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FINITE DELAY SOLUTIONS FOR SEQUENTIAL CONDITIONS
by

F. Hosch and L. Landweber

We present an algorithm for deciding whether or not a condition C(X,Y)
stated in sequential calculus admits a finite delay solution. This solves a
problem stated in [3] concerning the existence of h-shift solutions for finite
state conditions. We essentially apply methods developed in [3] to an
argument used by Ever and Meyer [6] to solve the problem for sequential
Boolean equations.

1. Synthesis Algorithms

ILet C(X,Y) be a condition (i.e., a binary relation) on w~sequences

X = X(0) X(1)... and Y = Y(0) Y(1)... of members of finite sets I and J

w W
respecitvely. let #: I — J be an operator mapping o -sequences over

the set I into o -sequences over the set J. Then # solves the condition

C(X,Y) for Y, or # is a golution of C for Y, iff

(VX, Y)Y =& (X) > C(X,Y)).
If CL is a class of conditions denoting relations between o -sequences,

and OP is a class of operators, then a solvability algorithm for CIL with

respect to OP is an effective procedure which given any condition
C(X,Y) € CL, tells whether or not there is an operator &# ¢ QP that solves C

for Y. A solution algorithm, given a C(X,Y) € CL. and an & ¢ OP, decides




whether or not # solves C for Y. If the members of OP are finitely

presentable, then a synthesis algorithm, given an arbitrary C(X,Y) € CL,

1) decides whether or not there is an & € OP that solves C for Y, and
2) obtains a presentation of such an # if one exists. These types of
algorithms are discussed, for example, in [2], [4], and [5]. The class of
conditions that we are concerned with are those that can be stated in
sequential calculus (SC), that is, the monadic second order theory of the
natural numbers with the operation of successor. SC is the interpreted
formalism containing: the first order predicate calculus where individual
variables range over the set of natural numbers N; second order monadic
predicate variables, which are interpreted as subsets of N; the unary
function symbol ', interpreted as successor on N; guantification over both
first and second order variables.

Note that we can easily establish a 1-1 correspondence between subsets
of N and w-sequences of members of {0,1}. If © € {O,l}m,
[nlé(n) = 1} is the set associated with 6. If A < N, then the sequence &
defined by 6(n) =1 iff n € A is the sequence associated with A. In a
similar fashion, n-tuples of subsets of N can be associated with members of
((0.1))®. Thus, <A ,...,A >, A€ N, is associated with G ¢ (go,13")"

just in case o(k) = <Sl’ . 'Sn> implies s, = 1 iff k e Ai. A formula




C(X,Y) of SC with free predicate variables X = <X1 fe e ’Xn> and
Y = <Y1 fe e ,Ym> can then be seen as a condition on ®-sequences over
1=(0,1}" and J={o0,1}".

A particularly interesting class of operators are those operators

W
Y =4 (X) mapping I into ]w that can be presented in the form

I

Y(t) = o (X(1),
where Y(t) is the (t+1) st element of the sequence Y, i(t) is the sequence
X(0)...X(t), d maps N into N, and if I* denotes the set of all finite
sequences (words) over I, & maps 1* into J. Operators that can be
given in this form are continuous in the sense of the natural Cantor topology
on the set of all w-sequences over the alphabets I and J, and are hence
called continuous operators. & is said to be recursive (RO) if ¢ and ¢

are recursive, and deterministic (DO) if d)t < t. A deterministic operator is

h-shift if ¢t = t~h, where }Z(n) is A, the empty word, for n < 0. An operator
is h-delay (h > 0) if ¢t =1t + h -1. An h-shift operator must produce Y(t)
based only on knowledge of X(0)...X(t-h), whereas an h-delay can look
ahead to X(t+h-1) before generating Y(t). It is clear that

(DO} = {0-shift} o ({l-shift} o {2-shift} o ..., and that

{DO} = {l-delay} < {2-delay}c ....



An important class of recursive deterministic operators are the h-shift
finite automata operators (FAQO). Let <S,so, 5> be a deterministic finite
automaton system over alphabet I. That is, S is a finite set of states,

s, € S is the initial state, and ©:S X I -~ S is the transition function. Let
@ map 1 into the finite set J. Then the h-shift FAO Y = # (X) defined from
a - <S,s0, 5,0 > can be presented in the form

Z{t) = 4 for t < h;

Z(t") = BZ(t), X(t-h+l)) for t' = h;

Y(t) = o))

where Z(-1) = s, and 5(s,N) = s

0 Here, Z is an w-sequence over the

0
set of states S;X, the input sequence®, is a member of Iw; and Y, the output
sequence, is a member of I(D. ¢ is called the output function, and J the
output alphabet.

Let Y = #(X) be a deterministic FAO mapping Iw into Iw. Then by an
appropriate coding of # and of the finite sets I and J, a formula A(X,Y)
of SC can be constructed such that A(X,Y) means Y =& (X). If C(X,Y) is a
condition stated in sequential calculus, then the assertion "# solves
C(X,Y) for Y" can be expressed as a sentence of SC. Bichi [2] gives a

method for deciding the truth of sentences of SC, and thus there is a solution

algorithm for SC with respect to FAO. Because all finite automata operators can




be effectively enumerated, checking them one at a time to determine whether
or not each solves some condition C(X,Y) of SC provides a partial synthesis
algorithm.

A condition C(X,Y) is said to be determined if either there exists a
0-shift solution Y =A(X) of C(X,Y) for Y, or there exists a l-shift solution
X =B({Y) of - C({X,Y) for X. Suppose we consider the condition C(X,Y) to be
a game between two players I and J to be played as follows. At each
instant of time t=0,1,2,..., player I makes a move by selecting a member
X(t) of the set I, and then player J moves by selecting a member Y(t) of the
set J. At every time t, each player has complete information about all
previous moves of his opponent; (i.e., before he moves at time t, player I
can see ﬁ—((t-l), and player J can see )_((t)). The play <X,Y¥> of the game
consists of all moves X(0), X(1)..., Y(0) Y(1)..., of each player. Player J
wins if the play <X,Y> satisfies C, otherwise player I wins. The condition
C is determined if and only if one of the players has a winning strategy;
i.e., player I has a l-shift operator or player J has a 0-shift operator that
beats all strategies of his opponent.

Blchi and Landweber [3] have given a synthesis algorithm for SC with
respect to DO by showing that every condition C(X,Y) of SC is determined,
and in fact, one can either construct a 0-shift FAQ that solves C for Y or

a l-shift FAQ that solves = C for X.



2. Delay Operators

We are concerned here with giving a synthesis algorithm for SC with
respect to the class of finite delay operators. As we shall see, this is
equivalent to the problem discussed by Buchi and Landweber [3] of finding an
algorithm that determines for a given condition C(X,Y) of SC whether or not
there exists an h such that C admits an h-shift but no (h+l)-shift solution
for Y.

