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ABSTRACT

SAC-1 is a computer~independent system for Symbolic and
Algebraic Calculation, programmed in Fortran IV (as defined by
USASI). The system is especially directed towards efficient per-
formance of large-scale calculations with multivariate polynomials
and rational functions having exact coefficients. The SAC-1 List
Processing System is the first of a series of SAC-1 subsystems
(seven existing, three nearing completion, others planned). The
present report is a new edition, with some corrections and minor

changes, of the original report of July 1967,
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Introduction

SAC~-1 is a computer—independent system for Symbolic and Alge~-
braic Calculation (the suffix, -1, provides for subsequent versions of
the system). SAC-1 is especially designed for efficiently performing
a wide variety of operations on polynomials and rational functions in
several variables, with the arithmetic operations on coefficients being
performed exactly. These polynomials and rational functions, and
other mathematical objects, are represented in the computer as lists,
or "list structures'", Therefore, the SAC-1 List Processing System is
provided as the first, and most basic, of a series of SAC-1 subsystems.
A second SAC-1 subsystem, [7], performs operations on infinite-precision
integers. Other subsystems, [8,9,10,11,12], perform progressively more
specialized and sophisticated operations on polynomials and rational
functions. Three additional subsystems (for polynomial greatest common
divisor and resultant calculation, for polynomial factorization and for
exact solution of systems of linear equations) are presently near com-
pletion, and still others are being planned.

SAC-1 is computer-independent in the sense that it is programmed,
with the exception of a small number of simple primitive subprograms,
entirely in the ASA (now USASI) Fortran IV language, [3]. In order to
implement SAC-1 on a particular type of computer, it suffices to com-

pile the SAC-~1 Fortran subprograms and to program in assembly language
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according to specifications the primitive subprogramsS. A programer familiar
with the assembly language should be able to program and test the primitive
in no more than a week., The SAC-1 system has been implemented on CDC
1604, 3600, 6400, 6600 and 7600 computers, IBM 7094 and system 360 com-
puters (models 50, 65 and 67), GE 635 and 645, UNIVAC 1108, and others.
The SAC-1 List Processing System together with the SAC-1 integer arith-
metic and polynomial systems, [7] and [8], constitute a computer-independent
counterpart of the earlier PM system, [1], for the IBM 7094, in that similar
capabilities are provided using similar algorithms and data structures. In
particular, the SAC-1 List Processing System is a reference-count system
having origins in [1] and [4]. The SLIP system, [5], is another well-known
reference-count list processing system, which however differs in that it em~-
ploys a symmetric, or doubly-linked, representation of lists. Fora thorough
discussion of list processing, including the relative advantages and disad-
vantages of the use of reference counts versus "garbage collection"” methods,

see [2].

Concepts and Terminology

In [4] we introduced the notation of a list as an abstract mathematical

object, to be distinguished from its various possible symbolic and computer

memory representations., Since this distinction will be assumed in our des-

cription of the SAC-1 system, it is appropriate to repeat here some of the
relevant definitions and to introduce certain terminology.
Intuitively, a "list" is just a finite sequence, some of whose elements

may themselves be finite sequences, etc., to any desired depth. Those




elements which are not themselves finite sequences will be referred to as
"atoms', and the "depth" to which one may descend before encountering an
atom will be called the "order" of a list. This leads to the following more
precise definitions. Let A be an arbitrary set. In contexts where A is
fixed, the members of A will be called atoms. Now set A0=BO=A° Assuming

Bm has been defined, define Am+1 to be the set of all finite sequences, each
of whose elements is a member of Bm, and then define Bm+ to be the union

1
m-1
U, A,. Clearly B &B, <B_<... Set I B - B {(for m > o).
i=o i o 1 2 . m -

“mtl  Cmtl

o

L is the set of all lists, over, A of order mtl, and L = U, .L, is the set
m+1 i=171 —

of all lists over A.

It is customary to denote a list by enclosing its elements in parentheses,
separated by commas. For example, if we take A to be the set of natural
numbers, then '""(3, 1, 1, 2)" denotes a list of order 1, while "((3), 1, (1,2))"
denotes a list of order 2. Note that the order of occurrence of elements is
significant and that an element may have several occurrences. Thus, (3, 1, 1, 2),
(3, 1, 2), and (1, 2, 3) are three distinct lists. The length of a list is its
length considered as a finite sequence. For example, (3, 1, 1, 2), (3, 1, 2)
and ((3), 1, (1,2)) are lists of lengths 4, 3 and 3 respectively. A list mav
have no elements at all; there is a unique such list, called the null list,
which is denoted by "( )". 1Its length is zero, and its order is one. By
contrast, (( )) is a list of length one and order two; its unique element is

the null list.

The elements of ((3), 1, (1,2)) are (3), 1, and (1,2): 3 and 2 are not

elements, but are constituents. The constituency relation is the transitive

closure of the elementhood relation: every element of z is a constituent of

N
<

and if y is a constituent of z and x is a constituent of y, then x is a

constituent of z.



Length and order are two measures (width and depth) of the complexity of
a list. An area-like measure of a list is its extent. Let us say that the
extent of an atom is zero. Then the extent of an arbitrary list (Xl’°°°’xn)
is defined, by induction on its order, to be n + 22=1 extent (xi). We will

see that in SAC-1 the extent of a list is the number of cells required for

its computer memory representation (except when overlapping occurs).

The inverse of any list (xl,..,,xn) is the list (Xn’°°°’xl)° Any Xy which
are themselves lists are not inverted. For example, the inverse of (3, 1,

(1,2)) is ((1,2), 1, (3)). The concatenation of two lists (xl,..,,xm) and

(y1’°°"yn) is the list (xl,...,xm,yl,...,yn).

