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ABSTRACT

Stability limitations, inherent in a previously
developed discrete approach to mechanics, are relaxed by intro-
ducing two alternative approaches, one explicit and the other im-
plicit, Computer results for motion in a nonlinear force field,
planetary motion, nondegenerate three body interaction, and non-

linear string vibration are described and compared.






NEW FORMS OF DISCRETE MECHANICS

1. Introduction

Discrete mechanics is an approach to the mathematical study
of mechanics in which the dynamical equations are difference equa-
tions and in which the solutions of these equations are discrete
functions [3]. Such an approach is not only compatible with con-
temporary experimental and theoretical physics, but it is in complete
harmony with modern digital computer methodology.

In [3] an ultrasimplistic, physically motivated discrete mech~
anics was developed in which the fundamental dynamical equation
was explicit and in which the classical conservation laws followed,

In one dimension, the particular explicit formulas used were equi-

valent to

(1'1) F(Xklvkltk):ma(tk) ' k:OIlIZ‘I“'

(1.2) a(tk—‘l) = [V(tk) - V(‘Ek__l)]/At . k=1,2,3,...

(1.3) e TV M T e . k=1,2,3,...
2 - At

Feasibility of the model was established by developing applications
to the nonlinear pendulum [1], [3], nonlinear string vibrations [4]
nondegenerate three-body problems [5], shock waves |6], van der

Pol's equation [7], and free surface fluid flow [8]. Stability



problems were ever present, but existence and uniqueness were
immediate consequences of the recursive structure of the dynamical
equations, thus requiring no topological or algebraic considerations.
In this paper we will develop more sophisticated discrete model
approaches. The aim will be to improve on the stability conditions in=-
herent in [3] by introducing implicit and other explicit formulas. The
resulting practical and theoretical consequences will be illustrated

and discussed.

2. Implicit Formulation

One of the usual approaches to improve a difference equation
formulation of a given model is to introduce implicit formulas, and
this will be done in this section. Consider first, for simplicity, mo-
tionin a fixed, say X, direction, For At> 0, let particle P be
at Xy at time t = kAt, k=0,1,2,... .« Letthe particle's velo-

k

city vy and accelerationa, at time t. be defined by the implicit,

k k
smoothing formulas
v, 4V X =X
k k=1 k k-1
° E ! = .,Zn,--c,
(2.1) P Iy k =1
a, +a V., -V
._]_ —
(2.2) k ; k = k k=l , k=1,2,...,




and let the motion of P be governed by the discrete Newton's

equation
(2.3) mak:f(xk,vk,tk), k=0,1,2,000 &
From (2.3), then,
mak + mak_1 = f(xk,vk,tk) + f(xk‘—l’vk-l’tk—l)’ k=1,2,00e ,
so that
ak + ak—l f(xk,vk,tk) + f(xk_l,vk_l,tk_l) ‘
(204) m 2 = 2 ,k‘:l,Z,oo. .

By means of (2.2), then, we can rewrite (2.4) in the form

, Vie T Vieep Bl ) R0 vy get )
(&.5) m A't' = Z ,k:]-,z,ou.

which will serve as our fundamental equation of motion.
For later purposes, it will be of value to note also that since

(2. 1) is a first order difference equation in v, , it can be solved

kl
explicitly [3] to yield
V., = 2 (x, = xX.) -V
1 At 71 0 0
(206) -
vo= e (x4 (-1)F x +2.kf?‘“l[(—1)jx ]]+(-1)kv-k>z
kT At Uk 0 oot k=i o' "=

That the usual conservation laws are valid can be established

as follows. At time tk' k=0,1,2,...,n, let particle P be located

at point (x ), which is on the straight line segment directed from

Yk



A(xo,yo) to B(xn,yn), one possible arrangement of which is shown

in Figure 2.1, Let Sk be the directed distance from (xo,yo) to

(xk,yk) and let fk’ k=0,1,...,n, be the component in direction

—
X-l-%) of force F applied to P. Then the work W, done by moving

P from A to B, is defined by

n t +1f
. k k-1
(2.7) W= 3 [ (5, -8_)I .
k=1
Hence, from (2.5),
n Yk T k-1
W = 2 [(l’n' At ) (Sk Sk""l)]
k=1
S, -85
- m s [vy = vy . Atk_l)]
k=1
n
-2 s [(v, =v. v, +v. )]
T2 k k=1""k k-1
k=1
m I 2 2
== = Ivi-v"]
2 k=1 k k-1
- moe_m o2
2 'n 20"

If one defines the kinetic energy Kk at time tk by




> X

Figure 2.1

(2.8) K =

lmv
k 2 k!

then the formula for work can be written as
2
(2.9) W = Kn~K .

