The University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

A SYSTEM FOR THE FORMAL DEFINITION OF
DIGITAL SYSTEMS

by

D. R, Fitzwater
C. A. Hintz

Computer Sciences Technical Report #141

November 1971






A SYSTEM FOR THE FORMAL DEFINITION OF DIGITAL SYSTEMS
by
Donald R. Fitzwater and Cynthia A. Hintz
University of Wisconsin®
Madison, Wisconsin

ABSTRACT. The structure and meaning of each operating system, and
the programming languages it interprets are normally defined only in the
context of a specific computer. This makes the recognition of computer
independent structures more difficult, and inhibits the development of
both general design principles and computer independent language and
operating system structures. A formal system for the definition of com-
puter independent ’str‘uctures is required.

A formal system for representing general digital systems, based
on extensions to Post string manipulation systems, is developed and
defined. Very general forms of digital systems, interacting in real time
can be represented. The formal system allows definition of equivalent
systems at many levels of abstraction without biasing design decisions
by a particular way of doing things.

Examples of the use of this formal system for defining and comparing
circuit elements, automata, and programming language semantics

are presented.

pd
Computer Sciences DDepartment. This research was supported in part by
the Wisconsin Alumni Research Foundation.



KEY WORDS AND PHRASES: Digital systems, formal systems, fanguage

semantics, abstract real time systems.

CR CATEGORIES: 4.0, 4.1, 4.2, 5.2, 6.0, 6.2




1. INTRODUCTION

At the present time nearly all digital systems work is carred out
in the almost arbitrary environment of a particular machine. The
meaning of the vocabulary used to define the systemis explainedonlyin
terms of the particular structures found in that machine. We have not
developed a well-defined vocabulary, a general way of defining or com-
paring systems, or a way of predicting the intrinsic properties of a system
from its definition. Although inter-system compatability is a desirable
goal, we have no way to define it or to achieve it. Lacking these capa-
bilities, system design work is largely ad hoc with continual re-invention
of concepts and with the more general concepts which should have guided
all such designs being substantially obscured. Perhaps the most signifi-
cant obstacle to achieving these capabilities is the lack of a practical way
to define all such systems in a common, non-biasing way. We need to de-
fine a consistently described formal universe of systems, large enough to con-
tain all digital systems of interest, within which we may study invariancies
and equivalents, and may develop design tools. In effect we must create
a computer science. An introduction to some of the concepts involved in
such a science can be found in a fasc;inating book by H. A. Simon [1] on

The Sciences of the Artificial.




1.1 Tormal Universe of Systems

For us to have a computer science we must have some formal universe
with intrinsic propertirs which we may describe, modify, and predict. Our
science currently has as many universes as there have been compute: s
built or dreamed of. Some portions of our science, those having to do
with computability and decidability, have been extensively and rather
successfully studied using Turing machines, Post systems, automata theory
and recursive function theory. We are concerned here with other questions
which may not be answered with the same independence of any physical
discovery. We are interested in those aspects which may be described
as a physical science.

The physical sciences have a common but incompletely described
universe called our physical universe. Each such science, however,
selectively abstracts certain properties of the common physical universe
and tries to describe their nature and relationships. Lach such science, in
effect, hypothesizes a different formal abstraction of the real physical universe
but validates its conclusions byreal measurements on the physical universe.
This abstraction then becomes the formal hypothetical or theoretical universe of
the science. Progress in science consists of validating and extending this

formal hypothetical universe.




-5

Progress in computer science has been slow because no such
hypothetical, machine independent formal universe of computer systems has
been developed or commonly agreed upon. Each computer system has
many intrinsic properties, such as color or weight, which are irrelevant
when we want to consider what the system is doing or what it represents.
Our description of the system must be made at an abstract level which
leaves out details which are not essential. The main difficulty lies in
deciding which details are essential.

If one is interested in comparing systems with respect to com-
putability, the details irrelevant to Turing machines may be left out of
our universe. Most of the formal work on computing systems is so abstract
as to leave computability as almost the only intrinsic property of the system.
Most of the systems of interest to us can simulate, until some bound is
reached, a Turing system and thus are all equivalent (within their bounds)
with respect to computability. This level of abstraction has left out
nearly everything of interest in computer systems. We must start with a
system universe as abstract as possible so as to afford a hope of gaining
sufficient insight to reach a more detailed level, but not so abstract as
to eliminate time and space. Our systems must at least have a size and

operate in time.



—b—

Since we can not expect to create immediately an appropriate
hypothetical universe within which all interesting questions may be studied,
we must start by specifying a hypothetical formal uiniiverse which, at
least, is general enough to contain some interesting abstraction for all
existing computers. An "interesting abstraction" is one that gives
further insight into possible systems and which makes possible some use~
ful predictions and manipulations of the intrinsic properties of the system.

We will restrict our attention, at present, to "digital systems" which
are characterized as being in a well-defined state or in a transition requiring
at least a finite time between such states. We will consider interacting
complexes of such digital systems in a very general form.

Such a formal systems universe becomes a hypothesis of our science. If
a better way of structuring a system is found and it is notinour formal universe,
we should modify our hypothesis to containit., Witha given hypothesis, we
should be able to establish useful laws governing relationships of system
properties. We need not claim a unique or absolutely proven hypothesis;
we need only claim our current hypothesis as the best we have yet. Thus
we may only speak of "scientific truth" which is dependent on a changing
technology rather than'mathematical truth” whichis invariant to any possible

discoveries.




1.2 Representation of Systems

Much effort has gone into formal specification of abstract pro-
cedures in a representation independent fashion, in order to ensure
exact implementability on different systems. However, the advantages
of such abstractions are offset both by the difficulty of such specifica-
tions and by our current inability to design systems which can interpret
such specifications in general. Such specifications, being representation
independent, are too ahstract to be directly useful to the implementers
of the systems, since real system processors, which manipulate
the representation itself, are always representation dependent. The
systems designer is interested in these manipulations, not the abstract
notions they might represent.

For example, a mathematician may define an abstract number system
and operations on it in a formal, representation independent fashion. To
implement such a system, the designer must choose a suitable representa-
tion which allows the appropriate transformations to be carried out in an
efficient manner. This indeed is a major problem forthe systems designer
and not one that we are close to delegating to a coomputer to solve. In
other words, a representation independent definition of a system may be
useful for proving theorems about the system but it is not suitable as an

operational definition of the system. An operational definition is one



for which we can construct a universal system which will interpret (i.c.
run) any system so defined.

The usual representation of an operational definition of a computer
system has been an implementation of the system itself. For example,
if we strictly define the meaning of Fortran to be the execution of the
translator output in machine language on the IBM 704, another system must
gimulate an IBM 704 executing its machine language in order to interpret
Fortran. Strictly speaking, Fortran was defined in this fashion. Con-
sequently other system designers had to reject this definition and thus
Fortran programs, in general, will not do the "same thing" on different
machines.

An operational definition should be an efficient representation of the system
structure and should also be abstract enough to eliminate the need to include
extraneous structure, or unintended details of transformations. We can,
therefore, profitably use an abstract representation medium whose objects
have only the properties which are explicitly defined. This is such a
common and necessary thing to do that it is almost unnoticed that the a»ctual
physical representation of a computer is rarely described in a programming
manual or even in a system definition for the engineers who service it.

In order to define our formal systems universe and to secure operational defini

tions of systems in our universe, we must choose a suitable representation




e

medium and describe a primitive automaton which can operate on objects
in that medium. Note that, although we constrain ourselves to a single
abstrant representation medium, a given system may have, in our formal
systems universe, many equivalentrepresentations at various levels of the ab-
straction. Indeed thg translation from one representation to another, often into dif-
ferent representation media, is an important part of the work normally done
by a system or a systems designer. We would like to be able to study
such transformations in our systems universe. Possible abstract representa-
tion media include integers (Godel numbers*), strings, and directed
graphs. Each such medium could be used to construct a formal systems universc.

We can consider integers as a point medium, strings as a line medium,
and graphs as a plane or three-dimensional medium. Trees are g restricted
form of directed graph that may be represented linearly in a parenthe-
sized notation. Three-dimensional systems are difficult to document and
immensely complex, far too complex to start with. They do exist; a beautiful
example is the universe of living organisms with operational definitions in
genetic material and a primitive system for their interpretations based on
chemical transformations. The similarities with the simpler linear universe
we will define are remarkable.

Gddel numbers would make a poor representation medium for many

reasons. Their simple transformations do not correspond to very useful ones

“See Minsky [2] Section 14.3 for an explanation of Godel numbers.



~-10~-

and one must do elaborate transformations to form expressions which must
then be elaborately decoded. The decoding efficiency is very poor and
structural insights are not easily obtair:ed.