From the definition of an h-shift operator, it can be seen that the 5C
condition C(X,Y) has an h-shift solution for Y if and only if the formula

Ch(X,Y) .=. (32). C(Z,Y) ~ (V&) [Z(t) = X(t+h)]

has a 0-shift solution for Y. Hence, for any fixed h, we can use the
Buchi-Landweber algorithm mentioned above to determine the existence of
an h-shift solution. Since SC conditions are determined, Ch(X,Y) does not
have a O-shift solution for Y if and only if - Ch(X,Y) has a l-shift solution
for X. But

A Ch(X,Y) L=, (V2).[(Vt) Z(t) = X(t+h)] o = C(Z,Y)
having a l-shift solution for X is equivalent to - C(X,Y) having an h-delay
solution for X. Thus for every condition C(X,Y) defined in SC and for every
fixed h, either C(X,Y) has an h-shift solution for Y or A C(X,Y) has an

h-delay solution for X.




Knowing if - C(X,Y) has a finite delay solution for X tells us whether
the Buchi-Landweber algorithm if applied to each Ch in succession, will
ultimately encounter one that has no 0-shift solution for Y. On the other
hand, if we can determine whether or not there is an h such that C(X,Y)
has no h-shift solution for Y, then we can tell if -~ C(X,Y) has a finite delay
solution. The Buchi-Landweber algorithm will produce a l-shift solution of
- Ch(X,Y) for X if such an h exists, and this provides a finite delay solution
of - C. Hence, the synthesis problem for finite delay operators and the
h-shift problem of Buchi and Landweber are equivalent, and in fact if the
existence of a finite delay solution for an SC condition can be determined,

then the methods of [3] will yield a finite state presentation of a solution.

3. Finite Automata Graphs

Even and Mevyer [6] solve the finite delay problem for a fragment of SC
called "sequential Boolean equations." Let F(X,Y,x) be a formula of SC
having no constants or quantifiers, and containing only the second order
variables X = <Xl’ . 'Xn> and Y = <Yl' e ,Ym> , and the first order vari-
able x. Then the formula G(X,Y) .=. ¥x F(X,Y,x) is a sequential Boolean

equation. For example,

VX.(Xl(X) A XZ(X')) A (—qu(X') A Yl(x'))



is a sequential Boolean equation. This equation would be more traditionally
written as

xldx2 + dx1

dyl =1,

To determine whether or nof a sequential Boolean equation has an
h-delay solution, they employ the concept of a finite automaton graph. A
finite automaton graph G over a finite alphabet 3 is defined to be a system

<V,V0, E>, where

V is the finite set of vertices or nodes;

VO c V is the set of initial vertices;

Ec Vx V x 3 is the set of labeled directed edges.

Thus if (vl,vz,ﬁ) ¢ B, we say that Vl is connected to v, by an edge labeled

6, or simply Vi is connected to v, by 6. We extend E to Vx Vx3¥

in the usual fashion:

E(vl,vz,j\) = vl =V,
E(v).V,,90) .=, (v )[E(v),vs.@) ~ E(v,,v,.0) ]
b
where vl, Vo Vg eV, a ¢ ,6¢e2, and A is the empty word. A sequence

of edges of the form

(vllvzlél)l (V21V3162)1 LI l(vn_llv ’On_l)




is called apathin G with label 6,6,...6 . If ¢ V, ¢ =¥, define
¢€(S,2) .=. {veV | Fues and E(u,v,®))

to be the set of vertices accessible from S by a path with label «a,.

The graph G = <V,VO,E> is solvable with respect to 5 if for all

a € Z*, é (Vo,a) # . Thatis, G is solvable if for any word « ¢ 5%,
there is some path of G starting in VO labeled with «.

The concept of h-delay solvability is defined in a fashion similar to
the corresponding concept for operators. The graph G = <V,VO,E> is said

to be solvable with delay h if there exist functions ¢ _: Zh — VO and &:

0

V X Zh+l — V, where Zh denotes words of length h on 2, such that for
any o € Zm , if

v(0) = ®,(«(0), ..., a(h-1));

v(t+l) = o(v(t), aft), ..., a(t+h)), t = O;
then (v(t), v{t+l), (i) E holds for all t =0. Thus the graph G is
solvable with delay h if knowledge of the first h characters, «(0)...a(h-1),
of the m -sequence is sufficient to determine an initial vertex v(0), and for
every t, knowledge of v(t), @(t)...a(t+h) allows the determination of a vertex
v(t+1) to which v(t) is connected by «(t). Clearly if G is solvable with
finite delay h, then G is solvable.

Even and Meyer show that for any sequential Boolean equation F(X,Y),

a graph G can be effectively constructed such that F(X,Y)} has an h-delay
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solution for Y if and only if G is solvable with delay h. The following
theorem then completes their proof:

Theorem 1. (Evenand Meyer) There is an effective procedure for
deciding whether an arbitray finite automaton graph G is solvable with

finite delay. Moreover, a solution (i.e., definition of @ _ and @) is

0
effectively obtainable if one exsists.

Even and Meyer actually prove the theorem for V0 =V, but the result
for any finite automaton graph requires only trivial modification. Their proof
gives a bound on h for any given graph G in the sense that they obtain a
number N such that if G has an h-delay solution, then it has an h-delay
solution for some h < N.

Meyer (private communication) suggested that this method be applied
to the finite delay problem for the full sequential calculus. Given a condition
C(X,Y) of SC, we show how to effectively construct a graph G such that C

has an h-delay solution for Y if and only if G is solvable with delay h.

Theorem 1 will then complete the solution.

4, Proving C has an h-delay Solution from G

We now attack the problem of describing the graph discussed above.
Let the FAO Z = C(X,Y), mapping w-sequences on S, be given

by
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Z{0) = sO;

Z(t'") = 5(2(t), X(t), Y(1));

Z(t) = a(Z(t));
where <S’SO’ 6> is a finite automaton system over Ix J, and 0:S— S is the
identity function. Let inf Z denote the set of states entered infinitely often
by Z; i.e.

seinfZ .=, (¥x)(3At)[x =t A Z(t) = s].

Then if @« < ZS, we define the w-behavior of <S,sO,6,fu> to be the relation

C(X,Y) which holds for X and Y iff Z = C(X,Y) satisfies inf Z cq;i.e.,
1) C(X,Y) .=. (32)(Z(0) = S A (VE)(Zi" =
(Z(t), X(t), Y(t)) A infZ ¢ «].

q 1is said to be the output condition of the FAQ C. A finite state condition

is one that is the o -behavior of some FAQ with output condition. By results
of Buchi [l] and McNaughton [7], we know that finite state conditions are
exactly those expressable in sequential calculus, and that given any formula
C(X,Y) of SC, a finite automaton with output condition can effectively be
constructed with « behavior C.

