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ON AN ALGEBRAIC IDENTITY
WITH APPLICATIONS TO OPERATOR THEORY

1. Let % be a commutative algebra on the field @€ of complex
numbers., Let superscripts + and  denote a pair of operations on

S to &, such that, for any «, « , « reeaik in & and a.

17 72

2
GhHY o wehT =k and )T = )T = kT (1)
n } .n I
(>,j:1 a]fc]) = 5’"]':1 aj(K] ), (2)
n + n +

and (11,

Let A denote the corresponding difference-operator,

Ak = K+ - K-, (4)

so that, by (1) - (3),
A7) = A(Ak) =0 and (AK)' = Ax, (5)

n n
A (G akx)="=: a (Ak)), 6)
() aye) =%y 3(AK) (6
n _ oh j-1 - n +

and A(Hj:l K.j) = B (“'p:;!, xp)A fcj (HqZ].Jrl Kq), (7)

where we note that, in (7), the order of the factors Kj is arbitrary,
since <& is commutative, but the order is the same in every term on

the right-hand side of (7). Let



H = (o es: cp+:cp]. (8)

Then it is easily verified that, equivalently,
A - (p cd: (Ik ed) 9 = «toor ¢ =k ) (9)

that A is a subalgebra of ﬁ; and that, for all ¢ ¢ M

qf! =¢ and Agp = 0. (1M

2 As an example of the foregoing abstract structure, we may take
J&% to be the class of all complex~valued functions of two real vari-
ables (x,¢); such that, as functions of x, they are Holder-continuous
in an interval R of the real line R (where R may be all of R), and
so are in LZ(R), and, as functions of £, their limits, as £— 0 from
above and from below, exist for each x. Such functions will be de-
noted by the alternative notations «(x,#) and « (x). The operations

£

€ ) = e, B)] = dim (e, (11

for all « in ¢4 and all x in R, clearly have all the required proper-
ties (1) - (3); and then AN is the class of all functions in &# which

are constant with respect to £ (that is, do not depend on ¥#):

H = (¢ ed: o(x,8) = 9(x)), (12)

where, therefore,

®(x) = lim p(x,n)e (13)

¢
nio0




We note, too, that the Plemelj formulae ([9]; or [5], Section 74)

yvield that
N f/ﬁ JX&*%Qin] = =2 f(x, x), (14
: X + if =-u
R '
3. If M denotes an (n x n) matrix with elements
(M), =1, c ok (15)
~ 1) 1}

then we can define its determinant in the usual way:

D=detM= |, 1

i1 Mgt Bl = [

LL

oo o u_

11 712 1n

Hop W2 *° % Uy

o e
. -

Ll.nl H.n&

o 00 H

where Pn denotes the set of all permutations p of N = {1,2,...,1)
and gp is the parity-index of the permutation p (taking values 11).
Thus it is clear that D ¢ & also. Further, by (6), (7), and (16), we

see that

. - - + +
AD~~h1UHﬁHZ’ 1L (AL, )L T P )

1(j=-1) ij7 i(i+1) in

Supposc now that N 1is another (n X n) matrix with elements

(N),, = v,, € &, (18)



and suppose further that, for all i, j ¢ N,

Auij :Avij" (19)

If we write
F=det (M -NJ); (20)
then, by (6), (17), and (19), we see that
AF =0, (21)

We shall seek various representations of F and consequent identi-
ties arising from (21).

If there exists a matrix H with elements

which satisfies the matrix equation

MH = N, (23)

IR

then M - 131 = M(I - Ii); so that, since the determinant of a product

~

of square matrices equals the product of their respective determinants,

we get, by (16), that
F:Ddet(rlv—-r};l). (24)

