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THE NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR
SECOND ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
BY FINITE DIFFERENCES
by

Colin W. Cryer¥

1. INTRODUCTION

In the present paper we consider numerical methods for computing the

solution of the boundary value problem

x(t) = gt,x(®) + (§x)(t), 0< t< 1,
1.1)
2 1
where, ¥:€[0,1] — ¢ [0,1], and g:R" —R .
It will be assumed that (1.1) has a unique twice continuously differentiable
solution which will be denoted by x throughout the paper. It will also be

assumed that g is continuously differentiable and that

é-gé%ﬂzﬁ>—7rz, (1.2)

for t € [0,1]and all y € Rl. No explicit assumptions about § will be made.
However, it will be assumed that ¥ can be approximated (in a sense explained
later) by a Lipschitz continuous mapping }h.

Examples of boundary value problems which can easily be cast into the form

(1.1) are:

*Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-31-124-ARO-D-462, and the Office of
Naval Research under Contract No.: N00014-67-A-0128-0004. The computations
were supported by the University of Wisconsin Grants Committee



1. The two-point boundary value problem
y(s) =g(s,y(s)), a< s< b,
(1.3)
y(a) = y(b) = 0;
2. The boundary value problem
y(s) = Tlgsi‘n y(s) + s - (s+l)y(s-1), 0<s <2,
y(s)=s--é~, if s = 0, (1.4)
1
Y(Z) - - 2 I

which is a special case of problems considered by Nevers and Schmitt

[18];
3. The integro-differential equation
" b
Y(S)=g(S)+f y(u)f(s, du), a<s<b, (1.5)
a

2
where the integral is a Stieltjes integral, and where f:R™ — Rl is of

bounded variation.

Concerning the theory of boundary value problems for functional differential
equations see Cooke [2], El'sgol'ts [4], Fennell and Waltman [5,6], Grimm and
Schmitt [10,11], Halanay [12], Halanay and Yorke [13], Hale [14], Kato [16],
Norkin [19], Schmitt [21]. The numerical solution of boundary value problems for
delay differential equations has been considered by Nevers and Schmitt [18], while

the numerical solution of initial value problems for functional differential equations

has been treated by Cryer and Tavernini [3], and Tavernini [22,23].




The numerical solution of the two-point boundary value problem (1.3) by

finite differences has been extensively studied (see, for example, Ciarlet et al

[1], Henrici [15], and Keller [17]), and this work has guided the present paper.
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2. PRELIMINARIES

Throughout the paper matrices and vectors will be understood to be nxn

matrices and n-vectors, respectively.

We set h = -(-—_l'*_—l-)- It will often be assumed that h = h0 where
1 L
2 2
o = min - 18] , A ,—sz<l3<0,
vr"‘ - gl ¢
(2.1)
=, B=
If Z=(2) is an n-vector, then |Z]] = max lZi].

i
Throughout the remainder of this section, A = (aij) will denote ann X n

matrix. The following norms are used:

n
A= mex 2 lal,
Igisn j=1
n
lall = = max la,. |,
s .
j=1 1l=i=n
|a] = max a,, ]|
=i, jsn Y

If aij > 0 we write A =2 0 and say that A is non-negative. A is

monotone if _A_—l exists and A_l 2 0, and A is an M-matrix if A is
monotone, aii > 0, and aij <0 for i #j. The following theorem (Ortega and

Rheinboldt [20, p. 54]) will be useful:




Theorem 2.1

Assume that A is an M-matrix, that :Zi_ = A, and that A satisfies the

1 1

sign restrictions for M-matrices. Then A is an M-matrix and A2 A =2 0.

1 - %
If A exists we set A L (aij)' We say that A permits of an LU

factorization if A=L U where L is a lower triangular matrix with unit diagonal
and U is an upper triangular matrix. We denote by £ (A) the strictly lower
triangular matrix obtained by setting equal to zero the elements of A above and
on the diagonal.

We denote by A the n X n matrix

and set AA = AAAMA: _A_A is obtained from A by inverting the order of the rows
and columns of A. The next lemma follows immediately from the definitions.

Lemma 2.2

@ %=1 i) [a%] = Jal; (i) If A is non-singular, aM7t = ahh,

(iv) If A is lower triangular (upper triangular) then Q_A is upper triangular (lower

triangular): (v) (AA)A =A.



We will need the following elementary lemmas:

Lemma 2.3

< I and t= 1. Then sin(ty) s tsin ¥.

Assume that 0 = ¢ =< >

Proof: It clearly suffices to consider the case when t¢ < TET' Set
g(t) = sin (t¢¥) - t sin ¥ .

Then g(1) = 0 and

i

g'(t) = ¥cos (t¥) - sin ¥,

IA

¥ cos ¥ - sin vy,

H

cos ¥ (¥ - tan ¥),

A

0.
The lemma follows.

Lemma 2.4

N Je—

2a

Let 0= a= 1., Then arc cos (1 ~ a)

IA
oo

Proof:

1
arc cos (l-a)=f —dr
1-a

L
[1 - %1%




Setting u = 1-t,

d
arc cos (1 - a) =f '""‘"—L'l"""'i,
. 0 -
2.2
[2u - u’]
=fa du
I
[2u]” [1 - 5]

A
—
=
O(\
’ Q.
[
]

a .2
[1-3] [2u]
1
_|__2a .
a
-3

Lemma 2.5
Assume that ¥ = 0 and 0< a = 1. Then

sinh ¥
cosh ¢ sinh a¥

1
< =

a
Proof: Set

a sinh ¥
£y = cosh¥ sinhay




Then £(0+4) = é— . and

f'(¢) [cosh ¥ sinh azl/]2

]

2
cosh2 ¥ sinh ay¥ - sinh ¥ sinh ay - a sinh ¥ cosh ¥ cosh a¥,

sinh ay - a sinh ¥ cosh ¥ cosh a¥.

i

But, sinh a¥ < a sinh ¥ so that f'(¥) = 0. The lemma follows.
Lemma 2.6

If A and B are nx n matrices then [|Al| = n |A[; llé_lls < n |Al;
1aB I = a1 Bl AN = IalgIABl = 2l [Bl: and |AB] = (2| I8ty

If H is an n xn strictly lower triangular matrix then HE_HS < (n-1) |H]|.

Proof
n n
IAB|| = = max | a, b, .|.
Syl lcisn kel KK
n
< 3 max ||A]l max Ibk,l,
j=1 l=i=zn l=ksn ]
- 2l 1Bl

as asserted. The other inequalities follow similarly.