A bit string, a reasonably conventional medium, has many advantages
but two very serious disadvantages. A bit has such a small number of
attributes and values (i.e. one attribute with two values), that an object
in an abstract process will generally require a bit pattern rather than a bit
for its representation. This means that object transformations may only be
expressed in terms of very primitive operators on bits. This forces us to
express higher level object manipulations in unintended detail which any
other system for doing the "same thing" must copy exactly. The other
serious disadvantage of a bit string is that when all object representations
and transformations have been laboriously forced into an undesirably detailed
sequence to define the system, the system designers no longer have as much
choice or freedom to adapt to technological or social changes without dis~
carding previous designs. This is what has been happening with our system
"generation gaps". System languages have been such low level languages
that applications written in those languages must be stated in unintended
detail which must be simulated by the next generation unless the application

is to be rewritten.




_.]> ] —
A directed graph-based representation medium clearly

allows more general objects and transformations. However, mostl current
computer memory structures are basically linear rather than the more complex
forms made possibly by a graph structure. Simple operations such as copying
an object become very complex when it is a graph-structured object. It may
be that a full graph structure would be nearly as unbalanced a choice as
Godel numbers.

The fact tha_t current systems surely are technologically reasonable
representations of themselves, in addition to current work on languages as
strings, suggests that our starting point should be a linear representation of
trees of character string values. If we then define an object as a character
string, and a structured object as an object containing substrings, we havoe
a system which is represented by trees. More generality could only be ob-
tained by allowing a full graph structure. While we are still trying to sort
out our ideas and ways of discussing them, an elaboration to full graphs
would be an encumbrance. There is also less hope for immediately useful
designs because their implementation on basically linear machines would be
complex and inefficient.

Our formal universe must be defined as an abstract formal svstem. Tt
must be abstract so that we can know just what properties are being transformed
and it must be formal so that we know that no other properties arc relevant.

An informal system would require consideration of other properties and



-12-

relationships not explicitly defined in the system in order to define
different but equivalent systems.

When we look for abstract formal systems for string manipulation to
use as a starting point for our formal systems universe, we find one outstanding
formal system, that defining the Post production systems. As we will see
later, the Post systems are so beautifully suited to our purpose that scarcely
any other candidate need be considered. If we can move freely in concept
between our systems and Post systems, we will establish a bridge between
our "real" systems and the formal work that has already been done.

The Post system formalism is, however, not sufficient for our purposes
for three primary reasons; there are no concepts of time, of space, orof inter-
system communication left in the abstract system. We must extend the
Post system to include these concepts in such a manner that we preserve
Post system properties while enabling us to define and discuss our 'real"
systems.

1.3 Desirable Properties

Since we would like to use our hypothetical systems universe to study
possible system structures, it is essential that our universe not already
contain implicitly a particular form of the structures we wish to study. It

would otherwise be difficult to avoid biasing the study in favor of the built-in




14

very sophisticated notion of substring matching and manipulation, and
their unrestricted order of production application, are at a sufficiently
high level that in explication in Post systems would serve to illuminate
rather than obscure real language concepts.

Since one of the purposes of creating our formal systems universe
ig to study ways to design and implement efficient systems,
there must be some useful relationships between our abstract systems
and the efficiency and cost of implementation of systems so structured.
We should at least be able to compute some bounds valid for such imple-
mentations. We can thus study various logical design principles and
structures in terms of their effect on such bounds, e.g. we can compare
relative system efficiencies, To do this we must introduce the concepts
of some hardware technology which provides efficiency constraints for the
design of our abstract systems. We will not pursue this further here, but
will only comment that the formal systems universe defined here seems well
suited to this purpose.

The most desirable property of our formal universe would be something like:
"the simplest and most elegant abstract systems in our formaluniverse have the
most effective and efticient implementations”. It is of course impossible
to show that our formal systems universe hasthis property; a more precise

formulation of it must await the insights gained from a study similar to that



-13-

structures. For example, because we are interested in control structures, our
formal systems universe should allow all forms of control without having them
restricted in their relationships due to inherent formal universe properties. With-
out design constraints all possible transformations must occur simultaneously, so
that less parallel control concepts must be explicitly defined as restrictions in

a systems design. For example, the order of production application imposed

by Markov algorithms [3] creates implicit control in a way that biases the

study of control, while the (effectively) simultaneous application of all

possible productions in Post systems requires the system designer to

explicitly build in any control he desires. Similarly, because we are inter-
ested in relationships between programming languages and their semantics,

our formal universe should allow the interpretation of all forms of programmingy
languages. " Restricting a system to interpret a particular programming language
should require explicitly imposing the appropriate design constraints.

Although the primitive concepts in our formal universe must not presumc to
contain the concepts we wish to discuss and develop, they must be relatively
"high level" concepts with substantial complexity so that explications of system
structure will not be more complex and difficult to understand than are the
structures to be explicated. A Turing machine which interprets Algol is not

a good place to study Algol concepts. However, Post systems, with their




-15-

mentioned just above. It is clear that many abstract simplifications would

have their counterparts in simplifications of any implementation.



-16-

2. A SYSTEMS UNIVERSE AND DESCRIPTION TANGUAGE

In order to define our formal systems universe, we will describe a "primitive
automaton" which can be used for the formal definition of any system in our
formal universe. These system definitions will be written in a "system definition
language" which our primitive automaton can interpret, i.e. transform into
a sequence of definitions of the successive states of the given system. We
will develop the rules that our primitive automaton must follow as a sequence
of modifications to the rules for interpreting Post systems.

2,1 Post Systems

In 1942 Emil Post introduced a formal system for manipulating strings
of symbols. We will briefly discuss his system here; Minsky [2] gives a
more detailed explanation.

Post's formal system has three parts: the alphabet, the axioms, and
the productions. The alphabet is a finite set of‘symbols specifying the
character set. The axioms are a finite set of finite stirings of symbols from
the alphabet. The productions are a finite set of rules of inference by which
strings may be transformed.

A simple production is of the form:

antecedent consequent
r ‘fA\ )] 4 ™
a, $1 a, fpz $nan — b() $1 b1 $. ... $1 b




-17-

where aO, a N and bO’ b

1 1o bm are literal strings of symbols,
and 1 < ij < n, vj. These strings and all of the axioms contain only
symbols from the alphabet. Any of these literal strings can be null.

A production implies that we may take something of the form of the
antecedent and produce a result patterned after the consequent. A literal
string in the antecedent, of course, can only be matched by an identical
literal string in the axiom. The $'s in the antecedent can match any
substring of an axiom (including the null string). The $'s in the conse-
quent refer to the value that was matched by one of the $'s in the antecedent,
which of the $'s of the antecedent being indicated by the index following
the $ in the consequent. (The $'s in the consequent need not appear in
the same order in which they appeared in the antecedent, and $'s in the
antecedent need not appear in the consequent at all.) We can also have
multiple-antecedent productions, where the single antecedent is replaced
by two or more antecedents separated by a given delimiter.

For a production to be applicable, each antecedent must match some

entire axiom, and all antecedents of a multiple-antecedent production

must be matched™. Each different way the production could match the

o

PMinsky's proof that multiple-antecedent productions can be reduced to
single-antecedent systems assumes that no two antecedents in a
multiple-antecedent production may match the same axiom. We will
remove that restriction.



-18-

axioms is counted as a separate possible application. The result of one appli-
cation, based on the pattern of the consequent and using the value of the $'s
from the match of the antecedent, would then be considered derivable in the
system containing the production.

For example, suppose we have the following Post system:

Alphabet: The single symbol 1
Axiom: The string 1

Production: $1 — $11

In this system, the antecedent $l can match the axiom "1'". The result
would then be the "1" matched by the $1 concatenated with a literal "1",
so that the string "11" is derivable in this system. The antecedent $1
can also match "11": the string "111" is thus also derivable. Other
possible derivations are "1111", "11111", etc. If we view these strings
as representing unary numbers, then all positive integers are derivable in
this system, and we could show a possible derivation sequence for any
given positive integer.

Formally, Post canonical systems only specify a set of strings by
recursively specifying how to find things in that set; they do not define a
process. One can show that a certain string is derivable in a system by
showing a (possible) sequence of steps in which the given string is the last

string derivable, and all previous strings are derivable from the initial axioms




-19-

or from previously derivable strings via a sequence of applications of the pro-
ductions. In Post systems the emphasis is on derivability, not on the
actual derivation.

At this point we will make an extension to the Post systems. &ince
the recognition of a character match implies the ability to recognize a
non-match, we will permit the use of X (read "not x") in productions,
where x is any character in the alphabet. x will match any single
character in the alphabet other than x. In effect, x becomes a string
variable of length one (i.e. it cannot match the null string). Thus, for
Post systems, a production containing a x is equivalent to a shorthand
convention for a set of productions, each of which contains a different,
non-x character from the character set in the position of the shorthand X.
For the sake of efficiency, however, we want this ability to recognize a
non-match to be built into the primitive automaton we are developing; thus
it will become an extension rather than a shorthand notation.

2.1.1. Post System Language

We want to implement our Post systems so that we may see the
actual derivations which take place. In order to do this, we need a system
representation and an appropriate primitive automaton which interprets that

representation. Since the actual representation is quite arbitrary and a



-20-

string of characters is a natural representation medium, we will define a Post
System Language (PSL) of which each sentence is a Post System Representation
(PSR). We may define a PSL by specifying a vocabulary of terminal characters

Vo= (i, i=1,2,.. .n} and the grammar given below.