We assume in the following that C(X,Y) is the w-behavior of the
automaton 0 = <S'SO’ 6,4>. Foreach A € a4, we choose some cyclic
permutation of its elements, and denote the result of applying this permutation

t . i i
o s € A by A(s). In the notation [Al’sl""’An’Sn]’Al 22 A will
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range over strictly decreasing chains of members of 4, and Sl’ e ’Sn will
range over members of Al, .. 'An’ respectively.

We now define inductively the following subsets of S, whose use
will be explained following the definition of G:

R 1 = .
S € O[Al,sl,...,An,sn] .=. false ;

» = 21 )
s € k[Al’sl' ,An,sn] s € k[ ] v s €A N k[Al’Sl]
R .
V ...V S € An n k[Al’Sl""’An’Sn]'
(}) s € Qk[Al’Sl""'Ansn] Z.V .BeuanscBg A

B

c R .
A /N ue k[.l-\l,sl,...,An,sn,B,B(u)],
ueB

R ! = 3
se ®, 1 [Al,sl,...,An,sn] =5 }z/el y\e/I b(x,v,8) €

([sl,...,sn} U ?k[Al,sl,...,An,sn] uaQ k[Al’Sl""’An'Sn]'

In this definition and for the remainder of the chapter, in the case n = 0,
occurrences of An are to be suppressed and {sl, ce ,sn} is to be considered

the empty set, For example,

s € Qk[ ].=. V.Bewu s u/e}Bu ¢ %k[B,B(u)],
B

where B(u) is the successor of u in the chosen cyclic permutation of B.

Note that by induction on k, we have %k[a] c 2 [e], SDk[a'] c

k+l
@ 3
k+l[a]’ and Qk[a]g:_ QkH[a'], where @ isany A,s;,...,A ,s . Let ? be
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the least number such that %ﬂ-—l [a] = %z[a], 241 [a] =2 ﬂ[a]' and
Q -1 [a] = Qg[oz], for all @. Such an £ clearly exists, since all the #,2,9
are subsets of the finite set S, and there are only finitely many possible «.
We now define the graph G that will be h-delay solvable iff C(X,Y) has an
h-delay solution for Y.
Let G = <N,N0,E> be defined as follows:
I. N = {[y.s.,k,v]}, where:
1. yeJ,seS, 0<k < f;
2. v is of the form [Al,sl,hl, e ,An,sn,hn], with
nzO;sieAi€ﬁu,ls i< n;Al_:’z Az_i)z e 3 An;
0< k = hn<...<hls ‘.
II. NO = {[y,so,k,v] € Nj}.
III. If v = [Al'sl’hl' e ,An,sn,hn], x € I, then ([y,s,k,v],
[§,§,]2,\7],x) ¢ E if and only if one of the following occurs:
(@) O(s,x,y) = s = s, € [sl,. ..,sn};
V= [A)s
k

l’hl' .. ’Ai'Ai(Si)’ hi];
(3)

h,.
i

(B) &(s,x,y)=s e@k_l[Al,sl,. . .,An,sn]:

vy=1[A ,s.,h .,A.,s,,h.l,
Y [1 1 it J]

1’

h 5 R I N - I H
where s ¢ Aj n k—l[Al'Sl' Aj Sj]

k=%k-1.



14

(v) ©O(s,x,y)= se Qk—l[Al’Sl"“'An’Sn]’

v =[A,,s, ,h ,...,An,sn,hn, B, B(s), k-1],

17171

where Be %, s ¢ BgAn, and

u/éB wed  [As . ...,A s . B, B(u)l;

k = k-1.
This graph can be effectively constructed, since membership in the #, #, and
Q0 sets can be effectively determined, and 4 can be effectively obtained.

G is constructed so that a solution of G will force the automaton Ol
to ultimately cycle through some accept set; i.e., some member of 4. The
predicates 2, Q , and ® '"control" the state sequence. Suppose, for
example, that G is 1-delay solvable. If X(0) X(1)... € Iw, then a
sequence MI(0) M()... € Nd) with M(0) € NO can be obtained such that
for all t, Mi(t) is connected to M(t+l) by X(t), and such that only
X(0)...X(t) is needed to determine M(t). If the vertices are of the form
M(t) = [Y(t), S(t), K(t), V(t)], we want <X,¥> = <X(0) X(1)..., ¥(0) Y(L)...>
to satisfy C(X,Y). Equivalently, we want the sequence (X(0), Y(0)) (X(1), Y(1)).
to force the automaton (‘)’{ ultimately to cycle through some member of .

Suppose some M(t) = [y,s,k, [Al,s ,h ,...,An,sn,hn]]. The sets

1771

Al re e ,An, forming a chain in @, are the current candidates for a member
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of a4 through which (J{ will be forced to cycle. The Sys+.-,8 are "goals"
in each Ai toward which L is forced. k and hl’ e ,hn measure the
"closeness" to a given goal. If the next vertex is reached by condition (&)
of (3), then goal s, has been reached, and in this case, all candidates
below Ai in the chain are eliminated, the successor Ai(si) of s, is set
up as a new goal, and the remembered "closeness", hi' is returned. If case
(B) is used, U has gotten closer to goal s], (i.e., k decreases), and all
previous candidate sets lower than AJ. are forgotten. If n = 0, this case
amounts to the disregarding of all previous candidate sets, and starting anew.
Since k is decreased, starting over in this fashion may happen only finitely
often. In case (VY), a new smaller candidate set and goal to which O is
"closer", are added. In adding this new set, it is important to make sure that
all of its members are in a proper & . The controls imposed by the "closeness"
index insures that (j{_ will ultimately cycle constantly through some member
of a.

The proof of the following theorem is essentially that of the main theorem
of [3].

Theorem 2. If G is h-delay solvable, then C has an h-delay solution

for Y.
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Proof. If G is h-delay solvable, then w-sequences X and Y can be
obtained in the following way. Given X(0)...X(h-1) € I*, a node
MO = [Y(0), s0O, KO, vO] of G can be found, with sO € SO‘ For every t,
given node Mt = [Y(t), st, Kt, vt] and X(t)...X(t+h), a node
Mt' = [Y(t'), ©(st, X(t), Y(t)) = st', Kt', vt'] can be produced such that
(Mt, Mt', X(t)) € E. Thus, for every t, some Y(t) € J can be obtained given
}z(t+h) € I*. We want to show that the resulting w-sequences X and Y
satisfy C(X,Y).

To show this, we proceed as in [3]. Let Mt = [Y(t), st, Kt, vt] represent
the node chosen at time t, as indicated above. Suppose that for some time

to vt = [ ]. Then t, >t implies (a) Kt, < Ktl, and if v,t, =

[Al'sl'hl pee ,An,sn,hn], (b) each hi < Ktl. This is clearly true in case

‘c2 = ’c1 4+ 1, since then only cases (B) or (v) of (3) could be used. Assuming

that it is true for some tZ > t3, one can observe that (@), (B), and (y) of (3)

preserve (a) and (b) for ‘c2 + 1.

such that vt #[ ] forall t = t.. Thus

Since Kt > 0, there is some t 1

1

for tztl, vt is of the form [Al,s ,ho, ... ,A 'Sn’hn]’ with the level n = 1.