LU FACTORIZATION OF JACOBI MATRICES

Let ] be the tri-diagonal or Jacobi matrix,

_ 0 0 0
a, by
e, a, -b, 0 0
0 -C a -b . . 0
2 93 .
I = 3 . (3.1)
_bn—l
0 0 -C a
n-1 n

For 1 <k £ n we denote by Dk the determinant of the k x k submatrix of ]

,=1 and D =0.

formed by deleting the last n - k rows and columns; we set D 1

Lemma 3.1

Assume that Dk Z#0,1< k< n. Then J permits an LU factorization and

L = (zij) and U = (uij) are tri-diagonal matrices with coefficients

ﬁ'kk =1 and Uy = Dk/Dk-—l’ 1< k=< n;
1< k < n-l;

/Dy and uy o, = by

J “—ckD

k+l,k k-1

" i-1

gij = (Dj-—l/Di—-l) kﬂzj Ck' j < i;

i

=
i
g
e
i
o
\
\_J.O
—
o
~
v

where
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Proof: Follows immediately from Gantmacher [8, p. 35].
Lemma 3.2

Let J and j_ be Jacobi matrices with non-negative diagonal elements and
non-positive off-diagonal elements. Assume that I = 1 and that Bk > 0 for
1< k= n. Then: (i) J and 1 are M-matrices; (ii) J and j‘_ permit LU

factorizations; (iii) U, _Ij__, L, and L are Jacobi M-matrices and U =2 ﬁ_,

L= L: (iv) j—l 2_1_12 0; _T:fl > ‘_[fl > 0; _i_—l > L__l > 0.
Proof: We assert that
Dk+1/Dk > Dk+l/Dk >0, , (3.2)

for 0 < k < n-l1. To see this we first note that Dl/DO = al/l 2 51/1 = fjl/f)o > 0.
so that (3.2) holds for k = 0. Assume that (3.2) holds for 0 < k = m -1 where

m = 1. Then, using the recurrence relations far Dk and f)k (Gantmacher

and Krein [9, p. 77]), and remembering that ay > Sk z 0, 0= bk < Bk’ and 0 = ¢
Dm+l/Dm

=3, " P o [Py/P —1]_'1'

= ~m " m-l m-l (D /Dm l]—l’

=510~ Bpey Sy 1B/ Bl

- fjm+l/]",5m’

so that (3.2) holds for k = m. Using induction, the assertion follows.
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Since Dk > 0 and ﬁk >0 for l<ks<n, J and j: are "sign-regular"

(Gantmacher and Krein [9, p. 94}, and hence ] and ] are M-matrices.

Since Dk > 0 and ﬁk > 0 for 1< k s n, it follows from Lemma 3.1 that
] and j‘_ permit LU factorizations. Using (3.2) and the explicit representations
for U, L, etc. in Lemma 3.1 itis easily seen that U zﬁ_, and L =z i

-1 -1 -1 1

Moreover, U , U ', L _i:_— > 0. Since the sign restrictions for M-matrices

are satisfied, U, U, L, and L are M-matrices. The remaining assertions of

the lemma follow from Theorem 2.1.
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4, PROPERTIES OF laz'

In this section we consider the special n X n Jacobi matrices J = (¥ ),

The corresponding determinants and LU factors are denoted by Da "

L =(_.).,and U = (u
@ a;ij - @

1

'ij) , respectively.

We shall use the functions

6 = g(a) = arc cosh(a/2), a> 2,

i

i

0 , a= 2,

arc cos (a/2), 0< a< 2,

i

1]

0= 0(@) = (a+D)e(@) = £ 6(@),

d(«, s)

sinh[(s+l)6(a)/sinh[6(@)], a> 2,

[}

s +1 a=2,

I

sin[(s+1)6(a)]/sin[6(a)], 0< a< 2.

The following result is proved by Fischer and Usmani

[7].

a;ij

(4.1)

(4.2)

(4.3)

(4.4)
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TLemma 4.1

Assume that @« > 0. Then: Da K = d(a,k), for -1 < k = n;

1

v* 2 d(e,j-1)d(e,n-1)/d(« l<j<is
=g o - - = =
.y ,j=1)d(a,n-1)/d(a,n), j<i<n,
= d(ali_l)d(aln—j)/d(aln)l I=is J £ n
Using Lemma 4.1 we obtain
Lemma 4.2
-1 sinh (9/2) (nt+l)
Ua, | = 2 sinh 6 cosh(p/2) = 4 @> 2,
< (n+l)/4 v a = ZI
sin(o/2) - (n+1)

i
= 2 < = ,
ToinGoos(o/2) S dcos(e/zy < e and 0< @ =g

n+l

2./2 cos(p/2)

7 0<a<2 and

NS
A

s T,

o™

Proof: We begin by noting that if a2 2 or @ < 2 and ¢ = then d(«,s) is

a monotone increasing function of s so that

'Jl = max EV*,.I.
a;ii

11

o ,
l<isn

We now consider the four cases separately.
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Case 1: @ > 2, Then

V* sinh(p=-i8) sinh ig
a;ii sinh @ sinho

s

_coshg - cosh (¢ - 2i9)
"~ 2sinh6 sinho

14

cosho -1
~ 2sinh 6 sinho

2 sinhz(cp/Z)
4 sinh 6 sinh (p/2) cosh(p/2)

I

B sinh(op/2)
~ 2 sinh 6 cosh (9/2)

-1 -1
Appealing to Lemma 2.5 (or noting that la > _12 so that _Ia s 12 ),

* 1 1
eviid 2 6/(p/2) '
_ (n+l)
=

Case 2: a =2, Then

* (n+1-i)i
v T :
o il n+l
n+l

1A
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Case 3: < 2 and 05@5%. Then
* - _ sin (p=iB) sini b
a;il sing sino

cos(p~2i8) - coso_
2 sinf sing

1

- 1 - cosg
2sin®g singp '
. 2
2 sin_ (9/2)
4 sin g sin(op/2) cos(p/2) '

sin (¢/2)
2 sind cos(p/2)

Appealing to Lemma 2.3,

% (p/28) sin 6
B <
a;ii 2 sin @ cos(p/2)

’

__(n+l)
" 4 cos (p/2)

Case 4: 0< a< 2 and n/2 < ¢ < n. Then

* _sinpB sing®o
a;ij sind sing

b

where p and g are positive integers depending on i and j satisfying
p+g<n+ 1. Without loss of generality we may assume that p < (n+1)/2.

