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ABSTRACT

A numerical method is developed for a
widely studied, wind-driven ocean circulation
model. Examples of flow patterns of the
northern Pacific, which include large non-

linear effects, are given,
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1. INTRODUCTION

The study of wind-driven ocean circulation has been,
and continues to be, of interest to mathematicians, fluid
dynamicists, meteorologists, and geophysicists (see, e.g.,
references [1] - [7], [9] - [13], [15], [16], and the ad-
ditional references contained therein). The purely mathe-
matical approach (see, e.g., [4]1, [5]1, [12], [13]) to
related dynamical problems has been based primarily on
linearization and the application of singular perturbation
technigues. Though this approcach has ylelded some general
qualitative consistency with actual circulation patterns,
it has not yielded results of acceptable quantitative
accuracy ({41, [5]). For nonlinear models, the applica-
tion of numerical methods using explicit step-ahead
difference techniques has yielded a varilety of interesting
fluid phenomena (see, e.g., (21, [3], [7], [16]). However,
for such techniques, no attempt is usually made to verify
whether or not a stable time step At 1is sufficiently
small to insure a physically reliable degree of convergence.
In addition, the excessive costs of such methods usually

places them beyond the means of most researchers.



By limiting attention to steady, nonlinear, two-
dimensional problems, we will develop in this paper a
fast, economical numerical method for the study of wind-
driven ocean circulation. The physical model is one of
the most intensively studied of the last twenty years [4].
The method to be developed was applied, in an earlier
form, to cavity flow problems [10] with arbitrary Reynold's
numbers [8]. Throughout, it must be kept clearly in mind
that, though the method will work for all choices of
equation parameters, a physical steady state solution
may not exist for all such parameter choices ([1], [2],
[9]). Thus, physical insight is essential in the applica-

tion of the method and in the interpretation of the results.

2. A NORTH PACIFIC MODEL

For clarity, let us direct attention to a prototype
model of the wind-driven circulation of the Pacific Ocean
between 15° and 55° north latitude, which is formulated
in simplified coordinates as follows [4]. Let the basin
be bounded by the isosceles trapezoid OABC shown 1in
Figure 2.1, where OA is a segment of the line y=x , AB
is a segment of the line y=w , and BC is a segment of
the line y=ln-x . The differential equation to be
satisfied by stream function ¢ in the interior R of

the basin is
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(2.1) ¢ AAw+u(wyAwX—wawy) -V, = sin y ,

where € and o are small, positive parameters. [BEquation
(2.1) incorporates frictional resistance, fluid acceleration
relative to the earth, the change with latitude of Coriolis
acceleration, and an idealized wind stress distribution in
which easterly winds predominate over the lower half of the
basin while westerly winds predominate over the upper half.

The boundary conditions to be satisfied are

(2.2) V=0 , on OABC

(2.3) v, =0 , on OA and on BC

(2.4) V] = 0 , on AB and on OC.
yy

3.1 The Numerical Method

It will be convenient, for the numerical method to be



developed, to reformulate the problem of Section 2 as

follows. PFirst, introduce vorticity function w by
(3.1) Ay = ~w ,
so that (2.1) implies

Ql

(3.2) Aw +-E [?ywx_wxwél = -% [?X+sin y]'

System (3.1)-(3.2) is, therefore, equivalent to (2.1).

Note, immediately, that (3.1) is linear in ¢ , while

(3.2) is linear in w . Second, assume that (3.1) is

valid, in the limit, as one approaches OABC from the interior
k , and note that wt = 0 , where wt is the derivative

in the tangent direction on OA and BC. Thus, boundary

conditions (2.2)-(Z.4) can be reformulated as

(3.3) v =0 , on OABC
(3.4) b, = wv = 0 , on OA and on BC
(3.5) w = 0 , on AB and on 0C.

We will then consider the problem as defined by (3.1)-(3.5)
and the numerical method is described as follows.