1771 “'n

Since n, the level of vt, is bounded by the lengths of chains in the finite
set @, some level must occur infinitely often. Let m be the smallest of

these. Then m 2 1, and there is a tZ such that for t = tz, the level of

vt 2 m. Hence if t > tz,
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vt =[A, ,s, . ,h A _,s ,h ,...,A ,s ,h ], where n=zm= 1.
1771 m  m m n" n n

T
Furthermore, n = m occurs infinitely often. From this, we can see that for
t > tz, only cases () with i = m, (B) with j 2 m, and (y) with n> m
of (3) can occur, and therefore Am in vt must remain constant after time tz.

By (3), the definition of G, st ¢ Am for t = and so inf (st} c Am € q .

tz,
It remains only to show that A_ < inf {st}.
Suppose that case (@) of (3) with i = m occurred only finitely many

times. Then for some t3 > t,, t=2t, would imply that only cases («) with

1’ 3

i>m, (B) with j 2 m, and (Y) with n > m would be used. Inspection of
(3) shows that each application of case (B) with i = m produces a lower
value of K than the previous application. This is true since we are assuming
that (@) can occur only with i > m, and any hj’ j > m, added to v after

an application of (B) with i = m must be less than the value of K at that
application. Thus, cases (@) with i =m and (B) with j =m are used only
finitely often. But this contradicts the fact that the level of vt is m for
infinitely many t. Hence case (@) with i = m must occur infinitely often.
Let t3 < t4 < t5 < ... be the infinitely many consecutive times t > t. where

2

case (o) with i =m occurs. Then clearly Stk+1 = Am(s’ck

But A_(s) is a cyclic permutation of A , and hence A < inf {st}. Thus,
m m m —

). k=3,4,.

inf {st]=Am66u. |
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4. Proving G is h-delay Solvable from C

To prove the converse of theorem 2, intermediate steps are required.
First define Ch by
Ch(X,Y) 2. (32).CX,2) A (Y1) [Z(t) = Y(t+h-1)].
C has an h-delay solution for Y iff Ch is 1-delay solvable for Y. We will

construct a graph Gh from Ch so that

C h-delay solvable for Y

U (@)

Ch l1-delay solvable for Y

Ve

Gh 1-delay solvable
l (c)
G h-delay solvable.
Then by Theorem 2, C(X,Y) has an h-delay solution for ¥ if and only if G
is h-delay solvable. Let A = <S'SO' b ,u4> be the automaton that determines

h h

C, as above. Define an automaton OLh = <8 ’SO ,Bh,ﬁuh> with behavior

c™x,¥) by:
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h

S :[<S,X0'” >|seS,Xi€IU{A};

. ,Xh___2

h h
so—<sO,A,...,A> €S

/
B(suxpey)s X e Xy 5, %>

(4) h if x, el;
O <8 %y auXy 5>, Y) = %

Y ={A§_Sh[1r

1m)ewy

1 1 k k
where W1(<a1,...,an>) —al, /rl{<al,...,an>,..., <al,...,an>} =

1 .
{al fo e ,a];} . That is, ™ is the first component projection function. ()(,h

with input (X(0), Y(0)), (X(1), Y(1)),..., simulates the action of OU on the

input string (X(0), Y(h-1)), (X(1), Y(h)),... . Itis clear that Ch(X,Y) is the
w -behavior of Ulh.

For A c Sh and s € Sh, let 'ITI(A) =A ¢ S, and ‘nl(g) = g ¢€8.
Recall that for every A € ¢4, A(s) denotes some cyclic permutation of A. We
would like to define a "permutation"” for each Ac %h whose action on the
first component mirrors the cyclic permutation of ‘HI(A). For each A ¢ Ouh,

choose some sequence Sy..-8 € A¥ that satisfies



i) (Vgeﬂ)(ai, 1 1= n) s, = s;

(s, ), 1=j<n;

(5) ii) A(ﬂl(sj)) =y (854

iii) A(ﬂ'l(gn)) = wl(éil).

This sequence is called the permuting sequence for A. Note that repetitions

can occur in 51 ‘e .é-n. Let In (A) be the set of all initial segments of the

permuting sequences of ﬁ, i.e , In (Z\) = {51. . '51' I 1 = j=n}. Define the

"permutation” A:In (]-_\) — In (li) and the projection P:1In (A) -—~A by

A c..8)=8. ...8, ., 1 =] ;
(s1 SJ) s1 Sj+l 1 ji<n
A(Sl sn):sl,

P(s. ...s)=s.,1<j<n

(l J) j

If se¢ ZX, we will let ]X(g) denote 1-—\(5 . Ej), where j is the least number

such that s = Ej. Now by (5),

(6) wl(P(Z\(El Ej))) = A(r (P(s - .. sj))), 1<js<n, and

m (P(A(S))) = AT, (s)),
so the permuting sequence for A gives a "permutation" of A that parallels the

fixed permutation of A= (Z—\) when projected.

1
For the remainder of the paper, the notation [Z\l CEPERE ,l_\m, O'm] will

. = by _w : - ; co h
imply that Al 2 AZ 2 -2 Am is a strictly decreasing chain in @,

Al 2 A2 2 -2 Am is a strictly decreasing chain in @ (where '/rl(l—xi) = Ai),

and Oi € In (Ei). Then if s = <s,x > € Sh, define the following

0""’Xh—2
h
subsets of S :




s 65‘22[5,01, A L0 ] .=. false;
- ho - - - _h
= c R
se@k[A,ql, A Lo ] s € k[]v
S5eA nAPA o lv .oy
| k 1
seh nalla Aol
€ n k 1101, ' rl’onl
ser[Al,Ol, ,An,a] =. V. Bcuw
B
(7) A B g An A 'n‘l (B) = TTl(An)

- h.— - - - -
R . p By, H
AN\ ue k[Al’O A 0B B(u)]

ueB !
sea [R Lo ,...h,0].2 \/ V
k+1% 71" 71" ““n’ "n
xel vyeJ
h - h - - 4
[0 (s,x,v) e@k[Al,Gl,...,An,on]
U Oh[ji 0. e B o0 ]V
'\k ll 1' ’ nl n
h - = . _
VvV (67(s,x,y) €A, A E)(S,XO,Y) =, P(o.N].
lsisn ! '
, h _h h | h h
We further define Rk’ Pk’ and Qk' in the same manner as %k,.ﬂpk, and
Qz, except that "/\I" replaces ”\/" in the definition of %h . Let
k+1
Xe xel