<PSR>::= 1 <axiom part> <processor part> 2

<axiom part>::= 3 | 3 <axiom string>

Laxiom string)>::= <axiom)> |<axiom string> 7 <axiom>

<axiom> ::= <j> [<axiom><j>

<processor part)>::= <char part><production part>

<char part>::= 4|4 <concatenation of a subset of (i{20 < i sn}>
<production part>::= 5|5 <production string>

<production string> ::= <production> |<production string> 6 <production>
<production ::= <mult. antecedent>9<consequent> |<mult. antecedent> 9
<mult. antecedent> ::= <antecedent> |<mult. antecedent>7 <antecedent>
<antecedent> ::=<ante char> |<antecedent> <ante char>

<ante char>::= 8 [<j> l<3'_>

<consequent> ::= <cons char> |<consequent><cons char>

<cons char>::=<j> |<3> <index> | 8<index>

<index> ::=<nz subscript digit> I <index><subscript digit>

Pooiiuni Smibusti iimnini ity e Tamig RS mey Jrumth b IR e

<subscript digit>::= 1_0_|<nz subscript digit>




-21-

j—
\Y4
.
1
[\S)
o
lN
Y]
W]

<

<j>::

il
S|
ol
I
N
N

Note that we can define many different PSLs simply by changing the
set VT' The terminal characters i may be given any desired unique
character representations. However, because of the tedium of the i
notation (evident in the grammar above), we shall henceforth use the print

equivalents given in table 1. If we define <20>, <21>,<22>, etc.

Table 1: Print Equivalents of i in PSR

1 <i = 9 are meta characters used in defining a system.

I

10 = 1 £ 19 are special subscript characters used as meta "integers"
in defining a system.

=

20 = 1 = n are assigned as desired for a particular system.

=

print print print
1 equivalent i equivalent 1 equivalent
1 ( 10 . 20
2 ) 11 .
3 0 12 >
4 e 13 ;
5 ] 14 )
6 or. 15 5
1 and 16 6
8 $ 17 -
9 - 18 o
19 9 n




22—

as print equivalents of the corresponding members of VT we may rewrite
the <PSR> grammar in a more readable form using print equivalents
where known.
<PSR>::= {<axiom part><processor part> }
<axiom part>::= §: |0: <axiom string>
Laxiom string> ::= <{axiom> l<axiom string> and <axiom>
CaxiomD ::= <j> |<axiom><j>
<processor part> ::= {char part><production part>
<char part>::= X:|X: <concatenation of a subsetof{ijZO <is<sn}>
<production part>::=m: |m: <production string>
<production string> ::= <production> l<production string> or <production>
<production> ::= <mult. antecedent> —~<consequent> |<mult. antecedent> —
<mult. antecedent> 1= <antecedent>|<mult. antecedent> and<anteccdont>
<antecedent>::= <ante char> |<antecedent><ante char>
<ante char>:= $|<j> |<i>
<consequent>::= <cons char> |<{consequent><cons cher>
<cons char> ;= <j> |<J> <index> | $<index>
<index>::= <nz subscript digit> |<index><subscript digit>
<nz subscript digit>::= 1‘213‘415I6|7‘819
<subscript digit>::= g|<nz subscript digit>
<g>i= 20> 21> [<22> . .. [<n>

<G> = <20> |KZI> [<22> | ... [<n>




-23-

The semantics associated with the PSR are obvious with the possible
exception of <cons index>. If we consider each occurrence of i and $
to be indexed from left to right (starting at 1) in the antecedent(s), then the
<cons index> in a <cons char> references the indexed occurrence of the
particular :1_— or $. If the integer value of the <cons index> is greater
than the number of :i_’s or $'s in the antecedent(s), the value associated
with the <cons char> is null. An example of this correspondence is:

ABC $B $ B where the lines connect corresponding

Jigia

variables.

2.1.2 Post Primitive System

Without changing the properties of Post systems, we are free to
decide how our primitive automaton will operate to produce the derivation
sequences, and to relax certain restrictions.

a) In Post's systems, axioms and productions could contain oualy
characters found in the alphabet. Here the purpose of the alphabet has
been changed to that of designating the possible symbols which can be
matched bya $ ora 1i.

b) Our primitive automaton will ONLY accept a string which it

recognizes as a PSR, as defined above.



—24-

¢) Two or more antecedents in a multiple-antecedent production
may match the same axiom.

d) Finally, and most important, a method will be given for actually
generating consequents if the antecedent(s) of a production can be applied.
Thus any string which is derivable in a system will actually be derived.
Moreover, our primitive automaton must not progress on a particular derivation
sequence without progress on all possible derivation sequences. First all
strings which can possible be derived from the axiom(s) will be derived; then all
strings which can be derived from the axioms and the previously derivedk strings
which can be derived from the axioms and the previously derived strings
will be derived, etc. This is done by keeping newly derived strings in
a separate set until all the currently derivable strings are formed, after
which these derived strings are added to the axiom set.

These modifications do not alter the set of strings derivable in a
Post system or their derivation sequences. They do, however, lay a
foundation for some desirable extensions to Post systems.

We must now take a look behind the scenes in the Post systems, to
see how our primitive automaton will transform any system definition of
the proper form. Consider what would have to be done to interpret any

arbitrary system of this form. Clearly one would go through the productions




—25-

one at a time and see if the antecedent(s) match any (non-null) axioms.
If so, the results must be saved. After all productions have been
tested, we will make our results into axioms, and repeat the process.

Figure 1 gives an informal flow chart for a primitive
automaton to interpret our PSR. This description is not unique but is so
arranged as to display a maximum of continuity with the primitive auto-
maton we will later develop.

The "valid PSR" test checks to see if the Post System Representation
ig in the proper form.

6 is the set of system axioms. 6'is a set whose contents vary
with time, used to collect the results of applying the productions to the
axioms in 6. At the beginning of every process step ¢' is set to null
(i.e. the empty set).

71 is the set of system productions. ' is a consumable set of

productions whose contents will change with time. At the beginning of
each process step,copies of all of the productions in 7 are put into ir’.
"Null (')" checks to see if all productions have been removed from

m'. If they have, we know that all productions have been applied and that

we have generated all possible consequents.



26~

Invalid
—>|  Exit

6' := null; ds=6us
moe=T

$ F

. T ; T
—> null{m') S null(c6") ey

F
Remove P
from 7'

New = .. T Copy named substrings

way to appl —> into scratch storage
PtocG

G' = 06' U conseq. of P applied to
¢ using named substrings

Figure 1: Primitive system for executing <PSR>.

set of system productions

i

I

6 = set of system axioms
7' = consumable copy of T
6' = set to collect consequents

during system step

P = current production drawn at random
from '

Null = null string

Null (6') = null predicate




-7~

"Remove P from i'" takes, by arbitrary choice®, some production
out of m'. P will then refer to this production, and 7' will then name
the set of the remaining productions.

"New way to apply P to 0 " tests whether the antecedent(s) in
production P match any of the (non-null) axioms in 6. If not, we go
back to see if all productions have been checked. If the antecedent(s) do
match, we go on to calculate the result of this production. Each time
we re-enter this box, we will look for a unique way of matching, not
used in previous tests since P was selected. Note that P may match
the axioms in 6 inmany ways and the purpose of this test is to find
all the ways and use the True exit once for each of them. When all
possible matches have been handled, we will go back to see if there
are any further productions to be checked.

"Copy named substrings into scratch storage " gaves all those parts
of the matched axiom(s) which correspond to a $ ora :1_ in the antecedent(s)
of production P. These may be used to construct the new result patterned
after the consequent of production P. For example, one possible match
of the antecedent $AA $A$ to the axiom 00A10A10Awould result in $,
matching 00, $2 matching 0A10, $3 matching the null string, and 7\1

matching 1 (assuming that 0,1, and A are in the character set).

ES
Actually, in any given implementation of the system the choice will not
be arbitrary, but the method of selection will have absolutely no effect
on the results.



-28~-

"6's=6' U consequent of P applied to 6 using named substrings"
calculates the result of P using the consequent of P as a pattern with
the named substrings from scratch storage defining the values of the
variables ($'s and i's). This result isadded to ¢'. Since 0'is a set,
identical results from different productions will appear only once in 6'.
We then go back to check for a new way to match the antecedent(s) of
P with the axioms in G.

“Null (6")" tests to see if any result(s) were calculated. 1If there
were none, the system halts, since it can never produce any further
results.

"s.= 6 U 6' " adds to the axiom set the results of all the possible applica-
tions of the productions which are different from the axioms which are

already there. This completes one system process step. We then goback to

see if any new result(s) can be derived using the new axiom set. This
system will never stop since the results derived on the first process step
will always be derived again, so 6' will never be null at the end of a
process step.

The primitive automatontransforms a PSR, during one system process step.
into a unique successor PSR in which the axiom set has been changed.