The availability of (2.8) and (2.9) imply, then, in the usual

way [3], the conservation of energy and momentum. The extension
of these results to n-dimensions follows readily by the introduction

of vectors.



3, Explicit Formulation

Another way to improve on a difference equation formulation
of a given model is to utilize special properties in the formulation
when they are available, and this will be done in this section., We
will explore a particularly simple, yet remarkably accurate approach

discussed by Feynman [2], and used extensively by physicists.

For At > 0, let particle P be at xk at time tk = kAt,

k=0,1,2.... . Consider the special Newtonian equation

(3. 1) F( y=ma k=0,1,2,600 =

Xty K’

From (3.1), determine first
1
3. = =
(3.2) %7 m o'o
d defi b
and define Vl/z y means of
(3.3)

The sequence Xk’ k=1,2,..., 1is defined now recursively by

(3.4) X =X TOD Vg K=0,1,2 02




Vi) = Ykt BBy k=1,2,00"

F(x

o~
t

k)/ -112'1... .

1

kK m k
Since the "leap-frog" formulas (3.4) - (3.6) yield position at

times kAt and velocity at times (k +%)L\t, k=1,2,... , the
classical kinetic energy formula can only be derived if one modifies
the definition of work by the introduction of average distances,
Such a definition of work is as reasonable for (3.4) - (3.6) as
(2.7) is for (2.1) - (2.3). A major advantage of (3.4) - (3.6) is that
existence and uniqueness theorems follow immediately for any ex-
plicit formulation [3], but not for any implicit formulation. If one
requires that F in (3.1) also depend on vk, then (3.4) - (3.6)

are not, per se, applicable,

4, One Dimensional Motion in a Nonlinear Force Field

To illustrate the application of the methods of Sections 2-3,
consider first a prototype problem in nonlinear mechanics, that of
motion in a nonlinear force field. As shown in Figure 4.1, let a par-

ticle of unit mass be constrained to move with its center Q on the



Figwe 4.y

X-axis. Assume, for example, that a displacement of the particle
such that the directed distance OQ is x is opposed by a field
force of magnitude sin x and a viscous damping force of magnitude

av, where a> 0. Then, the equation of motion, from (2.5), is

vV, =V (av, +sinx, +awv + sin x )

1) kK~ k-1 Yk k T % ko L
At 2
Hence,
( t
(4.2) v (1 +%i) +% sinx, = vy (1 - ook +°/“'\Zsin X, 0
which, from (2.6), implies
ant Ay 2 aAt (At G
4.3 ant, BYH oo - gAt, AY - _
(4.3) x1(1+ > ) + 4 sinx xo(l+ > ) + 4 sinxg voAt 0
aAt gAt)Z alt (QQE
4.4 —— i e m——— 3 y - :
(4.4) xz(l 75 ) + 2 sinx, - x (3 + > ) + L sin xl+ax0 %voAt 0




2 2
oAt At . AL (AL) ,
4.5 ) - ; T .
( ) xk(l + 5 )+ 4 sin Xk Xk-—l (3 + » ) A 4 sin Xk-—l
k-l j k k
s [(=1) x -1y - = > 3,
+ 4 = [(-1) Xk-—j] +2(=1)"x, + (=1 VAt =0, k>3

j=2

For each of the twelve examples with Vg 7 0; = /4;

0
a = 0,003, 0,002, 0.001, 0.000; At=1.0, 0.1, 0,01, equations

(4.3) - (4.5) were solved by Newton's method. The total number of
time steps for each case was 104 and the resulting motion was al-

ways stable, which is clearly an improvement over the explicit method

of [2], for which the stability condition (see [1]):

At < max [20,

1.