- h
s = <s,x0,...,xh_2> € S . Then:
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h, - , x - .
s eRO[Al,Ol, .,An,on] .=, false;
- h.- . _ - _h,
s ePk(Al,cl, A ,Gn] =. s eRk[ ] v
Sehd ﬂRh[Z—i o,]v v
1 kY1771
sehA N Rh[‘& o A ,o0 ]
k 1[ 1, ' 1 nl
sth[A o) A ,o0 ].5. \/
k171! “n’ " n' "7 =¥ h
Be
(8) seBgAn/\BcAn
—_ h — — ) = = =
A /N ueR[A Lo, A L0 BB
ueB
seRh A ,o A ,o0 ] .=
k+121° 717 ““n’n
xel ye]J
[67(<s,ixyreeimy 5> %09)
ePh[ﬁo A,o JuQ A ,o A ,o ] A
k ].l 11 ? 7 n k. ll 1, 1 z n

\/ 16"k e A~ olsxgy) = PO,
1<i=sn ' 8

For se€8,je], 6(s,A,y)=s. As before, if n= 0 surpress all occurrences of
An and An. We can see that these definitions are effective and that

7 le] <& [l # le] €2, el gl € g, lel, Rlal < R, (e,

Pk[a] c P Qk [¢] ¢ Q. , [e], and that integers / and 7 can be

ka1 Lol k+l

effectively found such that £ [a] = Ry [«], ?3 [a] = P31 [«], Q7 [] = Qz_l[a]l,

R4 [o] = Ry_[e]. Pple] = Pp_ [e], Qplel = Qp_ [a], forall a.
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With s = <s,x0, .. ’Xh—2> € Sh, we have the following:

- h — —— — —
s g‘PE[Al,ol,...,An,an] .=. s £R

Sy

[ 1A
(Egzilv Eg‘RY/}[Al,ol]) A A

- - - h -
(s ;z_’Al v s¢ R7 [Al,cl,...,An,Gn]),

<
o
7\
=
=3
—
T
Q
>
Q
=)
vu]]
=1
=

h -

[5 (s,x,y) £ P> [A
h (=~ _h - -

uQy [Al,ol,...,An,On] A (87 (s, x,y) € B,

o 6(3 ,XOIY) 7‘/ ﬂlp(ol))] .

Lemma l. Forall k= 0, all «: R]}: [¢] ‘%i [a]; P]l:[a'] (S

h h
Q] = oy [l

Proof. Induction on k. §
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Lemma 2. <SO,A, ceAD> = sk(; £ R% implies - Ch(X,Y) has a 1-shift
solution for X.

Proof. The proof of this lemma follows a similar proof by Buchi and
Landweber [3]. If O(_h on input <X,Y> = (X(0), Y(0)) (X(1),¥(l))... traverses
the w-sequence 2 = Z(0)Z()... € 8", then C™X,V) if and only if
inf {Z(t)} € Guh, or equivalently, inf ['nl(Z(t))) ¢ 9 . Consider the following
formulas, where ’n2(<al,a2, A ,an>) = az, and (px) E(x) denotes the least
x in I such that E(x) holds, if such an x exists.

h h

2(0) =<sy h,en o B> =5, €857 WO = {{s,}}; vo =1 ].

Assume Vt:[Al,ol,...,l-\n,Gn]. Then

X(t) = (ux) A [Gh(Z(t),x,y) 4 P% [Al,ol,...,zin,on]
yeJ

h - - h
uQy [AI,OI,...,An,Gn] A (B (Z(1),x.Y)

e B, o B(m2), m,ZW1),y) = 1 (5 (Z(0),%,y)) # mP(o)]

Z(t') = B1(Z(D),X(), Y(1);

(10) Wt' = (BU {m(Z(t')}|B e Wt v B empty};

() If _\/hBeau N Wt' A Z(t') € B A

Bea
V4 . 5
- 0<ien OIS AD 2 B A,y 482 B Ay
v(lznABg AnABgA)v(lz /\B;Al
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B2 Al Azt # R}}} [El,al,...,Ei,oi,B,é(Z(t'))],

let B be the largest such. Then Vt' =

[zil,c ,...,A’n,cn,é,é(za'))].

1
(B) If not (@), let i be such that Z(t') € A_i’

Z(t")y £ A-H-l' (where A-n- is considered empty).

+1

Then Vt' = Al,crl,...,Ai,Ui].

Note also the formulas:

If vi= [AI’O .,An,cn], then

o
h ra N .
Z(t) £ R} [Al,c ,...,An,on],

Al 2 2 An;
(11) A13"'3An;

Aie%ﬂWt,lsiSn;

Z(t) € An’ if n# 0;

Oi an initial segment of the permuting sequence for Ei;

Wt is a chain of subsets of S.
Since <sO,A, e D> F R%[ ] by assumption, Z(0), WO, and VO given by
(1 0) satisfy the conditions (11) with t = 0. Assume that (11) holds for t,
and that Y(t) is any member of J. Then by (9), X{(t), Z(t'), and Wt' as

described in (10) exist, with wt' a chain of subsets of S. If Vt' is



computed by (B), then Z(t') # P% [A,,0 ...,zin,on] and Z(t') e A'i

. . h o[- - .
implies Z(t') £ Rg [Al'ol""’Ai’Oi] by (9). Since

'Trl(Z(t')) € Ai < A, . c...cA

i1 1t Aj is still in ¥ N Wt' for 1 < j = i. Thus,

(11) holds with t replaced by t'. It can easily be seen that (11) will also
hold with t replaced by t' if Vt is computed by («). Formulas (10)
therefore define w-sequences Z, W, V, and X, given w-sequence Y, and
(10) implies (11).

Note that the I-sequence X is produced by (10) in a 1-shift fashion
from the J-sequence Y. Since Z, W, and V have only finitely many possible
values, (10) in fact defines a l-shift FAO mapping J-sequences into I-sequences.
Note also that by (l1), the sequence of states Z of the automaton Ol,h
is always forced not to be a member of a gpecific R% . It is this property
that insures that machine U&l will not ultimately cycle through some member
of Guh.

If Z is defined by (10), we must show that inf ~rr1(Z) Z a4, and so
(10) defines a l1-shift FAQ that solves —:Ch(X,Y) for X. Suppose that inf

Z=D € Guh, with 'rrl(]5) = D € @/, Then there exists some t. > h such that

1
(12) T = tl implies Z(t) € 13, and u € D implies

(Va)(3t) [t = a A Z(t) = ul.
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- h
That is, from some time *c1 on, 7 continues to traverse the same set Dea .
Now W keeps track of all sets traversed by 7Tl(Z) from each time t; i.e.,

Wt is the set

{_{Wl(Z(O)), ... ,ﬂl(Z(t))}, {Trl(Z(l)) ses et
T @), - - (T @1, T )]
(m(Z(E)] )
Since D € @, it is clear from the definition of Wt that there is some

t. = t, such that

2 1

(13) t =z t.2 implies D € o4 N Wt.