Using Lemma 2.3,
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* . b sinf sin gqg
a;ij ” sin 9 sino
< —RB
T sing
p

2 sin(p/2) cos(o/2) '

jo]
V2 cos (9/2)

IA

n+l

2./2_ cos (p/2)

IA

Theorem 4.3

2
Assume that @ 2 2+ h B and that h< h Then :(i) I, is an M-matrix;

0"
(i) D, > 0 for 1=k =n; (iii) U_;ll = K(B)/h, where

14

i

B =z0,

W -

K(B)

-1

1
2 2
2\/_2- cos ('%‘ [E——;—Uﬂ] ) , 0>§>-—7T2.

it

Proof: It follows from (2.1) that « = 1. Hence, using (4.4) and Lemma 4.1

we see that Da K >0 for 1 < k =n. Applying Lemma 3.2 withl=_]~_=_la,

1

it follows that j_a is an M-matrix.

-1

If @ = 2 then, from Lemma 4.2, U_a | = 1/(4h). On the other hand,

if a< 2 then B< 0 so that from (2.1) and Lemma 2.4,
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i

) n+1e,

H

(n+1) arc cos (@/2),

(n +1) arc cos (1 + ﬁhZ/Z),

1A

L

2 2
(n +1) ”—LE“'D‘Z—“ :
1-1gIn°/a

L
i} 18] 1%
1- |gln%/4 |

1A

1
2
- 18]
< 3 ,
- [Bihy/4
-~ L
2 2
B {_TT__LJELJ
< 5 ,
so that o < . Hence, from Lemma 4.2,
-1 (n + 1)
I 1 = < K(B)/h,
Lo 2,/2 cos (¢/2)

and the proof of the theorem is complete.



18

5. PERTURBATIONS OF MONOTONE MATRICES

Lemma 5.1
Assume that H is a strictly lower triangular matrix. Then (I - ;i_)‘l

and (I - _IiT)*l exist and satisfy

le-®7 < exo LiEl L
lw-2H7 ) = exolE )]

(k)

Proof: Let H denote the matrix obtained from H by setting equal to zero all

the elements of H except those in the k-th column. Then

e+ s a-m = L-
Hence,
le-7
= |@+ _};(n"l)) ce. (Lt I_{_(l)) P
n-1
< l+a®,
k=1
n-1
< o+ ™.
k=1
n-1l
< exo [1E™| s 1
k=1
n-1
= exp[ = [EM)T,
k=1
= exp [|HI],
n-1
as asserted, since Hﬁ_lls = 3 [|_Pi(k) HS.

k=1
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Let _f—_i_( ) denote the matrix obtained from _I_—I_T by setting equal to zero all
the elements of _EjI_T except those in the k-th column. Then

(n-1) T

) I-H)=L.

@+ BN LB

Repeating the previous arguments, the second inequality follows.

Theorem 5.2

Assume that A, P, L, and U are matrices such that :(i) P = (pij) is
non-negative and lower triangular; (ii) A=UL; (iii) L = (Eij) is a lower
triangular M-matrix; (iv) U is an upper triangular tri-diagonal M-matrix with

unit diagonal. Then (A + _P_)"l exists and
-1 -1 -1
fa+R = I8 I exp [IRA ] /0 +K]/Q +x),

a+rp = (27 e AT /0 0L ALE W,

where

Proof: Let E = (g;) = g;_”l. Then A+P = (U+E)L. Since P and I_[l are

non-negative lower triangular matrices, the same is true of E. Moreover,

e. = L. = K.
ii - Pii Y

The off-diagonal elements elements of U will be denoted by ~ui. Thus,

a typical U + E is of the form
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1+ ell -ul 0 0
€21 1t& Y 0
€31 €32 b+e;  -ug
41 42 “43 L+%,

Now consider the process whereby U + E is transformed into a lower triangular

matrix, I+ G say, by using column operations to successively "kill off" the

elements -ul PTUps ey UG of U+ E. Itis easily seen that

I1+G=U+HYV,

v=a+vy ey

(k

)/
0=V ) < _C_)__(k).
where _Q_(k) = (qi(;,()) is defined by

(k)
ij Ugr

if i=k and j=k+1,

i

0, otherwise.
Hence,

(n-1)

ve @+ L@+ @Y,

I+D+ £(EV),

=1+D+c@L Y,

= (I + D) I+ H), say,
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where
D = diag (U+E) = (1 + KL,
is a diagonal matrix, and
H=0+D  cel W,
< st uh/a e,

1

= (A )1+ K,

is nonnegative and strictly lower triangular.
Now,
(8 +P) = (U+E)L,
-1+ VL,
- @+DE+H VL.

Hence, (A + _E_)_l exists and

Loy lyasmtar o™

(A +P)
Using Lemma 5.1,

I+ ® 7 = exo [lEI ),

< exp [|2A7] L+l

and

la+aH™

1A

exo [IE 1],

exp [ 27 I /0L+ ],

A
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Hence, using Lemma 2.6,
la+p™
< 1yl e+ lasd™

Tl

la+ B /a+ ),

A

127 exp Lz 27H | /04 01/ (L),

IA

and
a+p

e mt e+ ™ML

A

L

IA

la+sh™ 1 e+ 27

A e @A™ I /a0l /At

as asserted.
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6. THE NUMERICAL METHOD

The interval [0,1] is divided into n + 1 subintervals each of length h the

points of subdivision, or gridpoints, being denoted by th ; =ih, 0<sisn+1l.

7

The solution x of (1.1) is approximated at the n interior gridpoints.

The mappings Py z[0,1] — R" and G :Rn—- R" are defined by

h

(o, ¥); = y{t, ), 1 =1i=mn, (6.1)

1

(th)i g(th ,Y.), 1= 1<n, (6.2)

;11

while la is the nxn matrix (4.1).
We assume that Fh : Rrl — Rn is an approximation to ¥ such that
FLop X = 3% = Ny, &), (6.3)

where H_gh(x) | = 0 as h— 0. We observe that mappings F, satisfying
(6.3) are easily constructed for problems (1.3), (1.4), and (1.5).
Then the approximation to x at the n interior gridpoints is taken to

n . .
be the solution _Z_h € R of the system of n nonlinear equations

2 2
o, 2 = LZ +h"GZ + h"FZ =0, (6.4)

provided that Zh exists and is unique.

We set >_gh = 0% and _E_h =X —_Z_h. Since x is twice continuously

differentiable,

2 " 2
h Py, X =-LX + h _:L‘_h(X), (6.5)
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where H_"_c_h(x) | - 0 as h— 0. Using (1.1), (6.3), and (6.5), we see that

@hgn = h _e_h(X), (6.6)
where g (x) = 7, (x) + 1, (x) so that th(x) |~ 0 as h—o0.