Computer Representation of Lists

In SAC-1, any list is represented in computer memory by a collection of
cells. A cell consists of a fixed number, say k, of memorv locations. The
number k is fixed for a particular implementation of SAC-1, but may be
different for different implementations. For most computers k will be two,
but an IBM 360 computer with a 32-bit word, for example, requires K = 3. By

convention, the address of a cell is the address of its first memory location.

Each cell consists of four fields: type field (T), element field (E),
reference count field (R), and successor field (S). The computer represen—

C

tation of a list (Xl"'°’xn) consists of a set of n cells, say Cl"'°’ 0’

linked via their successor fields, together with representations, assumed
already given, of any of the X, which are themselves lists. I.e., the successor
field of cell Ci contains the address of cell Ci+1 (1 < i < n); the successor
field of Cn contains zero (it is assumed that zero is not the address of any

cell, which is easily arranged). The type field of cell Ci contains the value

Zzero or one according as X, is an atom or a list. If X, is an atom, then the




element field of Ci contains X3 if X is a 1list, then the element field of
Ci contains the location of some representation of the list X, In this
connection, the location of the list (Xl’°°°’xn) is taken to be the address

of the first cell, C in its representation. Of course, a given list may

l’
have several representations, simultaneously.

Note that, according to this definition, whenever a representation of a
list (X1’°'°’Xn) is present, so is a representation of any final segment of
it, (xk,.,,,xn), automatically. This turns out to be a very useful property

for many applications, polynomial algebra in particular.

The above definition does not apply to the representation of the null list.
By special convention, no cells are used in its representation, and the

location of its representation is zero.

We draw diagrams of list representations in which each cell of the
representation is depicted by a rectangle. Such a rectangle contains four
subrectangles corresponding to the four fields of the cell. The geometry of
the diagram is derived from the typical case in which there are two words per
cell and the element field consists of exactly the second word. Here is a

diagram of a cell:

A diagram for our example list ((3), 1, (1,2)) would appear as follows:

AN PR U,
1 “1 0 > 1




The contents of successor fields are suppressed, since they are deter-
mined (to within an isomorphism) by the horizontal arrows; similarly for
element fields containing the location of a list. The type fields could also

be inferred from the diagram.

We have not yet specified the contents of reference count fields. The
reference count field of any cell contains the number of arrows which terminate
at it. However, this count must include a third type of arrow not shown in
the above diagram, the program arrow. At any instant during the execution of
a program, there exists a certain number of variables which are currently
defined, and whose current values are locations of lists. Each such variable
has associated with it a program arrow terminating at the first cell of the

list which is its value.

It follows from this discussion, and from the following section on list
erasure, that, in a correct program, all reference counts are greater than or

equal to one.

With regard to field sizes, one bit obviously suffices for the type (but
more could be used). The element field is assumed to be no longer than one
word (but it could be shorter). The successor field must be long enough to
contain any machine address (whether real or virtual). It is easy to see that
the number of distinct computer memory locations (real or virtual) is an upper
bound for any reference count. Hence if the reference count field is given the
same length as the successor field, there will be no possibility of reference
count overflow. In the present version of the system, no check is made for
such overflow. However, an alternate version of the system is available in
which a shorter field is allotted to the reference count, overflow is detected
and, when it occurs, remedial action is taken, which consists in making a

partial copy of the list in which the overflow would otherwise occur. This




alternate version involves a change in only a single system subprogram,

namely BORROW.

Erasure and the Available Space List

As in other list processing systems, any cell is, at any instant, included
in the representation of at least one list. This is provided for by the
presence of a special list, the available space list, which is complementary
to all other lists: a cell is in the available space list if and only if it is

not in any other list.

In SAC-1, as in most other systems, the available space list, hereafter
called AVAIL, is maintained in the form of a list of order one (SLIP, [5], is
the known exception). For the sake of easy identification, each cell on

AVAIL carries a reference count of zero.

So that it will be accessible to all the subprograms requiring it, the
location of the available space list is kept in Common, specifically, in the
first location of labelled common block TR1, with the symbolic designation

AVATL.

An initial available space list is created by the subroutine BEGIN (A, N),
in which A is a one-dimensional integer array of N elements. N must be a
multiple of the number, k, of words per cell. An available space list of N/k
cells is created from the memory allocated to A, and its location is stored in

AVATL.

The only system subprograms which remove cells from AVAIL are PFA and
PFL. This is a desirable feature to maintain, since it makes it easy to

acquire statistics on the numbers of cells used in various applications.

Whenever a particular list representation is no longer needed in the

continued execution of a program, its '"release' must be programmed through a



call of the subroutine ERASE. ERASE returns to AVAIL all cells in the given
list which are not shared with other lists, as determined by the reference
counts, and decrements by one the reference counts of other cells as
appropriate. This system has the advantage over the garbage collection of
LISP, [6], that the processing time for reclaiming cells for re-use remains

always in direct relation to the number of cells reclaimed (see [1] and [4].

The reference count system makes possible a further gain in efficiency
through the use of specialized subroutines for the erasure of lists of pre-
determined structure. One such specialized subroutine, ERLA, is included in
the present system for erasing lists of atoms, i.e., lists of order 1. Other

specialized subroutines for erasure will be available in other parts of SAC-1.

If a program fails to apply ERASE to a list where this is appropriate, the
result is a permanent loss of a certain number of cells. If such an error
occurs in a section of program which is executed repeatedly, the result may
be a rapid, complete depletion of AVAIL. Hence, careful attention should be
given to this matter.

Of course, a list need not be immediately erased after its usefulness has
terminated. The importance of immediate erasure depends on how extensive the
list may be. A similar remark applies in garbage collection systems, where
it may be desirable to program abandonment of lists, since automatic abandon-
ment does not occur until a list variable is redefined or execution of a sub-

program is completed.