. ; - . m
For a fixed positive integer n , set h = o

Starting
at (0,0) with grid size h , construct the set of interior grid

points R in R , and the set of boundary grid points S in

h h
OA, AB, BC, and OC. Let §h be that subset of Sh which is
not in AB or OC. Then for given tolerances €4 and €5 »
let us proceed to construct on Rh a sequence of discrete

stream functions




(o) (1)

(3.6) v 7,0

(3.7) w , W S, W T sw R

such that, for some positive integer K , both the following

are valid informly:

(3.8) OB

1 ? h
K K+1
(3.9) ]w( )—w( )] < ey , on R +3
Initially, estimate w(O) on Rh and w(O) on
Rh+§h . This may be done by using constant input values

or by using previous numerical results (bootstrapping).

5} k
To produce the k° iterate v ) or (3.6), ror k=1,2,...,
write down at each point ((m+l)h,mh),m=1,2,...,n-1, the

equation

(3.10) 9((m+L)h,mh)=p((m+2)h,(m-1)h) ;

at each point (4n-(m+l)h,mh),m=1,2,...,n-1, the equation
(3.11) Y (4r-(m+1)h,mh)=¢(4n-(m+2)h,(m-1)h) ,

and at the remaining points of Rh the discrete analogue

(k-1)

(3.12) —Mw(x,y)+W(X+h,y)+w(x,y+h)+W(X—h,y)+w(X,y—h)=—h2w "(x,y)

of (3.1). Difference equations (3.10) and (3.11) insure good

approximations for (3.4) near OA and BC. Solve the resulting



linear algebralic system by successive overrelaxation with

overrelaxation factor r and denote the solution by

w(k) W(k>

Then, on R, ,

N is defined by the smoothing

formula

(k):pw(K—l) —(k)

(3.13) v +(1-p) Y , 0 <p <1

(k)

To produce the kth iterate w of sequence (3.7)

for k=1,2,..., proceed as follows. Let (x,y) be a

point of §h which is in OA, as shown in Migure 2.2a.

Then at each such point write down the approximation

() (k)

Figure 2.2
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(3.14) E(k)<x,y)=:3 w(k)<X+h,y)~§2w(k)(x,y—h>
h

2 h
Approximation (3.14) can be derived readily by inserting

Taylor series for y(xth,y) and y(x,y-h) into

wxx(x,y)+wyy(x,y)=aow(x,y)+alwx(x,y>+u2wy(x,y)

+0631P(X+h,Y)+OL;4 (\U(X>y_h> L]

by setting corresponding coefficients equal, and by
utilizing (3.1), (3.3) and (3.4). Next, let (x,y) be
a point of §h which is in BC, as shown in Figure 2.2b.

Then, at each such point write down the approximation

(3.15) T G,y =-2 ) (eon Ly -2 9 (o, y o)
h h

Smooth w on the boundary by

()

(3.16) o )= e Gy w50 () 0y <

Next, at each point (x,y) in Rh , write down a difference

analogue of (3.2) as follows. First, set

p o= YOx,yth)+¥(x,y-h) 5 = Y(xth,y)-y(x-h,y)

2h 2h

and define M and N as follows:



w(x+h,y)-w(x,y) if A >0
h 3

M = w(x,y);w(x—h,y} . if A < 0

N = w(x’y)gw(x’y‘h) , if B > 0

w(x,y+th)-w(x,y)
h 3

if B <0
Then, at (x,y) , the difference analogue of (3.2) 1s

(3.17) =dw(x,y)+w(x+h,y)+u(x,y+h)+w(x-h,y)+w(x,y-h)

mkz h2
+—€i—[AM-BN:l = = B+siny]

One now solves the linear algebraic system defined by (3.17.

with boundary values defined by (3.16) by successive over-

relaxation with r, and denotes the solution by E(k>

L ()

Then, on R_ , is defined by the smoothing formula

=

w(K)=u2w

(k-1) —(k)

+(l—u2)w s in2il

The iteration is continued until (3.8) and (3.9) are

(K+1) and w<K+1) are

valid. After checking that ¢
actually solutions of the difference equations, these are
taken to be the approximations of ¢(x,y) and w(x,y) ,

respectively.

4, Examples

From the variety of examples run on the UNIVAC 1108

at the University of Wisconsin, let us show how to generate
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the solution for a typical problem of physical interest [5]
that in which € = 0.005, o = 0.15 . Throughout, let

n = 10.