During the next process step the new PSR will be transformed into its




-29-

successor PSR. However, only the <axiom set> is changed. The

<char set> and <production set> are invariant to these transformations;
together they can be regarded as an invariant processor which will

produce different results depending on the data (i.e. the axiom set) it

is applied to, but which will perform the same kinds of transformatinns

on any type of data. Thus a system representation consists of a processor
(which is invariant through time) and a particular axiom set (which undergoes
transformations in time).

We now have a deterministic, discpete gstate, formal system in
which interpretation sequences are defined even though the sequences of
production applications are not defined. Sincenone of the sets o, o', i,
or y are ordered sets, PSR's which differ only in the ordering of their
respective sets are considered to be equivalent. It is also not possible
to associate axioms in the successor PSR with corresponding axioms in
the initial PSR if the axiom could have been a transformation of more than
one original axiom.

2.2 System Definition System

The primitive automaton just described will interpret systems which
still have only the basic character of Post systems. We will now extend ow
systems universe to include systems which are more general. This will

require an expanded System Representation (SR as defined in section 2.2.4)



-30~

to reflect these extensions, and modifications of the primitive automation
(as shown in figure 2) so that it can interpret the extended SR's. Our final
System Definition System will be formed by adding to our modified Post
systems three things: the ability to discard irrelevant axioms, the ability
for systems to communicate with each other, and the generalization of ante-
cedents to permit the use of a restricted processor as an <ante element>.

2.2.1 Forgetting Irrelevant Axioms

As defined, a PSR will preserve all of its original axioms and
any new axioms generated. This means that by the time several trans-
formations have been made, the axiom set of a complex PSR will be
getting unwieldy. Because of all the irrelevant information accumulated
it may be very difficult to pick out what we cons ider to be the relevant
axioms--usually the last transformations that were made.

We may also want certain productions to be applied conditiona 1ly--
only if certain other conditions have been met. This can be done initially
by using the conditions as multiple antecedents of the production, so the
production would not be applicable until all the conditions had been
satisfied. However, once these conditions have been satisfied, they
will be satisfied forever after. They are like switches which can be

turned on but not off.




-31-

Both of these problems have one cause: W€ cannot get rid of an
axiom once it has been formed. At some point we want to be able to
discard all irrelevant or unwanted axioms. A logical place to do this is
at the end of a system process step. However, who is to determine whatis
irrelevant or unwanted? Certainly the primitive automaton cannot know;
it must be the designer of the system who decides. We can give the
system designer this powerful tool by simply "forgetting” the old contents
of 6 before a new set 0 is formed from ©' (see figure 2). In order to
gimulate a Post system, i.e. retain all axioms ever produced, one could
merely add the production $ — $ . (which would be redundant on the
original primitive automaton shown in figure 1). Since the antecedent $
would match all axioms*, a copy of all axioms would be put into o' and
thus be carried along to the next process step, i.e. all axioms would be

remembered.

2.2.2 Inter-system Communication

Since our systems now have interpretation sequences which define
system time, we may be interested in examining, as non-interacting
observers, their behavior. We may also be interested in the behavior of a
system complex consisting of interacting (communicating) systems. Such
interaction between systems (including observers) can be accomplished
only via a new concept in our primitive automaton, namely the concept of

intersystem communication. This is accomplished by having a system send

Ed
This is true only in Post systems or other systems where all axioms and
productions are strings over the system alphabet.



antecedents of P

B:=p Umessayges
of P appliedto©

Figure 2:

< <&

te=0'
of P applied

U Consequents

tOO

n=set of system productions
6=get of system axioms
'=consumable copy of T
6'=set to collect consequents
during system step
6"=system buffer for receiving

messages

Primitive system for executing <S5R>.

I

xo(* ute
RPR execute
SR
push downo,d v, ', P,ok,B
6:=rr.1atched F invalid
portion of — ‘
. exit
axiom of
containing T
SR or RPR update 6 from 0"; Ny
6":=null (see fig. 3) ) €
e AN B
G':=null; 6:=0" dxioms$
=T v match axiom ™. F_)ﬁoﬁ'opﬁ B fail
pattern - o]; 5' ! return
3
TN T N pop 6, " —
H%ull(ﬂ) > SR? /\ oo 1; ’ ____[normal
F ~ Tl ok 5’ ' return
T
remove P transmit p to all 6"; . r
from ' B:=null 3 UL (E )
~_-7
|
F a IEV\; ) copy named substrings ok:=true 1B:=p U
L y PRI | into scratch storage EE— B(RPR); update
P to© scratch with
lqresults of 6 of RPR
' \'“ normal
6':=6"' U reconstructed new > return

P

fail
return

ok:=false;
update scratch
with results of
¢' in RPR

P=current productlon drawn at random

from '

B=set to collect messages generated during

system step

B(RPR)=the B of the contained RPR




-33-

"messages" (axioms) on named "channels" (destination names) to each system in
the interacting complex, where they will be received in a set a".

Sending messages: Every production has an arrow (—) separating
the antecedent(s) from the consequent. Another arrow following a con-
sequent indicates that the result associated with the consequent before
the arrow is a message which is to be sent (at the end of the system
process step) on the "channel” named by the result associated with the
consequent following the arrow. Thus a production can be of the form
<mult. antecedent> — <cons. element> —<cons. element> where the first
<cons. element> is a pattern for the generation of the message and the
second <cons. element> is a pattern for the generation of the "channel”
name.

Whenever a message is constructed as above, it is added to the
message buffer, B, of the source system under its designated channel name.
This happens even if a given channel name already has other messages to
be sent (i.e. messages produced in the same process step by other pro-
ductions or other ways of applying the current production). The [ message
buffer will collect all messages produced in one process step of an SR.

At the end of the process step, all of these messages will be sent to the

6"s of all the systems in the system complex, after which the message



-34-

Seize

o Gj fe=6"7 free 6"

6":=null

Remove s"

from 6."
]

match
unflagged
axiom in

Replace matched and unflagged axiom in ©
with flagged entries from s"

Figure 3: update 6 from 6"; 6" := null
6). " = consumable copy of 6"

s" = labeled set of messages which
forms an entry in 6"

erase
flags

i
I
|
[
|




35

Luffer will be set to null. A similar buffer B(RPR) is associated with
the execution of an RPR (discussedin the next section) to collectany generated
messages. This bufferwill be returned to the containing SR or RPRwhen execu tion
of the RPRis completed. Note that RPR generated messages are transmitted by
the s_ystem only upon completion of an SR process step.

Receiving messages: As a new process step for an SR is started,
6 is updated from the 6" of the system as shown in figure 3. The set
s" is seized (locked against new entries) and a consumable copy of O "
is made, leaving 6" null so that it may start collecting messages from
other systems again.’i< 6" is then freed to accept new entries. An entry,s'",
(consisting of a channel name and the set of messages that it names) is
removed from this copy of @". If the name of this cotry is the same as somaoe
unflagged axiomT in 6 (all axioms are initially unflagged), that axiom is
replaced by the messages associated with that name which are then flagged.
1f the name of the entry does not match any axiom in 6, the entire entry is
discarded. This is done for all the entries in the copy of 6", and then all

flags on axioms in 6 are removed.

Because 6" is set to null at update time, if an entry's name does
not match any of the axioms in ¢ at the time of the update, these messages
will be lost. They will not exist in 6" at the time of the next update

unless the sending system (or some other system) repeats them.

The consumable copy is needed to prevent a possible infinite update phase
where another system may be sending messages faster than the system we
are examining can process them,

t

If the channel name pattern is a $ which matches the null string, the
messages cannot be picked up since the null name cannot match any axiom.



-36-

Collecting messages in 6": At the beginning of a process step,

6" is set to null. When another system completes its process step, it
sends the messages in its message buffer under their given channel
names. If the receiving 6" does not contain a particular channel name,
that channel name and its associated set of messages will be placed in
6". 1f the receiving 6" already has a set of messages under that channel
name (either sent from another system or sent by the same system on a
previous process step), the earlier set of messages is discarded and re-
placed by the current set of messages.

For example, suppose that there is a system A whose system process
steps are faster than those of a system B. Suppose that A sent a mes-
sage under a given channel name at the end of A's process step. If A
completes another process step and sends another message under the
same channel name before B completes a process step and updates its
6 from its 6", the earlier message on the channel is lost. Thus on any
update, a system receives only the most recent messages sent on any
given channel. This makes real time systems possible (see section 2.2.5
for an example).

2.2.3 Restricted Processors.

We would like to define process steps of arbitrary complexity and
to restrict the values which a given variable may match. We can do this
without destroying the desirable properties of our modified Post systems

by adding a modified form of SR as a new type of <ante element>.




-37-"

These modified forms of SR's willbe called RPR's (Restricted
Processor Representation). They differ from SR's in three basic ways:
1.) RPR'sarerestricted in that they cannot receive messages (and
therefore need no 6") 2.) RPR's can send messages only indirectly
through the containing SR or RPR, and 3.) RPR's have an axiom pattern
rather than an axiom set ¢, which makes them invariant processors.

