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ABSTRACT

Newtonian gravitation is studied from a discrete point of view
in that the dynamical equation is an energy conserving difference
equation, Application is made to planetary type, nondegenerate
three~body problems and several computer examples of perturbed

orbits are given,






1, Introduction

The dynamical behavior of n interacting bodies has long been
of major interest in science and mathematics (see, e.qg., refs, [1]-
[10], [12]-[15], and the additional references contained therein).
Typical important n-body problems occur in the study of the solar
system under the usual assumptions that n be relatively small and
that capture, but not collision, be admissible, and in the study of
Brownian motion under the usual assumptions that n be relatively
large and that collisions occur in accordance with an assumed prob=-
abilistic distribution.

In this paper we will study an orbit type problem which is of
basic importance in astronomy. More precisely, we will study the
dynamical behavior of three nondegenerate bodies acted upon mutually
by the force of gravitation, Our model will be computer oriented in
the sense that the dynamical equations will be energy conserving
difference equations which can be solved directly by high—speed
arithmetic, For clarity, the discussion will be given in two dimen-
sions, though the method extends easily, and in a natural way, to

n bodies in any number of dimensions.



2. Discrete Newtonian Gravitation

For At >0 and tk:kL\t, k=0,1,2,..., and for each of

i=1,2,3, let particle Pi of mass mi be located at (x ),

ik Yik

—
), and acceleration a, =

—
have velocity v, = | -

v, v,
i,k ik, x’ i,k,y

(ai,k,x’ai,k,y) at time tk. Let position, velocity and acceleration
be related by
v + v X - X
A ik+1,x i k,x i k+l ik a1
(2. 1) 5 = At , 1=1,2,3; k=0,1,2,.4.
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v, . -V,
(2.4) a - llk+lly llkly , i:1,2,3; k:o,l,z,...

i,k,y At

To relate force and acceleration, let us assume a discrete Newtonian

equation of the form
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with
-—-*
(20 6) F. = (F, , F )




and
- . O Gmymo L0y 0 et ]
Lk, x N2 k2, k41 F12,% Fz, k)
CGmyma IO ™07 s i
N3 %13,k 13,k T 13 k)
- . L Gmm ) T, et )]
Lik,y o k12, x4 M2k e ket
_Gmm{ly) g gty )7y gty )]
3 k13 k4l 13k T3 kel
2.9 . oGm0 e o T e ™ )]
2.k, x T2k T2,k T2k iz kel
CGmy Myl ke %5 e ™ )]
T3k "23 kel W23,k T123 k4t
Gmym, [y, 7Y, )7y g 1Yy )]
(2.10) FZ K,y r r (r +r )
1Ky 12,k 12, k+1 Y12,k T2, k4l
Gm_m

23V, 1Y, ) 1Yy )]
23 k23, k41 723,k 23, k4l




Gmymo[(xy 4%y =08 4 4% )]

13 % 13,k 13,k T, ket

(2.11) 3 = -

Gm_m )=(

omal(y 4 1%
T3 kel 23,k 23,k T123, k4l

X, 01t 1]
)

Gmymo[(v, 1 Y5 3 )7 gty )]

13 k13, k41 F13,k T3, kel

(2. 12) 3 = -

Gm,m,[(vy o Y3 )7, ot Vo]

f3 kil 23,k 23,k T 23, k40

where r., is the distance between P, and P, at time t .
ij,k 1 ] k

Gravitation law (2.6)-(2.12) is a discrete ;lz law of attraction.

—
and v,

From any given set of initial data (Xi,O'yi,O) i,0°

i=1,2,3, collisionless motions of Pl' P2 and P3 are determined
by (2.1)=(2.12). However, before discussing the details of how to
use a digital computer to generate these motions, let us show that
our discrete formulation is energy conserving, since one can expect
physical stability from a three-body system which has no supply of
new energy. It is of fundamental importance to note that the usual

models generated by direct differencing of the continuous three-body

equations are not energy conserving,




The work Wi done by —ﬁi on Pi from time t() to time tn

'k
is defined by
n-1

(2.13) W, =
k=0

L ™ 0 F ke x (yi,k+l—yi,k)Fi,k‘,y]’

while the total work W done on the system is defined by
3
(2.14) W= ) W, .

i=1 !

