesting is easiest to learn if the facts appear in the order F2,

F3, Fk, but it is also vpossible to nest downward.




every

Tuesday

the

little \\

eats

Links to left: description links

Links to right: combination links

Figure 8-2. Example of a nested fact.

11k

"



115

If METQA finds two facts which are identical except for one
(set of) node(s) in the same position of each, then the two facts
can be combined, with a group node at that point of difference. A
group node is structured like a class node in memory, with pointers
down to all its member nodes. In contrast to the class links con-
necting members to a class node, however, here we have combination
links connecting members to the group node. Figure 8-3 shows ex-
amples of "grouped" facts. Again, the nodes labeled with words are
assumed to be idea nodes.

There is not necessarily a unique sequence of input facts to
result in a particular fact node structure. In Figure 8-3, fact F5 -
mey have first been learned as "Mary likes to sail". If so, the
next development with FS could have been the formation of either the
group node Gl (by learning that "John likes to sail") or the fact
node F8 (by learning next that "Mary likes to sail with Tom"). The
order could have been entirely different, but the resulting structure
holds the same information.

When a group node is formed in a fact structure, the members
are assumed to have an inclusive-or relationship; the stated group
fact is true for the whole group of nodes, but perhaps not necessarily
for sll of the members at the same time (or as the same fact). Hence
in Figure 8-3, fact F5 can be read three ways: 1) "John likes to
sail", 2) "Mary likes to sail", and 3) "John and/or Mary likes to
sail”. For this reason, a fact is not allowed to include more than

one group node, since erroneous combinations of group options could
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Links: C - combination
D - description
M/S - membership/subset

Note: Both pointers to "with" point to the same node.

Figure 08-3. Sample facts with group nodes.
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certainly occur. Consider the fact node F9 in Figure 8-L. Although
this complex fact may have been learned with very reasonable state-

ments, METQA could now conclude that "Teachers are supposed to tick"
and "Clocks are supposed to bark".

As we have seen, METQA's goal is to combine facts as much as
possible, but with caution in order to maintain information con-
sistent with the truth. Currently there are strong constraints on
the combination possibilities during a single fact learning opera-
tion. Two facts can be combined only if one can be matched by a
connected subpart of the other, or if the sentences are identical
except for one set of nodes in the same position of each. Even with
these constraints, more complex fact structures can be built up over
time if the sentences match closely, as shown in Figure 8-3.

METQA's main approach is conservative and cautious, however.
The program can always easily enter a whole new fact into memory,
but it is more difficult to recover from the bad information re-
sulting from too liberal a combination of facts. The unlearning of
badly combined information will probably require "forgetting" the
whole combination of facts after they have been downweighted enough
times for causing bad behavior. Then METQA would have to relearn

these facts separately when it sees them again.
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Links: C - combination
D - description
M/S - membership/subset

Figure 8-4. Fact node with too many group nodes, yielding
erroneous conclusions.



119

CHAPTER 9

ANSWERING QUESTIONS

1. Question Answering--An Interruption of the Transformation

Process

After the program has learned and stored some information into
its memory net, any input received may be a question to be answered,
rather than a string to be translated. In the question answering
mode (QA mode), METQA must consult the facts it has learned and try
to produce the best answer available from its net. The reader
should recall that the goal is to build in as little information as
possible (see Chapter 2, Section 1); hence there can be no built-in
linguistic information or logical procedures to aid METQA in this
task. There is only the memory net and the class structures which
METQA has learned.

The question answering procedure is, in a sense, an interrup-
tion of the regular translation procedure with a replacement of ob-
Jeet strings. The question string is recognized and transformed
as usual, but only to the level of the idea nodes which have access
to the information portion of the net. At that point, the question
answering procedure takes control and tries to produce the best
answer possible, given only the information which METQA has learned.
Then after an answer is produced, the program returns it to the
usual transformation routines, where it is "translated" to external

form for output.

AL
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2. Initiation of Answer Procedur=s

When the program is operating in QA mode, recognition and
transformation of input segments proceed as usual. The main differ-
ence is in the path status (its location in the net) sought for ter-
mination of the cycle of transformation procedures explained in
Chapter 5, Section T.

Whereas in translation each path should reach terminal level in
order to stop cycling, in the QA mode, each path should reach the
level of its idea node. Only from the idea nodes of words can the

facts in the net be reached. When each path in the question cover(s)

v

reaches this desired level, then the transformation cycling termi-
nates and control is passed to the question answering routines.

If more than one cover of the question has survived to this
point, METQA arbitrarily chooses any one which contains no garbage
characters. Just as when learning information, METQA must already
know all the words involved when answering a question; therefore it
will not attempt to answer a question when there is no complete

cover.

3. Finding Content Words

In order to produce an answer, METQA must first pick out from
the question the important words with which to retrieve information.
Using the assumption that the significance of a word varies inversely

with its frequency of occurrence (as explained in Chapter 8, Section
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2), METQA ignores the fumction words and considers only the content
words important enough to choose relevant information. Hence all
the content words of the question are put into a list of relevant
words; this list will be used later to extract information from the

net.

L, Use of Extended Meanings

As the reader may recall, in Chapter 3 we discussed the "ex-
tended meaning" of a word in METQA's memory as a means for extracting
a richer selection of information relevant to that word than the word
alone would yield. The extended meaning of some word W includes
not only the node for W itself, but also those word nodes connected
to W by relationships such as class membership or set inclusion
(superclasses and members or subsets) and usage equivalence. Thus
if we have a question including the word "dog", for example, METQA
can retrieve more information by using the extended meaning, which
might include all the idea nodes shown in Figure 9-1. The new nodes
found by extension are added to the list of relevant words which
METQA will use to gather information. This extension operation thus
gives a wider selection of relevant information from which to select
and assemble an answer.

The use of extended meanings is an optional feature (set by
interactive command), which the trainer may or may not wish METQA
to use at a given time. We will assume for this discussion that

the flag has been set so that METQA will use extended meanings of
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M/S

S

Links used: CL - class membership in
M/S - member/subset of this class
E ~ equivalence; can be replaced by

Figure 9-1. Sample extended meaning.

words whenever possible.

5. Finding Relevant Facts

Using all the relevant words extracted from the gquestion and
its extension words, the program next starts to gather information
for use in assembling an answer to the question. To do this, METQA
uses a technique very similar to the coordinate indexing of the
SYNTHEX system of Simmons, Klein and McConlogue [1964]. One by one,
each relevant word is consulted for a list of facts in memory which
are relevant to that word. That is, which facts actually use this

word node in their description? All the facts so indicated are

-
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gathered into one list of relevant fact nodes. This list comprises
all the first level information known by METQA which might possibly
be relevant and useful in answering the gquestion. Given these fact
nodes selected by the question as a data base, METQA will pursue

every possibility which could lead to an answer.

6. Building Fact Chains

In order to develop related facts into a logically connected
answer, METQA assembles structures called fact chains. A fact chain
is a list of fact nodes of which the first fact is indicated by the
words in the question (including their extended meanings), and in
which each succeeding node is linked to by words (or their extensions)
from the preceding fact. A link word is a word shared by two adja-
cent facts in a chain, elther directly or by a node of its extended
meaning. A link from fact node N1 to N2 in some chain CHN
would be any word (or words) which appeared in the chain for the
first time in fact N1; N2 is some other fact which also uses that
word (or words). That is, when some new word NW appears in the
realm of discourse, say in fact node N1, then METQA notices it and
sees if this newly relevant word can introduce new and useful infor-
mation. The new word NW is therefore consulted for a list of the
facts relevant to it, and the new facts (such as node N2) are used
to extend this fact chain CHN and are added to METQA's list of

relevant fact nodes for this question.
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Perhaps an illustration will make the chailning process clearer;
Suppose the four facts shown in Figure 9-2 have been learned by the
program, and that METQA receives the question "Is Tom healthy?".
Starting from the only fact suggested by the content word "Tom", the
chaining process shown ylelds two fact chains. Linking words are
shown in brackets; if a new word can find no new fact, it is followed
by a "#'. Of the two resulting fact chains, the one which METQA would
use to produce an answer (we will see why shortly) is CHL: F2(Tom
rides a bike to work) =+ (bike) » F3(Riding a bike is good exercise) -
(exercise) - Fl(Exercies makes a person (healthy/tired)).

As indicated in Figure 9-2, fact chains are formed to pursue
all branches offered by their link words. Thus when two facts (F3
and Fi) can be linked to from fact F2, METQA builds two chains so

that each possibility can be explored.

T. The Coverage of a Chain

In order to judge the relevance of a fagt chain and the complete-
ness of its information in providing an answer, the program keeps a
record for each chain of the parts of the question which are accounted
for by that chain. We use the term coverage of a chain for this mea-
sure of the question segments "covered", or accounted for, by the
chain. A content word of the question is said to be covered by a
fact chain if that word (or a node of its extended meaning) has been
used by a fact in the chain. In its current stage, METQA automatic-

ally assumes any fumction word of the question to be covered.



Figure 9-2. Building fact chains.
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Facts in memory (content words underlined):

Fl: Exercise makes a person (healthy/tired).

F2: Tom rides a bike to work.

F3: Riding a bike is good exercise.

Fh: Sue rides to work in a car.

Question: Is Tom healthy?
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Chaining from F2 (# means no new facts from here):

rides riding # makes #

R - bike A\ 3 good # person #
work exercise - Fl - % healthy #
Sue # tired #
Fb
car #

Sample chains starting from node F2 (links shown in parentheses):

cml: F2 - (bike) =+ F3 > (exercise) - Tl

CH2: F2 ~ (rides,work) -~ Tk

Figure 9-2.  (Continued)
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The goal of each fact chain is to cover all of the question.
If each content word in the question has been somehow accounted for
by the facts in a chain, then METQA hypothesizes that these facts

will include the answer to the question.