Since no choices of p , Hy s Mo s €9 and € ever

2
yielded convergence for initial values w(o)=w(o)=0 , a

bootstrap procedure was utilized. Beginning with W(O)=w(o)
the problem was solved numerically for €=0.1 , a=0 . Then,
5(0) (0)

using each new result as

and « for the next

case, the problem was solved in succession for €=,05

s
.03, .01, .005, .001, each with o=0 . Except for €=.03 ,
which varied little from €=.05 , these results are shown
in Figures U4.1-4.5. Figures 4.6-4.7 show the results of
bootstrapping from €=0.05, o0=0 to a=0.2, 0.1 , whilé
Figures 4.8-4.9 show the results of bootstrapping from
e=.005, o=0 to a=0.04, 0.15 . The running times never

exceeded five minutes for any individual case and the

other parameter choices are shown in the TABLE.



0.

.05
.03
.01
.005

.001

PO

.04

.15

.005
.0025
. 0005
.05
.05
.0025

.0025
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TABLE
My

1

05 0
02

.005 0
.0025 0
.0005 0
.05 0
05 0
.0025 0
.0025 0

.995
<9975
.9995
.95
.95
9975
9975

0.03

o

.0l5
0.085

0.005

0.005

(&
(OS]

i

~N &

.
~J

~  ~ =

T
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5. Remarks

Beyond the general flow patterns exhibited in Figures
4,1-4,9, it is worth noting that one can detect, from
these, certain effects of varying € and o . Thus,
Figures U4.1-4.5 indicate that if one neglects fluid
acceleration relative to the earth (a=0), then a decrease
in frictional resistance (e~»0) results in a tendency to
develop a secondary vortex in the lower-left hand section
of the basin. However, inclusion of a moderate amount of

fluid acceleration tends to negate this effect (see Figures

hoh, 4.8).

Numerically, the results described in Section 4 should
be considered more qualitative than quantitative because of
the relatively large grid size and convergence tolerances.
However, the method can be applied with smaller grid sizes
and tolerances at a moderately increased cost in computer
time. Exploratory examples with n = 20 and parameter
choices like those in the TABLE indicate that each case re-

quires 5-20 minutes of computing time.

Finally, so that any researcher can reproduce our results

the computer program used is made readily availlable in [14].
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APPENDIX
GRUN SCHUBERTSETIC.

PRELIMINARY TAPE AND DRUM FILE ASSIGNMENTIS AND COPYING TO0 BE MADE
IF THERE IS TAPE INPUT OR IF THERE IS TO0 BE TAFE OUTPUT.

BASGe TH 10.07+%0158

BASG e T 1l sF2/11/TRK/20
aASGe T 12.2F2/711/77RK/20
SREWIND 10.

@CCRY+GC 104911,

BREWIND 10

@FCRsISZ oNCRPAC

C PARAMETER VALUES 10 BE SET FCR EACH RUN

C N = PIZERID SIZE

C MAXIT = MAXIMUM NUMBER OF SOR ITERATIONS 1C BE ALLOWED IN

C EACF OUTER ITERATION.

c IDREC = NUMBER OF TAPE RECORD CONTAINING INITIAL VALUES FOR

C CUTER ITERATION FOR CCOWPUTING STREAM {PSI) ANLC VCRTICITY
c tOMEGAY FUNCTICNS. (IDREC = 0 IMPLIES NC TAPE INPUT.)

C NREC = TOTAL NLMEER OF RECCRCS ON INPUT TAPE FILE.

PARAMETER Nz1O0oNPI-N4¢1eNUZ4sNoN4PI=NY21sNIP1=3eN21
PARAMETER MAXIT=20DeIDREC=5¢NREC=12Z

REAL MUC2eMULEZS

DIMENSION PST{NU4F1oNP1o5)eOMECAINUPLINPL1o5)e C{NGP1aM105),
2 DINGPIoNP1Y oSINYINPL) oHSQOMINGP1NF1Y

DATA FI1/3.14159265/

IENC=C
ITREC=0O
ISCL=D
ALFCON=-1.
EPSCOAN=-1.
C INPUT INITIAL VALLES FROM TYAPE IF REQUIRED.

IF{IDREC-EQ@.00 CC TC 32

ASSUME CATA HAS EEEN COPIED FRCM TAPE TO DRUM FILE 11e WRICEK.
ALONG WITH DRUM FILE 12+ HAS BEEN ASSIGNED FOR THIS RUN.