In general, gx will have discontinuous derivatives at certain interior
points of [0,1]. For example, for problem (1.4), $x has a discontinuous

derivative at t = (see (7.3)). To allow for this, we set

L
2

e 60 = ge + 0. (6.7)

(1)

We assume that €' '(x) has at most m non-zero components, and also that

Yy || = thr'l, n_ghz )| = K,h', (6.8)

BS

(1)

where m, Kl’ K., and r are constants. The idea is that ¢ '(x) is the

2 I’
. , 2
truncationerror at the gridpoints where §x is non-smooth, while g(h)(x) is

the truncation error at the remaining gridpoints.

Theorem 6.1

Assume that h < h that F. has a continuous Frechet derivative F;l,

0’ h

and that for all Y € Rn P;l()g) is a non-negative lower triangular matrix
satisfying || Fl (¥ | < M, where M is a constant independent of h and Y .

Then, o.

h(}._(" - exists for all Y e R and

Y

lot @™ = K@) exp [M K(@)]/0°,

where K(B) is defined in Theorem 4.3.
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Also, there exists a unique solution 2

h of (6.4) and the error E

h

satisfies

IE, || < K(B) exp [MK(®B)] | g 0.

If there is a constant M, such that | (17;1(_Y_))THS < M

T for all Y,

T
then

IE, | < 1" K(®) (mK;exp[M, K(B)] + K, exp [MK(@)]],

where Kl’ K., m, and r, are as in (6.8).

2,
Finally, if g and Ph are twice continuously differentiable, Z, may
be computed by Newton's method,

(k+1)

=k et (k)

provided that the initial approximation _Z_;O) is sufficiently good.

n
Proof: Forany Y € R,

! = +h2G' (Y]+h2P'(Y
@ = 1 h®) n
= A+ P, say.
2 oglty ;¥;)
Set « =2 +h B. Since Gk'l(}{) = diag (—-—-5-‘;—*"") > B1, it follows

that A zj_a. Using Theorems 2.1 and 4.3 we see that A—l exists and that

I}_\_“ll < llué“}_hzﬁ | < XK(B)/h. From Lemma 2.6 it follows that H_}_\_—l | < K(ﬁ)/hz,

1a7h L < k@2

S
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From Theorem 4.3 we know that Da K > 0 for 1 £ k = n. Therefore,
using Lemma 3.2 with ]’_ = "[a and J = A, we conclude that A = L_llj_l where

L, and U, are tri-diagonal M-matrices which are, respectively, lower and

1 1

upper triangular. Invoking Lemma 2.2,

A A A A -1
A=2 =L U =@ DD U

where [ = diag (__’;_Ull\') .

It is now easily seen that all the conditions of Theorem 5.2 are satisfied.

Hence, using Lemma 2.6 and setting x = 0, we see that Qi} (X_)"l exists and

satisfies
lop ™|

< a7 exp IR AT L

< a7 exe LlRN 127D,

- 2 -2
< (K(B)h™%) exp [(h° M)K(B)h )],
2
= K(B) exp [MK(B)] /b,
as asserted. Moreover, remembering that A is symmetric,
_ll

27 e [li@a DL

1A

iA

27 exo L@ 1ETH L,

1

K(B) exp [K () M)/h.
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Since @il()_{) exists and is bounded for all Y, it follows from the

theorem of Hadamard (Ortega and Rheinboldt [20, p. 137]) that there exists a
unique solution _Z._h of (6.4).

From (6.4) and (6.6)

2
R

so that (Ortega and Rheinboldt [20, p. 71])
(A + B)E = hig (),

where

N 2
A=],+h f Gy (@, +t (%, - Z))dt,

P

1l

1
2 .
h fo FL(Z, +HK, - Z) dt.

~ ~

Since A and P have the same properties as A and P, respectively,

~

the inverse [A + _E]_l exists and satisfies the same inequalities as (A + B)_l.

Therefore,

1

IE = la+n ™ n el

< K(B) exp [MK®)] [l g0 -
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Also,

-1 hZ

la+n ™ n? P+ ol

i

IA

2|~ - -
an? |G+ B (Mool +nl IE+ BT 1€E) el

1A

K(g) h' (mKjexp [M K(B)] + K, exp [M K(B)1}.

Finally, the assertion that Newton's method can be used if g and Fh are
twice continuously differentiable, is a trivial consequence of the fact that
<I>1',l Q{)“1 exists and is bounded for all Y, and Kantorovitch's theorem on the

convergence of Newton's method (Henrici [15, p. 367)).

Theorem 6.2

Assume that Fh'(y_) is independent of Y, that

2 -1 1
that

b2l (G- Gy Wl = b, (Y- Wil

for all V, W € R", andthat p, =p,/(1-p;)< 1.

Then there exists a unique solution Z,_ of (6.4) which can be found by

h

successive approximation,
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(k)

2 (k-1)

_ N | 2 _

1
starting with any initial guess gél ) .

The error E, satisfies the inequalities

h
IE, Il = fletall/la - pp (1= pa)ls

and

IE, || = b° [mk, + K, }/[40-p)0-p3)]

where m,r,Kl, and KZ, are as in (6.8).

Proof: From the assumptions it follows 1+ ]n2 I_;l Fy (0] !

exists and has

(6.10)

norm less than 1/(1 - pl). Since F;I (Y) is independent of Y, (6.4) may be

rewritten in the equivalent form,

2. 2 2
1,2 +hF (@2 =-hF 0 -h" G, 2, -

The first part of the theorem is now an immediate consequence of the contraction

mapping theorem (Ortega and Rheinboldt [20, p. 383]).

The estimates for E—h follow from the observation that

IE, |

H_X.h "_Z__hH '

1

1A

o, B /0 - b + 105" e eall/a - o).

-1
and the fact that, from Lemma 4.2, uz | < 1/4h.

I, +p2 e @1t b (G2 - Gy + &,
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Remarks

1. There are many possible variations of Theorems 6.1 and 6.2. Many of the
results quoted by Ortega and Rheinboldt [20] could be applied to (6.4). It is
possible to obtain sharper bounds for H_I;l . [U_;I HS, and [j_;l | (see
Appendix A), and these can be used to sharpen the bounds in Theorem 6.1.

2. The following rather vague comments may be of some help in giving the reader

is a

a feel for Theorem 6.1. If § is continuously differentiable and Fh

“reasonable" approximation to ¥, then, noting (6.3), one sees that M
will in general exist. The existence of MT implies that the value of
x(s) affects the values of x(t) for t> s in a "moderate" fashion. For
example, MT will not exist if the equation (1.1) is a delay differential
equation with delay A(t) =t - -é— , Since thent - A(t) = % so that the

value of x(-é*) will greatly affect the values of x(t) for t > ‘i‘ .