8. Fact Chain Intersections

In order to hasten the complete covering of the gquestion, as
each chain is extended from fact to fact it is constantly locking
for a way to link with or intersect other chains. Two fact chains
A and B are sald to intersect if some fact node occurs in each
chain, or if the link words from a fact FA in one chain, say A,
connect it to some fact FB, which is present in the other chain B.

The intersection of two chains provides a set of connected facts,
or we might think of it as a loop chain, such that the facts on
either end contain words from the actual question, and the facts in
between are associated with each other by means of sharing some of
the same content words. This combining of chains and their respec-
tive coverage indicators is desirable because it usually results in
a more complete coverage of the question. The goal is of course to
find an intersection which yields a complete coverage of all the
question.

For an example of how fact chains intersect, let us again con-
sider Figure 9-2. Using the content words of the question "Is Tom
healthy?", METQA would initiate two fact chains, say CHF2 from fact

F2 ("Tom rides a bike to work'") and CHFL from fact F1 ("Exercise
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makes a person (healthx/tired)")- (Link words are wnderlined.)

Neither chain covers the question completely, so the chains will

be extended to other facts in order to gather more information.
Using the new words fowmd in fact F2 ("rides", "bike", "work"),

chain CHF2 can extend to either fact F3 ("Riding a bike is good ex~

ercise") or fact F4 ("Sue rides to work in a car"). Consequently,

METQA follows both branches, extending CHF2 to node F3 and build-
ing a new chain CHF2A to extend to F4. Thus the two F2 chains can

be represented as follows:

CHF2: F2 - (bike) =+ F3

CHF2A: F2 - (rides,work) -~ FhL

Next, chain CHF1l must be extended. Using the new words for
this chain fownd in fact Fl ("exercise",."makes","person",
"tired"), the only fact which can be linked to is F3 ("Riding a
bike is good exercise"). Always watching for fact chain intersec-
tions, METQA discovers that node F3 1is shared by both CHF2 and

CHFl. Thus the chains are linked as follows:

CHF2: F2 » (bike) - F3

CHFl: Fl1 -+ (exercise) - F3

Neither CHF2 nor CHFL completely covered the question by it-
self, but now METQA checks to see if the two intersected chains to-
gether provide a complete cover of the question "Is Tom healthy?".

In this case, both content words of the question are accowmted for,

"
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so METQA concludes that CHF2-CHFl contains an answer, and the chain-

ing of facts is terminated.

9. Two Special Word Classes

To facilitate the use of interrogative words (such as "who"
and "what") and negation words (such as "not" and "never") in ques-
tions, the human trainer must help METQA build up the classes of
question words (which we will refer to as g-words) and negation
words.

The reader should recall from previous discussions of class
formation that METQA builds classes of words (i.e., of their nodes)
automatically as a means of categorizing different input situations
in order to choose from among alternate behavior possibilities. For
example, a word class would be learned in an attempt to categorize
the cases where "small" transforms to "petite" instead of "petit".
These automatically formed classes can be used in a very general man-
ner by the program, but they have the disadvantage of being anonymous;
METQA has no way to know the nature of the contents of any class, and
there is no name by which it can refer to such word classes as "femi-
nine", "human", "plural", etc. (Certain planned remedies for this
limitation will be discussed in Chapter 10, Section L)

However, in the question answering routines it seemed neces-
sary to refer explicitly to the classes of gquestion words and nega-
tives as special types requiring special treatment. METQA might

actually form these classes of words on its own; but since the groups
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would be anonymous, the program could not make special use of them.
Thus it was necessary to make an exception to the rule that METQA
must learn everything alone: two class names (for question words
and negation words) are explicitly built into the program, and METQA
can enter any words into these classes as instructed by the trainer.
The use of negation words will be discussed later in Chapter 10,

Section 9.2).

10. Processing Question Words

Suppose that METQA has learned some members of the g-word class.
For every member of this class, METQA is taught by the trainer or
can learn on its own some classes to which this g-word should be-
long. These class memberships are then used to decide which words
in a fact might cover or account for any g-word which appears in a
question.

Suppose the word "who" is known to be a member of the classes
C(q-word) and C(person). Then whenever "who" appears in a question,
in order to cover that word METQA must find in one of the relevant
facts a word which is also a member of C(person). Similarly, if
"when" is a member of C(q-word), C(time), and C(day), then some
member of C(time) or C(day) must be found relevant in order to cover
"when" in a question.

To illustrate, suppose the following classes have at least the

members shown:
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(who,what ,when,where ,qui,quand,...)

C(q-word)

C(person) = (Mary,who,sister,man,Tom,qui,...)
C(time) = (when,night,soon,early ,noon,quand,...)
C(day) = (Tuesday,when,holiday,Sunday,...)

C(thing) = (what,table,tree,hand,...)

Given these class memberships, METQA would allow "sister" to accownt
for "who" in a question, but would not allow "table" to. "Tuesday"
could cover "when" in a question, but "tree" could not. Thus the
question word procedures make strong use of all the class memberships
METQA has learned.

Every question is checked to see if any of its words are mem-
bers of the gq-word class, and any q—words‘are flagged. Suppose a
question contains some g-word. Then as each fact chain progresses
to another fact node, METQA checks for the appearance of some new
word whose class memberships qualify it to substitute for the g-word
in the question. TIf it can, then the g-word is covered by that
chain. In this manner, METQA can process any word which the trainer

presents as a question word.

1ll. Processing a Sample Question

To illustrate the question answering procedures discussed so
far, let us consider the example in Figure 9-3. Suppose that the
memory net contains at least the facts and class memberships shown,

and that METQA receives the question "Who likes a black dog?". The

e



Figure 9-3. Sample question process. 132

g-word ( beagle )
CL )CL,

who dog

L

terrier

Facts (content words are underlined):

F1 John likes the team mascot.
7: Fido is the mascot of the team.
F3

Fido is a black terrier.

Fh: John is a soldier.



133

Figure 9-3. (continued)

Relevant class members/subsets:

(who,...)
(John ,who,soldier,...)

i}

C(q-word)

C(person)
C(dog) = (terrier,beagle,...)
C(enimal) = (dog,...)

Question: Who likes a black dog?

Content words and thelr extensions: likes,black,dog,terrier,beagle,
animal

Q-word to cover: who - C(person)

Chaining from question:

likes - F1 -/ John —— FlL

black person

q - dog team
terrier mascot 2.
beagle , »
animal JF3 > {Fido — > F2

Fact chains (* means g-word covered; links underlined are by

extension):
CHl: (likes) - F1L - (John) =~ FL *
CH2: (likes) - Fl1 - (mascot,team) * -~ ﬁi)

J

CH3: (black,terrier) -+ F3 = (Fido) ~ F2

Answer chains: CH2-CH3

Answer output: Q content words covered:
Fl: John likes the team mascot. who,likes
F2: Fido is the mascot of the team.
F3: Fido is a black terrier. black

Dog has as member-or-subset terrier. dog
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question string is processed to idea node level; then the gquestion
answering routine takes over.

By inspection of the question, the program determines that the
content words to be accounted for are "who" (a g-word), "likes",
"black", and "dog"; the extended meaning of "dog" adds "terrier",
"beagle", and "animal" to the list of relevant words. '"Who", the
question pronown, mu;t be accounted for by a member of the class
C(person). The other relevant words are used to select facts with
which to start fact chains.

Two facts, Fl and F3, are indicated relevant by the link
words for the question. Neither fact alone covers all the content
words of the question, so METQA will extend the chains. The link
words from F1 ("John", "person", "team", "mascot") indicate both
F4 and F2, so METQA extends a copy of the chain to each fact. The
only new word in fact F3 is "Fido"; it provides a link to fact F2.

As yet, no chain covers all the question, but METQA now dis-
covers an intersection between chains CH2 and CH3 at F2, so the
coverage of the combined chains is checked. "Who' can be covered
by "John" of Fl; "likes" 1is covered in F1, and "black" in F3.
Finally, "dog" is covered by extension with "terrier" of F3, so the
entire question has been accoumted for. Deciding that the set of
connected facts in CH2-CH3 contains the best answer available for
the question, METQA then transforms the facts down to external level
for output.

Whenever sentences in a chain are linked by some means other
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than direct use of the same word in the two sentences, then the na-
ture of the link is output in an explanation sentence built by the

program. Thus in the example of Figure 9;3, the fourth sentence of
the output answer is an explanation of the link between "dog" of the

question and "terrier" of fact F3.

12. A Troublesome Problem

As the reader might suspect, METQA's lack of knowledge of the
syntactic relationships among words in a sentence can lead it far
astray when producing an answer. As an example, let us consider
Figure 9-3 again. Instead of the facts Fl, F2, and F3, suppose
that METQA knows the following set of facts (content words under-

lined):

Fl: John's cousin likes the mascot of the team.

F2: Fido and the team mascot became lost.

F3: Fido bit a black terrier.

Unfortunately, using the same technique as before and forming
exactly the same chains with even the same link words, METQA will
decide that these three facts (plus the knowledge that a terrier is
a dog) contain a complete answer to the question "Who likes a black
dog?". Obviously, the needed coverage of the question is there;
the problem is, there are too many other words there, too. METQA
needs a way to avoid using facts in which the desired word is indeed
used, but only as a small part of a large and perhaps unrelated event

or concept,

L]
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A heuristic which may help alleviate this problem is to not
necessarily follow all possible branches of fact chains, and to
choose facts in which the extraneous contént is minimized. That is,
given a choice of two facts which a) account for the same number
of question segments and/or b) contain the same number of link
words from a given chain fact, METQA should give priority to the
fact which contains the fewer words besides those involved in a)
or b) above. Specifically, METQA would do this by using the
weights with which words inidcate their relative importance to the
facts they imply (see Chapter 8, Section 2 ). Each word of each
fact has its own separate relative-importance weight. To minimize
extraneous content, METQA would try to maximize the ratio of the
sun of word weights currently indicating the fact to the total word-
weight of the entire fact. The goal is to minimize extraneous con-
tent, and to maximize the relative importance in the fact of the
words for which we are choosing the fact.

