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1. __Introduction

The flow of a gas or of a liquid in a closced cavity is of widesproad
interest in fluid mechanics (sce, e.q., references [1] - (4], [7], [8], and
the references contained thercin). In this paper we will develop a (ast,
cconomical numerical method for describing the motion of a fluid in a circula
cylinder with a heat source located contrally on the bottom. The method is
a finite difference boundary value technique which will be developed for
steady state problems and then adapted to a special class of nonsteady state
problems. The entire development extends in a natural way to any problom
with an arbitrary axially-symmetric container. Convergence for steady state
problems has been achieved for Prandtl numbers in the range 0,023 to 9881, 0
and for Grashof numbers in the range 10 to 4(1 ())“’. As applied to timoe
dependent problems, the method is free of roundoff error amplification, which
is inherent in all step-ahead methods.

2. Problemn Statement

Consider a fluid in a circular cylinder of unit height and of radius b, and

assume that a circular heat source of radius ¢ is contrally located in the basc .
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Since any resulting convective flow must be axially symmetric, the motion can
be studied as a two dimensional problem. In particular, let ué take the
mathematical formulation of Torrance and Rockett [8], which, in their termi-
nology, can be summarized as follows.

As shown in Figure 1, letOBCD be a rectangle with OB = b, OD = 1.
Let A be between O and B with OA = ¢. The problem is to find thrce

functions ¥, ¥ and Q which, inside OBCD, satisfy the partial differential

equations
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and, in addition, satisiy the initial conditions
4) % =8=Q=0 1<0,0sxs1,0sR<sb
and, for 1 =z 0, the boundary conditions
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In (1) - (9), ¢ is the stream function, o is the temperature, Q is the

vorticity, P is the Prandtl number, and G is the Grashof number.

3. Difference Formulas

Let us develop, first, the basic difference formulas which will be
needed for our numerical method. Throughout, it will be assumed that h
and AT are positive space and time grid constants, respectively, and that
the points (R,x,T7), R+ h,x,7), R,x+ h,1), (R~h,x,1), (R,x - h, 1),
(R,x, T+ A7), (R,x,T - AT) are rcpresented by 0,1,2,3,4,5,6, respectively.
Then, in the usual way [4], the difference approximation for differential equation
(1) is taken to be
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In order to preserve diagonal dominance, equation (2) is differenced

in the following special manner ([5], [7]):
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In a similar manner, equation (3) is approximated by
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where F and E are defined as in (12), but with 6 replaced by Q .



Finally, in order to generate 1 at grid points of either OB, BC, or CD),

at each such point we will use

(14) Q === 9,
h R

where ¢/ is the value of the stream function at theinterior arid point ncarest

to the given houndary grid point ([4], [7]).

4, Numerical Solution of The Stecady State Problem.

When steady state is physically rcalizable, it can be describoed
mathematically by (1) - (3) and (5) - {9) merely by dropping the time derivatives
in (2) and (3). We will show how to approximate the solution of such a
problem first.

For positive grid size h, construct and number, in the usual way, the

set of interior grid pointslh and the set of boundary grid points S {Though

h'

. 1 b > .
not essential, it will be assumed, for simplicity, that H' l_; and }% are

integers.) The problem then is to approximate ¢, J and Q on thoso points of

Rh + Sh at which they are not already given by (5) - (9).
0 0 ’
The procedure is to guess 't//( ), u( ) and Q,(O) on these point sots and
to proceed recursively from cach -zp(k), ;)(k), Q(k) to j'(k+l), .f‘(kH),Q(kH)

as follows. At each point of I, which is further than h from all points of

h
(k)

Sh’ write down (10) with QO :QO At each point (R,x) of Ih which is
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exactly a distance h from at least one point (R ,x7) of S[ , wrile down
!
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where UJi is the value of ¢ at (R,x), while v,r’,/j is the value of ¢ at the
point (R',x') which is ¢h from (R™,x™) and is collincal with (R¥, x¥) and
(R, x). Inserting the known ¢ boundary valucs from (7) - (9), once then solves

the resulting linear algebraic system by successive over-relaxation and

= (k+1) (k+1)

denotes the solution by Then ¥ is defined by

(k+1) (k)

(16) v =y et )

+ (1 =) :

where [ is a smoothing parameter in the range 0 < g b

k+1
To obtain the iterate :)( ), apply (11) without the time dependent term
. . . . . , (kt1) ;o .
at each interior point of Z[h and with ?;/_l = {//i ;1= 1,2,3,4. Also, at
each point (0,x) of Sh' write down
(17) 9(0,x) = uh,x).