Q v

For illustrative purposes, the motion for the case o = 0.003, At =

0.01 , is shown in Figure 4.2. In all cases with o

0, the rela-

tive maxima X1 and relative mimima _}_(1 of sequence Xk satisfied

5 5

X5l <1077, g+ gl <107

To apply the leap=~frog formulas, we are limited immediately
to undamped motion, i.e., to problems with o = 0. Of those
problems above, then, solved by the implicit method, we considered
only the three cases Vo = 0; Xo = %; a=0; At=1.0, 0,1, 0,01,

Each run was stable for 10,000 times steps and the running time

was one fourth of that required by the implicit method. No relative
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max X or relative min X of the resulting sequences X ever, in
absolute value, exceeded 7/4 and the motion was periodic and

undamped, as was to be expected,

5, A Classical Orbit Problem

Consider next a two-body problem which is modeled to approxi-
mate planetary motion and whose initial values are identical to ones

proposed by Feynman [2]. Let the sun have mass ml and let a

planet, in orbit about the sun, have mass mz. It is assumed that

the sun's motion may be neglected and that the gravitational attrac-

tive force on the planet is given by Newton's Law of Gravitation, so

that
(5.1) F = (FX,FY) ,
where
Gm,m.
5,2 F ——M—Gmlmz'“=~ 3 X
( . ) x - I'2' r r3 !
5.3 Lo Smm oy SMTm
-3) y 2 r r3 Y
2 2 2
(5.4) r = x +y ,

and where the sun is positioned at the origin of the coordinate

system. If one sets
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(5.5) Gm, =1,

then the normalized initial conditions are

(5.6)

and the planets trajectory is known [9] to be an ellipse with the sun
at a focus, with semi-major axis a = 0.746, and with a period T =
4,04 seconds. For this problem, then, let us examine the applica-
tion of the methods of [3], of Section 2 and of Section 3.

From (5.2) and the formulas of [3], the desired trajectory is

defined by
-X -y
kK ~ k B v
(5.7 4l x 2 2)3/2' %k4l,y - o2 2)3/2 p k=012,
RS" kT Yk
where
(5. 8) a LS [x, - x, =V At]
l,x (At)z 1 0 0,x
(5.9) a - [x, - 3%, +2x_  +V At]
2,X (At)z 2 1 0 0,x
k-1
2 | ok | j
(5.10) a, =" 0%, - 3%, o+ 2(-1) x +4 2 [(-1) %, _.]
kox T a2 1k k-1 ot k-]
s 05V Aty s k>3
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2
5.11 = - -
(5 ) 1,x At !xl x0J vO,x
k-1 §
(5.12) Yk x " AL [xk + (1) x + 2 j:,l (-1) Xk-j]
k
+ (-1) VO,X, k>2,

and where (5.8) - (5.12) are also valid with x replaced by vy.

From (5.7) - (5.12), it then follows that the trajectory (Xk’yk) .

k > 0, of the planet is given explicitly by the formulas

2 X
) _(At) [ 0
(5.13) X=XtV x BET TS L1 g4 ¥/2
0" Yo
2 y
) _ ‘0 ]
(5.14) Y=Y * Vo,yN‘ P .(Xz B 2)3/2
0" Yo
pA - X
) ~ _ _ [ 1
(5.15) X2“3X, ZXO VO,XAt ‘ > 2.3/2 |
(x, +v,)
17
2 T y .
o (Bt { 1
(5.16) V=3V 2TV SOt 2, 23/2]) "
(% +y1)
k-1
B Lk S 3
(5.17) X, = 3%, 21T x, + 4 j:é [(-1) xk__j]
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_ 1kl “ gt
(5.18) Yy = 3¥ P2 Ty k4 B (-] yk__].]
j=2
k+1 1)’ Y1
L vy AT [( 2, 2 )3/2]'](}3'
Kol T Vg

To apply the implicit method of Section 2, one begins with

X y
k k
(5.:19) a ~:————§_’ a = —-‘——3—_, kZO,l,&,....
k,x r, k,y r,
Hence,
% x T %-1,x 1 (% X1 .
—_ — 3 + 3 ’ - 1,&,.00 14
2 2 r r
k k=1
or,
Vk,x— Vk-—l,x 1 xk Xk—l B .
= - + ’ k—l,z,.....
At 2,3 2
k k-1
Thus,
X X
At k k=1
5,20 v - e -
( ) k,x Vk-—l,x 2 |y 3 +1r3 c k= lizee..
k k-1
and similarly
Yy y
At k k-1 )
. — o G ' k.:l,zalono-
(5.21) Vk,y Vk—l,y 2 r3 r 3
k k-1

By means of (2.6), finally, (5.20) and (5.21) can be rewritten as
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2 2
(5.22) X [1 +'""L—At)—— - X [1 - L—Mt--] -V At=20
1 3 0 3. 0,x
4r1 4r0