The axiom pattern and the character set X of an RPR determino
the axiom substrings of the containing SR or RPR which will initially match
the RPR as an <ante element>. When determining if a production P which
contains an RPR can be applied in a "new way" to the axioms in ©, all
variables in the antecedents take on certain values: a $ will match zero
or more characters from the set x of the containing SR or RPR:* :1_ will match
a single character from the character set x; and an RPR must match its axiom
pattern to an axiom substring where any $'s or i's in the axiom pattern can
be matched only by characters in the character set of that RPR. (This gives us
. a simple way to restrict the values that the variables may takc on.) There may
be many ways in which the axiom pattern can be matched; each of these will
be matched in subsequent "new ways to apply P to © ", Tor example,
suppose we arc matching the antecedent of the production
$A($A$ Xz O

ins

1--2} % —~ $] A | A $3$ . to 1he axiom 00FOANTOXO0T .,

1fa $ is the entire antecedent, it will match all the axioms consisting
of only characters from the character set. Since the null string is not
considered to be an axiom, the "named value™ of the $ cannot be null
i thin case.



38

Assuming that the X of the SR contains 0,1, and x, the named substrings in

scratch storage for each possible way of matching would be:

$ . 0010 0010 0010
(RPR) $ 5 null null 1
(RPR) 51 1 1 0
(RPR) $ 3 null 0 null

$, 0x01 x 01 x 01

1f the antecedents do match, each RPR in the antecedent(s) will result
in a recursive execution of the primitive automaton, with ¢,60',1,n',P,ok, and
B being pushed down. (This interrupts the present execution until the RPR
returns.) The ¢ of the RPR will be initialized to the portion of the axiom which

matches its axiom pattern. While the RPR will initially have only this onc

axiom, it may generate any number of axioms. At the end of each process
step of the RPR allofthe generated axioms will be checked against the RPRaxiom
pattern. It they all match the axiom pattern, a new process step of the

RPR is begun. If any do not match, the RPR will take the fail return, and

any messages which had been collected in its message buffer will be dis~-
carded without being sent. Note that if all the axioms match and another RPR
process step is begun, the message buffer is not emptied; it will continue

to collect all messages that it creates during all of its process steps. If

the RPR finally takes the failreturn, these messages will be discarded. It

it takes a normal return, however, these messages will be put into the

message buffer of the SR or RPR which contains this RPR. Since an RPR




-39~

mmay contain other RPR's, this means that all messages created at any level
will eventually be returned to the SR (assuming that the RPR's return
normally) where they will be sent at the end of the process step of that SR.
1f an RPR takes a fail return, no messages from that RPR or any RPR's that
it contained will be transmitted. However, messages from an RPR which
contains a "failing" RPR will still be sent if it and all RPR's containing it
do not fail (i.e. do return normally.)

Any number of RPR's may exist in one production. They will all be
evaluated, even if the first RPR takes a fail return. If an RPR fails, nonc
of the messages it formed will be sent; however, messages from other RPR's
on the same level will not be affected by the fail return.

A normal return from an RPR implies that all the axioms in o
matched the axiom pattern at the end of the last process step, and that
no productions were applicable on the current process step. The values ol
the variables in the axiom pattern of the RPR in scratch storage will be replaced
by these matches. A consequent will be constructed for each of the possible
ways in which the variables in the axiom pattern can be defined using these
axioms.

For example, assume that the second set of named substrings in the
previous example were being used. The 6 of the RPR would be initialized to
10. Since the only production does not apply (the antecedent will match only
the single character 1), the RPR will return normally. There are two ways the

axiom 10 can match the axiom pattern $ AS



-40-

$,: null 1 null
<

A E 1 0 replace 1

$ X 0 null 0

The consequents constructed from this application of the RPR will be

00101A0x 01 and 00100AxO0l.

A fail return from a RPR indicates that an axiom in the RPR has been
produced which does not match the RPR's axiom pattern. Thus the variables
in the axiom pattern are potentially undefined with respect to that axiom,
so that the consequent results using these variables cannot be formed.
Therefore we will put into 6', of the RPR or SR containing the failing RPR,
the reconstruction of the antecedents using each of the axioms in ¢'
of the RPR as the value associated with the RPR axiom pattern. This re-
construction can always be made since variables in the axiom pattern necd

not be defined.

Consider the previous example with the first set of named substrings
in scratch storage being used. The only axiom of 6, namely 1, will match
the only production, putting the axiom 2 into ¢'. At the end of the process
step, the RPR takes a fail return (since 2 is not in its character set, it can-
not match E). Since the axiom cannot be segmented according to the axiom
pattern, and since the substring which originally matched the axiom pattern
is lost, the entire axiom of the RPR is substituted for the originally matchinag

substring. The reconstructed antecedent would be 001 O0A20x01 .




-41]1 -

If the production had multiple antecedents, they may not all have
failed to match: however, all antecedents will be reconstructed and will
go into 6'. Thus failing RPR's may have side effects on other results.
Note that a fail return from an RPR does not imply an error. An RPR may

be written so that it purposely takes a fail return.

2.2.4 System Description Language

The following grammar for System Representations reflects the above
modifications to PSR's. For convenience in reading, the grammar is pre-
sented informally, using print equivalents instead of the formal i notétion.
This grammar and a set of terminal characters VT = {i,1i=1,2,...n}
define a System Description Language.
<SR>::= {<axiom part><processor part> }

Kaxiom part>::= 0:|0: <axiom string>
<axiom string)> ::= <axiom> I<axiom string> and <axiom>
<axiom> = <j> | <axiom> <{j>

<processor part>::=<char part><production part>

<char part>::= X:|Xx: <concatenation of a subset of [_1520 < i< nj}>

<production part>::= 1 n: <production string>
<production string>::=<{production> )<production string> or <{production>
<production> ::= <mult. antecedent> — <{consequent> |<mult. antecedent> -

<mult. antecedent>::=<antecedent> |<mult. antecedent> and <antecedent>

<antecedent)> ::= <ante element> l<antecedent> <ante element>



Zante element> = <ante char> |[<RPR>

Cante char>::= $|<3> <G>

<RPR>::= {<pattern><processor part> }

<pattern>::=<ante char> |<pattern><ante char>
<consequent>::=<{cons element> |<cons element> — <cons element>

<cons element>::= <cons char> |<cons element><cons char>

<cons char>::= <j> |<7> <index> | $<index>

<index> ::=<nz subscript digit> l<index><subscript digit>
<nz subscript digit> ::= 1 l21314\516171819

<subscript digit>::= O]<nz subscript digit>

<> ir=<20> [<2i> 22> | . .. [<o>

<> :=<20> (21> [<22> | . . . [<n>

2.2.5 A System Example

In order to illustrate these new concepts in our primitive automaton,
let us examine the transformations of the following system which will acl
as a 4-hit binary clock systems which transmits the current time, measured
in cycles of the clock system, to other systems.
<clock> = {0 time 0000, x: O

i: time $. - time. or-
time {$.% X: Ol
i $0.% -, $]1$2 or

$1.% — $1'0$&) —~ time $,. -~ time. ]




43

For additional clarity, we may want to use a syntactic notation
whereby we define RPR's separately rather thanin the body of the SR. The
above system would then be defined using the RPR <scalar> as:
<clock>::= {03 time 0000. x: Ol

m: time $ . — time . or
time <scalar> — time $2. — time. |
<scalar>::= ($.$x: 01
m:$0.$ —~ .5, 1%, or

$1.8 — $,.08,)

When the system begins to run, the system time is 0, as indicated by
the axiom "time0000.". The first production is applicable, so the result
"time." is put into 6'. The second production is also applicable, as
the RPR's axiom pattern "$.$" will match the axiom substring "0000.".

When the RPR is executed, only its first production is applicable,
with the first $ matching "000" and the second $ being null. The
result will be ".0001". Since no other productions are applicable, and
our only result does match the axiom pattern, we begin a new process
step. Neither production can now be applied, however, so we take a
normal return from the RPR. There is only one way the only axiom ".0001"
can match the axiom pattern, i.e. $1 is null and $Z matches "0001".
The two arrows in the production containing the RPR indicate that a

message is to be sent, so the message "time000l." is formed and put



—44-

into the message buffer under the channel name "time. ", (if there were
another way to match the axiom pattern, resulting in a different value for

$

5 a message constructed using this value would also be put into the
message buffer under the channel name “time.".) The single message in
the message buffer is sent to the 6" of each of the systems in the system
complex--including the 6" of the clock system itself. 6 is replaced by

6', namely the single axiom "time.". This completes a system process

step for our clock system.

When 6 is updated from 6" at the beginning of the next process
step, 6" will contain at least the message just sent by this system. The
channel name "time." matches exactly the only axiom in ¢, so the message
“ime (001." will replace that axiom. Application of the first production
will cause "time." to be put in 6'. When the second production is applied,
the RPR will take three process steps before it returns normally (with
"0001." being transformed to "000.0", then to ".0010") when no productions
apply.