The List Processing Primitives

Ten primitive subprgrams are required for the SAC-1 list processing system.
Of these, two are associated with each of the four cell fields, for a total
of eight; the other two are used only by the BEGIN subroutine. These

primitives must, for the most part, be written in an assembly language, in the




correct form for linkage with the Fortran programs.

There are four primitive subroutines for storing information in cell fields.
They are: STYPE(X,Y) - type field, SCOUNT(X,Y) - reference count field,
SSUCC(X,Y) - successor field, and ALTER(X,Y) - element field. In each case
the argument Y is the location of some cell and the argument X is a value which
is to be stored in the appropriate field of the cell at Y. 1In each case, the
arguments X and Y are Fortran integers, with the possible exception of ALTER.
Here, the correct interpretation of X may be something other than an integer
(e.g. Hollerith), but with respect to Fortran, it is disguised as an integer;

and ALTER merely transfers X from one memory location to another.

There are four corresponding field retrieval function subprograms: Z=TYPE(Y),
Z=COUNT(Y), Z=TAIL(Y) - successor field, and Z=FIRST(Y) - element field. As
above, each argument Y is the location of some cell. The appropriate field of

cell Y is extracted and this value is returned as the Fortran integer Z.

Two additional function subprograms are needed for BEGIN: Z=NWPC(X) and
Z=LOC(X). 1In NWPC, the argument X is not referenced. The value Z returned is
always the number of words per cell. NWPC could be programmed in Fortran, but
it is classed as a primitive because it is computer-dependent. In LOC, the
argument X is some variable (possibly subscripted). The value Z returned is
the address of the memory location assigned to X. LOC is unlike the other
primitives in that there is no assurance implicit in the A.S.A. Fortran
specifications that the subprogram LOC can be written, even in machiﬁe language.
For most computers and their Fortran compilers, it can be; in those cases where

it cannot, it may be necessary to rewrite BEGIN as a primitive.



- 10 -

Description of the FORTRAN Subprograms

In the following descriptions, function subprograms are indicated
by a prototype of the form Z = F(Xl’°°°’xn)’ while subroutines are

indicated by a prototype of the form S(X Xn)' In SAC-1, the

IERERE
arguments of a function subprogram are never defined or redefined as

a result of the execution of the subprogram.

ADV(X,Y). Y is a non-null list (yl,.,,,yn). After execution of
ADV, the value of X is vy and the new value of Y is the list (yz,...,yn).
The given list (yl,.,.,yn) remains intact. CALL ADV (X,Y) is equivalent

to X=FIRST(Y), Y = TAIL (Y).

BEGIN (A,N). A is a one-dimensional integer array of N elements.
N must be a multiple of K, the number of words per cell in the SAC-1
implementation at hand. BEGIN creates an available space list from A
consisting of N/K cells and initializes to null the system pushdown
stack, STAK. Any SAC-1 main program will therefore normally begin with

a call of BEGIN.

Z = BORROW (X). X is the location of an arbitrary list. The reference
count of this list is increased by one (unless X is null), and Z = X, in
the current implementation. However, in order to maintain compatibility
with alternate implementations, it is recommended that users always
reference BORROW in the form X = BORROW(X) rather than CALL BORROW(X).

The current implementation assumes the increased reference count will never
overflow the reference count field. In implementations where such overflow
is possible, an alternate version of BORROW will return a value which may
be the location of a (partially) different representation of the given

list when necessary to prevent overflow.
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Z = CINV(X). X is the location of an arbitrary list (xl,...,xn). The
inverse list (Xn’°°°’xl) is constructed, and Z is its location. The list
X remains intact. Elements X, of X which are lists have their reference
counts increased by one via an application of BORROW, and hence are not

copied.

Z = CONC(X,Y). X and Y are lists, say (xl,...,xm) and (yl,...,yn). X
and Y are concatenated to form the list (xl,...,xm,yl,...,yn) by storing
the location of Y in the successor field of the last cell of X. Hence
X no longer exists (unless Y is null). None of the reference counts in
either X or Y are modified. Application of CONC is usually inappropriate
except when all main level reference counts of X and Y are one and X and

Y are not needed after their concatenation.

DECAP(X,Y). Y is the location of a non-null list (yl,,..,yn). After
execution of DECAP, the value of X is Y1 and the new value of Y is the
list (yz,...,yn), The first cell of the given list is returned to the
available space list, whatever its reference count was initially. No
reference counts in (yz,,,,,yn) are changed. Application of DECAP is
therefore ordinarily appropriate only whenall main~level reference counts

in the given list are known to be one.

ERASE(X). The arbitrary list X is "erased." 1I.e., those cells of
¥ which are not parts of some other list representation, as determined by
their reference counts, are returned to the available space list and the

reference counts of other cells in X are decreased by one as appropriate.

ERLA(X). X is the location of an arbitrary list of atoms, i.e., a
list of order one. X is erased; i.e., the effect of ERLA is the same as

that of ERASE. However, knowledge of the structure of X is used by ERLA,
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resulting in appreciably faster execution.

Z=INV(X). X is the location of a list (xl,.,.,xn), possibly null.
The given list is modified into the inverse list (xn,..,,xl), whose location,
Z, is returned as value. The given list X no longer exists. The inversion
is carried out by modifying the successor field only of each of the n cells
in the main level of the given list. Hence INV is appropriately applied only
to a list all of whose main level reference counts are one (typically a list

which has just been constructed).

Z=LENGTH(X). X is an arbitrary list (xl,...,xn). Z is the length, n,

of X, expressed as a Fortran integer.

NOAVLS. A system subroutine called by PFA or PFL whenever the available
space list is empty. It prints the diagnostic "out of available space" and

terminates job execution.