2 2
(5.23) Yy [1 + M‘“} T Y, {1 - et

3
4r1
an” oy
(5. 24) X. [1+ } - X [3—- - J +2x0+v0 At =0
a 4r 3 1 4r,3 ' ¥
2 1
) jAt)Z (At)z
(5.25) y2[1+ 3]-—y1 [3—-' 3}+Zy0+v0yAt:O
41'2 ‘ 4—r1 '
and
At 2 At 2 k
(5, 26) X 11 + “L} -x. .13 -L—)—"] + 2(~1) x
k 41, 3 k""]. 4r3 0
k k-1
k-1 K
+4 2 [(-1Vx T+ v, At=0, k>3
k~j 0,x
j=2
ny? 0y K
(5.27) Y [1 + 47 3 ] - yk_1 [3 - 4r3 ] + 2(-1) Yo
k k-1
k~1 K
+4 7 [Py, 1+ 1) v. At=0, k>3,
k=j 0,y
ji=2
where, recall, 1rk = 'XkT+ yk2 , k=0,1,2,.,. . The trajectory

path (;\".}' ’Yk) . k=1,2,3,..., will be generated from (5.,22) -

(5.27) by solving each nonlinear system by Newton's method with

the initial guess (Xklyk) = (Xk"‘l ka__l)'
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To apply the explicit method of Section 3, one extends the leap-
frog formulas as follows. The equations of motion are (5.19)

and one defines

X, =X y -y
k+1 k k+1 k
o = T ? = T 1 k = Ol 4 LA
(5.28) Vk+~12-,x At vk%,y At .2
vl "V 1 Vieel o 7 V2l
(5. 29) a - KAgex kesex g I L XL A S U T
k,x kly
At At
The iteration is begun by means of the special formulas
At At
5.30 = == = =
( ) V_L,x VO,x * 2 a0,x ! V_l_,y VO,y * 2. aO,y !
2 2
where ao % and ao v are calculated from (5.19). Next, we deter—

mine x1 and y1 from (5.28). One now proceeds iteratively as

follows. For each value of k =1,2,.0. «

(a) determine ak,x and ak,y from (5.19), then
(b) determine Vk+,l—,x and Vk+,1,y from (5.29), and,
2 2
finally,
(C') determine Xk+1 and yk+l from (5. 28).

All three methods discribed above were run for At = 10“1 ,

10—2', and 10—5 for 3500, 35000, and 350000 time steps, respec-

tively, that is, through t = 350. The results of the first orbit for
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each case are displayed in Table 1, where, by semi-major axis we
mean half the distance between consecutive x-intercepts after the
planet has left its initial position. The results generated by the
explicit formulas (5.13) - (5.18) show a low order of accuracy and
the orbits for At = 0.1 and 0.01 actually had an outward spiral,
unstable character. The results obtained by both the implicit formulas
(5.22) - (5.27) and the leap-frog formulas (5.28) - (5.30)

were completely comparable, relatively accurate, and always stable.
Again, calculation with (5.28) - (5. 30) was about five times
faster than with the implicit ones. In Figure 5-1 1is shown the 86th
orbit determined by the leap-frog formulas with At = 0,001,
The 86t orbit determined by the implicit formulas was essentially

identical to that given in Figure 5-1,
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TABLE 1

Time for | Semi~major X~intercept Number of
first axis of at end of orbits up
orbit first orbit first orbit tot = 350
At =0,1
Explicit 16.4 1.6 0.82 2+
Implicit 4.3 0.772 0.501 814
Leap~frog 4,1 0.776 0.493 83+
At = 0,01
Explicit 4,48 0.87 0.55 19+
Implicit 4,03 0.745 0.4998 86+
Leap-frog 4,03 0.745 0.4999 86+
At = 0,001
Explicit 4,08 0.75 0.505 85+
Implicit 4,035 0. 7445 0.4996 86+
Leap~frog 4,036 0,745 0.500 86+
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6. A Nondegenerate Three-Body Problem

In this and in the next sections, we will examine two non-trivial
problems, the first a three body problem, and the second a nonlinear
vibration problem. However, for the sake of economy, only the im-
plicit method of Section 2 will be applied in this section and only
the explicit method of Section 3 will be applied in the next one.