Into the system generated by (11) and (17), insert the known valucs of

given by (6), (7) and (9). Solve the resulting system by successive over-

— /r
relaxation and denote the solution by )(k+1). Then, \“}\+l) is defined by
k+1 -
(18) '.-'( 1) = uu(k) + (l-u);)(kﬂ), 0« p < |
(k+1)

To obtain the iterate , first generate Q at points of S, by (14),

h
(k+1)

where the values of are used for ¢ . FEquation (l3), without the time



(k+1)

dependent term, and with zj/i = 'z//i ,1=20,1,2,3,4, is then applicd at

each point of Ih and the resulting system is solved by successive over-

relaxation. If the solution of this system and the values generated by (L)

= (k+1) (k+1)

are denoted by 0 then Q igs defincd by

(9 okl _ o), - &)@(kﬁ)‘ 0- 11

Finally, the iteration is terminated when, for a given positive tolorance

£, one has uniformly on R1 + S
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Using the above algorithm with b =1.0 and ¢ = 0.1, a variety of
examples were run. For P = 0.7, which was the only parameter choice of
Torrance and Rockett, our results are shown,typically,in Figurc 2 and are
in complete agreement with those of Torrance of Rockett. However, in addition,
our method was also applied to the two extreme cases P = 0.023, which
corresponds to liguid mercury, and to P = 9884.0, which corresponds to
aircraft engine oil, and typical results are shown in l'igure 3. Tor P = 0.023
the maximum value of ¥ varies from 0,0001 when G = 1000 to ¢ - 0.019

when G = 50000, while for P = 9884 the maximum of ¢ is 3.6 for G = 10,

1




%:Q-OS,&"“‘OOOOD) P

o~ £

o

4= 0.02 )Gr: ‘1‘-000000) P=O'7

1000

{100




10

h=oos, G=10, P =9854

00%

.00

2.00
Soo0
L
e

JB\ = 0.05 G-:S‘ocsoo s P=0.002

FIGURL 3




11

To illustrate the speed of the method, the three cascs h - 001, G = 40000;
h=0.1, G=400000; and h = 0.05, G = 40000, with P = 0.7 and « = I()—()
required a total computing time of two minutes and scoven scconds on Lhe
UNIVAC 1108,

With regard to convergence, it is of interest to note that, as observed
previously ([4], [5], [7]), any choice of p, 1, or © outside the ranges
0~ {70.4, 0 < 0.4, 0.6 < & <1 resulted, invariably, in divergent
hehavior. In addition, a method analogous to that described hore, but in
which the natural sclection of central difference formulas was made for all
derivatives in (2) and (3), was explored and, though the results agreed with

those already obtained, the method was of limited viability duc to the loss

of diagonal dominance.

5, Numerical Solution of the Time Dependent Problem.

Time dependent problems are solved usually by initial value technijues.
Such methods often suffer from numerical error accumulation with the advance
in time and from severe stability limitations when the dynamical cquations
are nonlinear. Since boundary value technigues are not prone to these
particular shortcomings, let us show how to extend the method of Section ¢
to initial value problems by first converting the given problem (1) - (9) to a
boundary value problem. In particular, this can be done readily if (1) = (9)

has a steady state solution ¢ (R,x,¢), o(R,x,o), 2 (R,x,o) which is



L2

independentof the initial conditions. Under the assumption that such a
solution exists, it is prescribed at ¢ = =« and condition (4) is dropped.

The numerical method can be formulated now as follows ([5], [7]).
Solve the steady state problem numerically as describoed in Scction 4.
Denote the numerical solution by

(20) x//(k"”): (R, x,c), S (R, x,), okt Q(R, 5, ).

Next, fix a value r =T and define #(R,x,T), #(R,x,T), Q(R,x,T) such

-1 ; 2
that at the points (b - nh, 1 = mh, T), n = 1,2,...,'1!7;—, m=1,2,... h—’

one has
(21) #(R,x,T)y = ¥R, x,v), #(R,x,T) = R, x,~), QR,x,T) = Q(R,x,~).

Consider then the boundary value problem defined by (1) = (3), (5) = (9)
and (21) on the rectangular parallelopiped defined by 0= R~ b, 0~ x = 1,
0= t =T. Apply the techniques described in Section 1 to this three
dimensional problem by employing the fullequations (l1) and (13) with spqgce
time step h and time grid step A1, thus vielding the numerical solution.

Using the above method with b = 1.0 and ¢ = 0.1, a varicty of examples
again were run efficiently and economically. Typical problems and results
arce shown inFigures<-6. Interestingly enough, the numerical results
themselves always indicated whether or not a choice of T wasg cither too

small or too large, for, when T was too small, the numerical solution




showed an erratic change only between T - AL and T, whereas, when I
was too large, there would be no change in the numerical solution for many
time steps preceding T. Running times usually varied between 3 and 20
minutes with /71 intherange from 0.001 to .025 and T in the ranage from
0.007 to 2.0. One could use such relatively small values of T becausc,
both mathematically and physically, steady state, when it exists, is usually

reached rapidly.
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