Z=PFA(X,Y). X is an atom, Y is the location of an arbitrary list
(yl’°'°’yn)° X is prefixed to the list Y, resulting in the list (X,yl,,..,yn).
The given representation of Y remains intact, and its reference count remains
unchanged. The reference count of the resulting list is one and the value
Z returned is its location. A single cell is removed from the available space

list, into which is stored the element X.

Z=PFL(X,Y). PFL is exactly like PFA except that here the argument X is
a list. The reference count of X is not modified, since typically the list
X is not independently needed, or else its reference count has previously
been augmented by an application of BORROW. Note that, if X = (xl,.,.,xm)
and Y = (ylgn.,yn)9 then the resulting list is (X,yl,...,yn), a list of
length n+l whose first element is the list X, not the list (xl,,..,xm,yl,...,yn)

as in concatenation.
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STACK2 (X,Y). X and Y are placed on the syétem pushdown stack - first X,
then Y - by two applications of PFA. X and/or Y may, however, be the
locations of lists; this causes no difficulty since the pushdown stack is
never processed as a general list in which the types of the elements must

be checked.

STACK3(X,Y,Z). Like STACK2 except for the third argument Z, which is

stacked last.

UNSTK2(X,Y). The top element on the pushdown stack is removed (via
DECAP) and assigned to Y; then the next is removed and assigned to X, Note
that a CALL STACK2(X,Y) will normally be paired with a CALL UNSTK2(X,Y) - as

opposed to CALL UNSTK2(Y,X).

UNSTK3(X,Y,Z). The extension of UNSTK2 to three arguments. Z is

unstacked first.
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Recursion in SAC-1

One of the main deficiencies in A.S.A. Fortran as a language for list process-
ing and for symbolic and algebraic manipulation is its failure to provide for
recursive subprograms (see [3], p. 615 and p. 618). For use in SAC-1 a method
has been developed for circumventing the prohibition against, and lack of
provision for, recursion. The method is somewhat inconvenient to use, but
completely general. The SLIP system, [5], provides a mechanism for recursion
in Fortran, but it requires the use of two additional primitives; moreover
these primitives violate certain A.S.A restrictions and, indeed, there is no
assurance that these primitives can be realized in a way that is consistent with

an arbitrary Fortran compiler.

A subprogram is recursive in case the completion of a particular execution
of that subprogram may require the prior initiation of a new execution. This
may come about either directly, as a result of the subprogram referencing
itself, or indirectly, as when the given subprogram references another sub-
program which in turn references the former (either directly or indirectly).
Recursion in Fortran poses three distinct problems, which we shall now discuss,

one by one.

The first problem is the syntactic prohibition, stated in [3], that a sub-
program shall not reference itself, directly or indirectly. Its effect is that
any subprogram which references itself directly will likely result in a
diagnostic, and will fail to be compiled. The syntactic prohibition against
indirect recursive reference, on the other hand, is unenforceable since its
detection would require that the several subprograms in the circular chain of
references be compiled simultaneously. Since a direct self-reference is easily
translatable into an indirect self-reference, by the introduction of a new sub-

program which does nothing more than to call the original subprogram with the
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same argument list, this first problem is easily circumventable.

The other two problems pertain to possible inadequacies in the compiled
programs. When an interrupted execution is later resumed, it is essential
that all its variables have the same definitional status and values as prior
to the interruption, although these may have been altered by intervening executions.
The A.S.A. specifications do not require this restoration and it must be explicitly
programmed. The solution to this problem is quite simple with the use of a push-

down stack.

The SAC~1 system has a single pushdown stack, which is in the form of a list
of order one, in which all reference counts are one. Values are placed on the
stack by prefixing them to the list, and removed by the list decapitation process.
The location of the pushdown stack is kept in the second memory location of the
labelled common block TR1, bearing the symbolic name STAK. Special system sub~-
routines, STACK2, STACK3, UNSTK2 and UNSTK3, described in Section 6, are provided
to facilitate stacking and unstacking. Just prior to a recursive reference,
current values of program variables are stacked and, immediately following the
recursive reference, these values are unstacked and reassigned to the same
variables. Not every program variable needs to be so preserved and restored -
only those whose current value will be used in completing the interrupted

execution. This will be illustrated in the example below.

The third problem connected with recursion pertains to the flow of control,
and the Fortran Return statement. When a subprogram may have several executions
in progress simultaneously, there is associated with each execution a return
location which must be saved along with the current values of program variables.
Since, however, these return locations are not, in Fortran, associated with any
program variable, it is impossible to use the stack mechanism. We believe, in

fact, that, for this reason, it is impossible to program in A.S.A. Fortran a



- 16 ~

recursive subprogram in the strict sense. We can, however, devise an effective

substitute for a recursive subprogram, which we call a recursive procedure,

A recursive procedure is a sequence of executable statements together with a

list of variables occurring in these statements, which function as procedure
parameters. Among the procedure parameters, one acts as the return location of
the procedure. 1In the case of a function procedure, one also serves to carry
the function value. All other procedure parameters play the roles of the dummy

arguments of a subprogram.

A recursive procedure has all the essential features of a subprogram and, in
addition, a variable associated with its return location. The actual value of
the return location variable is not a locationm, but a statement number, or a code
number for use in a computed-go-to statement. This value can be stacked along
with the values of other variables. An inessential, although very convenient,
feature of subprograms, not shared by recursive procedures, is the automatic
assoclation of actual arguments with dummy arguments, as well as the possession

of a symbolic name.