For example, suppose METQA is given the link words '"mascot"

and "team" from Fl, and suppose there are two facts available:

F2: Fido is the mascot of the team.

F2A: Fido and the team mascot became lost.

Then METQA should choose F2 over F2A, because F2 has fewer ex-
traneous words and therefore the word-weight ratio is higher. This

constraint should keep METQA's chain of facts more "to the point'".

11
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13. Defense of the Question Answering Algorithm

The process of forming sets of facts connected only by use of
the same word or semantically similar words cannot be said to be a
hard, logical technique. It is similar in certain respects to a
human train of thought, however.

On hearing a question, an initial set of information comes to
mind--that information which follows directly from the terms used
in the statement of the question. If the initial information is
not sufficient to account for all the features of the question,
then one searches about in his mind, as if asking "What do I know
gbout that, or about that, which might be relevant and useful to~
gether with the information I already have?"

As a person thus flits from thought to thought, perhaps there
is no firm logical connection among the facts he calls to mind.

We are all at times subject to over-generalization or non sequiturs
in our arguments, and METQA has the same defect. It does seem
that interesting and effective answers can result from this tech-
nigue, however, just as there will also at times be inadequate,
nonsensical collections of facts in a candidate response. Prob-
ably what is missing is a routine that assesses the (linguistic
and logical) relevance of the arrived-at facts to each other and
to the question; wnfortunately, the constraints in METQA's design
(ef. Chapter 2, Section 1) disallow the use of linguistic informa-

tion and logical routines.
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As this investigation continues, we hope to learn more about
the role of semantic associations in answering questions, and about
how much "intelligence'" of behavior can result from a system guided

by the principles we have described.

14, Summary of the Algorithm

To summarize the question answering procedure, METQA begins by
collecting and forming chains with all the facts which follow im-
mediately from the content words of the question. From there on,
and at each level, the program operates on each fact chain by asking

in turn:

1) what new words have been introduced (either directly or by ex-
tension) by the latest fact to the realm of discourse for this
chain?

2) what new information (facts) follows immediately from these
words?

3) do these new words or facts provide an intersection connection

with some other fact chain?

At each stage, METQA updates its record of each chain's cover-
age of the original question. Chain intersections are sought in
an effort to combine coverage of the question and form a complete
answer. Additional coverage can also result from finding a suit-
able substitute for any q-word (question pronoun) which appears in
the question. At any point where METQA discovers complete coverage

of the question by a single fact chain or a combination of chains,
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then the question answering procedure 1s terminated, and the answer
chain(s) are processed for output (as explained in Section 15).

Even if METQA does not discover a complete answer to the ques-
tion, fact chain processing must stop when the chains reach a cer-
tain maximum number of fact nodes set for the run. METQA is given
this fact chain limit not only to limit the gquestion processing to
some reasonable amount, but also because it seems likely that the
information would tend to get too far-fetched and wrelated to the
question if the chains were allowed to wander out very far through
the information net. Thus the reason for the constant search for
chain intersections is not only to achieve more coverage of the
question, but is also a good means of always steering toward the
most relevant information.

If fact chain processing is terminated before complete cover-
age of the question is attained, then METQA investigates the cover-
age resulting from various combinations of the existing fact chains.
The combination of fact chains which results in the most extensive

coverage of the question will be used as the answer.

15. Transformation and Output of the Answer

Once the program has decided on some small set of fact chains
as the best answer available for the question, then the facts used
must be put into some form suitable for output.

Recall that the question answering procedures form a sort of

interruption of the regular transformation process. When all covers
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of the input question were in the interior of the net, then METQA
stopped to produce an answer to the question. Now the answer facts
are still in the interior of the net; it is time to resume the
transformation process, but this time on the answer, not the question.

The internal fact nodes can reach their external representations
by following transform links from the component idea nodes of the
facts out to the surface terminal nodes. The usual transformation
procedures are followed, with each fact being treated like a separate
cover of the input. In this case, however METQA is careful not to
let any of the facts be destroyed or discarded because of any in-
ability to satisfy some context requirement.

After the answer facts have reached terminal level, they are
output in sequence as they appear in the fact chains. As indicated
in Section 11, the links between adjacent facts are detalled in a

separate explanation sentence if necessary.
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CHAPTER 10

DISCUSSION OF ASSORTED PROBLEMS

1. Introduction

This chapter includes sections that discuss and clarify tech-
niques used by METQA and explain some special problems and possible
remedies. In addition, we will discuss several future extensions

of METQA's ability which are under consideration.

2. The Learning Technique

As the reader is probably aware, there are a great number of
eveluation weights in operation in the memory net at all times.
There are weights literally all over the net, on every link and
every possible restriction of a link. As METQA learns, the evalua-
tion weights soon number in the thousands, so there 1s no hope that
the human trainer can monitor them. Instead, we must depend on the
basically simple idea of self-adjustment (via reweighting of links
in the net) according to behavior to allow the program to learn in-
telligent behavior without too much flailing about.

One might question the validity of METQA's learning. There is
no real assurance that the program will make the correct hypothesis
at a given time, any more than there is for a human. All METQA can
do is hypothesize relationships on the basis of its current perspec-

tive and evaluate their validity by using these hypotheses to direct
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future behavior. Taking advantage of the ability to make multiple,
parallel hypotheses to explain a certain behavior, METQA tries each
time to learn all the most likely hypothetical relationships, so

that the desired correct hypothesis will not fail to be included.

Then according to its behavior, a given hypothesis will be reweighted,
modified or even discarded. Thus, hopefully, the erroneous hypotheses
will fail, the correct ones will prevail, and the program will emerge

with intelligent behavior.

3. The Role of the Human Trainer

Again we should emphasize the importance of the role of the
human trainer in METQA's learning. By the choice of which words to
teach and in which order, the trainer has much control over the
organizational structure of METQA's permanent memory. He can vary
this internal organization from test to test, in order to study
METQA's behavior with different "outlooks".

For example, he can teach regular plurals and feminine forms
as "merges" (requiring merged paths; see Chapter 6, Section 5) of
the stem plus affixes, or if he wishes, they can be taught as units
by presenting the longer forms first. Very general or very specific
permutation rules can be built up if the trainer plans the input
sequence carefully (see Chapter 11, Section 1.2 and Chapter 7,
Section 3). Similarly, with attention to the statement of learned
facts, the trainer can influence the resulting structure (such as

nesting of facts) in the factual information portion of METQA's
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permanent memory.

The trainer should start with simple strings to be learned as
transformations, and later, with simple sentences to be learned as
facts. As he observes METQA's behavior and infers what it has
learned, the trainer can guide the direction of the learning and
retrain METQA if he is dissatisfied with its progress.

Thus, Just as a child is molded by his environment and benefits
from wise teaching, the program METQA is strongly influenced by its

human teacher.

L. Metalanguage—-To Use It or Not -

Throughout the development of METQA we have been concerned about
the use of metalanguage in commmication with the program. By meta-
language, we mean specially marked (by initial "==") instructions to
the program on how it should operate, as opposed to input strings on

which to operate. In a sense, by using metalanguage, or metacommands,

we talk to the program rather than giving it experiences to which it
can respond and from which it can learn.

A certain amount of metalanguage seems desirable for any large
program. Metacommands are used to set flags determining the amount
of intermediate output given by METQA and to switch on or off the
learning of information. Various internal parameters can be adjusted
by use of metacommands. Among other things, these include limits on
a) the number of facts allowed in a question answering chain and

b) the number of link "layers" METQA is allowed to investigate out-
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ward from a relevant word or fact, as well as «c¢) the initial weight
to be given to any new class member or subset link and d) +the maxi-
mum "wobble" width allowed for matching gérbled character patterns.

The above uses of metalanguage seem completely legitimate and
are not questioned. The uses which we do question are those meta-
commands which would modify the contents of the memory itself. Such
metacommands might inform the program that "'waitress' is 'feminine'"
or "'giraffe' is member/subclass of 'animal'" or "'big' is equivalent
of 'large'".

As we have stressed throughout this paper, METQA is a learning
program and hence should build and modify its own memory. Thus each -~
proposed metacommand must be closely scrutinized to ensure that we
are not somehow "cheating'" or going beyond the constraints that were
initially set for the program.

Suppose the program is learning a certain class structure on
its own, but this is requiring more time and processing than the
trainer is willing to spend. 1In such cases, it is expedient to allow
the trainer to quickly build the desired class(es) using metacommands.
To facilitate this class building, we could add the convenilence of
naming an existing class or a class under construction by means of
a metacommand (e.g., "Name 'feminine' the class containing 'femme',
'fille', 'soeur'").

In order to test METQA's question answering ability, it is de-
sirable to have a fairly large and interrelated set of vocabulary and

facts in memory. To hasten the acquisition of such a memory, the
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trainer can use metacommands to build links and classes (e.g., "Let
‘giraffe', 'dog', 'bird' be member/subclass of 'animal'" or "Let
'small' be equivalent of 'little'"). The trainer can thus more
easily observe and assess METQA's behavior with different class
structures.