AT THE END CF THIS RUNe DRUM FILE 12 KILL CONTAIN THE CCNTENTS

OF THE INPUT TAPE FILE PLUS POSSIBLE ADDITIONAL RECORDS COMFOSED
CF SCOLUTICNS CBTAINELC FROM CATA CASES EXECUTED THIS RUN. IF ANLC
CNLY IF THE RUN TERMINATES NORMALLYs THE CONTENTS OF DRUM FILE 1:Z
MAYe IF DESIREDes BE COPIEC OUT TO YTAPE TO BE USED AS INPUT

FOR LATER RUNS,

O NOOOOOHON

DO 1 K=I»IDREC
ITREC:=K
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READE210END=2) ((PSI€Icde5liel=1oNGPI) s =3 sNFLIIe(¢OMEGCACTovJoSFoIzl,
= NUP1deJz-leRP1)

1 WRITEC12) ((PSI(IoJeS5kel-1oN4PIBoJ=T1eNF1)oC(OMECAITIoJeE)oI=1oNAPL]

& 9gJzleNP1])

WRITEL G851}

CALL PRINTIPSI(1019¢508

CALL PRINT(CMEGA(1ele5)1)

IF{IDFREC.EQ.NRECY CC TO 3

I1-IDREC+1

L0 301 K=-I1eNREC

ITREC=K

REAC{L11+END=2) {{PSI{ToeJe3lel=1eNuP1leJ=1oNPLI o {{OMECA{TIoJe3IdeI1o
¢ NGPlioJ=1oehNF1ll}

301 WRITE(12) ((PSI(I1eJo33eIl-1oN4PLI)oJ=1oNP1Yo ((OMEGAIT vJo3dol-lsNUP1)

z oJrlshP11}
G0 1C 32

2 ISTATZINSTAT(O.)

WRITE(E+»828) ITREC+ISTAT
IF(ITREC-LE-IDRECE STOP
IF{IENDNEO) STICF

INPUT PARAMETER VALLES DEFININC COMPUTATIONAL DATA CASE
TO BE EXECUTED.

ALPHA = VALUE OF THE GREEK LETTER CF THE SAME NAME USED IN
THE MATHEMATICAL DESCRIPTION OF THE PRCELEM TO BE SOLVECL.
“PS T VALUE OF THE GREEK LETTER EPSILON USED IN THE MATHEMATICAL
DESCRIPTIICN CF THE PROELEM 7O BE SOLVEC.

€1 = UNIFCRM STARTING VALUE FOR OUTER ITERATION FOR PSI (IF
NOT READ FROM TAPE OR FROM STORAGE--SEE IUSE }e

(2 = SAME AS C1 EXCEPT FCR CMEGA.
EPS1 = OQUTER TTERATION CONVERCENCE TOLERANCE FOR PSI.
EPS2 = OUTER ITERATICN CONVERGENCE TOLERANCE FOR OMECA.
RP = INNER ITERATION OVER-RELAXATION FACTOR FOR PSI.
RW = INNER ITERATICN OVER-RELAXATION FACTCR FOR CMEGA.
ISAVE = VARIABLE CONTROLLINC WFETHER OR NOT A SOLUTICN OETRINED

FCR THIS DATA CASE IS T0O BE SAVED IN MEMORY AND/OR ON
TAPE TO EE LSED 8Y SULCCEECING DATA CASES ANLC/OR LATER RUNS
AS OUTER ITERATION STARTING VALUES.

ISAVE = C IMPLIES CON®T SAVE SOLUTION OETAINEC FOR
THIS CASE.
ISAVE = 1 IMPLIES SAVE SOLUTION OBTAINEC FCR THIS

CASE IN MEMORY ONLY.

ISAVE = 2 IMPLIES SAVE SOLUTION OBTAINED FCR THIS
CASE ON DRUM ONLY.
TSAVE 3 IMPLIES SAVYE SOLUTION ON DRUM ANC IN MEMORY.

ISAVE = 11 IMPLIES SAVE RESLLT AFTER MAXIMUM NUMBER OF
OUTER ITERATICNS IN MEMORY ONLY.