Assume Vt= [A,0,...,B ,0 ]. Thenby (10), 2(t') £ Q%
{Z\l’cl""’i’n’gn]' Hence, by (9), (12), and D ¢ %h, we have:
[t = tZ A V= [Al,o',...,An,On] A D;]—\n N D% An]
- h - - -
> V_ u £ RIZ [Al,ol,...,An,cn,D,D(u)] .
ueD

which yields by (12),

(14) [tzt, A Vt= [Al,ol,...,An,Un] A Dga A Dg An]

S (Fa)[azt A Z@") £ R%[Z\l,o . A ,on,ﬁ,ﬁ(Z(a'))]],

177 n
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Define the partial ordering < on strictly decreasing chains

Al = Ap of members of @ by:

[Bl,...,Bq] < [a...al .= \'4

[./N. A =B,
p l<i<p,q 1<jgi 5 j

IA

AiaBi] A _/J\

A, = B, )
A [3 J/\p>q}

befine the principal part of the chain Al 2003 An (of the sequence

[El, Gyvoos A On]) to be the chain AR 3 Ap (the sequence

[231, Oprens ,Ap, op]) where p 1is the largest number i such that A2 D, or
p = 0 if there is no such i. Let [Z—Xl, Crvewne ,Kp,c‘p] be the principal part

of Vt= [ﬁl, Lo AN ,Z_\n, G‘n] . Then by examining the construction (10), it can
be seen that the only case in which the principal part of Vt' is not equal to
or greater than (with respect to <) the principal part of Vt is where Vt'

is constructed from (B) with i <p. Butif t= tZ’ so that by (12)

Z(t') € D c Ep, then (B) with i < p cannot be used. Hence, for t = tz,

the principal part of Vt either stays the same or increases. Since < is a

partial ordering on a finite set, there must be some t3 such that t = t3

implies the principal part of Vt' is equal to the principal part of Vt. That

— —

-~

is, there is some m = 0, ZAX,S,...,A ,5 , such that m=0 or A o D,
1771 m’ m m =

and if t = t3,




(15) Vt = [Al, A _,o ,...,An,crn]

where n=m or D g Am+l' Assume that for all t = t3, Vt has the form

[Al’ STEEE ’Am’ Gm'AmH(t)’ omH(t), ...]. By (0), AmH(t)'g Am+l

t=t,. Hence for some u 2 t;, t> u implies that ‘Km

3 l(t) = A ) (t'), and

+

Vt is of the form [El,cl,...,f\ ,o ,A,...], where A =A (u).

By (15), D¢ A, and since Z traverses D by (12), there exists some

v = u with Z(") £ A. But this would cause case (B) with i = m to come

into play, and Vv' would equal [.Z\l, 27 PR 'Am’ Bm] contrary to assumption.

Hence, there must be some t4 > ’c3 such that

(16) v, = [A,0.,....A .o 1

Now if ;‘m 2 D or m=0, by (14) and (16) there is an a = t4 such

-~

that Z(@') £ R%[Z\l,é,...,zi ,o_,D,D(Z(@")]. By (15), either

m’ m

() Va=[A,0...,A ,o ], or (i) Va= [Al,ol,...,Am,crm,AmH,...]
and D c,;-Am_*_l. If (ii) is the case, then D € ¥4 N Wa by (13), and
A € @ N Wa by (10). Since Wt is achainand D & A _,., we have

m+l m+1

Am+17¢" D. Thus in both (i) and (ii), D eﬁuh is a possible value for B

in case (@) of (10). Hence, Va' would be calculated using some B o D,

and
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va'=1[A,0....,A_,o_,B,B(Z@")]

where Ama B 2 ‘D and Z\ B o D, contradicting (15). Therefore,

(17) m=1 and A = D.
m

Now for t 2t3, vt' = [51,8,...,!§ 1 G ""] and Z(t") ¢ f\m by

(11). But by (10), this implies ‘nl(Z(t')) # 'an(Bnl). Hence, for some

-~

€A , ﬂ'l(Z(’t')) 7 S forallt = t

S - and thus A # D = inf lTl(Z). This

31
contradicts (17) and cqmpletes the proof of the lemma. ﬂ

Lemma 3. Ch(X,Y) has a l-delay solution for Y implies

h |
<sgilsven/A> =8, € Rp ] .

Proof. The proof follows from lemma 2, by noting that a 1-delay
solution is equivalent to a 0-shift solution, and from the fact that every finite
state condition is determined. J§
> € sh, a=A

Lemma 4. Let s = <s,x .,f\n,on, and

ARREE NS

179
— - , -  Lhr- . ,
@ = Al’sl""’An'Sn’ where s —ﬂiP(Ui). Then if XO}/./\, s € %k[a] implies

se® [a], s e svh[c?] implies s e # [a], and s ¢ Qh[&] implies s e 2 [«],
h k k k k
for all k = 0.

Proof. Proof is by inducation on k. We indicate the induction for # ,

and leave the rest to the reader.
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s = <s,x0,...,xh"_2> k+l[A Y ...,An,cn]
_ - _
- XE'I Y\E/]- [b (SIXIY) -
SBlsixpuy)s Xpovw o Xy ou%> €
g’h[ﬁ A ,olU Oh[ﬁ,c,...f\ o]
kY11 n’ n | “n’ n

v\ [Ga ) e B A us kg ) = o]l
1sisn .

Hence, by the inductive assumption,

5)!] b(s,xo,y) € [sl,...,sn} U ?k[Al,sl,...,An,sn]

U Qk[Al'Sl’ .. ,An,sn];

2 : .
and thus by (2), s ¢ k+l [A I .,An,sn]. The remainder of the theorem

follows easily. §
Note that Lemma 4 does not hold if the #, ¢, and ® predicates are
replaced by P,Q, and R.
h , h
We now construct the graph G mentioned above, such that C (X,Y)
has a l-delay solution for Y implies Gh is l-delay solvable, and such that

Gh has a l-delay solution implies G has an h-delay solution. Recall that

£ is such that

h

Ji% 2] = %?/_l[a/] 50 [«] = 1 [«], and Q}-; [a] = Q%wl (],

for all «. Gh = <Nh,ng),Eh> is then defined by:



II.

III.
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h - -,
N = {[y,s.k,v]}, where
- h -
1. yeJ,seS ,0<kz=sf;
2. v is of the form [Al,crl,hl,..

with n = 0; Ai € Guh, Oi e In (Ai), 1

..A ,0 ,h ]
n’ n’ n

< ism

Z\l 2 AZ 22 An; m (,/il) 2 -2 '/rl(l-\n):

0<k=h <...<h b;

h : h =~ h
N, = {[y,so,k,v] e N J.

If §=<s,x P

o' *h-2 '

<

-~
K,

4238 B

x €1, then ([y.s.k,v], [y,

following holds:

(@ 5'(.x,v)=seh, and bls,xy,y) =n

I}

<

= [Al,o .h

]. ll"'lAilAi(Ui)lhi];

k = h,.
i

h ~ = h =
(p) 6 (SIXIY)"Sepk_l{AlIO' roe -

[ 4

<

= [Al,crl,hl,.

o

=k -1.