We now illustrate the use of recursive procedures by an example. Suppose we
wish to write a function subprogram Z=ORDER(X) which, when applied to an arbitrary
list X, returns as value the order, Z, of X, as a Fortran integer. This function
is naturally defined by recursion since the order of X is just one greater than
the maximum order of any element of X which is a list, or one if all elements of
X are atoms. Thus, if recursion were permissible, we might define ORDER as

follows.
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INTEGER FUNCTION ORDER(X)
INTEGER FIRST, TAIL, TYPE
INTEGER X,T
T =X
N =o
IF (T.EQ.o0) GO TO 3
1 IF (TYPE(T).EQ.o0) GO TO 2
M = ORDER (FIRST(T))
IF (M.GT.N) N =M
2 T = TAIL(T)
IF (T.NE.o) GO TO 1
3 ORDER = N + 1
RETURN

END

We now rewrite the ORDER subprogram, so that it contains within it a
recursive procedure for the order function and is not, itself, recursive. We
first choose the procedure parameters: Y for the function argument, N for the
function value, and R for the return location. The procedure will be "called"
from two places: from outside the procedure, but within the ORDER subprogram
and from just one place, in this case, within the procedure itself. We assign
code numbers, 1 and 2, to these two places. The following program is obtained,

in which comments have been inserted to delimit the structural parts.

INTEGER FUNCTION ORDER(X)
INTEGER FIRST, TAIL, TYPE
INTEGER X,T,Y,R,E

C PROCEDURE CALL

Y =X
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R=1

GO TO 4

ORDER = N

END PROCEDURE CALL

RETURN

RECURSIVE PROCEDURE N = ORDER(Y), RETURN TO R
T=1Y

N=o

IF (T.EQ.0) GO TO 3

IF (TYPE(T).EQ.0) GO TO 2
E = FIRST(T)

RECURSIVE PROCEDURE CALL

CALL STACK3 (N,T,R)

Y =E
R=2
GO TO 4
M =N

CALL UNSTK3(N,T,R)

END RECURSIVE PROCEDURE CALL

IF (M.GT.N) N = M

T=TAIL(T)

IF (T.NE.o) GO TO 1

N=N+1

PROCEDURE RETURN

GO TO (5,6), R

END RECURSIVE PROCEDURE N=ORDER(Y), RETURN TO R

END
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This program is by no means optimal because, by intent, it illustrates a
more or less algorithmic translation of the former program. Also, this simple
function could be quite easily programmed without the aid of recursion. But
there are much more complex situations where recursion is practically indis-

densable.

The example above illustrates the case of direct recursion. In the general
case of indirect recursion, one has subprograms Al”"’An such that Ai calls
Ai+l’ for 1 < i < n, and An calls Al° It is then necessary to set up procedures
for each Ai within a single subprogram, say B. 1In addition, there is a sub~
program for each Ai’ the sole function of which is to accept computational
requests from the system and relay them to subprogram B for the actual

computation, together with a code number i, which tells subprogram B which

procedure to invoke.

Suppose, for simplicity, that n = 2 and that each Ai is a function of one

argument. Subprograms Al, A2 and B (in outline) would then appear as follows.

INTEGER FUNCTION Al (X)

INTEGER X,B

Al = B(1,X)
RETURN
END

INTEGER FUNCTION A2(X)
INTEGER X,B

A2 = B(2,X)

RETURN

END
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INTEGER FUNCTION B(I,X)
INTEGER X,U,R,W,V,S,Z,...

IF (1.EQ.2) GO TO 2

1 U=X
R=1
GO TO 3
4 B=W
RETURN
2 V=X
S =2
GO TO 5
6 B =2
RETURN
3 (procedure Al)
5 (procedure A2)
END

Here U, R and W (V,S and Z) are the argument, return location, and value

variables for procedure Al (A2).

The above programs serve to illustrate another programming device not related
to recursion, but to another inconvenience of Fortran. In a system such as
SAC-1, we generally want to eliminate the distinction of the various types of
variables because it may, for example, result in unwanted conversions from
fixed to floating-point, or vice versa. Since we do, however, wish some data to
be interpreted as integers, the solution is to disguise all data to Fortran as
integers. It is unnatural and anti-mnemonic to begin every variable and function
name with I, J, K, L, M or N. So we choose identifiers freely and, after writing

any program or subprogram, list in an integer declaration all identifiers which
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occur. This is a simple mechanical process which has been found to be non-
error-inducing, and is recommended to users of SAC-1 as well. It also results
in the useful byproduct that all function subprograms referenced by a given sub-
program are listed at the beginning of the subprogram; we usually list them in

a separate declaration,

The SAC-1 Character Set and Internal Code

Since different computers have different character sets and, also, different
internal codes for the same characters, some scheme is required for maintaining
computer independence in the SAC-! input-output system. The obvious solution
to the problem of differing character sets is the choice of a small set of characters
common to all computers. Such a choice is provided by the A.S.A. Fortran
character set ([ 3], p. 593), consisting of all the characters used in writing an
A.S.A. Fortran program. The adoption of this set as the SAC-1 character set
implies that all input and output data processed by SAC-1 will consist of these
characters only.

A common internal code for these characters is also required. Since the
internal hardware codes of different computers are inconsistent, a conversion
from the hardward code to the SAC-1 code upon input, and the inverse conversion
just prior to output, is, in general, required. Hence, instead of choosing the
hardware code of one particular computer as the SAC-1 code, a code has been
chosen which facilitates the kind of character testing required in the SAC-1 input
conversion subprograms. In this code, functionally similar characters (digits,

letters, operators and punctuators) are assigned contiguous codes. The coding
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system is given in the following table.

Characters Decimal Codes
0-9 0-9
A-7Z 10 - 35

+ / 36 -~ 39

( ) , . blank 40 - 44

= 45
$ 46

The Primitive Subroutines READ and WRITE.

The READ subroutine reads a standard size record from a specified unit U,
performs the conversion from hardware code to SAC~1 code, and delivers the
input characters as the elements of an array A . Correspondingly, the WRITE
subroutine converts the elements of an array A from SAC-1 code to hardware
code, and writes the result on unit U as a standard size record. U and A
are the subroutine arguments: READ(U, A), WRITE(U, A).