From (2.1), (2.3), (2.5) and (2.6), one has first that

n-1 n=l
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Similarly,
n-1 m m
: Ti2 I
(2:16) Qio ™Y, Tk, vl = 2 Y,y T2 ViLouy
Addition of (2.15) and (2. 16) then yields
n-1
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Now, let the kinetic energy Ki of particle Pi at t. be defined by

K k

(2.18) K =T m (VZ 2

1
ik T2 MYk Yk

and let the kinetic energy K, of the system at time t  be defined by

k k

(2.19) Kk =

3
i=

K, °
1 i,k

Then (2.13), (2.14) and (2,17)~(2.19) imply
(2, 20) W=K_-K .

Note that, in establishing (2. 20), no special structure for
F. . and F, . was ever used. Suppose then one substitutes
i,k,x i,k,y
(2. 7)=(2412) into (2.13). Then, simple, but tedious, calculation

yields




n-1,r -r
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Defining the potential energy Vij K of the pair Pi and Pj at tk by

cmmy
V.. = -
ij,k rij,k
implies, then, that
' =V - - - ,
(2.21) W 12,0 V13,0 T V23,07 Vizk T Vis, kT Vs x
while defining the potential energy \/k of the system at tk by
(2.22) V, =V +V + V

k 12,k 13,k 23,k

vields immediately, from (2. 21).

(2.23) W = V_-V.



Elimination of W between (2.20) and (2.23) implies, finally,

(2, 24) Kn + Vn = KO + VO.

Since n in (2.24) is arbitrary, it follows that the sum of the kinetic

and potential energies is invariant with respect to time, which is, of

course, the law of conservation of energy.




3. Solution of the Three~Body Problem

The computer implementation of an initial value problem for
(2.1)-(2,12) can be described precisely as follows. The system

(2. 1)=(2. 12) is rewritten in the more convenient, equivalent form

At
3,_ 8 = - =
(3.1 T I T PR B et
(3. 2) = +QL(V +v ) i=1,2,3
: ik TV T 2 Yikaly Tk, T
At .
(3.3) vi,k+l,x"vi,k,x+mi Fik,x oo d=les3
At o
(3.4) Vi,k+l,yavi,k,y+mi Fi,k,y oo i=1,2,3
where Fi,k‘,x and Fi,k,y are given by (2.7)-(2.12). Now, beginning
. s ]
with the initial data Xi,O’ yi,O' Vi,O,x’ vi,O,y’ apply Newton's
e 1)=(3% r Y. ’ . . o
method to (3, 1)-(3. 4) to generate xi,l yl’l vl,l,X and vl,l,y

Using these new results for initial data, apply Newton's method again

-G, ‘ ' ) d . oceed
to (3,1)-(3.4) to generate Xi,Z yi,Z vi,z,x an vi,Z,y Pr e

in the indicated recursive fashion. Thus, for each value of k =0,1,2,...,

the twelve equations (3. 1)-(3.4) are solved for Xi,k+1’ yi,k+l'

and by Newton's method using the results for t

Vi k4, x Vik+l,y K

as initial data. Further, the initial guess for the Newtonian iteration

, 0y (0) B (0) _
is takentobe x; =X o Vi Yk Vikel,x Ui,k %
(0)

=V
Vi,k+l,y i,k,y

and
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A complete Fortran program for the method described above is

given in [11].
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4, Examples

From the variety of examples run on the UNIVAC 1108 at the
University of Wisconsin, we will now discuss several which illus-
trate the change of particle behavior as the masses and initial values

are varied. In each example, the time step is At = 0,001 and cgs

units are used, so that G = (6.67)10_8.