ISAVE = 12 IMPLIES SAVE RESLLY AFTER MAXIMUM NUMBER OF
QUTER ITERATIONS ON DRUM ONLY.
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ISAVE = 13 IMPLIES SAVE RESLLT AFTER MAXIMUM NUMBER OF
OUTER ITERATIONS IN MEMORY ANL ON CRUVM.

TUSE = VARIABLE CONTROLLING WFETHER THE OUTER ITERATION STARTING
VALUES ARE T0 BE TAKEN TO BE THE VALUES C1sC2 UNIFORMLY
FOR PST ANC OMEGA. RESFECTIVELYes GR WHETHER THEY ARE TO
BE READ FROM DRUM OR ANOTHER AREA OF MEMORY.
TUSE = 0 IMPLIES STARTINC VALUES TAKEN AS C1l0C2.
JUSE = 2 IMPLIES TAKE STARTING VALUES FROM MEMORY (IF
SOME PREVICLSLY COMPUTED SOLUTICN IS KNCWK 1O
RESIDE THERE-~-OTHERWISE TAKE INITIAL VALUES FROM
CRULMs UNLESS THKERE HAS NDO DRUM INPUTe IN WRICH
CASE USE C1+CZ AS STARTING VALULES FOR A DEFACULT
COURSE COF ACTION.
IMPLIES TAKE STARTING VYALUES FROM DRUM INPUTe
UNLESS THERE WAS NONEs IN WHICH CASE USE (1.C2
AS STARTING VALUES FOR DEFAULT ACTION.

TUSE

t
N

MXITER = MAXIDMUM NUMBER OF OUTER TIIERATICNS TC BE ALLOWED
FOR TH+IS CASt.

IEND = FLAG VARIZBLE FOR L AST DAVTA CASE.
IEND -EQe O IMPLIES MORE DATA CASES FOLLONH.
IENC oNEo O IMPLIES THIS IS THE LASY DATA CASE.

REABUS5093¢ENMD=40) ALPHAGEPSoC1o(2¢EPSEoEPS2sRHCs MUsRPvRWoISAVE.
# TUSEsMXITERIEND

IF{ABS{ALPHA-ALFCON)olTe 20E~8 oANDo ABSUEPS-EPSCCN)I<LTo 2.E-8)
s G0 TC 3

ALFCCRhz-1.
EPSCON=-1.
WRITE{6298) ALPHAGEPSoCl1oC20EPSI9EPS20oRHCe MUsRPeRY

COMFUTE VARICUS CCNSTANTS FCR THIS DATA CASE.

ITSTZFAXO{1 oMXITER~4)
H=PI/N

HSGz=H *H
HSQE=HSQ/EFS
TWOH=20*H
AHEZALPHA*H/EFPS
AHEL =4 . ¢ AKE
HSQ2=2./HSG
RHC1=1.-RKQ
MUTED)=1.~-MULLY}
MUT(2)=1.-MLI2)

SET SCR YCLERANCES FCOR PSI {(EP1} AND OMECA {EP2).,

EP1-AVMINI(EFS1/1000.¢5.E-51}
EPZ-AMINLR(EFSZ/1000s¢5.E-14)

RP1z1.~-RP
RP4=RF /4.
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RP9z=RP /9.
Rk1z1.-FH
DO 5 J=ZN
5 SINY{LI=SIN{{J-102R)

INITIALIZE CUTER ITEREATES.

IF{IUSELEG.T) €0 10 6
IFEIUSE-NE-1} 60 TO0 1105
IF{ISCL.EG.0) GC Y0 1105
L=-4
HRITE{(€E-89)
GO0 70 126°F
1105 IF{IDREL.EG.L) CGC T0 6
L=5
WRITE{E,84)
1205 DO 105 J=1eNF1
J2-hgFl1-J+1
DO 105 I-Jded2
PSItIoJoe3YzFSTI{Iodoel}
105 OMEGAC IvJe33=0OMEGA(IoJsl }
GC TC ¢
6 0O 7 JzZ2¢eN
CMECA{uwdJe332C2
OMEGA(N4P1~J21ede3¥=C2
wP1:-J+1
JZ2=N4P1-J
BC 7 I-JPled2
PSTI{Iede3}zC1l
OMECAAToeue3d=C2
8 ITER=O

-

UPDATE PREVICGUS QUTER ITERATES.