31

7. A NUMERICAL EXAMPLE.

In this section we consider the numerical solution of (1.4), and compare our
results with those of Nevers and Schmitt [18].

The existence of a unique solution y of (1.4) was established by Nevers
and Schmitt [18].

Setting

x(t) = ~y(20) - 3, (7.1)
we find that x satisfies (1.1) with
g(t,x(t)) = - L sin (x(t) + %) - (12t + 2), : (7.2)

4

(53)(0) = ~(Bt + (1 = 28), t = 5,

1 1 (7.3)
=—(8t+4)x(t—'é‘), 'Z"S t< 1.
Taking n to be odd we define Fh as follows:
(Fh Y')i = '-(Sth'i + 4)(1 - Zth,i)' is (n+1)/2,
(7.4)
= - 2 i <
(Sth,i+ 4) Yi-(rH-l)/Z , (n+1)/2 < i< n,

so that 1 (x) = 0.

2
Since x ¢ € [0,1], sxe € [0,1]sothat x € %’( )[0,1]. Noting

1
(7.3) it follows that x is four times continuously differentiable on [0, 5] and

1
> 1], but that x(z)(t) and x(4)(t) may have jump discontinuities at the point
_ 1 _ (1) (2)
t=. Let ;r_h(x) = ;C_h (x) + _T_h (x), where
T(l) (x) = T, .(x), i = (n+l)/2
h,i h,i7"' !

i

0, otherwise.
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From (6.5) it follows that

1= e |

1A

sup lx (t)!,
O<t<1
2
1Pl = & sue Pl
O<t=<1

so that (6.8) holds with m=1, r =2, Kl

and K, = 1‘%2“ sup Ix(4)(t){.
O<ts<1

Since Fh(:)_{) < 0, we cannot apply Theorem 6.1.

In order to apply Theorem 6.2 we need the following lemma

TLemma 7.1

1f Ph is as in (7.4) then, for all Y ¢ Rn,

h? 1[12°1 P, (@I = 25/36.

Proof: Set m = (n+3)/2. From (7.4),

: o O
Fh(X):'4 (B O>

—

where D is the (n+l-m) X (n+l-m) diagonal matrix,

D= diag (d;) = diag (l +2jh), m=j= n.
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-1 )
We denote by S, the i-th row=sum of (I, Fj (0)/(-4). Using Lemma 4.1,

n M

= = . d,,

5y : Y2y

j=m
D j(ntl-i) T (n+l-j)d

= 3 n+11 d + = 131.
j=m jem O
i<i j=i

Clearly, Si < Sm if 1 € m, sowe may restrict ourselves to the case i 2 m.

Then, if ih = z, and since mh =-1£+ h, nh=1-h,

n
DI n(n+1)/2,

noo
o) = n(n+1)(2n+1)/6,

P i-1 2 n
S,1 h =(1-2) 2 jh (1+2jh) + z 2 h(1-jh)(1+2jh),
j=m j=1

= (1-2) S.1 + z Si , say.
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Now,

i-1 3 i-1 m-1
S.=h" S j + 2n°[Z j°- %
=m j=1 j=1

2 2

il

hz(i—m)(m-}-i-l)/Z + 21’\3 (i-1)({1)(2i-1)/6 - 2h3(m—1)(m)(2m-—1)/6,

it

H

(z -2 - h)(z + $3/2 + (z-h)(2)@z-h)/3 = ()5 + ML +h)/3,

2 1 h
z -—g-hz-3 225 - 3n2° + 1’z 2h° + 3h 4 1

2 * 3 B 12

1

E‘% {(léz3 + 1222 - 5) + h(-2422 - 12z - 12) + h2 (8z - 4)}.

n
1 22
h = (1+ jh-2h"%),
j=i

9]
i

n 3 n i-1
h & (1+jh)-2h"[Z 7 - 32 j
j:i j:l j:

1

h (n+1-i)(1+ih+1+nh)/2 - 2h3 n (n+l)(2n+l1)/6 + 2h3 (i-1)(i)(2i-1)/6,

1

(1-2)(3+z-h)/2 - (1-h)1(2-h)/3 + (Z—h)z(ZZ—h)/3,
= (1-2)(3+2-h)/2 + (z-1)z(22-h)/3 + l';—h' [z(2z-h) - (2-h)],
= (1-z)(3+z-h)/2 + (z-1)z (2z-h)/3 + -1-33'3’— [(z-1)(2z~h) + (2z-h) - (2-h)],

- 2_ - -
- (1__2){3-%; h 2z . hz (1 h)(izﬁ—z h) },

1

- 2
l‘é’%‘[9+3z—3h—4zz+2hz—4z—4+2h+4hz+4h—2h .

il

1—2—% ((-42% - 2 + 5) + h (6z + 3) - 2h°},
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so that
z w1 3 2 2 2
T-2 Si = 2 {( 162> - 4z + 20z) + h(24z + 122) 8zh }.
Hence,
2 ' "
24h” 8, / (1-2) = 8, +2 8; / (1-2),
= A (z)+ h A (z +h2A (z
70 1 ) 2(2)
where

2
Ao(z) =8z + 20z -5,

Since Al(z), Az(z) < 0, it follows that

2
h S,
i

IA

(1-2) Ao(z)/24,

i

B(z), say.
Now,

B(z) = (-823 - 12.22 + 25z - 5)/24,

}Zf'(z)-—-—zz—z+——'.

Since f£'(.5) >0, #'(1) < 0, and g'(.64) < 0, g attains its maximum on

1
["2‘, 1] at a point z, < .64 satisfying ﬁ'(zo) = -z 2 2>

0o ZO 24‘=O. Hence
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ﬁ(zo) = (1—20)(8z0'2 + 2020 - 5)/24,

I

25
(l—zo)(--SZO t3 ot 202O - 5)/24,

(l—zo)(lSZ0 + 5)/36,

2
(-1820 + 13z . + 5)/36,

0
- B
= (1820—- 4 + 13z0+ 5)/36,
55
= (31zO - 4)/36,

<((B1)(.64) - 221/36

25
(4)(36)

<

Combining the above results, the lemma follows.

I\

From Theorem 4.3 it follows that H_]_Z'_l I 1/(4h2). However, it is

1/(8h2). Using this stronger

A

well known (Henrici [15, p. 371]) that H_lz—l \

inequality we see that forall V, W e Rn,

In* L7 G, v- G, Wi

< max | LR Jy-w] /8,
= v -wl/s.