To expand det (I - H), we observe that a determinant is a linear

~

function of each of its columns (compare (16)): thus det (I - H) is

~

the sum, over all ways of selecting certain columns (say the p columns




O eee

indexed with jl’ jZ,,..,jpeN; where

1_<_j1< ]Z<°°'<j <n, (25)
to be specific) from H and the remaining columns from I, of (—1)p
(to allow for the fact that —-;:I occurs in the original determinant)
times a determinant of the form
0 s00 0] o« (26
0 ees O qul 0 ce0 O ”hj?_ 0 cos O qup (26)
®e0 O
l LN X O lejl O eoeoQ O nzjz 0 0609 0 vzj 0
6 0.: i ) 6 o000 5 ) 6 eco 0 1’ . o 60 0
1,-03, 1¢3,-04, (3;-D3, T
00 O e e 0 o0
0 0s0 O njljl 0 0 Yljljz Yljljp
00 0 O o008 0
O e @ Meganyg, P 0 Mpng, ° LERSMR
6 o o0 6 ) 6 OG: i ) 6 o090 0 q - 0 0o 0
M3,-13, (3,-1)3, 0 (3,=D3, o
o000 o o o6 L XN
0 .ec U, 4, 0 0 U,4, qujp
LN -X 1 0 LN N 0
0 ¢oo 9 Tl(jz'”)jl 0 ¢c0 O vl(j2+1)j2 1 0 7)(124_1)3
5 5 ) 5 - ) 5 ) 6 ..: ;— ) 5 o0e 6
et O Mgy @ Meng, LERSVER
O o o0 o O o009 0 0 60 0 Yl 0 oveo 0
RN 13, o iy T
0 090 0 vl(jp*-l)jl O 0o 0 v(jp+1>Jp [-X ] q(jpl.'l)j oo
O eos O nnjl 0 c00 O nnjz 0 s00 O Tlnjp 0 coo 1
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If we now expand every determinant (26) by cach of the columns se-~
lected from 1, and note that the p-rowed minors of a matrix vanish

whenever p exceeds the rank of the matrix [4,6], we obtain

Theorem 1. If H is any (n X n) matrix with elements (H)ij =

nij , then

_ _or _\b (p), -
det (I - H) = 70 (-1)" ’Ier Ny (27)

where Qp denotes the set of all (g) distinct unordered selections

of p indices from N = {1,2,...,n}, J= {jl,jz,...,jp} satisfies

(25), and n(p)

is the corresponding p-rowed principal minor of ]EI, ,

73
n(p) - T]- . T)' . LI ) 'n' . € d’. (2,8‘
I gy i, g
n N, , °°° M,
JZJI ]Z.JZ JZJp
i i so0ae 1] |
Jp]l ]p]Z. JpJp

It follows immediately from (24) and (27) that

rank (H) p . (p) .
F=D & ~" (-1 = N e (29)
p=0 T g My
p
4, We proceed by demonstrating an explicit ordering of the sets in

Qp. We define two integer—-valued functions on Qp:




) . . .2 ) 1
2ree iy 1 + JZI’I + ]3n + + Jpn , (30)

and

i, —1 jo~1 i ~1
'>..ﬂ(,T):->\(jl,jz,...,jp):1+<1 >+<Z, >+---+<p ); (31)

where the set ] satisfies the relation (25).

Theorem 2. The function xp defined in (31) puts the sets

. . R n
T e Qp in one-to-one correspondence with the integers 1,2,...,( b Yo

Proof, By (25), no two distinct sets in Qp have the same index
(30). Thus the function Jcp puts the sets of Qp in one~to-one cor-
respondence with a certain set of positive integers (however, these
integers are not consecutive,) The ordering of Qp corresponding to

increasing numerical order under Lp is that which we shall impose:

2'] 1° The ordering

it is the lexical ordering of the 'words’ jpjp_1

o.!j

(,Ondition

forany I,7 ¢ Qp, both ordered as in (25), holds if there is an r

(necessarily unique) taking one of the values 1,2,...,p, such that

i < i and (Vs > r) Iy = Jge (33)

For a given r, the number of sets I satisfying (33) for a fixed | is
equal to the number of ways of selecting the r indices il’ i&, vee ’ir

j -1
all (by (25) for I) less than _jr; namely, ( rr ) Thus, the total



number of sets I satisfying (32) (that is, preceding J in the im-

posed ordering of Qp) is clearly Xp(]) - 1, by (31). The assertion

of the theorem follows, [‘[—
Let
c=cn,p =(") and q=qn,p = (") (34)
- 7 - p - r - p—l °
The (¢ x ¢) matrix E(p) with elements
ng)) =y Ny ot Ny e o, (35)
11 N2 17p
N, . N, , e°ee T, .
iy 1l 1y
'ni j ni j o 00 ni j
p'l p2 p'p

which are p~rowed minors of H; where the sets I and J of indices

are ordered by kp; is called the p-th compound matrix of H (so that

(n) = det H.) The minors n(p) defined in (28) and

17

occurring in (27) and the expansion (29) of T are obviously the

H = H and H

diagonal elements of E(p). Thus we may write (27) and (29) in the
forms
det (I - H) - -\.:‘sfé* B -1)? trace 1" (36)
and
F=p s (1P trace 5P, (37)

p=0




The Binet-Cauchy theorem [4] asserts that, if MH = N as in

(23), then

(P)..(pP) (p)