A similar issue, but one which does not require a metacommand,
is that of having METQA check each input string for the appearance
of some special keyword in a certain frame and respond with certain

behavior. TFor example, if a preprogrammed test found the pattern

" "

ceees is ooo.." in the input string "(A) giraffe is (an) animal",
METQA could connect the 'giraffe' and 'animal' nodes with class links .
before going on with the normel processing of the string. This is

just asnother instence of the familiar "pattern - operation" type
rule so often used in artificial intelligence. However, this key-
word procedure does not seem desirable for this program, since it
singles out certain strings to signal special behavior and those
strings thus cease to be treated anonymously and generally in the
memory structure. Rather, the program should somehow be taught to
learn that certain words can serve special purposes. There is no

facility for this now, however.

5. Working With Multiple Languages

As indicated in Chapter 2, Section 9, most of the examples of
METQA's operations have shown use with only two languages at a time,

usually English and French. Although METQA's memory and procedures
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can handle any number of languages, it tends to get confused on the
target direction when working with more than two languages. It is
probable that, given enough time, METQA would learn the context
classes necessary to decide which words always occur together (and
are therefore the elements of one language). These few, wide-ranging
context classes would contain most of the words in METQA's memory.
Then the words of an input would contextually guide each other out

to a single target language.

METQA has not yet been tested on very long runs, however, and
it is possible that the adaption to any change of desired target
language would be slow, erratic and time-consuming. Therefore, it
seems desirable to introduce (with only a small amount of programming
necessary) the idea of a higher-level context--we might call it a
"supercontext".

That is, the supercontext indicating the particular source
language and target language desired would become a sort of overall,
higher-level context which is there no matter what specific words
are in a sentence. Thus, if there is a choice of links at some am-
biguous node, and the disambiguation is not obvious from the immed-
iate context of the surrounding words, then METQA would try again to
choose, this time on the basis of the target language specified by the
supercontext. Thus the supercontext would serve somewhat as a com-
pass to guide paths through the memory net, providing direction when-
ever it is needed.

The target language specified by the supercontext could be



k7

determined in various ways. For example, it could be set by meta-
command (e.g., "==Translate into French:...", or it could be deduced
or hypothesized from the words seen in recent feedback strings (per-
haps by a simple majority vote). Either of these methods, and in
general any use of target and source supercontext, assumes that the
necessary class memberships exist or are being learned in some regu-
lar frequency and widespread manner.

Perhaps one simple way to explicitly indicate the desired target
direction in multilingual memory and to concurrently learn the class
memberships necessary for navigation of the memory would be to use
input pairs such as those shown in Figure 10-1l. For this technique,
the use of supercontext is not necessary, although it would be con-
venient. The desired target language is indicated at the beginning
of the input to be translated (or is understood to continue unchanged).
METQA will learn and remember the target language class indicator and
use it to guide paths through memory toward the (hopefully) correct
terminal string. Then when a feedback string is given, METQA checks
to make sure each segment recognized in the feedback is indeed a
member of the remembered target class; if it is not, the necessary
class membership is learned.

F)BOY
=GARCON
WOMAN
=FEMME
E)FILLE
=GIRL
G)BOY
=KNABE

Figure 10-1. Multilanguage input seguence.
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Thus for the first input string "F)BOY" 1in Figure 10-1, METQA
looks for a transform of "BOY" which, if possible, is a member of
the class named "F)". When the feedback string "=GARCON" is received,
it is processed back through memory as indicated in Chapter 6, but
in addition, METQA makes sure that "garcon" is a member of the lan-
guage class "F)". Since the second input string "WOMAN" has no ex-
plicit target indicator, METQA will continue to use the target di-
rection already in effect, and will make sure the second feedback's

segment "femme" is also a member of the language class "F)".

6. Same-language or Same-string Transformations

Transformation of a segment between two forms which are expressed
as the same string (in the same or a different language) presents a
different range of problems from those discussed in the preceding
gsection. The primary rule ensuring METQA's progress through the mem-
ory net is that a path cannot "backtrack" to the node it just came
from, at least not for the same usage of that node.

Sometimes the links to and from a node indicate that it can be
used for more than one contextual situation. In many cases, this
will cause no confusion, where the meanings of the string are gquite
different (e.g., "mange" in French and English, "welt" in German
and Fnglish). However, when the multiple uses involved still have
the same meaning (e.g., "table" in French and English, "tasse" in
French and German) then the need to backtrack can raise problems.

The procedure followed when a path traverses a link from some
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node with multiple uses (i.e. with several contextual options restric-
ting traversal) is to disallow returning to that node (backtracking)
by means of the same context which allowed the first traversal. The
return link can be traversed if some other context option is satisfied,
however.

As an example, suppose the links to and from the "table" node are
restricted to contexts of a) English-nowmn or b) French-feminine-
noun. Then given an input of "HEBOUGHTTHETABLE", the path for "TABLE"
traverses from the terminal node to the idea node by means of context
a), since it appears among members of the English language class.

Now in order to return to the same terminal node for "TABLE", the .
transformed input paths must satisfy context b). If the needed (re-
turn) context is not there, it must be learned when feedback shows

that the correct response should have been the same string.

The problem can be more difficult when METQA is trying to do a
same-language transformation, say from active to passive in English
(see Figure 10-2). Many of the words will have the same usage in

both source and target strings. It is ridiculously inefficient to

E)P)MARYHITSJOHN
=JOHNISHITBYMARY
E)A)THEFISHISEATENBYTOM
=TOMEATSTHEFISH

Figure 10-2. Possible active (A) and passive (P) input training
sequence.

try to learn matching active and passive contexts for every word in

memory. Hence it seems more reasonable, when the source language is

v
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the same as the target language, to Just suspend the backtracking
check (at least for those words which have not been put into some
learned class containing words which change between active and
passive). There are additional difficult problems to solve in
treating active-passive transformations, but the above heuristics

seem workable in general for same-string transformations.

T. Treatment of Pronouns

In Chapter 9, Section 10 we described the heuristic used to
handle question pronouns. METQA does not yet attempt to handle
anaphoric reference, but we feel that much the same heuristic can
be used to determine the referent of any pronoun. That is, the
learned class memberships of a pronoun can be used as indicators of
characteristics the pronoun's referent must have. Thus, if "she" is
a member of the "person" and "feminine" classes, then the referent
of "she" must also have those memberships. Hence "aunt" and "Mary"
might be referred to by "she", but not "table" or "Tom". This
heuristic would require explicitly putting all pronouns into a third
special class (like the gquestion word and negation word classes dis-
cussed in Chapter 9, Section 9) which can be directly referenced by

the program.

8. Anasphoric Reference

The "supercontext" idea of Section 5, which was discussed with

reference to the problems of a multiple-language memory (i.e. one
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which contains more than two languages), should be implemented for
other reasons, tooc. Besides the function of guiding METQA to the
correct target language in transformation; the supercontext could

also serve to maintain a "realm of discourse" context which might
permit METQA to handle anaphoric references--at least for simple
pronouns in the specially learned pronoun class (see the preceding
section and Chapter 9, Section 9). A reference to some person(s)

or thing(s) is "anaphoric" if its full interpretation depends on the
identifying association with an "antecedent" in the current or in

some previous sentence. With supercontext, METQA could use the learned
characteristic class memberships for a pronoun to determine the pro- =+
nowm's referent not only in the current sentence, but in the past few

sentences (or however much the supercontext would include). Thus,

given the appropriate class memberships and the input sequence

Harvey has a new sweater.
Mary bought it in Madison.

She geces to school at the umiversify.

it is conceivable that METQA could determine that "sweater" is the
referent of "it" and "Mary" is referred to by '"she". The problems
of handling connected sentence discourse were not considered in
setting the goals and constraints for METQA, but the use of super-
context may provide a means of gathering more information than that

in the immediate sentence.
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9. Possible Future Extensions to Handle Special Tvoes of Questions

Although METQA is not currently programmed to deal with special
types of questions such as true-false and "discussion" questions,
some thought has been given to the algorithms to be used. As exper-
imentation with METQA's question answering capabilities progresses,

these routines will be introduced with minimal programming effort.

9.1 Discussing a tovic

Perhaps the simplest addition will be a type of "discussion"
question, in which METQA is asked to "Discuss (node)", or "What about
(node)". TFor this type of query, METQA will simply follow all links
out from the node asked about, using the extended meaning nodes,
facts known about all these nodes, and perhaps even the different
external representations (translations) of the original node. To
keep the output within some reasonable bounds, a limit can be imposed
on the number of levels which METQA travels outward on each link from
the original node. With this type of question, a questioner can ask
for all the information available about some topic, and the trainer

can spot-check the status of METQA's memory.

9.2 True-false guestions

In order to deal with true-false questions, METQA will try to

build fact chains and accownt for all the words of the gquestion, much
as described earlier in the chapter. Here however, special attention
will be given to the "extra'" words in the facts, those words which

were not used for coverage of the question.
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Recall from Chapter 9, Section 9 that negation words are put
into a specially named class by the trainer, so that METQA has ac-
cess to them explicitly as negation words; not just as members of
anonymously learned classes. The ability to recognize a word as a
negative is very important in deciding whether a statement is true
or false. Hence, when trying to answer a true-false question, METQA
searches all through the fact chains for words which are members of
the special negative class. Any such negation words can indicate to
METQA that the information at hand may actually be a counterexample
to the statement in the question.

Another expected addition to the program is the use of a rela-
tion to indicate "oppositeness" or reverse meanings between word
nodes. This information, when present for the words of a statement,
can be used in much the same way as negation words. Thus "happy"
and "sad" may be linked by the opposite relation, as well as "healthy"
and "sick". Hence when a true-false question statement includes a
word which is discovered to have an opposite link, then METQA will
check the extra words of the fact chain(s) for the opposite word(s)
as well as for negation words.