30 ITERZITER+1
DC 11 o z2eN
OMEGAt JeJ o1} -0OMEGALJoJ w3}
CMECATAY4PL1-wt1loJo 1) -CHEGAINY4PLI~JeleJe 3)
HSQOM{JsJIZHSGsOMEGA(J eJsl])
HSGCMINYUP1-J+1oJ)-HESQA*OMEGAINLGPI-J+1odelld
JP1zJ+1
J2IA4F1-o
DO 11 I=JPled?2
PSI{IecellzPSI{Iode3?}
OMEGAt I e Jel)l-OMEGA(Iede3)

11 HSGOMI(I s JIZHSQAsCMECA{IoJel)
IT=-C

COMPUTE FSI BY SUCCESSIVE OVER-RELAXATION.

13 IT-IT+1
DO 14 J=2eN
JPiIzZJ+1
2TAYF1I-J
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DO 14 Iz-JPled?Z

PSI{Ieds2)=FSI{I0d0e3}

ICONV=C

B0 16 Jz2eN

JP2zJU+2

JZTRYF1-Jd-1
PETI(J+1eJe3PRP1I*PSTI(J+3oJo2l+RPI#sPSTE(JP20J-1e3}
IFUABSIPSTIlG41ede)-PSI{Je1ode2))GTL,EPLY TCCONVZ1

DO 15 Iz=JPF2s4d2

PSI{I v e3)-RP1ePSI{Tedo2¢RPRe(PSI(I419Je2)¢+PST{(IeJele2} ¢
# PSI(I-1eJde3+PSI{(Ted=-2o3)oHSQCMITI e} }
IFUARSHIPSI{IoJe3)~-PSI(Iede2))CTEPL) ICONVZ1

CONTINUE

PSIINUFLl-Jouvo3iZRP1IsPSTINYP1-Jode2) *RPI=PSTINY4PI~-J-10J-1+3)
IF(ABSE{PSTINYUPI-JoJ o233 ~PSTINUFI1-JoJsZ2))CTEPLX] ICONVY=Z
CONTINMNUE

IF{ICONV.EG-L} GO TG 17

IFIITLLTMAXITY €0 TC 13

SCR ITERATICN FAILED TO0 CCNVERCE. PRINT ERROR PMESSAGE ANC €C TO
NEXT DATA CASE.

WRITE(E6+97) ITER
CALL FRINT{PSI(191e3})
GO T0 2

CONVERGENCE OBTAINED FOR PSI. SMOCTH SOLLTION.

ICONVF=O

NITFzIT

DO 18 Jz2¢eN

JP1z-J+1

JZ-N4PI-J

00 18 TI:JPlsud2
PSI(IoeJs3}zRHOsPSICtIoJplt+RHO1sPST({TIeJo2)
IFUABSIPSI{]leds31-PSI(Iedell ) CTEPS1) ICONVPZ1
CONTINUE

COMPUTE COMEGA ON BOUNDARIES O& AND BC.

ICONVYW=D

00 20 Jz2eN

OMEGACJeJ o2 -HSQZe{PSI(J+1eJo3t+PSTtJod-1e3) 2MUI(1)

$ ¢PUUIIACMEGCALCeurl)

OMEGAINLGPI-J+1oJ o3 =~HSE22(PST{NUPI-JoJesI}+PSIIA4PI-J+10J~-137)]
$ sMUL(1)+MU(L1I#CVEGAINY4PI-C419edol)
IF(ABSt{OMEGAE U o2 ) -OMEGALJrJel1 B FoGTEPSZY TCONUNZ1
IFCABESUCMEGAINGF1-Jt1loJo3)-0OMECAINYPI-J+1eJel) Ve GTEPS2) I{CNVHZ1
OMEGAC JeJ 2 =0MEGA(JsJs3)

CHMECA(NUPL-G+1oJo 2 ) cCMEGAINUPI-Utlsde 3)

COMFUTE CMECA ON INTERIOR EY SUCCESSIVE OVER-RELAX2TION.