VR RS (38)

(p)

where M P and N(p) are the p~th compounds of M and y,

respectively, Write

- det MP), (39)

Let Di]’ denote the determinant obtained by replacing the i-th column

(p)

of D by the j-th column of N and similarly, let DIT denote the

(p)

determinant obtained by replacing the Xp(I)—th column of D by

the ),p(])—th column of N‘p)(these are the columns respectively in-

dexed by thesets I and T in Qp.) Then the Leibnitz~Cramer rule
tells us that, if D = det M Z 0, then the solution I:I of (23) is given

by

n,, =D,, /D; (40)
1] 1]

(p) (p)

and similarly, if D'® = det M® £ 0, then the solution H'® of (38)
is given by
(p) _ (P, (P)
Ny o= D”/D . (41)

From this, we derive yet another form of Theorem 1 and of the expan-
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sion of F: by (27), (29) and (41),

_ o orank(H) P (p) ,(P) ,
det (I - H) = Zp=0 (1) QIer DH /D (42
and
(p), .rank(H) .. p _ (p) R
. 5 LS 2 . 3)
F=[D/D"] %m0 (-1)% ]CQP D” (4

It is well-known [4,6,7] that a determinant can be expanded by

any column or row;

n itk
D = ko1 (-1) ukiC(uki),
and (44)
n itk .
D = 21 (-1) Hkic(uki)'

where C(.L, ,) denotes the complementary minor to u in D; so that

ki ki

c
(if denotes the complement in N)

(n-1)

- ) 15
Clyyy) =My (45)
It is further well-known that (44) can be extended to yield that
n i+k
N -1 ; =6
Tap TR ug g Gl ) = 650 Dy
and ‘ (46)
_ o1tk . |
“'i:l ( 1 ukvic(-u'ki) - Ukk‘ D" i
The Laplace expansion theorem [4,6,7] states that, if
o = s g (47)




11

then
O (T 4+ 0 (K
D - (-1) B )u(p)(,i(u.(p))
Ker KI " KI'
and (48)
5o (-1)mp(l)+op(}\)u(p) (\(H(p)>.
- "'IEQp ‘ "KI VKD

where C(LLI(J;)) is the (n-p)-rowed minor complementary to the p-rowed

(p)

K of D; so that

minor

(n=p)

) = “LKCIC .

(£9)

It is easily shown, by a proof analogous to that used to extend (44)

to (46), that we can extend (48) to yield that

o _(1)+0. (K) \
- . P p (p) (p), _ !
LKer (-1) Mg CHgr) = op P
and (50)
0, (I)+0, (K)
] 4, P P (p) (p), _ .
‘&’Ier (=1) Mg Cligr ) = Oy Ds

where, because of the internal ordering (25) imposed on the sets in

Qp,
6 v F 0 IE) o ° 0 (&‘)' 11 ° (51)
I1 1111 1212 lplp

Finally, we observe that, since U“Ig) is an entry in the compound

(p)

determinant D(p), we may apply (46) to D', with the notation

{(p) (p)

KI

(p), (pP)

C ('UKI ) for the minor of D complementary to 1 , to obtain



. _ p (p) ~(p), (P) . (p)
Ker (-1) oL C (MKI) bI I b,
and (52)
A (D4 (K)
- _ (p) ~(pP), (P), _ (p)
“"Ier (1) g O g ) = g D
(p)

Theorem 3, The minors complementary to u in DD and in

KI

D(p) are related by

C (,LLKI) ) D(p) ap(I)+>\p(I)+op(K)+>\p(I\)
——--'-—(—p—)—‘—“ = ”—"D (~1) o (53)
C(uKI )

Proof. We use the second equation in (50) (the sum by rows)

and the first equation in (52) (the sum by columns) to derive the re-

lation:
T e = 5. Qp(—l)xp(lmpml)éKK'DC(p)‘“}i'})
. . Qp (_l)xp(I)Jr)\p(K')+0p(I‘)+Op(K)MI<<l:)[' C(;.LI?;).)CI(M(,LLI(\.‘.)I)
g e (m&H.D‘p’cmfﬁ?) - <~1>opmMP(K)D(")cmfg’).