Briefly, the true-false algorithm which will be tried for METQA
is as follows (refinements will doubtless be needed). Suppose a fact
chain was found which accounted for all the words in the true-false
question statement. If the extra words contain no negatives or op-
posites, then METQA reports that the statement is true and outputs

all the facts used in that chain. If there are negatives or opposites
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among the extra words, then METQA reports that the statement appears
to be false and outputs the facts which led to this conclusion. If

no fact chain was found which could account for all the parts of the
question then METQA must report that the statement is false for lack
of sufficient information, but any information which was found would

then be output.

9.3 Enumeration guestions

Another type of question which could be handled after moderate
programming changes would be requests such as "Name the people that

go to school", or "List the animals that eat grass", or "What are

some cities", where the underlined segments vary according to the
information desired. These enumeration questions will be handled by
chaining facts to cover phrases and/or simple listing of class mem-
bers (if available) for a single node request.

For example, to answer "List the animals that eat grass", METQA
would try to find facts which accownt for the segments "eat" and
"grass'". Then those same facts would be searched for segments which
accomnt for (by class memberships in the desired node, for example)
the node "animals". Any such segments found would be presented as
the snswer. Here again, METQA will probably follow up its answer
with all the facts used to produce the answer.

These and perhaps other question types will be attempted as
experimentation with METQA continues. The goal is to explore the

limits of METQA's intelligence, given the basic and very general
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organization we have described, rather than to add special tricks to

extend particular capabilities.

10. Thoughts on QA FTeedback

Currently there is no provision for accepting feedback for an
answer to a question (QA feedback); new or corrected information can
enter the memory net only independently in the information learning
mode, not from an analysis of feedback. Although separate entry or
learning of facts is vital for building up a store of facts, it seems
clear that a QA feedback capability is a necessary addition, so that
METQA can more easily wnlearn incorrect facts or reinforce productive'
fact connections.

Different methods of feedback have been considered. The sime-
plest type of QA feedback would be just an indication of whether
the answer was right or wrong. If the answer was wrong for any
reason, then all the facts used and all the links followed between
facts would be downweighted to reflect their participation in unde-
sirable behavior. If a fact node or a link is downweighted to some
minimum (perhaps a zero weight), then that node or link is removed
from the memory.

There are several disadvantages to this type of feedback
learning. First, it is not at all selective--an answer is either
right or wrong, with no levels in between. ©So even if it was a
minor part of an answer which made it unacceptable, every link fol-

lowed by the answer would be penalized. In addition, if bad answers
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always cause downweighting, then it follows that all good answers
must be reinforced. That is, if the answer was correct, then every
node and every link used must be upweighted to reflect its contribu~
tion to desirable behavior. Otherwise, a link could be repeatedly
downweighted and finally discarded, even though the link had also
been used to produce other good answers. This constant upweighting
and downweighting could possibly cause troublesome instability, and
would certainly use a lot of processing time.

An alternate feedback method would have an optional feedback
string given by the trainer. This feedback string will contain the
answer which the trainer thinks should have been given to the ques-
tion (this is the kind of feedback given when in the transform mode).
In order to learn from this feedback string, METQA must first try
to account for or cover all the feedback segments with connected fact
chains, just as it did for the question string (and much as is done
in transformation when using feedback to find intersecting paths;
see Chapter 6, Section 2).

Let us call the resulting feedback fact chain FFC, and let the
answer fact chain be called AFC. The program compares the two fact
chains, searching especially for the use of the same fact nodes by
both chains. These points of intersection mark the parts of the
answer which were correct. The nodes which appear in AFC (the an-
swer), but not in FFC (the feedback), are either themselves erroneous
or were incorrectly used; therefore METQA will downweight those facts,

thus reducing their credibility, and will downweight the links followed
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to use those nodes. On the other hand, the nodes which appear in the
feedback chain, but not in the answer chain, are nodes which should
have been used. The credibility weights of these facts will be in-
cre;sed, and the links followed to the nodes will also be upweighted.
The nodes which appear in both chains are operating satisfactorily;
METQA can either leave them alone or perhaps give them a small in-
crease in weight.

As an example, suppose METQA receives a gquestion and outputs
the answer fact chain AFC = A - B - C - D. Then the trainer responds
with feedback, a better answer. Suppose METQA finds complete cover-
age of the feedback in the feedback fact chain FFC =D - E - F - B.
Comparing the fact chains, METQA discovers that nodes B and D
appear in both chains and were therefore correctly used. Facts A
and C, appearing only in AFC, are downweighted, along with the
appropriate links. Then the facts E and F, which should have
been used and were not, are upweighted along with their links.

There are several advantages to this method of learning from
QA feedback. Unlike the first method discussed, feedback now would
be optional, necessary only in order to correct a wrong answer.
Hence there is a great saving of computing effort. Furthermore, the
feedback and attendant learning are much more specific. By analyzing
the better answer given in a feedback string, METQA can determine
which fact nodes were wrongly used and which ones should have been
used, and specifically readjust their weights.

Note the similarity between this feedback learning method and
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the learning of transformations from input and feedback string pairs
as discussed in Chapter 6. In each case, METQA is given a model of

good behavior and must analyze it and decide how to improve the mem-
ory net. By reweighting different parts of its own structure, METQA
is sble to use its experience and adapt its behavior to approach the

"ideal" offered by the trainer.
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CHAPTER 11

RESULTS AND CONCLUSIONS

1. Running the Program

As indicated in Chapter 2, METQA is a 7000 statement Fortran V
program, which is completely coded and code-checked. The transfor-
mation routines have been extensively debugged, but are still not
completely tested out. The question answering routines have not
been tested. The program runs very fast on the Univac 1108 computer.
Response time is immediate. Computer time is roughly 6 seconds per
25 input-feedback pairs (including learning).

Throughout the program description (Chapters 3 through 9) we
have looked at examples of METQA's performance. In this section,
we will examine more examples of METQA's behavior, and illustrate

how the different mechanisms fit together.

1.1 Sample run showing class generalization

In order to orient the reader, the first example is not a tele-
type listing but an actual input sequence listed in a table (see
Figure 11-1). The input-feedback string pairs are numbered for easy
reference, and METQA's typed response to the trainer are shown in
the second columm. The internal relationships METQA learns are shown
in the third colum.

In experience pairs 1 through 7T, the trainer is teaching METQA

a simple vocabulary. In the response to the eighth input, "LA GARCON",
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Trainer METQA's Response Learned Relationshins
1. GIRL U(GIRL)
=FILLE U(FILLE) : GIRL <> FILLE
2. WOMAN U(WOMAN )
=FEMME U(FEMME ) WOMAN < FEMME
3. CHIEN U(CHIEN)
=D0G U(DoG) CHIEN <« DOG
4. BOY U(BOY)
=GARCON U(GARCON) BOY <> GARCON
5. PETITE U(PETITE)
=SMALL U(SMALL) PETITE <+ SMALL
6. THEWOMAN U(THE) FEMME
=LAFEMME U(LA) TMINTS*(FEMME) THE <> LA
7. THEGIRL LA FILLE *
8. THEBOY LA GARCON GARCON € Cl
=LEGARCON U(LE) TMINTS(GARCON) THE —(C1}— 1E
LE -+ THE
9. SMALLGIRL PETITE FILLE
10. SMALLBOY PETITE GARCON
=PETITGARCON U(PETIT) TMINTS(GARCON ) SMALL —~Cl)}— PETIT
PETIT - SMALL
11. SMALLDOG PETITE CHIEN
=PETITCHIEN INTSEC*¥(PETIT) TMINTS(CHIEN) CHIEN ¢ Cl
12. THEDOG LE CHIEN

# METQA uses the abbreviations "TMINTS" (for terminal intersection)
and "INTSEC" (for nonterminal intersection) to indicate to the trainer
that a path intersection has been found between the input and feed-
back strings. The internal intersection addresses which always follow
the abbreviations have here been omitted; instead, we insert the feed-
back word whose path intersected the input path.

Note: The termination symbol ("<") has been omitted from all inputs
from the trainer.

Figure 11-1. Input sequence showing class generalization
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METQA makes a mistake for the first time. The feedback string indi-
cates that the new and unknown string "LE" should have appeared in
this case. Consequently, according to the procedures described in
detail in Chapter 6, METQA forms a new class (which we will call C1)
with the "garcon" node as its first member. Then the new form "le"
is learned as the transform of "the" to be used when the string con-
text includes a menber of class Cl.

In experience pair 10, METQA must learn that the new form
"PETIT" occurs with "GARCON" instead of "PETITE". Since "garcon"
already is a member of a class, METQA generalizes the use of that
class to this situation. Thus it learns that "SMALL" transforms to
"PETIT" in the context of class Cl.

The next input pair teaches METQA that, in the context of "CHIEN",
"SMALL" should transform to "PETIT". METQA already knew the form
"PETIT", but did not know to use it in this situation. Since the form
"PETIT" has been learned to occur in the context of members of class
Cl, METQA hypothesizes (according to the heuristics detailed in Chap-
ter 6) that "chien" must be another member of class Cl.

Finally, in experience 12, METQA uses the class generalizations
it has learned to correctly transform "THEDOG" to "LE CHIEN". Al-
though "chien" has not occurred before with "le", which has restric-
ted usage, METQA has learned that '"chien" belongs to the class of

words which elicit the form "le'".

1.2 A longer teletype run

Figure 11-2 shows a complete teletype run in which the trainer
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is teaching METQA the adjective-noun permutation and feminine forms
of French adjectives. The listing may require some preliminary ex-
planation. METQA prompts the trainer for input by outputting the
string "...". Input strings from the human trainer are distinguished
by the termination symbol ('<'). Lines beginning with "==" (and the
small integer below) are flag-setting metacommands of the type dis-
cussed in Chapter 10, Section 2. The strings "TMINTS" and "INTSEC"
are explained in Figure 11-1. The numbers output by METQA are inter-
nal addresses and can be ignored by the reader. For convenience of
reference, the input pairs are numbered in the right colum, and
some brief comments have been inserted.