From this and Lemma 7.1 we see that Theorem 6.2 applies with p, = 25/36,

p, = 1/32, and Py = 9/88. In particular, the iteration (6.10) can be used and

IE, Il = om®).
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A program, NEVERS, was written to implement the algorithm (6.10) for
problems of the form

g(t,y(t) + c(t) y(t = A(t)), 0 <t<1,

g

—
—

—
[}

y(t) = ut), t =< 0,

I

I\

y (t) vit), t L,

where A (t) may be positive or negative but must be a multiple of h. A listing
of the program is given in Appendix B.
NEVERS was used to compute the solution x(t) of (1.1) with g and g
defined by (7.2) and (7.3). The computations were performed using double-precision
arithmetic (16 decimals) on the UNIVAC 1108 at the University of Wisconsin. The
(0

initial approximation, Z was taken to be zero. The iteration (6.10) was used

10

< 1.10 "7 this always occurred when k was less than or

antil iz - 2 |
equal to 6. The approximation was computed for n = 4, 8, 16, 32, 64, and 128,
Total computation time, including compilation, was 55 seconds.

Let —Y-h = --_Z_h - .5. Noting (7.1), we see that ¥-11 is an approximation to
the solution y(s) of (1.4). The components of j__f_h corresponding to s = .5,
1.0, and 1.5, are given in Table 7.1. For comparison, Table 7.1 also contains
the values computed by Nevers and Schmitt [18].

The following observations concerning the numerical results may be made.
Firstly, the results of Table 7.1 confirm the assertion of Theorem 6.2 that

IE, |l =O(h2). Secondly, the rapid convergence of (6.10) is due to the fact that

=h
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Py = .1. Thirdly, as can be seen from Table 7.1, the approximations

:l_><2

¥ =0

5.

decrease monotonely as h — 0; this is connected with the fact that G

N S L
and that [L+h I th (0)] 12 0.
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APPENDIX A

Further properties of j_a.

During the present investigation we obtained bounds for H_Ia—l I, “_I.:a—l I,
-1
and |LU_a, | which are sharper than those available in the literature. As it turned

out, these bounds were not needed. We include them in the present appendix since
they may be useful to other workers. We use the notation of section 4.
Fischer and Usmani [7] prove

Theorem A.1l

-1, _ sinhg - 2sinh[(w-08)/2]
luﬂ = (¢ = 2) sinh ¢ ca > 2,
< (n+1)°/8 , a=2,
= , @< 2

|sine sino|
-1
The following theorem gives a different bound for |[[I, | when a< 2.
Lemma A.2

Let 0< @< 2 and o< 7. Then

2
-1 _(n+l)
H'I'af I < 8 cos(p/2)

Proof: Since ¢ < 7, it follows from Lemma 4.1 that _I_a_l > 0. Set
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Then (Fischer and Usmani [7, p. 132]),

Using Lemma 2.

as asserted.

and

i

3 (Da,n—i * Da,i—l)

(@ =2) D, o

’

sin @ - sin (p-ig) ~ sin{ig)
(@ - 2) sin @ '

_ 2 sin (9/2)[cos (9/2) - cos[(p/2) ~i0]]
2(a - 2) sin (9/2) cos (9/2) !

sin [(p-18)/2] sin [(18)/2]
2 sinZ(G/Z) cos (9/2)

W

_(nt1-1)i
= 2 cos(p/2) '

. e’
8 cos(p/2) '

1 . 1 tanh(ng/2) S 2

2 2 tanh(s/2) ' !

(n+1)/2, a= 2;

1,1 tan(ng/2) )
Z+Z tan(6,/2) ' 0<a<2 and o< i



: -1 tanhgg
h...a “ 9 ’ @ > 2’
< (n+l)/e, a=2;
l_ , ot {1 +[log tan (9/2)],}, 0<a< 2 and o< m;
sino o +7 P H
where
[u]+ = u, if u= 0,
= 0, if u < 0.
Proof: If A= (aij) and
n
§,= 2 iai.l
=1 Y
then
Al = max |[s,] .
l=isn

Using Lemmas 3.1 and 4.1 we investigate the different possible cases.

-1

Case 1: j\_=‘_L_2 Then
i
;= 2 Dy 51/Pa i1
=1
i
= 2 j/i,
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so that
-1
Iz, "1 = +1)/2.
-1
Case 2: é=_I:a , @> 2. Then
i
Sl = 2 Daf,]-l/ a,i-1’
j=1
. i
=;inh;5 'Z‘, sinh j @,
i=1
, 1 o1
i cosh (j+5)6 - cosh (j=3)6
I 2 2
" sinhig 2 sinh(6/2) !

ji=1

1
cosh (i+‘é‘)9 - cosh 8/2

2 sinh i@ sinh6/2 d

cosh i9 cosh 6/2 + sinh i6 sinh 6/2 - cosh 8/2
2 sinhi@ sinh 6/2 !

1 B (cosh 6/2)(cosh i -1)
2 sinh ig sinh 6/2 '

(cosh §/2)(2 sinhZ i6/2)

1
=2 * Z(sinh 6/2)(2 sinh 16/2 cosh i6/2)
L, L tanhio/2
T2 2 tanh 8/2 !
so that
-l .1, L wnh@e2)
L, "1 =2 +% %92
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Case 3: A = , a<2and o < m. Then

S sinie .2‘, sin jo.
j=1
) , 1 o1
! i cos (j - '2')8 - cos(J+'é)9
~ sin i6 jfi 2 sin(6/2) '

. . 1
cos (6/2) - cos (i + '2‘)6
2 sin i6 sin 6/2 !

cos(6/2) - cos i8 cos /2 + sinif sin /2
2 sinif sin 6/2

7

cos 6/2 (1 - cosif)
2 sin 6/2 sini®@ !

L,
2

(cos 6/2) 2 Sin2 (i6/2)
2 sin(8/2) (2 sinig/2 cosif/2) '

1
2+

tan (16/2

1
*2 Ttan(e/2)

so that
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Then

i
M3
—
AN
«1
.

IA
"
—,
+
—
%o
joR
x

n+1
ilog (T)'

i

= (i), say.
Since

F(x) = log (Fo0) - 1,

f(x) attains its maximum in the interval (0,n+1] at the point x = (n+1)/e.

Hence
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Case 5: A= U , @ > 2. Then

n
= 5  sinhig/sinh(j+1)6,

n+l
sinh (i) f csch(tg) dt,
i

A

; P
= -S—l—r%ﬁ)‘ [ csch z dz,
vio

- sinh i@ o tanh (@/2)
tanh(ie/2) !