Example 1,

-1

Let P1 be a body of mass m_ = (6.67) 108 which is located

1
at (0,0) and has zero initial velocity, Let PZ be a body which is lo-

cated at (0.5, 0), which has velocity components Vs 0 x " 0,

\/"2 0,y = 1.63, and whose mass is negligible compared to that of

P Then, it follows from the usual methods of celestial mechanics

1.

that the trajectory of P2 is an elliptic orbit with P_ at a focus, with

1

semi-major axis a = 0.746, and with period 7 = 4.04. Now, if the
method of Section 3 is to be of any value, it should be applicable to
the above problem and should yield high accuracy. To apply the
method of Section 3, one simply sets m3 =0 in (2.7)~(2.10) and
applies recursion formulas (3.1)-(3.4) with only i= 1,2, In this

fashion, the motion of P‘2 is given, specifically, by

At
(4.1) Xy kel =¥k T o2 )

Vaxsl,x T V2,%,x
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(4.2) Yo kel Y2,k +é;-é§ Vo kit,y T2k, 5
(4.3) 2.k, x " V2, k,x Bty 1 4%, D05 +y§,k5’1/2 05
”;,ml’_l/z [(Xi,k+ yg,k)l/z
¥ (Xi,ku * yi,kﬂ)l/z]—l
(4. 4) Vokal,y - V2 ky TNk ”a,k)(xi,k ¥ Yg,k"l/z (Xi,kﬂ
+ (Xg,kﬂ * yg,kﬂ)l/z]_l'

From the given initial data, the motion generated from (4.1)-(4.,4) up

to t3501000 = 350 consisted of 86+ orbits, the 86th of which is

shown in Figure 4.1, For this particular orbit, the period was
T = 4,046 and half the distance between the X intercepts was
a = 0,746, which is in complete agreement with the analytical results

described above. The total computing time was under five minutes.

Example 2.

The data of Example 1 were changed only by the selection of a

new mass m2 = (6.,67) 106 for PZ' This time, of course, the mass

center of the system is in uniform motion and P2 is still in orbit
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relative to P1° This orbit, denoted by C2 in Figure 4,2 has period
T = 3,901 and semi-major axis a = 0,730. The orbit labeled C

in Figure 4.2 is that described in Example 1, so that the super-
position of CZ on C1 shows that the increase in mass of PZ has
resulteci in a smaller orbit, Because the present example consists

of only two bodies, the above assertion can be verified directly from

Newton's form of Kepler's third law:

2

(4. 5) ' (m1 + ma)'r2 = ig‘* a.3 '

since

(4. 6) | (m1+mz)'r‘2: [(6.,67)"1 108+(6, 67)_1 106](3.901)2~ (2.30) 10°
and

4.7 i’é?: a® - z‘j(fr”l“;‘g (0.730)° ~ (2.30)10° .

Additional analysis of this example will not be given because the
next two examples, which are full three-body problems, have all the

subtleties of the present one, and several in addition,
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Example 3,

Example 2 was modified by introducing the third particle P3

- 5
of mass m, = (6.67) L 107, with initial position (-1, 8), and with

velocity components v =0

3,0,x p V3'01y2—3,75. The initial

arrangement of P P2 and P3 is shown in Figure 4,3. The initial

1I

‘data were chosen so that P“2 and P3 would arrive in the vicinity
of (-1,0) almost simultaneously. In Figure 4.4 is shown the motion

of P, from t. to

1 0 t10000' The positions marked with the integers

n=20,1,2,...,10 are those of the particle at t The motion

1000n°

indicates clearly the uniform motion of the mass center of the system,

since the mass center is relatively close to the center of Pl' In

‘Figure 4,5 is shown the motion of PZ from t_ to with the

0 t5000
integers n=0,1,2,...,5 marking the posﬂ;;ons thOOn‘

4,6 is shown the motion of P3 from tO to t5000 with the same

In Figure

integer markings n=20,1,2,...,5 as for PZ' Particles P2 and P3

are closest at t2125 when P2 isat (-0.9296, ~-0.1108) and P3 is

at (-0.9325, -0.1012). The effect of the gravitational interaction
between PZ. and P3 during their period of close proximity is to de-

flect P2 outward, as is seen in Figure 4.5, and to deflect P3 inward,

as is seen in Figure 4.6, Moreover, after its first revolution about Pl’
P2 goes into the new orbit about P1 which is shown in Figure 4. 7.

The end points of the major axis are (0.4943, 0,1664) and (-0.9105,

-0,3075), so that a = 0,74135; the period is 1 = 3.9905; and the
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angle of inclination 6 of the major axis with the X axis is given

by tan6 = 0.34., Kepler's third law is again valid since

8 ,
10 2 8
(m, +m) 17 = 7e(1.01) (3.9905)% ~ (2..41) 107,
while
2 2
4t 3 4mt 3 8
G (a) = 6.67°10"8 (0,74135) (2.41)10 .,

Example 4.