In the example run of Figure 11-2, METQA starts out with a
memory which is empty except for the names of the basic link types
(see Chapter 3, Section 1). The trainer teaches METQA several vo-
cabulary transformations, including two different transforms for
"the". The transform to "le" is wnrestricted because it was learned
first; when the second form "la" is learned, it is restricted to con-
texts involving the usage class which contains 'femme".

With the seventh input pair ("green dog"-"chien vert"), the
trainer starts teaching METQA a permutation rule. METQA creates
classes for the words involved and permutes the string correctly
when it is received again as Input 9.

After teaching METQA a little more vocabulary, the trainer pre-
sents more permutations. With Input 12, METQA learns that "brun"

can also be involved as the first word (from the source direction,
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BROLN< 10. More vocabulary.
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2987  UCBRUN)
GARCON< 11.
2995  UCCGARCON)
=B0Y<
. 2987  U(BOY)
BROENDO G< “ 12. Generalize use of p-rule, so (2
2965 BRUN CHIEN contains "vert", "brun".
P Rulel still c2(2), c3(1)
=CHI ENBRUN<

2931 IMINTSC(PTH 2959, CEL 63 +FPTH 2981, CEL 2963)) T
MINTSCC(PTH 2945, CEL 277 +PTH 2991, CEL 2973))

GRFENROY < 13. C3 contains "chien", "garcon"
2965 VERT CGARCON

=GARCONVERT<
2931 TMIN1SC(PTH 2957, CEL 301 +PTH 2979, CEL 2963))
TEINTSC(PTH 2947, CEL 141 +PTH 2989, CEL £2971))

-

BROUNBOY < 14, Generalized across classes (C2
2961 CGARCON BRUN and C3) to permute form not seen
P before,
FILLE< 15.
2979 UCFIL)Y THE
=GIRL<
2961 UCGIRL)?
THEGIRL< : 16. Teach feminine form of article
2969 LF FILLE for "fille", C1 contains 'femme",
o o "fille"
=LAFILLE<

2915 INTSEC((PTH 2951s CEL 41 +P7TH 2991, CEL 2993)) T
MINTSC(PTH 2937, CEL 237 +PTH 2983, CEL 29€7))

Figure 1l-2c. P
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ISTHEVOMANGHEEN< 17. Teach alternate form of adjective.

2925 EST LA FEMME VERT

=ESTLAFFMMEVERTE<

2849 TMINTS((PTH 2907, CEL 247 +PTH 2991, CEL 2955))
TMINTSC(PTH 2915, CEL 119 +PTH 2983, CEL 2923)) TiINTS
((PTH 2901, CEL 87 +PTH 2975, CEL 2937)) TMINTS((PTH 2
891, CEL t4al +PTIH 2965, CEL 2935)) U(ED

‘GREENWOMAN< 18. Teach new permutation.

2947 VERT E FEMME

=FEMMEVERTE<

2761 TMINTS((PTH 2915, CEL ¥7 +PTH 2961, CFL 292%5)) T
MINTSC(PTH 2875, CEL 141 +pPTH 2953, CEL 2937)) TMINTSC
(PTH 2821, CEL 443 +PTH 2951, CKFL 2931))

2777 THINTSC(PTH 2915, CEL 87 +PTH 2961, CEL 2925)) T
MINTSC(C(PTH 27715 CEL 141 +PTH 2953, CEL 2937)) TMIN1SC
(PTH 2773, CFL 443 +PTH 2951, CEL 2931))

THECGREENLOMEN< 19. Successful permutation

2913 LA FEMME VERT E :

GREENGIRL< 20.
2943 VERT E FILLE
=FILLEVERTE< .

2745 TMINTSC((PTH 2907, CEL 237 +PTH 2957, CEL 29193
TUMINTS(C(PTH 2873, CEL 141 +FTH 2949, CEL 2933)) TwINTS
((PTH 2809, CElL 443 +PTH 2947, CEL 2925))

2761 TMINTSC((PTH 2907, CEL 237 +PTH 2957, CEL 2919))
TMINTSCC(PTH 2755, CEL 141 +PTH 2949, CEL 29332) TMINTS
C(PTH 2757, CEL 443 +PTH 2947, CEL 2925))

THECREENGIRL< 21. Successful permutation
2913 LA FILLE VERT E

LIVRE< 22.
2985 UCLIVRE)D

=BOOK<
2977 UCED0X)

Figure 11-24d.



THEBOOK<
2959
=LOL I VRE<
2915
2957))

23.
LE LIVKE

THEBOOK<
2959
=LELIVRE<
2887 INTSEC(C(PTH 2939,
MINTSCCPTH 2911,

2k,
LO LIVRE

CEL
CEL 501 +PTH

UCLO)Y TMINTS((PTH 2941,

167

Deliberately teach a wrong form
of "the" for use with "livre"

CEL 501 +PTH 2973, CEL

METQA has learned wrong form;
correct it.

41 +PTH 2991,
2973,

CEL 2993>) T
CEL 2953))

THEBOOK< 25. METQA has unlearned wrogmg form.
2959 LE LIVRE
NOMORE
MEMORY SAVED 1
MTQA STOP .
DATA IGNORED - IN CONTROL MODE
@FIN, E
RUNID: YO0S53ié PHOJECT: 2279 USER: 2553
ITEM AMOUNT COST(DOLLARS)
CPU TIME 00:00:05.727 €1.27
I/0 REQUESTS 91 £0.33
1/0-%0ORDS TRANSFERRED 96634 €0.17
EXCESS CORE USACE £0.06
CARDS IN 61 £0.07
PAGES PRINTED 7 €0.70
TOTAL COST $2.61

THE ABOVE DOLLAR AKMOUNTS ARE

PRIME SHIFT RATES

Figure 11-2e.

APPROXINMATF AND ARE BASED ON
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at least) in the same permutation. Hence, class C2 gains a new
member, but the p-rule stays the same. Then with Input 13 METQA
learns that "garcon" can behave as a member of class C3 in the p-
rule. As the classes of the p-rule gain members, the combination
possibilities and generality of the p-rule increase. Thus, Input
14, which METQA has not seen before, is correctly transformed and
permuted from "brown boy" to "garcon brun".

Now the trainer turns to some feminine words. Notice that when
the wnknown string "FILLE" is received, METQA recognizes the string
"IE" and transforms it to "THE". The "LE" path is not intersected
by any path from the feedback string, however, so METQA lumps the
unrecognized "FIL" and the unintersected path for "LE" together
into one hunk (see Chapter 6, Section 4) and learns the new word
"FILLE".

A similar case occurs with input pair 17. METQA transforms
"GREEN" to "VERT", but the feedback string contains "VERTE". METQA
recognizes the first four letters of "VERTE" and immediately finds
o terminal intersection with the original path from "GREEN". This
leaves the final "E" unrecognized as an unclaimed unknown hunk (see
Chepter 6, Section 5, Figure 6-5). In this case, since an inter-
section occurred, METQA will learn the "vert" + "e" word as a
merging of two paths (hence, the space in the later responses of
"VERT E") which occurs in the context of "femme".

Since neither "verte" nor "femme" is a member of the classes

(c2 and C3) describing the first permuation rule, the permutation
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presented in input pair 18 is learned as a new rule. The first rule
could easily have been generalized by means of inputs such as "REDROY" -
"=GARCONROUGE" and "REDWOMAN" - "WMROUéE", which would allow METQA
to bridge the "gender gap" and use the same rule.

In the final sequence of inputs, the trainer deliberately teaches
METQA a misspelled form of "the" and then changes it to the correct
form. ©Since METQA can unlearn the incorrect form, it is not a catas-
trophe when the trainer really does make a mistake.

As shown, the entire teletype run took only 5.7 seconds of CPU
time (and about ten minutes of clock time). The inputs were admittedly
quite simple and the memory small, but only when the learned vocabu-
lary is much larger (causing many attempted pattern matches) and the
input sentences quite ambiguous (yielding many covers or parses) should

the processing time increase gppreciably.

2. Summary of Results

The long run in the preceding section shows how METQA learns a
language when interacting with a human trainer. The program leamms
the basic words and their transforms. It also learns to compound
interacting words into idioms. The program learns that certain words
transform to alternate forms according to the context in which they
appear; these context words are put into classes based on their simi-
lar behavior. By generalizing from one member of a context class to
the other (word) members which have (at some time in the past) ex-

hibited similar behavior, METQA can respond correctly to input situ-
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ations which it has never seen before.

Certain transformations require a rearrangement of the order of
the string segments. In order to produce the correct response, for
each situation METQA learns a permutation rule which directs the re-
arrangement of groups of segments which satisfy the class require-
ments of the rule. New permutation rules are combined with old ones
(by modification of the old rule) if possible, in order to build as
small and general a set of rules as possible.

METQA learns discontinuous morphemes by flagging certain nodes
so that they can transform simultaneously to two other nodes in the
network; for the case of coming from the direction of the other lan-
guage , the two nodes are flagged so that their transform links merge
together at one node. In the example rum of the previous section,
METQA learned a merge path ("vert" + "e") which was not discontinuous
and did not require permutation.