The standard record length is 72. Thus, A is a one-dimensional integer
array of 72 elements. Input records may be longer (e.g. 80 in the case of
card-generated input), but only the first 72 characters will read and stored
in A . Output records generated by WRITE will be of either length 72 or 73,
depending on the unit number U . Certain unit numbers, according to local
option (as reflected in the implementation of WRITE), are regarded as designating
printer cutput units (either printers or tapes destined for printing), When such a

unit is designated, a record of length 73 is written of which the first character




10.

_23."

is blank, resulting in single line printer spacing, and A(I) corresponds to the

(I + 1)~ th character of the record for | = I = 72 . Otherwise, A(I) always
corresponds to the I-th character of the record (input or output). A 73-character
record so written cannot, of course, be later read as meaningful input.

If, when the READ subroutine is called, unit U 1is positioned at an end-of-
file, A(l) 1is given a value of -1 as a means of relaying this information to the
calling program. Execution of WRITE may result in redefining the array A (e.g.,
A may then contain the hardware code for the record written).

Subprograms provided as parts of the SAC-1 system will process only records
containing only characters from the Fortran character set. However, individual
users of SAC-1 may wish to make extensions of the system to process additional
characters. This can be done by assigning codes to these characters in the
range 47-63 and implementing READ and WRITE so as to perform the required

code conversions for the expanded character set.

Reading and Writing Lists

SAC-!| contains two subprograms, LREAD and LWRITE, for reading and writing

arbitrary lists. This requires that an arbitrary list have an "external representation"

as a sequence of characters. This external representation has been illustrated
in Section 2 for the case that atoms are integers represented in standard decimal
notation. In SAC-1, atoms are always sequences of m binary digits, where m
is the word length of a particular computer.

(We assume throughout this section that SAC-1 is implemented on a binary

computer. All parts of SAC-1 other than those described in this section are
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independent of this assumption, including the parts to be described in subsequent
papers. The subprograms here described are useful, but inessential, adjuncts to
the system.)

These m binary digits are clustered into groups of three, thereby determining
a sequence of octal digits. (If the word length is not a multiple of 3, one or
two leading binary zeros are considered implicit.) The external representation is
then a sequence of left and right parentheses, commas, and octal digits. The
main list and its constituent lists are delimited by parentheses; list elements are
separated by commas. Since a sequence of octal digits representing an atom will,
in common practice, frequently have several leading zeros, special provision is
made for their suppression. In input to LREAD, any number of leading zeros may
optionally be suppressed. In output produced by LWRITE all leading zeros will
be suppressed. An exception to this rule is that if all digits are zero, one zero
must be retained (and is retained by LWRITE). The number of characters in an
external list representation may be arbitrarily large, and hence span an arbitrary
number of records. The first character always occurs in the first position of the
first record, the 73rd character, if it exists, occurs in the first position of
record two, etc. The last record is fillad out with blanks as required; intervening
blanks are not permitted.

7Z=LREAD(U) is a function subprogram which reads a list from unit U and
generates an internal representation of the list read, returning the location of the
internal representation as the value Z . If, when LREAD was called, unit U

was positioned at an end-of-file, then the value Z returned is instead -l.
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LREAD makes various checks on validity of the input list. If the input is
invalid, then the value Z = -2 is returned.

LWRITE(U, X) is a subroutine, which converts the list X to external
representation and writes it on unit U . The internal representation remains
intact and unerased. Since LWRITE uses WRITE, the record length may be
either 72 or 73 dependingon U .

Three additional primitive subprograms, LSHIFT, RSHIFT and NBPW, are
required by LREAD and LWRITE. These primitives are not used elsewhere in SAC-!
and are therefore dispensable if LREAD and LWRITE are omitted from the system.
LREAD and LWRITE serve two main purposes: debugging and the conservation of
addressable memory. LREAD may be used to input simple test lists. LWRITE
may be used to output intermediate results during program testing. Main memory
may be conserved during a calculation by writing lists temporarily on tape,
erasing them, and later reading them with LREAD. Later increments to SAC-I
will contain input-output subprograms for lists representing particular types of
objects, e.g., large integers, polynomials, rational functions, etc., but the
I/O conversions employed are more complex and time consuming, and are not
needed for saving intermediate results on tape.

7=LSHIFT(X, Y, N) is a function subprogram in which X:Xl, ...X and

m

Y:Yl . .Ym are atoms, regarded as sequences of bits, and N = n is a shift

amount, expressed as a Fortran integer. Z is the atom resulting from left-shifting
X n places and inserting the last n bits of Y into the vacated bit positions.

Iaeo’ Z:Xn+l.--X

,mY Y . X and Y are not redefined.
m

m-n+l""
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RSHIFT(X, Y, N} is a subroutine in which X = Xl o .Xm and Y are atoms
and N =n 1is a shift amount. X is right-shifted n places so that the redefined
value of X is 0 ... 0 X_L . 'Xm-n' Y need not be initially defined; its resulting
value is 0...0 Xm-nH Xm.

Z = NBPW(X) 1is a function subprogram whose argument X is ignored and
whose value Z 1is the number of bits per word in the computer of implementation,
expressed as a Fortran integer.

LREAD and LWRITE depend on one additional assumption, which holds for
all known computers, but which should probably be made explicit, nevertheless.
This assumption is that non-negative Fortran integers in the range 0= N £ 7

are represented in standard base two notation; i.e.,, 0 by 0 ... 0, | by

0...01, 2 by 0.., 010, etc.
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Appendix A: Listing of the Fortran Subprograms.