Thus a “"tick" of the clock happens at the end of each process step
of the clock system, with the current system time always in 6 " under the
channel namerd "time.". The message "time0001." in 0" will he replaced
by “time0010." etc., so that only the most recent time is available when

updating ¢ from 6" at the beginning of a process stop. The clock will be




~45-

resetto 0000 when it overflows from 1111. Any system wishing to know
the time must have '"time." as an axiom in 6. At the beginning of each
process step, this will be replaced by time concatenated with the current
scalar yalue followed by a period.

We have the freedom in the design of our SR to make a natural
factorization which not only makes structural characteristics easy to identify
but also easy to change. Note that we could easily change the size of the
clock "register" by changing the number of zeroes in the initial axiom of
the <clock> system, and we could change the clock from binary to a different
vase by changing only the RPR <scalar>.

2.3 System Structure Invariancies

In previous sections we have presented a system Definition System which
serves to define the formal universe of systems in which we are interested. To
aid in discussion of structures in our formal universe, we will give names to
some of its useful invariant properties. For example, the interpretation
sequences of a given SR (produced by our primitive automaton) have certain
properties which remain invariant to the SR transformations. The most
basic invariancies are that an SR will transform only into an SR, and that
all parts of the SR except for <axiom set> are invariant under all trans-

formations.

2.3.1  Bystem Invariancies

Many of the names we will give to invariancies in our universoe are

identical to terms commonly used to talk about computer svstems.  In



-46-

order to be able to make finer distinctions and to study more subtle

relationships, we will re-define these terms here. A little thought will

show that these new definitions are intuitively reasonable and do not
appreciably alter the conventional notions.

Primitive processor: The System Description System primitive automaton
for execution of SR's as described in section 2.2. The primitive
processor is invariant for all systems.

System Description Language: The language defined by the grammar in
sec. 2.2.4 and a choice of n for the vocabulary of terminal charactors
V'i" The sentences of the language are SR's. The System Description
Language is invariant for a particular systems universe. Languages
which differ only in the assignments of print equivalents are con-
sidered to be equivalent.

System Processor: An SR with <axiom part> deleted. A system processor is
invariant to all transformations of an SR by the primitive processor.
Processors which differ only in the ordering in the <char part> and
<production part> components are considered to be equivalent.

System operator: A <production> of a processor.

System sub-processor: An <RPR> in a system operator.

System State: An <SR>.

System: A subset of a System Description Language consisting of an

initial SR and all the SR's formed in the interpretation seguences




-47-

of the initial SR. The initial SR is formed by combining a processor
and a system state.

System Complex: A set of SR's in the same universe consisting of at
least one SR and all SR's which send messages to or receive
messages from members of the set.

Process state: The <axiom string> in a set ¢ of an SR or RPR.

Process: A valid interpretation sequence of process states.

Simple process: A process in which each <axiom string> contains only

one <axiom>.

2.3.2 Process Invariancies

In the last section we suggested that the <axiom string> in an SR
may be considered a "state" of the described system. Manipulations of
the axiom string by the SR operators may thus be viewed as "changes in
the state" of the described system. It is possible for us to write SR's in
which each such change produces a new state which has no noticable
similarity to the old state. Nonetheless we are particularly interested in
axioms which retain certain properties as they are transformed into new
axioms. Such properties are known as invariancies. Invariancies may
also occur in the <axiom string> as a whole. These are known as in-
variancies in the state of the described system.

For example, suppose we had an SR which described a conventional

computer with a word-organized main memory. The words of memory



—48-

remain as invariant components of the machine even though their contents
may change. We need some notational convention for stating this fact,
because sentences like the preceding one become too cumbersome when
describing complicated systems. Let us choose to delimit the words
in our hypothetical machine by "#"s in an axiom. As part of our axiom
set we might find something like:

K OO%& QAR 0%

Here we have described a three word memory with two digits in
each word. In order to suggest the desired invariancy we might say some-
thing like:

<word> 1= #<digit> <digit>*
We might then say:
<digit> = 0]1
which effectively binds t}}e word contents to a number system of base 2.

In order to describe structural invariancies of a system's states, we
will assign syntactic entities to the relevant substrings of the axioms,
as above. Such syntactic entities may even be generalized to the form
of a complete grammar defining a State Language whose sentences are
process states.

The State Language is in no way part of the formal definition of the
system. For example, we might expand the above State Language by

adding the assignments:




~49-

:}\-

<byte> ::=<bit‘> <bit>

<bit> ::=<digit>
These alterations to the State Language require no change in the SR to
which they apply. Nonetheless these changes may improve our under-
standing of the SR. The State Languages which we devise for a given
system are informal aids to understanding. They give us a more intuitive
way to describe the possible development of a system process, given its

initial definition.

3. EXAMPLES OF USE

Without attempting to exploit the system definition language we have
now developed, we may illustrate its versatility and simplicity by using
it to define several kinds of systems at varying levels of abstraction.

3.1 Circuit Element Systems

We will define a family of simple and familiar circuit element systems
to show that simple systems can have simple SRs. In addition, since these
circuit elements are more than sufficient to construct any combinatoric or
sequential circuit, we show that we can define a system complex which
represents a rather detailed implementation of digital systems at the circuit
element level. A useful description of such circuit elements is given in the
PDP manual [4].

3.1.1 Representation

We must first choose a representation of a wire carrying a signal.

The discrete nature of our system representation dictates a digital rather



-50-

than analogue representation. For example, if the wire were to be con-
sidered as a delay line SR in our universe, the signal would have to be
discretely delayed. We will here choose our level of abstraction so as
to ignore all properties of wires except their names and a binary state of

carrying a signal or not carrying a signal.

<wired s;=<wire name> . <{state>

<wire name> ::=<non. char>|<wire name><non. char>

<non. char>::=<any character except a period>

<state>1:=<signal> |<no signal>

<signal>::=1

<no signal>::=0
For example, a wire, x, will be represented while carrying a signal by
"x.1", and while not carrying a signal by "x.0". The representation of a
wire will occur as an axiom in all connected systems. 1t will be assumed
that all interacting systems "connected" to the same wire will initially
have the wire in the same state. Each change in wire state will be trans-
mitted at least once to all "connected" states.

Rather than defining particular circuit elements with specific names

we will parameterize wire names by use of a notation which will generate




~51-

the unparameterized SR if actual parameters are supplied. If we have a
syntactic definition of the form <a:z = x> where "a" names the defined
entity and x and z are wire names, we will consider x and z as
"formal parameters" in the defined SR to be replaced by corresponding
actual wire names. Thus our definitions are made in a generative form: the
parameter replacement will produce the desired SR.

3.1.2 Combinatorial Circuits

Although many types of combinatorial circuits are possible,the circuit

#

elements "not", "or", "and", and "stroke" are sufficient to synthesize
any combinatorial circuit. The output wire state will be transmitted by
each element system at the end of its cyele. If the wire 2z 1is not already in
the proper state, itwill be changed to the proper state by the following systems:
<not:z=x>::={0: x.0 X2 x.01 My x.0 ~2.1—~2z.0orx.1 —z.0—~2z.10r $— $1}
or:z=x vy>::={0: x.0 and y.0 x: xy.01m:A.1—-2z.1—2z.0or x.0and
vy.0—+2.0—-2z.1 or $ — $1}
<and:z=x ay>::={0: x.0 and y.0 x: xy.0lm: A.0—z.,0-z.1 or x.1 and
y.l—~z.1—~z.0or $—§ ]
<stroke:z=x|y>::= {6: x.0 and y.0 x: xy.01m:A.0—~z.1—2.0 or x.1 and
y.1—2.0—~2z.10r $— $1}
The structural similarity between "“stroke" and "and" systems is
readily apparent. Although our SR structures are far more powerful than

is required for such simple systems, note that these simple systems can

be described without obscuring structural similarities.



—52—

The sequential circuit corresponding to the Boolean expression

C=AAB may thus be implemented by the two systems
<{:c=a AB> = <not:i=5> <and:c=aal)>

where wires a and b are inputs and c¢ is the output. An "internal"
wire, i, is required to connect the two systems. The corresponding SR's
are:
{6:b.0x:b.0lm: b.0—~1.1 —1.0 or b.1 —i.0—~1.1 or $ — $1}
(6:a.0and 1.0 x;ai.0lm:A.0 ~c.0—~c.1l or a.landi.l—~c.l—~c.0

or $— $1}.

3.1.3 Seqguential Circuits

As an example of the wide variety of sequential circuit elements
that may be designed, the following should be illustrative and are sufficient
for system synthesis.

A real time "clock pulse" system can be defined as
<pclocksx> = {6:%.0 x3 0L m: x.0 —~x%.1 —~x.00rx.1—=x.0-~x.1o0rx.\— X'r\l |
which broadcasts a change of state on wire x at the end of each system process
step. The character A is assumed to be in VT and is used as a one character
variable. A real time "clock" system that always broadcasts the current

time in unary notation is given by

<uclockix>::={0: x. x: 1 mx . —x $ 1. —~x. orx $. —x.}.