Example 3 was modified only by increasing the mass of P3

_ . 106 _
to m3 = (6,67) - 10°, so that m2 = m3.

P3 are similar to those described in Example 3. But this time the

gravitational interaction between P2 and P3 is strong enough to
pull P2 out of its orbit., The trajectory of PZ is shown from tO

to in Figure 4, 8.

t500()

The trajectories of Pl and
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5, vRemarkS.

‘Example 3 of Section 4 demonstrates clearly, on a large scale,
how ah orbit can undergo rotation due only to gravitational forces,
A similar example in which P2 and 'P3 come closest in the second

qguadrant yielded a rotation of P_'s orbit in which 6 was negative.

2
The basic implication is that perihelion motion can be positive or
negati(ze. Preliminary calculations of a Sun-Mercury-Venus model
do show that the perihelion motion of Mercury, though small, is, at
times positive, and at other times, negative. Details and further

applications to problems in astronomy will be provided in a forth-

coming paper,
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APPENDIX - FORTRAN PROGRAM FOR THE TIRBEE-BODY PROBLEM
by A. B. Schubert

GFNFRAL PMISCRFTE THRFF RODY PRARLFM WITH CONMSFRVATION
NF TOTAL FNFRGY OF THF SYSTFM
GRAVITATIONAL FORCES NANLY CNANSINFERED

ALL (nmouTATynM qup IM mnupL: oop(lr[om

IMPRLICTIT PNUBLF PRECTISTON (A-HeN=7)

NALRLFE DRFEATSTAN MASER)

DIMENSTIAN X023 s YD ()3 UXD(3)sUYN{3)aX (362} 3Y (343 )3UX(292)43VY(357),
¥ OEX(R)gFY(3) 4R (A2 )4AM(73)

TODATATMARTT/URN 7 W FPE/ T N=T07 0/ =2/ 7 7 T e e

THE AROVFE NATA TS5 NEEINFA AS ©AL[AWS

MAXTIT = MAXe NOe NF NFWTAM TTFRATIANS TN RE A|LOWEDR In CoM-
PUTIMG DAcTTINNS AMD VELNCTTIFS AT FACH TIMFE &TED
:p¢ COMVEDRAENCE TOLFRAMNCE IH MEWTOAN TTFEFRATTON

AP AVTTRTTSRAT AN FANT 77T

N FARMAT(1ANG,N)

Ag FOPMAT(2THR14N5,,0)

a7 FOPMAT(IINT =107 1e4¢"X 'OMFGA =tD7176e493X TVXsVY =t AD1D3/
# 1X tMAQE =t aAD1 T .4 /)

o EORMAT('ANFWTAN ITERATION FAR TIME STEP! 15)

04 FORMATI( ' RyFXsFY!t 2% ON13.4)

03 EAPMAT (1X ADN16.7)

REAN PRARLEMANFFINTNG DHYSTCAL DATA
TXOUTIY S, YRIY L TET LS, A s TN T AL CBABTICIFE pASTTTANT 7
VXA (T U (T) 31214243 INTTIAL PARTICLE VFLOCITIES

MASS(T)sI=15243 = PARTICLFE MASSFS

i

2 READ(R Qs FMD=4N0) (XN(T)e¥YN{T)al=TeR) s (VXN(T)sVYD(T)sT=14a3)
* 9(MA§§(T)9T*]9°)

DEAD ADDTITTINANAL CoOMPUTATINNAL DATA
NMA X MAXTIMUM NNy NF TIME STEPS  FOR THIS DATA CASF
INCPR = TIMF STED INCRFMFNT FARPRINTIMG OF RESULTS
OMEGA = OVERRFLAXATINN FACTNR IN NFWTON'S METHAD
NT = TIMFE STFD <T12F

EMNGFNenN TMPLIFS MORFE CARNS NF THIS TYPE WILL FOLLOW
FOR THE SAMF DHYSTCAL DATA TNPHT ARNVE
TERNGNF e A7 TMBL TES NAT 7 R