From the discrete point of view, all dynamical behavior is the
result of molecular interaction, or, in other words, all problems are
n-body problems. Fundamental to such problems is, of course, the
non-degenerate three-body problem, which we will formulate as
follows. Consider three circular particles P1 , PZ’ P3. For each of

i=1,2,3, let Pi have mass mi. At time t. = kAt, k=0,1,2,¢00,

k

h . i ,
let Pi ave center Ci at (Xi,k’yi,k)' have velocity (Vi,k,x
d ha ti . Finally, let
Vi,k,y) , an ve acceleration (ai,k,x'ai,k,y) inally
r,, ., Dbe the distance between P, and P. at time t .
ij .k i j k
As in Section 2, let
rv +v X - X i=1,2,3
i k,x i k-1,x i,k d,k-1 . oo
2: - At k = 1,2,-.0
(6.1) 4
- i=1,2,3
Vik,v Vik-1,y  Yik " Yik-1 PE

. 2 B At ! k=1,2,3,c0.
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ai,k,x+ai,k“llx _ Vilklx_vi,k"‘llx 1= 112:13
2 = At C o1z,
(6.2)
+ a v — -1 2,3
% kv T %k-1,y Vik,y  Vik-l,y i=1,
2 - At ok =1,2,...

If the motions of Pi' i=1,2,3, are governed by the Newtonian

equations
= , i=1,2,3
mia kT Lk
(6.3)
= ’ 1= 1,2,3
P
then, for i=1,2,3,
- f f
(6 4) m vilklx Vilk-llx _ l,k + l,k"‘].
) i At - 2
v, -V, + f
(6 5) llkly l,k"l,y Z,k Z,k""].
M At = 2

and, as in (2.6),
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\% . £ (x -X, )=V
i,1,x At i1 i,0 i,0,x
(6.6) , i=1,2,3
v -y ( - )y - v
i1,y ot Yi,1 " Yi,0 T Vi0,y
k-1
(‘
-2 _1\K A N
ik, x ot Kyt R g2 e (07 1
k A . ,
+ (-1) v, 7 i=1,2,3 k>2
i,0,x
(6.7)<
k=1
2 k o -
Vik,y Satf Wy ptCLY ,0”}_?:1 L=1) i,k—j]}
k A
L + {~1) v, ;o i=1,2,3 k> 2,

i, 0,y

Now, for the classical Newtonian 3-body problem, the force

components f, and fz have factors of the form - G/rz. For more

1
comprehensive purposes, it will be of advantage to replace such terms

by more general expressions of the form

G H 2 2
-— + oV v,
2 m X Y

r r

where G>0, H>»> 0, a>0, and m> 2, Such a formulation allows
the inclusion of gravitationalattraction, collision in the form of re-
pulsion,and viscous damping [5], when such considerations are im-

portant, The formulas (6.3) therefore take the particular forms




(6. 8)

(6.9)

(6.10)

] mz(xl,k - XZ,k) ) e | H
= r 2 m
k
12, (r1z,k,) (rlz,k)
- alf )2 4 ( )2]1/2 309k T %3 ) X
1,k,x 1,k,y r13,]<;
A G + H - af )2 + (v )2]1/2
(r )-2 (r ) 6ll,kl 1.k, I
k pest 0,1,2 o @
- . " 2t m
12,k (rlz,k) (rlz,k)
| m (Y, .~ Y, )
5 2.1/2 371,k "3,k
altv, , )2+, )7 DN
1,k,x 1,k,y 13,k .
)
-G + H - af(v )Z + )2]1/2‘
(r )~Z (r )™ Lok,x Lk.y },
Wy sk 13,k ’
k = O,l,z .
ml(XZ,k - lek) e H
= r - 2 + m
12,k b, % !
v, P, /A Taea Tl
2,k,x 2,k,y 23,k
- —H— oy, )% 412
| (r o ym Y 2,k,x 2/k.y ’
L Y23,k 23,k ’
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My, =Yy ) G H
(6.11) a. , = - _—
2/k.y 12,k .. )% . )™
! 12,k 12,k
) ‘ m_ (y Y, )
2 2.1/2 32k 3.k
—aftv, . ) +( )] - R
2,k,x 2,k,y IZ3,k
G H 2 2.1/2
(r )2 ' (r )m a[(VZ,k.X) o 2,k,y) ] !
23,k 23,k
k. = 0,1,2« ° 0
m, (x - X )
‘ 173,k 1.k G H
(6.12) a = — — 4
3,k,x r13 K (r )z (r )m
o 13,k 13,k
m_(x -xX. )
“af(v, | X)z Fiv, )2]1/2 2 3;,}4 2.k
' i ' Iy 23'k
G H 2 2.1/2
- 2 * m OL[(VB k x) * (V3 k y) ]
(fo3 1) (ros g
k = O,].,Z L)
my(¥q =Yy ) G H
(6.13) a . = - — 4
3.key 13,k . ) o )"
! k 13,k 13,k
2 2.1/2 m, (g =Y )
"‘Q.[(V ) + (V ) ] ) L v
3,k,x 3.k, -
Y 23 x
G H 2 2-1/2
B 2 T T vy vy )]/
(ry3 1! (o3 g
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and the algorithm proceeds as follows,