CCMPUTE COEFFICIENTS FOR SCR TTERATION,



oo

28

DO 22 J=2eN

JPIzJ+1

J2TNUP1-J

D0 22 I=JPleJi

A-IPSI{Iod4+10e3)1-PSI0I0vd-1933)/TUOH

BotPSI{I+1oJe3t~-PSTET-1sJo3F)1/THOH

Ci{loJdoldz-AFEs{RES{AYRABS{EB)) -1,

DET sJd)cHSGE+{RB+SINYIJEI/CEIvJel)

C{ToloS)z{1.+AHEsEMAXLIBe D)1/ {TeJdel)}

CeIoJe2d=(1e—-AHE*AMINI(Bs013/C{Tsdel)

C{Toudol)-(la~AHE®AMINLI{A0D))/C{Iedol?}

CeIlods2)3=01+AHE2AMAXI(AD}/CE{TeJel)
22 CONTINUE

SOR LCCP FOR OMECH#

I7=0
28 I7=-I171+1
DC 26 Jz=29N
JPIzJ+1
J2-NYgP1-J
DO 26 I=JPleJd?2
26 OMEGCATTIoJe2}=0OMECA{ToJr3)
Icony=D
D0 28 Jz=2e¢N
JP1zJ+1
J2=N4Fi-J
DO 28 I=JPled2
CMEGA{Tedo3I-RU1IeOMECE (T o Je23-RU={CITIeJe2)®
$ OMEGA(I+10Je23+CeTIoJs3)20OMEGCACToJ23e2)+CtTsJoti }3OMEGAIT-10Jed}
$ ¢ClIo oS53 20MEGRA T od-123)2C {103}
ITFU(ABSICMECAL Il e33-0OMECAITode2)2)CT-FP2Z) ICONVZ]
28 CONTINUE
IFIICONV.EQ.GY GO TO 30
IF{IT.LTMAXIT) €C TC 24

SOR ITERATICN FRILED 7O CCNVERCE. WRITE ERROR VMESSAGE ANL €O TO
NEXT DATA CASE.

WRITE{6¢86) ITER
CALL PRINT{(OMEGA(1lele3))
G0 TO 3

CONVERGENCE OBTYAINED FOR OMEGA. SMOCTH SOLUTION.

30 NITHZITY
D0 32 Jz2eN
JPIzJ*1
J2=NGF1-J
DO 32 I=JPledZ
CMEGA{ToJe3)=MU{ZISOMEGALIoJs1)+MUL{2)*OMEGALIT+Js3)
IF(ABSC(CMEGAtToJ o3} ~OMEGA(TIsJs1)FeBT.EFS2) ICONUNZI
32 CONTINLE




29

PRINT OUT PERTVTINENT INFORMATICN FOR CURRENT OUTER ITERATIOMN.

HRITE{6¢93) ITEReNITPoNITH
IF{ITER.BT-3% GO TO 33
CALL PRINT{PSI{1¢1¢33)
CALL PRINT{(OMEGA{(1e1es3}}
G0 Y0 133
32 IFCITERGEITSTE CALL PRINTI(PSTI(1e1s3})}
IF{ITERGGE-ITST) CALL PRINTI(CMECA{1e¢1+3))

TEST FCR CONVERGENCE CF OUTER JITERATION.

133 IF{ICCNVP+ICCNVN oEG.O0) GO 710 34
IFIITERLT-MXITER} GG 10 10

OUTER ITERATION FAILED TO CONVERGE - PRINT FRROR MFCSAGF AND GO
10 KEXT DATA CASE.

WRITE(G2S5)

IF(ISAVE-LT.11) GO TO 3
233 ISAVEZMOC(ISAVEL1()

GO TO 134

CONVERGENCE CGBTAINED. PRINT MESSAGE AND GC 10 NEXT DATA CASE.

34 IFCITER.LTITSTE CALL PRINT(PSI€101:31)
IFTITERLTITSTY CALL PRINT(CMECA{1+103))
ALFCONZALPHA
EPSCONZEPS
WRITECE 3L}

GC 10 233

134 IF(ISAVELE.C) BC 70 3
IFUISAVE.CTL3) €C 710 2
IFtISAVE-MNE.2) GO TO 135

SAVE SCOLUTICN CN DRUM FILE TO BPE WRITTEN TO TAPE.