SUBROUTINE ADVI(EL,LOC)

COMMON /TR1/AVAILsSTAKSRECORD(72)
INTEGER AVATILsSTAKsRECORD

INTEGER ELSLOCsLsTAILSFIRST

L=LOC

EL=FIRST(L)

LOC=TATIL (L)

RETURN

END

SUBROUTINF BEGIN(ARRAYN)
COMMON /TR1/AVATIL sSTAKsRECORDI(72)
INTEGER AVAILSsSTAK,RECORD
INTEGER ARRAY
DIMENSTON ARRAY (N)
J=NWPC (L)
L=LOC(ARRAY (1))
M=N-J
AVAIL=L
DO 1 K=1eMsJ
LN=LOC(ARRAY (K+J))
CALL SSUCCILNsL)
CALL SCOUNTI(DsL)
CALL STYPE(OsL)
CALL ALTER{O,L)
1 L=LN
CALL SSUCC(0,L)
CALL SCOUNT(OsL)
CALL STYPE(O-L)
CALL ALTER(OLL)
STAK=0
RETURN
END

INTEGFR FUNCTION BORROW(LIST)
COMMON /TR1/AVAILSTAKSRECORDI(72)
INTEGER AVAIL sSTAKsRFCORD

INTEGER COUNT

BORROW=LIST

IF (BORROW.EQ.0Q)RETURN

CALL SCOUNT(COUNT (BRORROW)+1sBORROW)
RETURN

END

INTEGER FUNCTION CINV(X)
COMMON /TR1/AVAIL sSTAKsRECORD(72)
INTEGER AVAIL sSTAK sRFCORD
INTEGER TYPEsPFAsPFL s BORROW
INTEGER XosZsRsE, T
7=0
R=X

1 IF (ReEQe0) GO TO 3
T=TYPE(R)
CALL ADVI(EsR)

2.8




N =

29

IF (ToEQel) GO TO 2
Z=PFA(E»2Z)

GO TO 1
Z=PFL(BORROWI(E)sZ)
GO TO 1

CINV=Z

RETURN

END

INTEGER FUNCTION CONC(XsY)
COMMON /TR1/AVATIL sSTAKsRECORD(72)
INTEGER AVAILsSTAK sRFCORD
INTEGER XsY s XADs XNEXT s XSUCTATIL
CONC=Y

XSUC=CONC

XNEXT=X

IF(XNEXT.EQ.0)RETURN

CONC=XNEXT

IF(XSUC.EQ-0)RETURN

XAD=XNEXT

XNEXT=TAIL{XNEXT)
IFIXNFXToNFeN)IGO TO 1

CALL SSUCCI(IXSUCsXAD)

RETURN

END

SUBROUTINE DECAP(EL,LOC)
COMMON /TR1/AVAIL sSTAKSRECORD(72)

INTEGER AVAIL,STAK,RECORD
INTEGER BosELsTAILSFIRST
B=AVATL

AVAIL=LOC
EL=FIRST(AVAIL)
LOC=TATIL (AVAIL)

CALL SSUCCI{BsAVAIL)
CALL SCOUNT(O-AVATIL)
RETURN

END

SUBROUTINE ERASE (XX)

COMMON /TR1/AVAIL sSTAKSsRECORD(72)
INTEGER AVAILsSTAK RECORD
INTEGER COUNToFIRSTSTAIL,TYPE
INTEGER X oXXsToBIN

X=XX

BRIN=0

IF(XFQe0)YGO TO 3
K=COUNT{X)~1

CALL SCOUNT(KeX)

IF({KoGTa0)GO TO 3
IFITYPE(X)sEQe11GO TO 4
T=TAIL{X)

CALL SSUCC(AVAILsX)

AVATL =X

X=T



GO TO 1
IF(BINeEQsO)IRETURN
X=FIRST(BIN)
T=TAIL(BIN)

CALL SSUCC(AVAILSBIN)
AVATIL=BIN

BIN=T

GO 70 1

T=TAIL(X)

CALL SSUCCI(BINsX)
BIN=X

X=T

GO 70 1

END

SUBROUTINE ERLA(X)

COMMON /TR1/AVAIL sSTAKsRECORD(72)
INTEGER AVAILsSTAKsRECORD
INTEGER XoUsVoTAILsCOUNT
IF{XeEQa0)GO TO 3

U=0

V=X

N=COUNT(V)-1

CALL SCOUNT(NsV)
IF(NoNEN)IGO TO 2

U=V

V=TAIL(V)

IF{VeNE.0)GO TO 1
IF(UsEQs01GO TO 3

CALL SSUCC(AVAILsU)
AVATL=X

RETURN

END

FUNCTION INV(LIST)

COMMON /TR1/AVAILSSTAKSRECORD({72)
INTEGER AVAILsSTAKsRECORD
INTEGER TAIL

INV=0

NEXT=LIST
IF(NEXTeEQoO)RETURN
ISTORE=NEXT
NEXT=TAIL(ISTORE)

CALL SSUCC(INVSISTORFE)
INV=ISTORE
IFINEXTeNE<0O)GO TO 1
RETURN

END

FUNCTION LENGTH (LIST)

COMMON /TR1/AVAILsSTAKsRECORD(72)
INTEGER AVAILsSTAKsRECORD

INTEGER TAIL

LENGTH=0

30




10

11

20

21

22

23

30

31

31

K=LIST
IF(KeEQeO)IRETURN
K=TAIL (K)
LENGTH=LENGTH+1
GO 70 1

END

INTEGER FUNCTION LREAD(U)

COMMON /TR1/AVAILsSTAKsRECORD(72}
INTEGER AVAILSTAKsRECORD

INTEGER PFAsPFL s INVsLSHIFTsNBPW
INTEGER BoCsDsEsPosTslleXoY 2

T=0

0
0
1
N

BPW (X)

L@ o= N X
o ouou

1
jus)

CALL READ(USRECORD)
LREAD=~1

IF (RECORD(1)oEQe—1) RETURN
IF (RECORD(1)oNE-40) GO TO 90
P=RECORD(1)