2

From the extreme members of this chain of equalities, the relation (53)
follows at once. f']L-—

The Sylvester-Franke theorem [4,7] asserts that
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where q is defined as in (34)., This means that we may replace
(p) q-1 .
D/D by D in (42), (43), and (53), for instance.

Consider now the sum by columns (the first equation) in (52).

In view of the definition of D;L;), it is clear that
A (D+n (K)
1\ P p (p) L(pP), (P), _ (D)
”"Kc—:Qp (~=1) VK] C (LLKI ) = DH . (55)

Similarly, if DI denotes the determinant obtained by replacing the

]
is-th column of D by the js—th column of N, for s=1,2,...,p, the

sum by columns (the first equation) in the Laplace expansion (48) of
D vyields the equation

o_(D+c_(K)
(-1) P p "1(3)(3(“1(51))) = DH. (56)

Theorem 4, With the notation defined above,

(P) ,(P)
DH /D :DH/D. (57)

Proof, If we apply (53) to the left~hand side of (55), we obtain
D(p)/D times the left-hand side of (56), TFrom the corresponding re-
lation of the right~hand sides of (55) and (56), the result (57) follows

immediately, H_

From (41)and (57), we get

(p) ) ,
UEE D”/D, (58)
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and (42) and (43, by (57), become

rank(H) P
det (I- H) = = ~' (=1 D../D 59)
e (N H) Lp:O (=1 ZIGQp U/ (
~rank (H) p
and F = = ~N=1) . 60
=0 (-1) Je Qp 1 (60)
5. The concept of a p~th compound matrix extends to arbitrary

rectangular matrices: if H were defined as an (mXxn) matrix, then

(p) m n (p)

H would be the ( (p) X (p) Yy matrix whose elements are -qH ,

just as in (35), with I = {il,iz,...,ip] (1511< i, <eee < ip_<_ m)
a p-index subset of {1,2,...,m}, ordered in H<p as a row-index

by xp; and with J = Ul,jz,...,jp} (lgjl<jz<---<jp_<_n) a

(p)

p-index subset of {1,2,...,n), ordered in H as a column~index,

also by xp. With this definition, the Binet-Cauchy theorem [4],
invoked for the product of square matrices in (38), holds for arbitrary
feasible products of rectangular matrices,

Certain important properties of matrices will be required below
(see [4,6,7].) First, if X and Y are any two matrices, so dimen=-

sioned that both products XY and YWX are feasible, then

trace XY = trace YX. (61)

s e

Secondly,

g?, (62)

Thirdly, if the superscript T denotes the transpose of a matrix, then




15

trace (cIiT) = trace (cH) = ¢ trace H (63)
and

EHP = @) (64)

Fourthly, we may define the p-th compound of a matrix to have zero
trace and zero determinant if p exceeds the dimensions of the matrix.
In fact, it follows directly from the definition of the rank of a matrix

that

H = 0 if p > rank (H). (65)

We can now derive

Theorem 5, f Z( and }/J are (m x n) and (n x m) matrices,

respectively; then

det (1™ 4 xv) = det (1™ +vx), (66)

o~ o~ ~ ~

)

where I(m and I(m respectively denote the (m x m) and the (n x n)

unit matrices.

Proof, By Theorem 1, in the form (36), with -XY for H, and

by (62) with (63), we get that, if u > max(m,n),

(m) m p (p)

det (1 + XY) p=0 (-1)

~

il
Rl

trace (—?SX)

u (p)
b P
R trace (XY)

H
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since rank (XY)< m < u. Similarly,

det (g(n) +YX) = 5‘,2_0 trace (:\:{?S)(p)- (68)
Now, by the Binet-Cauchy theorem,
%X)(p) _ Zé(p)X(p) and (X,)g)(p) :X(p)’}s(p)’ (69)