~-53~

Any system thatrequires current time to the resolution possible in the <uclock x>
system may receive it by adding an axiom "x." anda production "x$.—x."
which causes the latest time at the start of each system cycle to be avail-
able. A similar clock using binary notation was defined in section 2.2.5.

A simple "RS" flipflip may be defined as two interacting systems:
<RS:x,r, 8> 1i=<ffrix, r><ffs:x, s>
ffrex,r>={6r.0x:r. 01 m:r.1—-x0.1 ~x0.00r r.1 —x1.0-~-x1.10r $—~4% )
ffsix,s>1={6:s.0x:s.0l m:s.1—x1.1 -x1.0 ors.l —~x0.0—~x0.1 or

$— %)
or as one systems:
<RS2x,r,8>:1:={0: r.0 and s.0 x: rs01

m:r.l—-x0.1—-x0,0orr.! —x1.0-—xl.1o0r
§.1—xl.1 -xl.00rs.1 —x0.0—-x0.1o0r \.A — 51.7\'2}
where r and s are reset and set input wires. x0 and x1 are the reset
and set output wires. r and s should not be in the ".1" state simul-
taneously or the flipflop will oscillate.

The state of the flipflop (i.e. set or reset) does not appear in this
system since, by our representation of a wire, each connected system will
"remember" the current state or a wire until it is changed.

A "toggle" flip flop that simply changes state when a pulse is received

via wire t is given by:



~54 -~

Ktffax, t> = {0: £.0 x2 1. 01
nit.land t —-x0.1— x0.0 or t.l and t—~x0.0 — x0.10or
t.1 and t —=x1.1-—-x1.0 or t.1 and t—x1.0—xl.1 or
L.O — t}
where t must go to state " .0" before a new toggle will occur. Similarly,
a "JK" flipflop which toggles if reset (j) and set (k) signals occur simul-
taneously may be defined as
JK:x,j,k>={06:].0 and k.0 x: jkO1
m: j.1 and j—x0.1 —~x0.0 or j.landj—xl.0—xl.1o0r

k.1 and k—=x1.1 —x1.0or k.1 and k —-x0.0 —x0.1

which is identical to <RS:x,r,s> except for the production (R.O - /_\1) of
conditioning signals for the recognition of new j.1 and k.1 signals.

The following "pulse extender" system will, upon receipt of a t
signal, set x andremain set for fourcycles after the end of the t pulse.
The system will then reset unless a new t pulse is received first. A new
t pulse reinitiates the cycle.
<pe4d:x,t>::={0: x.0 and t.0 x: tx01

mt.l—-x.1-x.0 or t.l»——t]l_llg.r;/“\./*\ -7\1.7\2 or

t.0 and t$1 ~t$, or t.0 and t »x.0 - x.1]}

3.2 Automata Systems

Although the representation of our systems in terms of automata is,

in general, quite complex, the converse is not true. Most forms of




-55—

automata can be translated trivially into systems of our universe. The
added power of our systems frequently provides far simpler equivalent
systems.

3.2.1 Finite State Machines

A finite state machine (FSM) may be defined in many ways J° one

of which is by

a) a set of input signals sj €5, j =l,...,ns
b) a set of internal states qj € Q,j=1,... My
c) a set of output signals r), ER, i=1,... ,nr

d) a state function G(qi,sj) = gi]_ € Q

e) a response function F(qi,sj) = fij €R

where S, Q and R need not be disjoint sets. A FSMmay be represented by

a set of quadruples (qi’sj’gij'fij)'

A FSMmay also be defined as the SR
. <FSMx,y>={0: x and A qa, A x: x <state symbols><input symbols>
s /j\*xgzxg_r_xg:l_AZ&[\—*/ﬂ\f\lAg_g
Ain and sj -—»Agij/_x or Aqi.{\ and sj -»fi]. — vy}

<state symbols> ::= <concatenation of elements of Q>
<input symbols>::= <concatenation of elements of 5>
where x is the input channel name and output is transmitted to y. The

shorthand notation of the last line implies the set of productions obtained

i
'by substituting the appropriate values of qi,sj 'fij , and gij from each

“gee gec. 2 of Minsky [2] for more details.



~56-

quadruple. Atter an input signal Sj is received on the channel x , the
output signal r]. with be transmitted on the channel y at the end of the next
process step. The system idles after output until a new input signal appears.
Note that a new input signal must not be sent until the previous output is
received because of the unknown delay prior to initiation of the next process
step.

An equivalent system (except for delay in output) formed by encoding
F and G as RPR's is given by:
<FSM:x,y>i:={0:x and /_\qOA)g_:_ <state symbols><input symbols><output symbols>

m: A — xorxand AAA—AA A of AAAand i-»x,\ﬂl)’élfx or
NGO — D $ D or AE>A—~ $1 — v}

<G> = {$ y:<state symbols><input symbols> T_r_:_qisj — gij}
<F>::={$)_(_:_<state symbols> <input symbols> <{output symbols> e qisj —»fij}
Loutput symbols> ::=<concatenation of elements of R>
where the same shorthand notation is used. Two process steps of the SR
are required to generate the output.

The first form of SR above corresponds to a matrix representation of
a FSM while the second form represents a functional representation. FSM's
are also represented in state diagram form and we should be able to find a
similar representation in our universe. We may do this by defining a

separate system for each state, qi, fori # 0 as




<state:qi,x, y> = {g_:qi X:<state symbols><input symbols><output symbols>
M x — q; or x$ — x or xA —»Z\l - yors, -~ xfi],—» gij}

using the same notation as above. The system for state qo is identical
except that the initial a‘xiom is "x" rather than "qo". Qutput is delayed
by two process steps, one in the old state and one in the new state. This
allows the new state to be prepared for the next input symbol before it
appears. The input "channel", x, is passed to the next state so that the
next input will appear there.

We might find it convenient to define a given FSM as a system
complex involving all three of the above forms. A much more interesting

possibility is to use representation dependent systems. Each of the above

systems is independent of the choices for S, Q, and R. 1f we define a

two moment" delay machine by g(qij,sk) = qjk and f(qij'sk) =1 where
i,j, and k are 0 or 1 we have the SR
<2Mix, y> = {0:x and AqOOA_z(_:_ Xq009019; 09115051

s Z\—»xg_x;xandAZ&Aw/.\Z\lAgg

-+-/.\q001.\ or A qOO Aand s, —-I, —Yy Or

0 0

Adgph and s,

Aqllf_\ and »AquA _o_r_'_/,\qll/\ and s —-r, -y or

50 0

Ag. N and sl»/.\q

A — —
00t 1/,\ 9_r_AqOO/ and s1 ro y or

- 0
/,\q”/_\ and s1 »Aq”A or L\qll/x and s]w r, - v}.

The A's delimit what is essentially a shift register. Input signals are
shifted into the right side, and the leftmost signal is sent as a response.
If we assume s, = r, = i and qij = ij we may define the same system by

the SR



-58-

<2M:x, y> 1= {CG:x and A00A x: 01

mx—x or x and AMAD - AD,x A or x and AAAA=A = y].
Although the FSM representation independent forms get much more elaborate
for an "n moment" delay machine, using our representation dependent form
we have the SR
<nM:x, y>::={6: x and A<string of n zeroes> A x: Ol

M Xx—x or x and AA$A —»A$1>21A or x and AA$A — A —vy])
which is scarcely more complicated than the previous two moment form and

makes the notion of a shift register more apparent.

3.2.2 Turing Machines

A Turing machine, TM, may be defined by™

a) a set of input symbols sj €S,j= O,...,ns
where 5, is the blank symbol

b) a set of internal states q]. €Q,j=0,... ,nq

c) a set of output symbols rj = Sj’ j=1,... ;g

d) a state function G(qi,sj) = gij €Q, i£0

e) a response function E(qi,sj) = fij €s, j#£0

) a move function D(qi,sj) = dij € {do,dl)
where dO o left shift and dl o right shift

i) an <initial tape)>::= <string> sOqO <input symbol> <string>
<string> 1:= <null> | <string> <input symbol>

where S, Q, R, and D need not be disjoint sets.

“See Sec. 6 of Minsky [2] for details.




~59—

The TM may be represented by an <initial tape> and a set of quintuples
(qi,sj ’gij’fij 'dij) in a form similar to the quadruples for an FSM.

A TM may also be represented by an SR as follows:
<IM:>::= ( 6:<initial tape> x: <input signals> m: <TM productions> }
<I'M productions> ::=<IMquint> |<TM productions> <IMquint>
where <TMquint> is a pair of productions for each quintuple of the TM.
If the quintuple moves left, the productions are
$Z\soqisj$~ fiilsoc_;ij._Alfij $, or s qs$ — Sogijsofij$1 and if it
moves right the productions are

$s s A —~$f . s g A_$
oi7j

158090 8, o $s a;sy —~ 8

f s
j lijoCJ

i1°0

A TM which checks an initial tape, <pstring>, consisting of a
sequence of left and right parenthesis to decide if they are well formed
(i.e. may be paired off from inside to outside) is easy to construct, using
22 productions, as an SR of the form above. By making better use of our
primitive automaton we may define a parenthesis checking system SR,
using only one production, as
<pei> = [0: <pstring> x: x( )7z ($) xex (m: $({$x: x1m:}) »$1 X $2 x}$ —~}
which will terminate with a string of x's if well formed or, if not well

formed, either a string of x's and unmatched left parenthesis or a null string.