35 WRITECLI2) EU{PSI(IoJoe3lol=1oN4PI oS3 eNPLI) ol (OMEGA(Y o Jo3boI-1eNEPT]
® pJIloeNP1l}
ITREC=ITREC+1
KRITE(G6+87) 1ITREC
GO 10 2

SAVE SOLUTION JUST OBTAINED IN CORE MEMORY.

135 DO 36 Jz1leNP1
J2TNYF1-J ¢l
DO 36 I=Jded2
PSI{Youoel)=FSTI{Ieds3)

36 OMEGA( I eJoe)-OMEGA{TIovJe3)
KRITE{5+86)
ISOL=1
IF{ISAVE-.EQ39 GO TO 35



a0

(2o}

30

Go 70 3

TERMINATION POINYT FOR PROGRAM. CONTROL REACHES HERE AFTER ALL DATA
HAS BEEN REAC ANC PROCESSEC.

40 STQOP

FORMAT STATEMENTS

99 FORMATE1IES5.5°41I51

98 FORMAT{1H1 4X *ALFHA =° F1l0.6¢5X "EPS =° F10.6//734X °PSI°® &X
2 YOMEGA®/14X°INITIAL VALUES® F9.0sF12.L/EX °*CONVERGENCE TYOLERANCES
#? 2F1165/11X *SMCCTHING FACTCRS®°FC.59¢2F13.5/5X °*OVER-RELAXAVTION FA
eCTORS® F9.20F13.2//1}

97 FORMAT(®IINNER ITERATION FAILEC FOR PST IN OUTER ITERATION® 15}

96 FORMAT(°DINNER ITERATION FAILED FOR OMEGA IN OUTER ITERATION® 185"

95 FORFMAT{°OCUTER IYERATION FAJLEC T0O CONVERGE"}

g4 FORMAT(®CQCUTER ITERATION CONVERGED.®/}

93 FORMAT(°0PSI ANLC CMECA AT OULTER ITERATION® IS5¢5X °®INNERATICNS REQU
sIRED =z° 2I77)

89 FORMAT{*OINITIAL VALLES FCR PSI AND OMEGA TAKEN FROM EARLIER COMP
sUTATION THIS RUN®ZI

88 FORMAT(0ENC OF FILE REACHEL AT RECOREL NO.°*IS5e2X°STATUS 92X 012)

87 FORMAT(°OSOLUTION JUST OBTAINED WAS SAVED ON TAPE AS RECORD NO®IS5)

26 FORMATI(®0SOLUYICA WILL BE SAVEC IN MEMORY FOR USE AS INITIAL VALUE
35S IN LATER CASES THIS RUNT])

85 FORMATU{YOINITIAL VALUES FRONM TEPE TO BE USED WHERE NOTED®/})

84 FORMAT{ °*0INITIAL VALUES TAKEN FROM TAPE®/)

THIS ROULTINE PRINTS A FUNCTION IN THE TRAPEZCICAL FORVMAY
CORRESPONDING T0 THE GEOMETRY OF THE PHYSICAL PROBLEM.

SUBROUTINE PRINTC(AL
DIMENSICN A{N4P1.AP1)
99 FORMAT(1X 13iF10.3}
Nizi
NZ2=NyP1
K2=MINOINPLl .11}
KizNaPl-K2+1
2 DO 10 Iznh1laN2
IFiI-GT-H1} GC TO 5
J2ZHMINDIIeK2)
WRITE(EeSSE (AL eJNIed2Z}
60 10 1C
5 JZ-MINO(N4PI-T+1oKZ?}
GC I1C 3
10 CONTINUE
IF{K2-EGNP1) RETURN
Niz=12
N2=MN4F1-11
K1=N3P1
K2-hP1

(3




31

WRITE{E=39}

60 T0 2
END
axaqr
«04 005 C. 0« o050 .30.0025.0025.9975 1.7 1.0 3 2 150
=I5 005 Do 0o o050 .30.0025.0025,857% 1.7 1.0 2 1 It0

FINAL CCPYING OF OLTPLY DRUM FILE {12) YO TAPE FILE (10) IF THERE
WAS DRUM OQUTPUT FROM PROGRAM.

AGCOFYsGMC 124910
BREWIND 10.
aFREE 10,

AFIN

o
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