>, \7=[§l,0,h .-

1,x) € EN

- = = I
..,Aj,cj,hj], where s ¢ Aj ﬂﬁk_l[Al,ol,..

'IA ' O lh"]l
n n n

just in case one of the

lP(oi), forsomel<isn;

. IA‘H' Gn]7




h 2  h - .
(v) 8 (s,x,y) =58 € Qk_l[Al,Ol,...,A Lok

v = [Al,Ul,hl,. ,An,ﬁn,hn,B,B(s), k - 1], where
Eeal,s eBch ,BcA ,and A tc [A,o A
ls'€ g nI 5— nl LN - k"'l llOll”'l nl
o ueB
o .B,B)];
k =k - 1.
Note that just as in the case of G, Gh can be effectively constructed.
h . h |
Theorem 3. If C (X,Y) has a l-delay solution for Y, then G~ is
l-delay solvable.
Proof. A node [y,s = <s,x0, - ’Xh-—2> kv = [Al' Ul’hl’ ... ,An,an,hn]]

of graph Gh is said to have property w(x) for x ¢ I, if

i) se R]il[gl'gl"”’An’On]; and

. ~h - h = = h - Y
(19) (i) 0o (s,x,y) e P, j[A . 0o, ....A ,0 ]U Q[ 00w A Lo ]
h - =~ .
or 5 (s,x,y) € A, and b(s,x.,y) = mP(o).
’ i 0 i
l=i=n
We will show that:
(a) given X(0) € I, we can find a node NO ¢ Ng with property w(X(0));
(b) given node Nt with property w(X(t)) and X(t') € I, we can find
a node Nt' with property w(X(t')) such that X(t) connects Nt to
Nt'; (i.e., (Nt, Nt', Xt) ¢ Eh).

Thus G~ will have been shown to be l-delay solvable.
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Since Ch(X,Y) is assumed to have a l-delay solution, <s _,A,... ,A>

0

Sh
0

1

.h h
eR}}[ 12NV [0 Ky, > x,y) e Py [] UQ%_l[ 11, by

xel vyej
Lemma 3. Assume that X(0) €I is given. Then let Y(0) be such that

5h(<so,A, cv o A>, X(0), Y(0) € P%_l[ 1u Q%_l[ 1

and take

NO = [Y(0), <s0,A,...,A>,fi,[ 11.

NO € Ng is a node of Gh and clearly has property w(X(0)).

Now assume tha t node Nt = [Y(t), st = <st,x0, .. ’Xh-—2> , Kt,

vt = [Al’ ol,hl, - ,An, on,hn]] has property w(X(t)), and that X(t') € I is

given. By (19), since Nt has property w(X(t)),

h - h - -
6 (st, X(t), Y(t)) € PKt-l [Al,cl, e ,An,cn] U
S FA R S RV
t non l<i=zn
(Gh(ét,X(t),Y(t)) € Z\'i A B(st,x,,Y(1) = mP(q)).

There are three cases to be considered.
h - -
Case 1. b (st, X(t), Y(t)) € Ai and 6(st,x0,Y(t)) = -rrlP(oi). Let

ah(é't,X(t),Y(t)) = st' = <mP(o)), %), X(t) >. Since st' ¢ Ai and

s Xy o

Nt is a node of Gh, we have by the definition of Gh(l8):
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T

o)A 5 A G
st' € Rhi [Al,c .. ,Ai,Ai(St ).

1
AN ' h s
fel y\GI [6 st',x,y) € Ph [Al,cl,..
U QE _l[zil,ol,...,zii,zii(ét')] v
(20) i '

l=j<i

nlp(oj)] v [6h(é’t',x,y) € Ai A

b(mP(q)), x,v) = mP@ (st')].

Choose Y(t') such that (20) holds for X(t

h,[A Ollhll"'l

N - - - ,
/\ ue Rhi[Al,Gl, . ,Aj,A].(u)], l<js

ueh,
]

and by case (@) of (18), (Nt, Nt', X(t)) €

w(X(t").

h - h s
Case 2. b (st, X(t), Y(t)) € PKt-—l[Al

the least number such that

1)_

i.

h

E .

, O

(21) st' = ah('s"t, X(t), Y(1) = <b(st,x,Y(1),

" ~ h .
SRR Y X({t)> ¢ Aj n RKt-—l [A1

Then by (8),

O

R

i (st )]

Zl> !

V.{§@&xm)eAjA b (m,P(a,) % ¥) =

Take Nt' = [Y(t"),

Ai,f\i(ci), hi']]' Now since Nt was a node,

h

5 (st,X(t),Y(t),

Hence, Nt' is a node of Gh,

R

LA, 0],
) ﬂ‘

By (20), Nt' has property

.,An,cn]. Suppose j is
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A\ L8NG xy) = < (B (st xg, Y(O),%), ),
xel vyeTf

X X O

, X{(t),x> eP} e

Kt- Z[A

210-- h ll -:Ajloj]

(22)

! ta_z[ﬁl,cl,...,zi.,o.] v Ve Gk,
> lsi<j

€ Ai A 5(6(St,XO,Y(t))) = -frlP(Oi))].

Let Y(t') be such that (22) holds for X(t'), and let Nt' = [Y(t), st', Kt-1,

A 7 Il' l"’I."I 2 ! . i 1 i i s
[Al ohy AJ o hj]] Again, since Nt is a node

A\ u e Rk [A 9y "Ai"&i (w)], for 1 < i< j, and thus Nt' is a node

h - - h - .
R
of G'. By (21) and Lemma 1, & (st,X(t),Y(t)) € Aj n Kt—l[Al’Ol' e ’Aj’ Oj]'

Hence, by case (B) of (18), Nt is connected by X(t) to Nt'. By (22), Nt'

has property w(X(t')).

Case 3. 5h(5t, X(t), X(t)) € [A 0 .,Ixn,on]. Suppose B is

h
Ktl 1

the first in some chosen order of Ouh such that

Sh(gt, X(t), Y(t)) =st' e Bea A B

“ N
ue—:R A ,0,...,
JeB Kit-1 “'1

]
Q
vl
os]]
=
=

Then o (5t, X(t), Y(1) = <6(st,xy, Y(1), x x, _,X(t)> = st’, and
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st' ¢ R [A a, A ,On,ﬁ,é(gt‘)] =,

Ktl

A
xel vye]J

h

Kt Z[A

(24) ol

Kt Z[A

h -

n

[5" 5t,x,y) e

ay .,An,on,B,B(st )] U

10y .,An,an,B,B(st)] v \/
l<isn

1

[6(st',x,y) €A, A 6('(5(st,x0,Y(t)), Xl'Y) = 2rlP(oi)] v

(55" Gt x,y) € B A 6(6(st,xy, Y1), x.v) = mPEEENI.