5}
2
=3 £(16/2),
where
1 tanh(@/2)
f(z) = 5 sinh 2z log [:tanhz ]

Now: (i) f(®/2) = 0; (ii) f(0+) = 0;

(iii) f(z) > 0 if 0< z< ®/2. Hence, f attains its maximum in the interval

[0,9/2] at an interior point z = {, where f'({) = 0. Furthermore,

2
tanh@/Z)) 1 sinh 2z sech z

f'(z) = (cosh 22) log ( tanh z 2 tanh z '
= (cosh 2z) log (M) -1,

tanh z
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Hence, if £'(€) = 0,

o (tanh 2) _ I
g tanh C cosh 2l
and
1
) =5 tanh 2€
Therefore,
max f(z) = -é— tanh @
0= z< (9/2)
Consequently,

Ju "M = [tanh gl/e.

The above bound for max f(z) is rather crude, but we have been unable to

obtain a simple sharp bound.



Case 6: A= U,

Locac<z, o< .

48

n
s.,= %~ D . /D ,
l N s (211_1 C?I.}
j=i
n
= ¥ sin ig/sin (j+1)6,
j=i
= sin i6 +

sin(n+1)6

A

sini® { .1
sin

where

u, if u =
[ul, =

0, if u<

T
SN,
—— «
0 m sint 0 i0

Then
S 5 1
K=it1 sin k6 K=itl sin k@
I o
ke > > kg < >

and where we have used the fact that sintis monotone increasing for 0 st <

I
- <

at ] }
— sint +
2
0,
0,
t = m.
(t/2) ,

and monotone decreasing for > =
Since
—dr 1 tan
sint 99
o<
i sino

P

1 bt [logtan ((Q/Z):‘ . gnjpll [f(ie)]+ '
+

i
2
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where
f(z) = -sin z [log tan (z/2)] ,

- 2 tan (z/2) log tan (z/2)
1 + (tan Z/Z)Z

_ 2 cot (z/2) log cot (2/2)
1 + [cot (z/Z)]‘2

= 2 g [cot (z/2)] .,

with

14u

Consider g(u) on the interval [1,®). We have that

2

u -1 2
g'u) = —5—5 [ 1+

2 2 2
(u +1) u -1

- logu],

from which it is easily seen that g' has only one zero, u =0 say, and that

3/2

e 6 < e . Since g(l)=g(®) =0, g attains its maximum at u =0 .

Hence

3
o)}
<
—
pay
—
)
mnd
A
3
QU
b
=
N

"
(3%
3
o
b

Q

£

Isu =
- max
esuse
3/2
sZ(loge/) max uz ,
ey 1+4u
. _3e
= >
1+e
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Combining the above results,

1 n+l
e t o {1 + [log tan(cp/Z)]+} .
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APPENDIX B

The program NEVERS.

A listing of NEVERS is given at the end of this appendix. Here we make
a few comments to make the program more easily comprehensible to the reader.

NEVERS computes approximate solutions to problems of the form

v(t) = glt,y(®) + c(t) yt-A(), 0< t< 1,

0, (A.1)

A

y(t) = u(t), t
y(t) = v(t), £ 21,
where A (t) may be positive or negative but must be a multiple of the stepsize h.
Setting
x(t) = y(t), 0 = t=1, (A.2)
(A.1) takes the form (1.1) with
c(t) u(t = A(t)), if t-A4(t) = 0,
(3 x)(t) = ¢ clt) x(t) , if 0<t-A@)<1, (A.3)
ct) v(t - A(t)), if 1 =t -A4().
The approximate solution _Z_h is computed using the iteration (6.10). The

correspondence between the variables of (6.10) and the arrays used in NEVERS

is as follows:

Equation (6.10) NEVERS
2

I, +h" F (0 A

“hé F 0 BC
h_

(k+1)
2y X
z. (k) XP
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The initial guess _Z_h(l) is taken to be P, %o where X, ¢ €[0,1] is provided
by the user.

The functions u(t), v(t), g(t,x), c(t), A(t), and xo(t) must be provided by
the user as procedures at the beginning of NEVERS. The iteration (6.10) is

(k=1)

continued until k = KMAX or H_Z_h(k) - Zy < €, and the approximations

_Z_h are computed for 2 < n s 2%*¥IMAX; in the listed program KMAX = 20,
e=10""°, and 1MAX = 7.

NEVERS makes use of the BUMP2 matrix package on the Univac 1108 at
the University of Wisconsin. In addition to using the housekeeping subroutines
MTADFM, MTMDEF, and MTMDFM, NEVERS uses the following BUMP2 sub-
routines:

MTCNST - Set up a constant matrix

MTMPRT -~ Print a matrix

MTINVD - Invert a double~precision matrix

MTMPY - Multiply two matrices

MTSUB - Subtract two matrices

MTNRMR - Compute the maximum row-sum norm of a matrix

MTMOVE - Move a matrix

The listed program uses dovl1ble~precision arithmetic but is written so that

it can be converted to single-precision by changing only three of the program's

statements.
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DRACGRANM NEYIDS
W W S 3N % X% OE M 3T 3 N I R N I X 0 3t 3 3 R 3 30 4 K I K A KR R R N H %
PROGRAM T0 SOLVE BOUNDARY VALUF PROBLEMS FOR FQUATIONS WITH
LINFAD DFOTHRRED ARAIIMENT OM TNMTERVAL (N, 1)

Y(T)Y=H{T) FNe TeLE«N Y{TY=V(T) FNR TeGFe1

ADY (T)/PTT=A(ToY(T)) + CLTIRY(T=NELTA(T)) FOR DL ToT AND T,LT,1

SOLUTION 1S CAMPUTFD BY ITERATINN INTTTAL GUFSS T35 XO(T)
DRAGIAM SFQ BUMPY MATRIX PACKAGE NN HWCOC 11N0R

SAMODLFE DPRAGLFM 1S ORNARLFM OF NFVFRS AND SCHMITT
FEEEZEEEEEEEEETE RS REE LR R EEEE SR T EEREE SR EESELEEEEEEEEEE X 4
[MOLICTT DNHALE PRECTISINN ( A=-H,0-7)

DIMEMSINN A(1294120)4BC(1T12%) X {129)9B(129)4XP(129)
DIMENSTON FORM(2 )4 XDTF(129)

TNTFGFRI FARMLTYD

I TY==2 %7

V{ITY=Ne%T

G(TOX)z‘QIN‘X+.q)/Qo — {17 «#T+24)
C{T ) ==(Re¥T+be)

DEFLTAIT ) =aB+Nng#T

XN TY=Ne*T

TYDP = T1HND

FORM( 1) =/H(4D2N,

SARM{?2)Y=AHR)