In previous chapters we examined how METQA learns by building
relationships (labeled links) between nodes of the memory net and
associating with each link an evaluation weight which is readjusted
up or down for good or bad behavior. If a link is downweilghted
enough times because of bad behavior, the weight is reduced to some
minimum and the learned relationship is erased or "forgotten". Un-
fortunately, due to a minor bug in the system, we are unable at this
time to show a gradual case of forgetting a relationship; the for-
getting of "lo" shown in the last sequence of the long example looks

rather abrupt.
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There are still a few bugs in the transformation routines. When
they are cleaned up, we expect METQA to show the gradual wnlearning
mentioned above, plus permutation of discéntinuous morphemes, which
currently causes METQA to stumble and fail. In addition, we plan to
remedy the same-string problem (see Chapter 10, Section 6), which will
allow testing on transformations such as active to passive or change

of verb tense.

3. Concluding Comments

It seems hopeless to try to pre-program all the information and
contingency plans needed to deal with a great variety of tasks in
undetermined and probably changing situations. A system must be able
to structure and adapt itself to its environment, even if it also uses
sophisticated techniques and information files produced outside itself.
Although the use of auxiliary information from the outside world (such
as logic and linguistics) is to be recommended for most systems, we
have tried to avoid it in developing METQA. Instead, we seek to
determine the extent of the intelligent manipulation of language which
can be learned without such aids.

The purpose of this research and of using translation and ques-
tion answering as the tasks is a) to study METQA's ability to learn,
on its own, the words, idioms, transforms, classes, permutations, and
the interrelationships of natural language units, and b) to assess
the adequacy of the learning mechanisms, the learned memory net struc-

ture, and the simple and general heuristics being used.
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L, Concluding Summary

With the research reported in this thesis we are exploring the
learning capabilities of METQA, a program which uses a memory net
structure to store what it learns from processing input strings of
unstructured natural language (received from a human trainer) and
outputting & response string. The tasks with which METQA demonstrates
its learning are transformation between langusges or between forms of
the same language, and question answering based on information it has
learned.

Instead of building in linguistic information for the language(s)
which METQA might see, and the logical information to aid its question
answering, METQA is allowed to organize its own knowledge of the lan- )
guage(s) by means of simple classification heuristics (categorization
into classes according to similar behavior) for learning of words,
compounds, contexts and permutations. The memory is modified when
errors are discovered and, in general, is adapted to suit the
changing "view of the world" which it receives from a human trainer.

Chapters 3 through 9 provide a description of the memory net
and its contents, as well as detailed explanations of the heuristics
which guide the program's behavior snd learning.

The program has three modes of operation, in which it a) learns
and transforms strings, b) learns information "facts", or c¢) answers
questions using those facts. The human trainer presents strings of

natural language which are specially marked to indicate which mode(s)
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should be active. If he wishes, the trainer can follow an input
string (and METQA's response to it) with a feedback string showing
what the correct response should be. METQA decides what to learn
by comparing its own response with the feedback string given by the
trainer. The program tries to determine which string segments it
processed incorrectly and modifies its memory by reweighting (up or
down) the links which contribute to good or bad behavior.

In order to translate an input source string, METQA uses pattern
recognition to enter the memory net and, for each segment, traverses
links from node to node (as permitted by the context of the string)
umtil the target string is reached.

When answering a question, METQA uses the content words of the
question to choose relevant facts and, starting from this first-level
information, builds up chains of related facts which try to cover
all the information requested by the question.

In pursuing this research, we are experimenting with a memory
structure and set of heuristics which produce an interesting kind of
learning. We would like to determine the extent to which such a
learning program can be self-sufficient in producing intelligent
manipulation of language. By analyzing the behavior of this program
with its strengths and weaknesses, we should be better able to deter-
mine which types of (hopefully minimal) built-in background informa-
tion will yield the greatest increase in performance on multiple

tasks with natural languages.

e
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APPENDIX

The SMALL System

1l. Introduction

SMALL (§ﬁring MAtching List anguage) is a list processing
system with string matching capabilities. The system is written
entirely in FORTRAN V and is currently running on a Univac 1108
computer. The SMALL system was designed to be embedded in a large
FORTRAN V program and acts as a high level language for manipulating
list structures. .

Although it was modeled after the SAC-l system of Collins [1971]
and is rather similar to SAC-1, the SMALL system differs in cell
structure and the available space setup, and dispenses with the
reference count feature. These differences were necessitated by
the need for several more item fields to hold information in a cell
than SAC-1 cells provide. In addition, routines for simple string
mgtching were added. The SMALL routines will be described in later

sections.

2. Representation of Lists

In SMAILL, a list is represented in computer memory by a collec-
tion of cells. A cell consists of two memory locations, specifically,
two adjacent elements of the available space array, SPACE.

Each cell contains nine fields, overlapping for various usage



175

situations. The field configuration of each cell and list is left
entirely to the programmer, both in construction and later use. The
field which is universal to all cells and which ensures wiform
traversal of lists is the link field, which contains the address of
the next cell in the list (or zero, to indicate the end of a list).

The fields of the cells can be represented by rectangular draw-
ings such as those in Figure A-l1. In any cell configuration, the
LINK field is a half-word field containing the address of the next
cell in the list. In cell (a), the second memory word is assumed
to contain a character string; in cell (b), the contents of the se-
cond word are assumed to be two integer values or addresses (pointing :
to other cells or lists). The programmer should check for field

values consistent with the cell configuration he expects.

Al B C LINK A} B|D| E LINK

S5TR FST 5CD

(a) (v)

Figure A~1. Two example SMALL cell representations showing the nine
fields A-E,LINK,FST,SCD, and STR.

Half the "top" word of each cell is divided into three or four
fields (depending on usage), which in the current implementation

vary in size from three to nine bits each. The following list shows
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the nemes by which the SMALL routines refer to the fields labeled

A through E in Figure A-l:

- TYPE (3 bits)
- TCW (6 bits)
(9 bits)
- TYP (3 bits)
- WGT (6 bits).

HooQwr
1
=
O

Originally, the field names were suggestive of the use METQA made

of each field; the field usage has since expanded much beyond that
suggested by the names, however. These fields are used to contain
the various flags, switches, tallies and weights needed for a pro-
gram such as METQA.

Different cell configurations may appear in a single list; the
complete list can be quite branchy if cell configurations such as
(b) above are used. The programmer (or the drive program) is ex-
pected to keep track of the flelds used in a particular type of list,
but in any case, progress through the list is effected by use of the

link address field.

3. Erasure and the Available Space List

As with other list processing systems, SMALL uses an available
space list to hold cells which are not currently being used in the
representation of some list. The available space array for SMALL
contains a doubly-linked cell list of order one (i.e., it contains
no sublists), on which two available space mechanisms operate in

opposite directions, one from each end of the array SPACE. Concep-

e«
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tually, the two mechanisms operate as two separate available space
lists. However, since the two lists can collide somewhere in the
middle of the SPACE array as space runs out, the two avallable space
lists (MAVAIL and WAVAIL) are not independent.

At the lower end of the SPACE array is the top of the MAVAIL
(memory) available space list. Lists built with cells from MAVAIL
are protected from automatic erasure and are used to form METQA's

permanent memory.

MAVATL

WAVATL

Figure A-2. Illustration of SMALL's doubly linked available
space list.

At the upper end of the SPACE array is the top of the WAVAIL
(work space) available space list. Lists built with cells from
WAVAIL are used by METQA as work space for its behavior and learning
operations and "housekeeping'. For each available space list, an
extent variable is maintained (MAXMAV and MINWAV); its value equals
the farthest extent that the associated available space list has

ranged toward the middle (or other end) of the SPACE array. When
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the two variables attain the same value, then the memory end work
space have collided, and an appropriate output message warns that
available space is exhausted. |

Iists from either MAVAIL or WAVAIL can be erased by specific
request (call of subroutine ERLIST), but in addition, the entire
work space (i.e., all the SPACE array which is not involved in per-
manent list representation) is automatically erased and reordered
periodically by calling subroutine RESET. For the program MEIQA,
RESET is called after each input-feedback pair. In this manner, any
stray cells which were not specifically erased are gathered back
into the available space list.

The initial available space list is created by the subroutine
SETUP, in which a common block holds the SPACE array and a variable
indicating the size of the array. SETUP creates from the given
array space the doubly-linked list of two-word cells and initializes
the values of MAVAIL, WAVAIL, MAXMAV and MINWAV.

As indicated earlier, the available work space is reorganized
periodically by a call of the subroutine RESET. RESET erases and
relinks all the cells in the work space, then resets the values
of the space list address WAVAIL and the extent variable MINWAV.

The only system subprogram which removes cells from the avail-
able space list is the function Z=GETCEL(WORK). A cell is taken
from the work space list if the parameter WORK equals one; otherwise
a cell is removed from the permanent memory space list MAVAIL. The

address of the new cell is returned as the value Z.
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Cells are returned to the available space by means of two sub-
programs, ERCEL(X) and ERLIST(X). Depending on the address X,
the cells are added to either MAVAIL or WAVAIL. ERLIST erases only
a single level list; the programmer should explicitly erase any sub-
lists which he longer needs, especially if he is concerned about
space. It was not advisable to erase sublists in the SMALL system,
since a list may be pointed to by several other lists, and the refer-
ence count feature of SAC-l is not available in SMALL. Since the
available space is erased and reset periodically, stranded cells have

not presented a problem.

L, The Primary List Processing Routines

We shall refer to the subprograms which operate explicitly on
elements of the SPACE array as the primary routines of the SMALL
system. All other (secondary) SMALL subprograms use these primary
subprograms to manipulate cells and lists. We have already described
the primary routines SETUP, RESET, GETCEL, ERCEL and ERLIST. In
addition to these, the only other primary subprograms are those
which store and retrieve data in the cells.

The STORE routines for the nine fields (STYPE, STCW, STYP, SWGT,
SWT9, SLINK, SSTR, SFST, SSCD) have two arguments, X and Y. In
each case, the argument Y is the location of some cell and the
argument X 1is an integer value (except in the case of SSTR, where
X can be a character string) which is to be stored in the appro-

priate field of the cell at Y. Two further subroutines SETW1(T,C,
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W,L,Y) and SETCEL(T,C,W,L,S,Y) allow storage of several field values
at once.