5 READ(5,98) NMAX s INCPR s OMEGA 3 DT 9 END

T WRTTE TRy DT OME G s TV T s Uy It T Y s T=ET ) s TMASS T T Yy TSy 3y e

COMPUTE STATIC DATA-NFRENNDFNT PROGRAM VAPIARLF§ AND TNTTIALI?F

DYNAMICPASTTINN ANY VELACTTY VFCTOARS ™7~ IR

DFFTNITIONQ NF XeYy VX;VY ARRAY<




ANAANAANANANTIAN

FAP T1=1457247

Xt T3t =-X=COMPANENT OF “POASTTTON AF PARTICLE 1 AT PREVINUS

TIMF STFD

X{T4?2) = SAMF AS AROVYFs FXCFPT AT CURRENT TIMF STED AND
PREVIOUS NFWTON TTFRATION
X{TsR3) = SAMF AG AROVFs FYAIPT AT CURRENT MFWTON TTEDATTON
VX{Te1) = X=COMDANENT NF VYT OCTITY NF DARTICLF T
VX (Te?2) =" " WITH NEETNTTION OF SECOND SURSCRTIPT - o
VX{Te) = SIMTLAR TO THAT GIVFM FOR X ARNVFE
Y{Ts1) = SAMF Ac ABRAVYF
Y({Te?) = FYCFDT £NAR
Y{T,2) = Y —-CAMDANFENTS
VY({Ts1) = NE DOSTTINN
T?‘Y'T"T"{V) = NTY \YASRIBLS ]TY' T e e . T T
VY(Ts2) = NF PARTICLE 1
NMET =] ¢ =OMEGA
NT o= 5¥NT
NN 8 T=1,e7R

o i

X(T152)=X0(T)

Y(Ts3)=YNI(T)

VX (Te2)=V/XNI(T)
)

B VY(Ts3)=VYNLI

10 N=N+1

12 VY{(Ts1)=VY(Is?)

RFEGTIN NFWTON TTFRATINAN LONOD

A2

COMPUTE TNTTTAL “DTET ANCES RETHEEN BADT OIS ™~ = =

CALL PRIR(1.2W)

DRINT OUT IMITIAL DARTICLF POSTTIONS

CTEALLTERTNTIASY S Y )

PEATN TIME QTED LNAP

M=nN

UPNATE NDTSTANCES RETWFEN PARTICLESSPARTICLF POSITIONSS
TICLE VEPQC¥TIFS»FOR‘QREVIOUS TIME STFP

N 12 T=1,7
R{Ts1)Y=R(1+2)

R SR 4% P b i
Y({Ts1)=Y(Ts3)
VX{Te1)=VX(Ts73)

AND PAR-

NO 26 J=14MAXTT

UPDATF PRFVIOUS TTERATES FOR POSITIONS AND VFLOCITIES AND COMPUTE

CURRENT ITFRATFEFS Fnr pPNSITINMS

DOT4 T=1,7
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T4

R

75

2N

o n

TF(NLTeNMAXY GO TN 10

X(Ts2)=X(1,3)

R TT D) SR T3 | = e S

X(Ts3)=OMET#X (T2 }+NMEGARIDTI2%#(VYX(Te2)+VX{Ts1))+X{T411))
Y{Ts2)1=Y(T,7?)

VY{Te212VV(T,7)

Y(T43)=OMET%#Y (T42) +OMEGAR (DT 2% (VY (T+s2)+VY(Ts1))+Y(T51))

VALIIES NF PASITINN TTFRPATFS

CALL BR(R(1477)) e e e e
CALL FXY

CCOMPUTE " DTSTANCES  AND FORCES RETWEEN PARTITUFS FORTCURRFNT — 7o o=

S S

NO 1A T=1,473
VX (T2 =NMETHYX (T, 2 +OMEGANTDT™ FEX{(TIY+HYXTTST1YT
VY (T2 )=nMETIRVY (T2 ) +NOMEGA* (DT AFY(II+VY (141))