Thus, by (61), the results (67)-(69) combine to yield (66). f-

Note, The result (66) follows from an observation due to Noble

[8], and the authors are grateful to him for bringing it to their atten-

tion, He states the following result as an exercise,

Theorem 6. (B, Noble,) f ’Zi, B, C, and D are respectively

— ~

(mx m), (mxn), (nxm), and (n X n) matrices, with ,]5, and D non-

~

singular; then

det A det (D +g§'lg) = det D det (A + 3D 0. (70)
Proof, The determinantal identity,
faelra™ e ia ejl
et | |
lenlle < |
-1 - N\
(12 BilA Q A O (
= det% (71)
Ll-epnllo pYle o|f
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(where (,) denotes blocks of zero elements of appropriate dimensions),
holds because the determinant of a feasible product of square matrices
equals the product of the respective determinants, and is therefore in-
dependent of the order of the matrices. On multiplying-out the block~-
matrices in (71), we get that

A B | a+BD7'C) B

~ ~~ i ~ ~

det = det ; (72)
O (13+CA'1§) o] D

~ At~

and now the theorem follows, by the Laplace expansion of these

determinants, H

Our Theorem 5 is now seen to be a particular case of Theorem 6,

(m)

with A=1™ B=y, =%, and D-1",

6. We now return to the example presented in §2. Let

M =N (

73)
so that, if Q. ¢ o€ A, their inner product is given by
(g = [ o v iy *ay (74)
Ll Ts=l s S !
"R
where the asterisk * denotes the conjugate complex quantity., Thus
M is the direct sum of m replicas d’s of N
m
M =5 @ N (75)

s=1 S



i8

We may now define the space ‘3", bearing the same relation to 4
as o doesto A if w e § it will have m components w e ot

with r=1,2,...,m, with values denoted by w, (x); and w itself

Er

will sometimes be written in the form w,, to emphasize the dependence

&l

on the parameter £.
We can now define vectors and matrices whose elements are in
’Y , and linear operators mapping % into ¥. If T denotes such an

operator (also written T,_), it will have a kernel function T{frs(X’Y)’

3

such that

m

(T g0), ) - Zs:lfR T, 06 V)0, ) 4y, (76)

=

forall w =w . e 4. We shall also define a simple linear operator

~E

Fﬁ mapping linear operators on ¥ to ¥ into other such operators, by
T, (X,¥)
Ers .
r.T X, = ' 77
Ty = Ty (77)

for all linear operators T. Related to this is the linear functional

ge , defined by

_r ¢ d -
(3, @)1 -JQ el CRO KPP (78)

forall o e J(’, and more generally by

9, )]0 = [-——-”~—-—-— - g, 00, 0](), (79)
At Jr £
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where [ 1is any matrix with elements kij e HN. We note, by the

Plemelj formula (14), that

A [gﬁ(fp)]}(X) = = 2mi @(x)

(80)
and (819, W10 = = 2mi . G0);
or A[gé(cp)] = o= 27 @ (81)
and A[gg({\*)] ==2m A ; (82)
or, more abstractly, Agg = - 2mi, (83)
With these preliminaries, let us define the (n X n) matrix K
with elements (AKJ)ij = Ky € S, defined by
v, (V)B; (y)dy
¢ m o, (V)8 (¥)
k., (X)= 6., - AB)‘,ZS,,"‘. ; 84
(s , t * T ¥
where t denotes the Hermitian conjugate-transpose, B = (B) or (B )rj =
f?»].:;, and A and B are (n X m) matrices with elements
= Q - &
@), =a, ¢ Mand (B)ig = Pjg € KN (85)
Let @ be an (n x n) diagonal matrix with elements
(.. = 6., 9 (p, € ¢/(), (86)
~ 1] ]
and write M = Ko (87)

and ' N = -Ag,(B®). (88)
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Then the formulae (81) - (83) give

6. (x) = [A (v, )],

& (“E" it £ij

- m
lJ)](X) =2m 2, o, (®)B

1 it
in accordance with (19).
Let us suppose that, for all sufficiently small values of ¢

and for almost all values of x in R, the matrix K defined in (84)

is non-singular., Then the equation

—

K6 = 0 - g,(AB)0 = A (89)

NSNS s ﬁ

has a unique solution € = K—IA, for almost all choices of x € R.

® will have elements 6 c o, with i :1,2,...,n and r=1,

Eir
2,000,m. Let us further suppose that the matrix o is also non~-

singular (that is, cpl (x) cpz(x) ceo cpn(x) A 0) for almost all values of

x ¢ R, Then we may define the (n X n) matrix

—

f .
H=-00g,B9)), (90)

~ ~ ~r

for almost all x ¢ R and all sufficiently small values of €.