There are nine field retrieval (GFLDY function subprograms;
TYPE, TCW, TYP, WGT, WI9, LINK, STR, FST, and SCD. FEach function has
a single argument Y, which is the location of some cell. The appro-
priate field of cell Y is extracted and returned as the value of

the function. The additional subprogram GVALS(Y,T,C,W,S) retrieves

field values covering the entire cell Y (Y becomes LINK(Y)).

5. The String-matching Routines

The basic tools for string matching in the SMALL system are the
two subroutines FIND and MATCH. The subprogram MATCH(CELL,AR,ARLOC)
is a logical function which seeks an exact string match at a specific
location in an array of characters. MATCH returns the value .TRUE.
if and only if the character string beginning in cell CELL matches
the string in array AR, starting after ARLOC characters.

The function FIND(CELL,AR,ARLOC,MASK), which calls the function
MATCH, locks for a string match within a range of locations in an
array of characters. Starting after ARLOC characters in array AR,
FIND searches along some number of locations determined by the argu-
ment MASK for a match of the string beginning in cell CELL. According
to the value of MASK, the matching search can begin only at the lo-
cation ARLOC, or can extend along some MASK characters from the loca~
tion ARLOC, or can extend to the end of the arrasy for a match any-

where after ARLOC characters. The function value returned by FIND

0"
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is N, if the string beginning in CELL was matched after N char-
acters of array AR, or else -1 1s returned if no match occurred.
The author's intent, in the design of FIND and MATCH, was to
provide an elementary basis for string matching which could be used
to build various types of sophisticated string recognition programs.
Thus these two basic routines provide adequate capabilities for the
recursive (because of indirect referencing; see Chapter 4, Section

6) n-tuple string-matching needed for METQA's operation.

6. The Remaining Secondary List Processing Routines

Besides the primary and string-matching routines described in
the preceding sections, there are some twenty-odd other routines
which evolved into the current version of SMALL. A list and brief
description of these routines will be given below. Function sub-
programs will be indicated by a prototype of the form Z=F(XL,X2,. .0
XN), and subroutines will be indicated by a prototype of the form
S(X1,%2,...,XN).

The several routines which use GETCEL to acquire new cells
from available space include LOC as one of their arguments. If
LOC=1, the new cell comes from WAVAIL (temporary work space). If
LOC=0, the new cell comes from MAVAIL (permenent memory space).
The reader should note that all variable names and all numerical
values used by the SMALL system are of FORTRAN type integer.

7=ARPLST(AR,IOC). Transfers the character string packed in

array AR into a newly created list. Z is the new list address.
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7Z=ATTCEL(ST,LST). Looks in STR (string) field of each cell in
list LST for name matching the string ST{“ On success, 2 1is the
address of the cell whose string matched ST; otherwise, Z is -1.

Z=ATTVAL (ATT,NODE). ILooks in each cell of list NODE for FST
field containing the address ATT (cell ATT contains the string name
of some attribute). On success, Z is the address in the SCD field
of the matching cell; otherwise, Z is 1.

Z=CELBEF(X,Y). Z 1is the address of the cell before (pointing
to) cell X in list Y. If Y=0 or X=Y, Z is zero. If X=0,
Z is the address of the last cell in 1list Y. If cell X 1is not
found in 1ist Y, Z is -1l.

Z=CELCNT(LST). 2 is the number of cells in the top level of
list LIST.

7=CELIN(N,LST). 7 is the address of the Nth cell of list LST.
If N=0, 2Z is zero. If list LST has fewer than N cells, Z is
-1.

7Z=COPY(X,LOC). Produces a copy of list X. Z is the address
of the new list, or else zero, if X is zero or negative.

Z=DELETE(CEL,LST,PRECEL). Deletes cell CEL from list LST and
returns CEL to available space. To speed processing, PRECEL is the
address of the cell preceding (pointing to) CEL, if known; if not
known, PRECEL is zero. Z is the address of the cell following CEL,
or is -1 1if CEL was not found in LST.

Z=GETSTR(DLST,LOC,LAST). Z 1is a new list containing the

character string represented in the (description) list DLST. DLST
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may have marked in it nested indirect references to other lists;
GETSTR retrieves all the lists' strings recursively. LAST is the
address of the last cell in the new list ‘Z.

Z=INSERT(CEL,LST,PRECEL). Inserts cell CEL into list LST after
cell PRECEL. If PRECEL=0, CEL is placed at the beginning of LST. 72
is the (possibly new) address of list LST.

Z=INSLST(NULST,LST,PRECEL,NULAST). Inserts list NULST into
list LST after cell PRECEL. If PRECEL=0, NULST is placed at the
beginning of LST. NULAST is the address of the last cell in NULST,
or else zero if last cell is unknown. Z is the (perhaps new) ad-
dress of LST.

IST2AR(IST,AR,ARCNT). Packs the character string (STR) fields
of 1list IST into array AR. ARCNT i1s the number of array words re-
quired.

Z=MERGE (NULST,OLDLST,PERCEL). Merges items in list NULST into
list OLDLST. FEach list has PERCEL (1 or 2) items per cell. All
those items in NULST which do not already appear in OLDLST are pre-
fixed to OLDLST. Z is the address of the resulting total list.

Z=NUMSTR(X,NC). Transforms the positive integer X into its
representative alphanumeric character string, which is returned as
Z. NC 1is the number of characters required for the number's char-
acter string representation in Z.

Z=NXNCHA(N,ALOC,AR,LAST). Retrieves from array AR the next
N characters starting after the first ALOC characters. % 1is the

address of the new list built to contain the N characters. LAST
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is the address of the last cell in list Z.

7=NXTCH(J). 7 1is the character J 1is pointing at in some list.
J contains a list cell address and chara;ter position, and is reset
to point to the next character.

7=NXTCHA(J,AR). 2 1is the character J is pointing at in
array AR. J contains the array index and character position, and
is reset to point to the next character.

NXTNCH(NCH,ILST,AR,ARCNT). Packs the next NCH characters from
list IST into array AR. ARCNT is the number of array words required.

7Z=NXTNCL(NC,X,LOC). Produces a copy of the next NC cells from
cell X (inclusive). Z 1is the address of the new list containing
the copied cells, or else zero if X or NC 1is zero or negative.

7=0RDER(ILST,FD,0RD). Rearranges the cells in list LST according
to the values in the FD field of the cells. Cells are put in in-
creasing order if ORD=1, in decreasing order if ORD=-1l. In case of
duplicate values, cells are ordered just as found. Z 1is the address
of the ordered list.

7Z=ORDINS(CEL,LST,PERCEL). Inserts item in SCD field of cell
CEL into list IS8T, maintaining descending numerical order of the
items in LST. LST contains PERCEL (1 and 2) items and associated
weights per cell. Z is the (possibly new) address of LST.

7=ORDMRG(NULST,LST,PERCEL,LOC). Ordered merge. LST and NULST
are lists whose items are in descending numerical order, with PERCEL
(1 or 2) items and associated weights per cell. ORDMRG inserts the

NULST items into LST, maintaining correct order and combining weights

-
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of duplicate items. NULST is not altered. % is the (possibly new)
address of LST. -

Z-PAKLST(IST,LOC,LAST). IST is a list whose cells contain
character strings, up to 6 characters per cell. PAKLST makes a copy
of LST in which the strings are packed, 6 characters per cell, with
trailing blank fill in the last cell. Z 1is the address of the new,
packed list. LAST is the address of the last cell in Z.

z=PFL(PL,LST). Prefixes (concatenates) list PL to list LST.
Z is the address of the resulting list.

7Z=REPLAC(SA,SB,LST). Replaces the first occurrence of sublist
SA by sublist SB in list ILST, where the second sublist is considered
null if SB=0. Z is the address of the SA match in IST, or else is
-1 if SA was not matched. A sublist "match" means word 2 of each
cell matched. If SA=SB, REPLAC just locates sublist SA, but does
not change IST.

. - . Z=SEARCH(ITEM,IWT,LST). Searches through list ILST for a half-
word data field containing ITEM. If the value in the weight field
agssociated with the matching half-word equals or exceeds IWI, then
Z 1is the address of the successful cell. Z is -1 if the ITEM
was not matched or IWT was not satisfied.

STAK(STACK,A,B,ADA,ADB). A cell containing the values of the
lagt four arguments is pushed down onto the STACK list.

UNSTAK (STACK ,A,B,ADA,ADB). Removes the top cell from the push-
down STACK list, and retrieves from the cell's fields two integers

A and B and two integer addresses ADA and ADB.

L]
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7. Recursion in SMALTL

Since FORTRAN allows no recursive calls of subprograms, recur-
sion is simulated in SMALL by a process similar to that used in SAC-1
[Collins, 197L]. The process is based on the use of a pushdown
stack list and the subroutines STAK and UNSTAK (described in the
preceding section). When use of a recursive procedure is necessary,
the essential quantities describing the status of the current exe-
cution of the procedure are placed on the pushdown stack. Then pro-
gram control is transferred to a point at which the procedure is
initiated for another execution.

When the execution of the procedure is completed, the next (top) )
cell of the pushdown stack is popped off. This cell contains the
essential values to restore the status of the previous procedure
execution, which instigated this most recent "recursive call" of the
procedure. When the pushdown stack is empty, the "top level" exe-
cution of the recursive procedure has been completed.

Examples of METQA's use of this technique for recursion are the
building of "covers" of input strings (see Chapter 5, Section 3) and
the matching of character string patterns which may contain (possibly
nested) indirect references to other patterns (see Chapter 4, Section

6).
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