X X EE R EE RS S ST e R S AR S ST EES LSS TR SRS EEEESEEEREESEERESRE S
TO RUN IN SINGLF PRFCISINN CHANGE TYPLZFORM{1),IMPLICIT DOURLE
PRECISTINN s AND MTINVD(STATEFMENT NUMBER &10)

P R R A A R R R R T I I E R R R R R R RS R TR R EEE LT R R
NA=109

TMAX=7

R R R R R R R R P REEEEREEEEEE LR R EE RS EEEEEEREEEE RS X
PDROPLFM RUN WITH STFPQIZE H =1/4 eese 1/?2%#[MAX

NA = GI7F OF ARRAYS = 2%%[MAX+1

FA R R N R U K W N N Y W N SE 30 S 3 6 3 35 N 3 C I K KR
KMAX=7N

EPS=1.F=10

¥ ¥ 36 % 3 36 3 3 3 W S I B 36 3 36 M I W 3 58 36 36 3 5E I M K N K K R X R4
ITERATIONS CONTINUED UNTIL DIFFERENCE BFTWEFN SUCCFSSIVE
ADPRNAXIMATINNS [EQS THAN FPS

(R NUMBER OF TTFRATINNS FOUAL TN KMAX

R R R R R R R E SRR L EEEETER LSRR EEEEEEE SRR R R L RS R R
PRINT BN GNASTMAX $ K MAY

FARMAT (1] NASZIMAXsKkMAX,EPS = 1,43715)

WRITF(G6FNRMIFDPS

CALL MTANFM( ] e ANAGNALTYD)

CALL MTADFM(5 4R 3B3C o XD 4 XDIFsXsNAST1+TYP)

MW MM SRS 3 X N 36 3 36 3 3 36 30 3E 36 3 3 36 3 30 R 3 36 3 30 3 9 3E 6 3 K 3 3¢ 3 %
START NF AIITFR [LNND

K St N 36 3 3 6 3 Y 3 36 36 06 3 36 6 M 3 M K 3R K I M 36 3E 3 3 3 A 36 38 38 38 36 3 % 3 30 S 3E a3 K K K3 3 #
NN 90NN T=2 4 IMAX

Nz (P#%T)-1

ANF=1,

H=NNF / (N+1)

HP2=H* %D
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DRINT 10NeT N
‘]nn FORMAT{ 11 TeNsH= t 4218)

WRITF (A ,FNRM)H
CALL MTMDEF(AsNsNstGFNT)
CALL MTMNOFM{2,8C B ¥PoNals tGFNT)

c. R RS R T R R S TSRS RS R R R R TR R R

C SET UB MATRIX A AND CONSTANT RIGHT HAND SIDE BRC

e AR SR S S R RS N R R L R R A Y S AT Y
JERN=N,

CALL. MTONST(AS7FRN,TYP)
CALL MTONST(RCsZERN,TYP)
NO 5NN J=T 4N

T=J%H
A‘J’J)=7.
JP1=)+1

[F{ (UJP1)elLFeN) Al JePl)=—1e
TFU (UP1).GTeN) BC(UI=RCIII+V(T+H)

My

JMl=1-1
IF( { IM1).GFe 1) A(JQJM1)=—]0
TFC (M) allTel) BC(.J)Y=RC(JI+1(T=H)

D= J= INT( (DELTA(T)+e5%H4) /H)
TR=T-NFLTA(T)
CR=C{T) %MD
TF{ (NeGFal) oANDs (NeLFaN) )Y A(Js D) =A(Js IN)+CD
[F{NaLTe1IRC(JI=RC{ J1=CNEY(TN)
TFEINOTNIREL J)=3C( N1=CNHV(TN)

500 CONTIMYF

IS WM IR KN K I TN I KK RN RN RN NN
c IF NelFo4 PRINT MATRIX A FOR NDERUGGRING PURPOSFS
c R R R Ry R I e T PR RS E P TR RS TR

TF{ NolLFo& } CALL MTMPRT(ASFOARM30s ! MATRIX A o6 !)

r
e L E R T EEEEEEEEEERELEREEEEETEEEEEEEEEEEEEFEERFEESEEE TR L EEEE
C TNVFRT A AND SFT (JP INITTAL GHFSS XP
C LR EE R R R R R R R R R R YR EEEEEEEEEEEEFEEEEEREE LRSS L
600 CALL MTINVD( AsA 4&700)

GO TO 800
700 STNn2 700

Bon CONT IMUF
NO RAN J=1 N

T=)%H
RN YP({ 1y=XN(T)
C (R E S EEREEFEEEREEEEREEEEEEEEEELSEEEEEEEESEEETEETESESEESSEEEE}
C ITFRATF
C 2SS EE RS EEE R REEEE LSS LR LSRR RS EEEEEESEESEEEEE R E R EE X T
=0

AEN K=K 4+1
NO 90N J=1eN
T=J%H
Qnn REJI=RC{IJ)=G(T«XP 1)) %12
CALL MTMDY (A 48,4X)
I R Ry R L R T T T R R R R R IER FIEE R R PR gy

C IF NelLFod4a AND K=1 PRINT VARIOUS MATRICES FOR DEBUGGING
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s X ES T EE L EEEEEEF RS EEEEEELEE ST B BT TR BT T SRR A GV AR S
TF({ (MaGAT o4} oNDRe (KeGTel) )V 6N TO 925
CALLL MTMPRT(A +FNRMyNst [TNVFERSF OF MATRIX A et
CALL MTIMDPRPT(RCyFORMyNG! VECTOR R eo!)
CALL MTMPRT(XPsFORMeNg' INITIAL VFECTNOR XPao!')
CALL MTMDRT(B4FORMyNg t VECTOR Raeat)
CALL MTMPRT (X sFORMyNet VECTOR X= ea')
IphR CONT ITMUIF
CALL MTSUBI(X+XP+XDIF)
CALT MTNRMR(XDTF 4RNXNDTF)
DRINT 980 ,K
asn FORMAT( tn TTERATION NUMRFR, ROW NORM NF XDIF = vty 18)
WRITE (6 4FNRMIRNXDIF
TF{ RNXDIFJLFLFPS) An TN Rann
TE [ K aGF,KMAX Y GO TN BRRNON
CALL MTMNOVF (X XP)
GO TN 85N
28NN  PRINT BRN]T
8801 FORMAT( 'n ITFRATINN MAXIMUM RFACHFD )
GO TN [98n
RAnn DORINT RANT
BANT FARMAT ( 'OITFRATINNS CNONVERGFD 1)
N TN AQS5N
895n CALL MTMDPRTI(XsFORM4Ne?' VECTOR X= ee')
annn CONT TNUF
STND
FNM
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