Now, by (87) = (90),
ME - KOH - -K09, (B0 = -Ag

that is, we have

Theorem 7. If ® is non-singular for almost all x ¢ R and if

K (defined in (84)) is non-singular for almost all x ¢ R and for all
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sufficiently small #; then H (defined by (89) and (90)) is the solution

of (23), for M and N defined in (87) and (88).

We now return to «# and /?", and define operators V and G,

~ft

by
V(x,V) —A(X)TB(Y)*or V (x,y) = 1 o (x) R, ( )* (91)
S rs YN = ir') is'Y 7.
and § '
G (%) =0 (X)BK or G, (x,y) = 5 6, (x)P._(v)e (92)
~g £~ Ers ' “i=1 “firT is 7t
Then (89) yields
t 1 f ‘ f

~

B(Y)Qé(x) - B(v)[g,

or, by (79), (91), and (92),

Y.
.n m _n it
Gppgle¥) = 5y 2y 7y Bigly) @

which reduces, by (76), (77), (91), and (92), to the equation

(x,u) Vts(u,y) du = Vrs(x,y);

that is, we get

Theorem 8, With V defined as in (91), the operator equation

G, = 1+ T, Gy (93)

has the solution (92) (in terms of Q defined by (84) and (89).)
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The equation (93) is called Friedrichs' equation [2,3].

We note from (89) and (92) that 9;: is not dependent on .

Let us choose for ¢ the matrix

g = 1™, (94)
and write similarly
no= opr'™ (95)
(n) (m)

where 1 and [ are respectively (n X n) and (m X m) unit

matrices, and we have taken all the cpi = . Following the defini-

tion (76) we shall write

ToM) (=3 [T (v) dy. (96)

=2
N{-i ~ s t:l o

éirt(x' VI Ugts

R ) £l

Theorem 9, With the notationdefined above, if F is defined

as in (20), with M and N defined as in (87) and (88), and @ takes

~

the value y; forany A, B, and ¢ ; then

(m)

F=(detk) ¢  det[(I'" +T,G ] (97)
, aonomo ] (p) 8
or I' = (det K) ¢ Ym0 trace (A "1, G, N) ", (98)

Proof. By (16), (24), (87), (88), (90), and (94), with Theorem 5,

det (K ¥) det [}J n

s ]
1

1

(det K) (det y) det [T ' + g, (BY)1 €l (99)
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Now, by (77), (79), (92), and (95),

Bly). -1
K g(m{mf 9,]Sr 2501 [ X +ib-y dy [¥(x)] Opirt)

-1
= 0TGN ). (100)

Hence, by (99) and (100), and since the determinant of a matrix equals

the determinant of its transpose,

F = (det K) (det ¥) det [Q_l(g(m) + FQG JA ]
-1 (m)
= (detK) (det p)(det A 7) det[(I" + I,G,)A (1o
Since, by (94) and (95),
det y =y and det A=y, (102)

it follows from (1 01) that (97) holds.

Now, by the formula (36), with H replaced by - A TGN,

Rk

and using (62) and (63), we see that

-1
-1 _(m) G ~rank(p T -1 0)
det[A (I + T{ < j\] Spe0 {-‘ﬂ{-‘w) trace(A [%ﬁ%g]ﬁ')“ (103
whence (98) is obtained, when we note that
rank (Q'lﬁﬁg’p&) = rank (N,G, A) < m, (10:1)
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since the matrix is (m X m), H_

Theorem 10. With the same notation as in Theorem 9,

(m) -

(m) yﬁ“gf’){\;] = (det rli)—det[(g +1" G YA]. (105)

(det )" det[(1

Further, if m = 1, we have the operator equation

(et 1 +rGN) = (et TG, (106)

Proof, We simply apply equations (4) and (21) to (97), to get
(105). If m =1, the equation simplifies to
+
)