Let Y(t') be such

(A, 00y,

is a node of Gh,

A, =Band h

Lemma 1, ﬁ/\ uecaR

B

h

5 (st, X(t), Y(t)) = st' ¢

(Nt, Nt', X(t)) € "

1

that (24) holds for X(t'), and Nt' = [Y(t'), st', Kt-1,

..,An,on,hn,é, B(st'), Kt - 1]. Then by (23) and the fact that

h
A
GeAi u € Rhi [A

l'Gl""’Ai’Ai(u)]’ l1<i<n+1 (where

= Kt - 1). Hence, Nt' is a node of Gh. By (23) and

h - - - - =
K.[._l [All Gll"'lAnr On,B, B(u)] and

[Al,o

ARE ,An,on]. Hence,

2 kt-1

This completes the proof of Theorem 3. §

Theorem 4.

solution.

Gh has a l-delay solution implies G has an h-delay

Nt

by (v) of (18). By (24), Nt' has property w(X(t'})).
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0

Proof. We must show that given X(0)...X(h-1) € I", we can obtain a
node NO € NO of G, and for every t, assuming that we have obtained a
node Nt of G and that X(t)...X(t+h) € I* has been given, we can find a
node Nt' of G such that [Nt, Nt', X(t)] € E.

Assume X(0)...X(h-1) given. Since Gh has a l-delay solution, nodes

MO, ..., M(h-1) of Gh can be determined such that MO € Ng and

[Mk, M(k+1), X(k)] € Eh for 0 < k < h-1. Recall that ([yo,go,kO,Ql],

- - h . . h - -
[yl,sl,kl,vl],x) € E implies © (so,x,yo) =5, . Then since MO ¢ Ng and

h A ~ - .
B (<s,A,xl, v ,xh_u2>,x,y) = <S'Xl’ .. .,xh_z,x>,1\/{0, ...,M(h-1) have the
form:

MO = [Y(0), <s,A, ... >, KO, v0];

M1 = [Y(), <sg .0, ... AX(0)>, KO, vol;

M(h-1) = [Y(h-1), <s,X(0), ... X(h=2)>,K(h~1) ,v(h-1)].

Take NO to be

NO = [Y(h-1), s, K(h-1), 7 (v(h-1))],
where if v = [Al’ Gl,hl, R ,An, On,hn], then rrl(v) is

g initi f .
[Al,an(Ol),hl, e ,An,ﬂlP(On),hn]. NO € NO, by definition o N0




39

Now assume that X(t)...X(t+h) have been given, and that node Nt
G and nodes Mt,...,M(t+h) of G-h have been determined so that

(Mk, M(k+l), X(k)) € Eh, t< k<t+ h. Assume

Mt = [Y(t), <st, x x> Kt vt

o'

M(t+l) = [Y(t+]), <s(t+1), 3,0 .. 0% 5. X(6)>, K(t+]), v(t+) ]

h

M(t+h-1) = [Y(t+h-1), <s(t+h-1), X(t),...,X(t+h-2)>,

K(t+h-1), v(t+h-1) = [Al, Opree 'An' On,hn]];

M(t+h) = [Y(t+h), <s(t+h) = &(s(t+h-1), X(t), Y(t+h-1),
X(t+l), ..., X{t+h=1)>, K(t+h), v(t+h)];

Nt = [Y(t+h-1), s(t+h-1), K(t+h=1),m, (v(t+h-1))].

1
Take Nt' to be
Nt' = [Y(t+h), s(t+h) = b (s(t+h-1), X(t), Y(t+h-1),

K(t+h), 1, (v(t+h))].

1
By assumption, M(t+h-1) is connected to M(t+h) by X(t+h-1), and hence,

either (@), (B), or (y) of (18) holds.

Case (@),  B(s(t+h-1), X(1), Y(tth-1)= 7 P(0)),
v(trh) = [A, 0,0y, ... AL A (), ]

K(t+h) = hi’ for some 1 < i < n.
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Then since m (v(t+h-1)) = [Al,'an(ol), hl’ .. .An, -lrlP(on), hn]' and by (6)

nlp(ﬁi(oi)) = A,(mP(0)), case (a) of (3) holds, and (Nt, Nt', X(t)) € E.

Case (B). 6h(<s(t+h—l) , X(t), ..., X(t+h-2)>,
X(t+h-1), Y(t+h-1)) = <& (s(t+h-1), X(t), Y(t+h-1)),

X(t+l), ..., X(t+h-2), X(t+h-1)>

- h .=
% "
€ A], N hj [Al,o

L. A0,
1 j ]]

V(t+h) = [All ollhll . .’Ajl ojlhj]’

K(t+h) = K(t+h-1) -1, for some 0 = j = n.

Then by Lemma 4, b&(s(t+h-1), X(t), Y(t+h-1)) € AJ. N %h [Al,vrlp(cl), ce
' j

Aj,ﬂlP(oj)], and by (B) of (3), (Nt, Nt', X(t)) € E.

Case (v). E)h (<s(t+h-1), X(t), ... X(t+h-2)>
X(t+h-1), Y(t+h-1)) = <& (s(t+h-1),
X(t), Y(t+h-1)), X(t+l), ..., X(t+th-1)>

h - - .
€ QK(t+h~l)—-l[Al' opr B0l

- h — —-
Suppose Be o , B;:. An, B < An, and

ah(é(t+11—1), X(t+h-1), Y(t+h-1)) € B,

/\ - h

o R A A B, B(u
Geb 1€ T (ahop)-1lPr e oAy O Be B

v(t+h) = [Al,cl,hl, . ..,An,on,hn, B, B(s(t+h-1)), K(t+h-1) - 1];

K(t+h) = K(t+h-1) - 1.
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Then by Lemma 4,

A\
FAN eR [Al,ﬂlP(Gl), - ,An,ﬂlP(On), B, B(u)],

K(t+h-1)-1
and by (vy) of (3), Nt is connected to Nt' by X(t).

This completes the proof of Theorem 4. I

Theorems 2, 3, 4, and the definition of Ch(X,Y) now yield that C(X,Y)
has an h~delay solution for Y if and only if G is h-delay solvable. The

result of Even and Mevyer (Theorem 1) thus gives the desired algorithm.

6. Further Problems

Rabin [11] among others has used various types of finite automata to
give decision procedures for second order theories other than SC. To our
knowledge, there have been no successful formulations of the synthesis
problem for these theories. For example, the monadic second-order theory
of two successor functions studied by Rabin [11] can be considered to describe
conditions on infinite trees in the same way that SC expresses conditions on
w-sequences. Can a meaningful class of operators on infinite trees be
formulated such that a synthesis algorithm can be given with respect to these
operators ?

Concerning sequential calculus, Buchi and Landweber {4] pose the
problem of giving for any finite state condition C(X,Y), a set of recursions with
parameters which by proper specification of the parameters will yield any

deterministic operator that solves C for Y.
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