TEST “EAR—CINVEPGENTE NE - NFW AN TTERAT TN S e

NO 182 T=14673
TEUARS(IX{T42)2X (T 42))(TFPSY GO TH 285
TELARS(Y(T42)=Y(Ta2))1eGT.FDS) 6O TN 25
TFIARSIVX(Ts3)=VX(Ts2))eGTeFPa) HO TH 2K

GN TA 23N
CONTINLIE

EMD AT MEWTAN TTEDATTIAN | AND

WRTTF CONVFRAFNCETFRTY REMESSAGE AN G TN NEXT  OATA TASE ™~ """

WRITE(A4Qp) MAYTIT
RO TR RE e e e e R . ‘ -

TFST FOR PRINTING NF OASTITINANS AT CURREMT TIMF STEP

TF{MAND N TNCPDR Y oE0an) CALL PRTINT(NGX,Y)

TEST FOREND nF TTIM® STEP 1.00P FORTCURRFNT "DATA” CASF 7~

FNPD OF TIMF STFO LnnD, TEST FAR [ AST COMPUTATIONAL DATA CASE
AR CUPRENT PHYSTICAL DATA,

TFUOARCTIYY T T WY SUYT T % 3y Y o AT o P Y Y " TIY DR T T T I T S e

TF(FMNg"TeNe) GO TA 7
~“0 TN 5

TEPMINATTION DOINT FNR DROGRAM, CONTROL PFACHFES HERE UPON
ATTEMDTIMAG TA DFAD NPAGT |AST NATA CARD,

STND




C

N A N

M

A4

TNTFRMAL %JQ”OUTIM FOR (QMDUYING DI STANCES BFTWEFN PARTICLES

SUBROUITIMNFE RPR(P)

PIMENGTINAN D [3)
RL1)=SORT((X(1s3)=X(2s3))#A24(Y(1:3)=Y(2,3))%x2)
RU2)=SNRT((X{1e3)=X{242) ) %¥%2+(Y(1s3)=Y(343))%%2)

CRRTECRT (X2 s AT ATV T FHIH (VA D, A=Y A,V TH#¥D)

.’)r)

B e s b e

RETURN

INTERNAL SURRAUTING =0 COMPUTING FX(I) oFY (1) s1=1+7,3
ON DAQTICLE I

WHERE  FX(1) = X=CAOMDONFNT NOF TOTAL FNORCFS ACTIMG
G e N TUTHENTRY CMAGS AR BARTICTE T -
FY(T) = SAMF AS ARQOVF WITH Y=CAMPONFNT

cpapntiTTMFE ©XY
NIMENSTAN N(2)

(T)=P (T a1 )%P(T42) (P (To1)+R{T,42))
TXT=(X{(1eR)+X{1Te1)=¥{7,7) —Y(“,W)) N
TYT={Y(1s2)+Y{141)=V(2,2)=Y(2,1))/D(1)

TY2=(Y (1 42)4X (1 sl )=V {2, ?)~Y(7.1))/D(2)
TY?2=(Y{T1e3)4Y {11} =Y (2,3)=Y{[2,7))/D(2)
TY“ETVng?)¥Y?5;7W—VTi;5YlYT5,TY)7ﬁ(1T””’“""'

TTY A= (Y (2223 4Y (P sl )=V {2,3)=Y(3,1))/D(3)

X{1) == ()% TX] =AM 2 )T X7
EY (1) ==GM(2)¥TY T =AM (2)*TY?
FY (2)= OMET)I#*TY] =GM ) #TXR
FY(2)= GM(1)#TY1=CGM(3)%#TY3
“_X (’%)- (1'\"( 1 )Jé T\<7+(1M( 2 )'“TX’»!M
EY(2)= GM{1)*TY?2+GM(2)%TY?
RETIIPN

INTERNAL SURRNUTINE EOR PRINTING PARTICLE POSITIONS
TIME oTED T mmmm T

SHRBAITING DRIMT (M aXeY)
NATIPLE DOECTSTON X(242)aY (353)
QFA! X ’l),\/‘"(’%)

'h,.‘ L T"1-

XP{1Y=X{T1,7)
V”( TY=Y(T43)
WMRITF(AHsDN) N (XP(T)sYR(I)sI=1s7)
FORMATIIY TAsAX 2{72513,693%))
”F—THPM
SN

AT

A SPECIFIED .