I=1+1

IF (I.LE.72) GO TO 11
I=1

CALL READ(USRECORD)
IF (RECORD(1)eLTo0) GO TO 90
C=RECORDI(I)

IF (PeEQo40) GO TO 20
IF (PoEQo4l) GO TO 21
IF (PoEQe42) GO TO 22
GO 70 23

IF (C.EQe40) GO TO 30
IF (CeEQe4l1) GO TO 31
IF (ColTe8) GO TO 32
GO T0 90

IF {CeEQoe41) GO TO 31
IF (CeEQes2) GO TO 10
GO TO 90

IF (CsEQe40) GO TO 30
IF (CelTo8) GO TO 32
GO TO 90

IF (CcEQo41) GO TO 33
IF (CeEQes2) GO TO 33
IF (CelToeB) GO TO 32
GO TO 90

Z=PFL(XsZ)

X=0

GO TO 10

X=TINV(X)

IF (Z.EQe0D) GO TO 80
CALL DECAPI(Ys2Z)
X=PFL(XsY)



32

33

35

36

80

90

10

11
20

13
14
40

12
15

30

GO TO 10

T=PFA(CsT)

J=J-3

GO TO 10

IF (JelLTe=2) GO TO 90
T=INVI(T)

IF (JeLE.0) GO TO 36
T=PFA(OsT)

J=J-3

GO TO 35

CALL DECAP(D,T)
E=LSHIFT(EsDs3)

IF (ToNE.O) GO TO 36
J=8

X=PFA(EsX)

IF (CoEQe41) GO TO 31
GO 70O 10

LREAD=X

RETURN

CALL ERLA(T)

CALL ERASE({X)

CALL ERASE(2Z)
LREAD==-2

RETURN

END

SUBROUT INE LWRITE(UQY?
COMMON /TR1/AVAILsSTAKsRECORD(72)
INTEGER AVAIL sSTAK sRFCORD
INTEGER NBPWSsFIRSTSTAILsTYPESPFA
INTEGER BsCsDsSoTslUsXsY
S=0

X=Y

I=1

B=NBPW(T)

C=40

GO TO 50

IF (XeNEs0O) GO TO 12

C=41

GO TO 50

IF {S.EQ.0) GO TO 60

CALL DECAP(X.%)

X=TAIL(X)

IF (XoEQe0) GO TO 20

C=47?

GO TO 50

T=FIRST(X)

IF {TYPE(X)EQ.0) GO TO 30
S=PFA(XsS5)

X=T

GO TO 10

L=0

DO 31 J=14Bs3

CALL RSHIFT{ToDs3)

32




31
32

33

50

51

60

61
62

L=PFA(DsL)

CALL DECAPI(CsL)

IF (CoNEs0) D=C

IF (LeEQe0) GO TO 50
IF (DeNEoO) GO TO 50
GO TO 32

IF (LeNEe0D) GO TO 32
GO TO 14

IF (I1.LEs72) GO TO 51
CALL WRITE(UsRECORD)
I=1

RECORD (1) =C

I1=1+1

IF (CoLTe8) GO TO 33
1F (CoEQe&42) GO TO 12
IF (CoEQes4l) GO TO 13
GO TO 11

IF (1.EQo73) GO TO 62
DO 61 J=1s72
RECORD (J) =44

CALL WRITE(UsRECORD)
RETURN

END

SUBROUT INE NOAVLS
COMMON 7TR1/AVAIL s STAKSRECORD(72)
INTEGER AVAILsSTAKsRECORD
PRINT 1
sTOP
FORMAT (23H OUT OF AVAILABLE SPACE)
FND

INTEGER FUNCTION PFA(ATOMsLIST)
COMMON /TRl/AVAIL9STAK9RECORD(72)
INTEGER AVAIL sSTAK sRECORD
INTEGER ATOMsTAIL

PFA=AVATIL

IF(PFAsEQ.0)CALL NOAVLS
AVATL=TATL {AVAIL)

CALL SSUCCILISTSPFA)

CALL STYPE{OsPFA)

CALL SCOUNT(1sPFA)

CALL ALTER(ATOMsPFA)

RETURN

END

INTEGER FUNCTION PELILIST1LIST)
C OMMON /TRl/AVAILoSTAKaRECORD(72)
INTEGER AVAILsSTAK,RECORD

INTEGER TAIL

PFL=AVATIL

IE(PFLoEQ.0O)CALL NOAVLS
AVAIL=TATIL (AVAIL)

CALL SSUCC(LISTsPFL)

CALL STYPE(1,PFL)

33



CALL SCOUNTI(1sPFL)
CALL ALTER(LIST1sPFL)
RETURN

END

SUBROUTINE STACK2(XsY)

COMMON /TRl/AVAILaSTAKaRECDRD(72)
INTEGER AVAIL sSTAK sRECORD

INTEGER XsYsPFA
STAK=PFA(Y9PFA(X95TAK))

RETURN

END

SUBROUTINE STACK3(XsYs2Z)

COMMON /TRl/AVAILgSTAKaRECORD(72)
INTEGER AVAIL s STAK sRECORD

INTEGER XsYsZoPFA
STAK=PFA(29PFA(YaPFA(XaSTAK)))
RETURN

END

SUBROUTINE UNSTK2(XsY)

COMMON /TRl/AVAILaSTAKaRECORD(?Z)
INTEGER AVATIL sSTAK sRECORD

INTEGER X,Y

CALL DECAP(YsSTAK)

CALL DECAP(XsSTAK)

RETURN

END

SUBROUTINE UNSTK3(XsY o2}

COMMON /TRI/AVAIL9STAK9RECORD(72)
INTEGER AVAILaSTAKoRECORD

INTEGER XoYs2

CALL DECAP(Z+STAK)

CALL DECAP(YsSTAK)

CALL DECAP(XsSTAK]

RETURN

END
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