3.3 Programming Language Semantics

A system for the definition of simple precedence languages and their

semantics was described by Wirth[5],who illustrated his method by defining



-60~

a parser/interpreter for a simple language. We will define an egquivalent
system.

3.3.1 Parsing/interpreting System

The parsing/interpreting system for simple precedence grammars and
languages, shown below, displays very clearly the essential notions of
simple precedence parsing. The first production simply scans to the right for
the leftmost > relation. The second production then scans to the left to
find the rightmost < relation. <operation i,j> then reduces the < ...>
delimited phrase and the first production resumes scanning. The system
will halt if the <sentence> is not well formed.
<p/i> = (0: A<sentence>AEtack>A x:<non >

m: {$AA$ x:<nonA> m: <g matrix> ) A $ A -~ $11‘\1A $,0 $3.\ or
($AA $ A $ x:<non A> mr I matrix> JA $A —$ AN SV EN$ Nor
<operation i,j> }
<sentence>::= sentence of language to be interpreted. Left and right
terminating symbols are assumed.
<stack> ::= null if only parsing, otherwise defining the current state of
interpretation. It is implicitly defined by <operation i,j>
<non A>::= concatenation of language vocabulary which must not contain A

character. X will represent the ith character.




_61..

<g matrix>::= <g elmt> |<g matrix> or <g elmt>
<g elmt>::= $ XiZ_\xj $ — $1Axiij $ 5

One <g elmt> is generated for every pair of values of i,j such that

X, has greater precedence than x)..
<1 matrix>::= <l elmt> |<I matrix> or <1 elmt>
<l elmt>::=$ Xil_\xj $A%—~ $1xi[\ij $ZL\ $3

One <1 elmt> is generated for every pair of values of i,]j

such that X, has lower precedence than Ry

<operation 1i,j>::= <reduce i,j>|<interpret i, j>

<reduce i,j> = $/,\A.<p].>L\ $A A — $1Xi A $2 A $3A
One <reduce i,j> is generated for each Xi phrase having
a null interpretation rule where X, 10 = <pj>

<pj>::= right hand side of an X, production in grammar

<interpret i,j>::= {$A[.\<pi> AS$A$A x:<non A> iz <x, ops>} —~ $ 5 $,2_ ro$ N
One <interpret i,j> may be generated for cach xi:::‘ <pj>
phrase having a non-null semantic interpretation rule.
Generalizations leading to a smaller number of non-standard
operators are frequently possible.

<.Xi ops> ::= <production string>
which defines appropriate transformations of <gtack)> upon

the reduction of <p}.> to X, .



—62~

Since the initial axiom A <sentence> A <stack> A contains just
three A's, only the first production is applicable. This production will
move the leftmost A to the right until it creates | % [,\xj where e > x], .
1t then inserts an extra A before Xi to delimit this point, causing the
RPR to take a fail return.

Now that the axiom contains four A's, only the second production is
applicable. This production moves the extra A (inserted by the first
production) to the left until it finds xiA Xj where X, <& Xj . This is
marked by inserting another A after X .

There are now five A's in the axiom, so only <operation i,j> can
possibly be applied. The leftmost reducible phrase of the sentence is now
delimited by AA on the left and by A on the right. The only <operation i,j>
which is applicable is the one where j, the righthand side of a production
in the grammar, matches the delimited phrase exactly. <operation i,j> will
reduce this phrase to X the lefthand side of the production, and will
remove the AA, so the axiom contains only three A's again. If the
sentence is being interpreted instead of simply being parsed, the appropriate
manipulations on the <stack> will also take place.

3.3.2 Simple Language Definition

The simple precedence language defined by Wirth [5] can be defined

in terms of an SR, <p/i:>, generated by the additional definitions below.




-63~-

<non A> = <nojA>

<No;AD> = X X .. A, —+-x/( ) 0123456789

01 *18%19
where a mapping from Wirth's multisymbol vocabulary elements as in
Table 2 has been made.
<g elmt>::= | defined from precedence matrix
<l elmt> = of the simple language
<stack> = <null>
<sentence) ::= Xq <program in simple language> X,
<operation i,j>::= as defined in Table 3.
Just as in the Wirth definition, certain operations are assumed to
be available as "service" operations and are not explicitly defined; thus
they may be considered as "primitive" operations. For a complete definition
these primitives should (and could) be defined as additional operations in
our system. The remaining primitive operations are defined in Table 4.
Facilities for the easy implementation of the primitives have been
provided in the <stack>. Only <stack> sentences as
produced below will ever occur during the execution of the system. This is

an assertion about the system, not a part of its definition.



—b4-

Gtack> 1= <null> |; <elmt> [<stack>; <elmt>
<elmt> 1= <V <> [<d>
<i>n=A
<d> = 2 VD>
<v> ::= number in internal representation

&tack> will be transformed by the primitives as a <stack> of identifier
(<1i>), declaration (<d>), and value (Kv>) entries. The primitives operate
only on the top one or two entries of the <stack> and leave their result on
the top of the <stack>. The resulting form is suitable for the application of
the first operator of <p/i:>. The initial form (prior to primitive execution)
is always $A<op>n$A$A$ A and the final form (just after primitive <op>
execution) is always $A$ A $A. The operator will reduce the original phrase and
trarsform the <stack> appropriately.

Table 2: Character equivalents for multisymbol vocabulary elements.

Char. Equiv. Char. Equiv. Char. Equiv. Char. Equiv.
XO 1 Xg decl Xl 0 term x1 5 digit
x1 program x6 statement x11 term- x1 6 new
X, block X 5 statlist X5 factor X begin
Xq body Xg expr X, var X g end
Xy body- X expr- X4 number




Table 3: Semantic Rules

<phrase i> <operation i,j>
Xgii= Xq M $AAxl6M\$A$A—-$x A\$ /\$ A A
| X15::=Ol... |9 $AA (D 10123456789 3} ASA $ 40— HAXTO VAKX AS, A5,
X141 %) $/.\/_\x14x15/\ $A%$A — $ AX10 + A%, A 3>le$3/3
x13::=x $AA>\A$A$/\~+$X A$ A S ,/\
X151 g $AAX13A $ASA — $1A1d/xx12<'x $2,,,\ $3/_\
X)) Ry /%y - -
. $AAX11{L\_)_£_:_X/£:_} 1,0 $A %N —~ $1A\K\1[\Xn\$2/\ $3/\
%
Xgii==%yg $AA—xmz_\ $A$N — $1AnegAx9A $2/,_\ $3/\
X9 X9 + XlO _ _
e $AAx (A X2+ - m ) xy o0 EASA —>$1A/.\1/\x9/\ $,0 5N
X9* %9 T X0
X 11=X%) 5+ Xg $[\[\.xl3 -— x8/\ SA$A — $1A stAxé/\ $2A ‘%»g\
X 411X gIX, $OMX X A BN S {$ x: <no;A> A $lx4/\ $, A $3 A
All others use form for <reduce i,j> as shown below

xi::=<pj> $L\Z\<pj>A $A$A — $1xiA $, 0 $3/,\




-66-~

Table 4: Unrepresented primitives

QOperator Interpretation
xtov Convert digit to internal number representation
x 10+ v o= 10X + v, ; ti=t-
t-1 Vt-—l Vt tr=t-l
1d It current value associated with \ on top of <stack>
st store vt in current value associated with A in vt 1; te=t-]|
X /4= := ; te=t-
/ Viol Ve <op> v, fe=t-1
ne t=—
g VTV
4, ACKNOWLEDGEMENTS

The formal system described here was developed as a part of a

project for the design of high level hardware-independent systems and

languages, and as a tool for studying and teaching system structures.

It has been used in systems courses for three years and has profited from

many discussions with students in these courses. Although individual

acknowledgements of all these students is not feasible, special

acknowledgements should be given to Mr. Russell Blake and Mr. Stephen

Schleimer for discussions of systems communication and equivalence.




-67-

REFERENCES

1. Simon, H. A. The Sciences of the Artificial. M.I.T. press,

Cambridge, Massachusetts, 1969.

2. Minsky, M. Computation Finite and Infinite Machines. Prentice-

Hall, Englewood Cliffs, N. J., 1967.

3. Galler, B. and Perlis, A. A View of Programming Languages.

Addison-Wesley, Reading, Mass., 1970.
4, Digital Logic Manual, Digital Equipment Corporation, Maynard, Mass., 1970.
5. Wirth, N. and Weber, H. "EULER: A Generalization of ALGOL,

and its Formal Definition: Part 1", CACM 9 #1 Jan. 1966.