(et K71+ TGHy = (et ®)” (1 + T Gy, (107)

where G, is now a scalar operator. Since ¢ is an arbitrary function,

€
this yields the operator equation (106). {

Note. The particular case represented by (106) was proved, inde-

pendently and by a different argument, by Carey [1].
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7. We now turn to another question associated with the example
examined in §82 and 6. With the notation of §6 and the assump-
tion that K¢(x) is invertible, we seek an (£ X< m) matrix 4 (X,

with elements
(Z) =t ¢ ,’4:, (108)

such that, for all m-vectors g(x), with elements cpr € m

6 (2,0 +T,Gpl =0, (109)
that is
gg(x,y)gg(y)
A(Z, (%) @(x) + Z (x)f S T dy)=o0. (110)
~ET ~E R X+if-y
By (89) and (92),
G ley) = A K 60 " BWT (111

W
where denotes the transposed inverse, rIgW: (K ")Y7; so (110)

becomes
2gr A bt

B 1Z, 0 + 2,080 K, 00" [ RV 2V 4yy 0 a1
R X+

Suppose now that A(X):‘: A(x)T is invertible almost everywhere

~

in R, and consider

AT AT, (113)
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for some (/ xn) matrix P(x) with elements («E>uj = pui ¢ e Then

(112) reduces, by (81) - (84), and since }fTKW - i(n)/ to

~

A o, T 3 T -
no-- {Pix‘;ll}.ﬁ,.u) [ALX) A ! ,1\\.(><') _qx(x)

H ~

o - w [ B(v) *q)(y)
+ A AR T AR TAL) ] T A A : Ko(x) / oL T dy )
P ~ g —~— e~ ~ — oy . IR ' _i ?.:y -y

N T -1 o
= 2111 P(x) B(x)"‘A(x)T[@(x)"’ﬁ(x) | A(x) " p(x)

~ 2011 P(x) B(x)" q(x)

st B T~ b
= 21 P(x) B(x)” {A(X)T[é(x) A(x)] IQJ(X) —g(m))gyx). (1144

Thus (114) will be satisfied, for all g(x), if B(x) B(x)* is invertible

almost everywhere in R and if we choose
P(x) = A(x)™[B(x)" B(x)*] * B(x) ¢ (115)

and so, by (113),

~ ~~

Z,(x) = A(x) " [B(x) B(x)*¥] B(X)Trlgﬁ(x)T[A(x);::A(X)T]—lé(x)*. (116)

X \ B T T 5 . .
However, if both A A" and B B are to be invertible,
necessary and sufficient conditions arc that both A and B be of
full rank; so that both n<m and m > n, thatis, m - n. But

then A and B will be invertible square matrices, and a simpler

(n)

solution suffices, since (114) holds exactly: wec may take P=1
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and so
(x) = K, (x) A(x) . (117)

Note that the invertibility of B is no longer required, here. Thus

we obtain

Theorem 11. Sufficient conditions, for the existence of a matrix

%ﬁ(x) satisfying (109) or (110), are that m = n and that A(x) and

D

K;,(x) be invertible for almost all x in R and all sufficiently small

~afer
2

£, Then (117) provides the solution.

2

In this case,

det Z,(x) = det g'{:(x) / det A(x). (118)

£

We have thus found solutions to our problemwhen m =1
(Theorem 10) and when m = n (Theorem 11), One more case readily
yields a solution: when n =1. In that case, A and B are respec-

. , , T T )
tively, the m-dimensional row~vectors « and Q with elements

(M), =@ =a ¢ o and (B) =) =p cH (119

~"1r ~'r r ~1r

and K_(x) is a scalar,

~

K (x)= k {(x)=1~- [ _______._.,. dy; (120)



28
and, further, we note that the scalar quantity
aly) By) = 5B = fg. (121)
We now get

Theorem 12, When n =1, a solution of (109), for K;:(X) Jon-zero

almost everywhere in R for all sufficiently small £, is given by

Z,(x) = Kk, (x) B (x). (122)

d

Proof, Substituting (122) in the left-hand side of (112), for the case

of n=1, yields

, - |
. {K§(X) ET (%) p(x) + QT (x) a(x) M dy)
: VR X+iE-y
= 27 g(x) ,@(x)" @"’f (x) p(x) = 27 E‘ (%) a(x) E*r -
= 27i [Q(X) E(X) sk _ E1 (X)% X)] E! (X) rCR(X) - l

where we have used the commutativity of scalar multiplication and

the identity (121). J-
In this case, we have, by (91), that

V(x,y) = Ax) BY)" = alx) P(y) . (123)
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