Select parameter values ml, mz, m3, G, H, m, and o , and
v, v , Vv , 1i=1,2,3. Eliminate

fix initial data x, ,
1% 1nd a . i, 0 i,0,x 1,0,y

i,0'

1 a 7 . 1, ° ° -
ai,k,x. i,y al,k"‘LX al,k—l,y from (6. 2) by means of (6.8)

6.13). In the resulting equations, eliminat , v, , v
( ) thg equats ! © Vi,k,x i,k,v" i,k-1,x

and vi k-1.y by means of (6,6) - (6.7), to yield six equations in the

six unknowns x,

' Y
i,k i

! i=1,2,3. Using the initial data, gencrate
(xi k,yi k),i =1,2,3, k=1,2,... by solving the resulting system

for each k by Newton's method with initial guess (x, '§i

kYK

(%) ko175 k-1

As an example of the method, consider the three body problem

i et = = = = = a = =
with m1 mZ m3 10, G=H=1, m=3, 0.08, Xl,O 0,
yl, 0= 100, XZ.,O =100, YZ,O = 0, x3,0 = ~100, y3’0 = 0, Vl,O,x =
i o - - O =
0 v 0,y =710 Vo 0™ 10 Va0,y T 0 V3,0,
1, v3 0,y =0, At =0.01. The resulting motion was determined for

15000 time steps, the first 1700 of which are shown in steps»of 50
in Figure 6.1, Relative particle positions are marked by a particle
number followed by a letter, so that, for example, 1A, 2A and 3A
mark the positions of 1:’1 , P2 and P3, respectively, at the same

time, Though the system has a complex motion, it is interesting to

note that after repulsion,the three particles always gravitate toward

each other, so that the motion is marked by constant speeding up or
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slowing down by the individual particles.

The running time for the entire 15000 time steps was under

14 minutes.

Teo The Vibrating String

Finally, let us illustrate the application of the method of
Section 3 to nonlinear string vibration. Except for the exclusion
of viscous damping terms, the example to be given will be more
sophisticated than any in [4]. We proceed under the popular assump-
tion that each particle of a discrete string can move in the vertical
direction only.

Consider, then, a string of n + 2 particles CO, Cl' CZ,..u '

c ,C , with C_ fixed at (0,0) and with C fixed at (x
n n+l 0 n+l n

Assume that x_ < X, < X_ < *s*e° < X and that x, . - x, = AX, j =
0 1 2 n+l i+l j

0,1,...,n. Let each particle have mass m. At time tk = kAL, k =

0,1,2,..., let Cj’ j=1,2,...,n, have center (xj,yj k), velocity

(0 )y and acceleration (0,a, ). In modeling the motion of

LV,
j.k,y j.k.y

each C], ., we will consider only tensile and gravitational forces. For

this purpose, let Tj—- be the tensile force between C],__ and Cj'

1.3 1

is the tensile force between Cj and Cj+ Then, as

while Tj 4l 1

in [4], the equations of motion are
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| Yirlk Yk
LY 2 _ 2.1/2
[(Ax) + (yjH'k yj,k) ]

Tol ma, = T
(7.1) j.k,y |

Yik Y-k

Y | - mg
iy 2 j 2.1/2 !
[(AX) + (lek y]..]_ :k) ]
For simplicity, define Tj,j—l and Tj+l,J' by
Y. . " Y Yik Y &
_ ik Tislk Lk _i-l.k
(7.2) Tj,j-l"TO [_1+ AX ¥ ‘ Ax ‘ ]
y -y Y Vil
) 4Lk Yk itk ik

where T0 and e are non-negative constants.

The initial value problem to be considered is that of fixing
(xj 'yj,O) and V'IO, ,3=1,2,e0.,n, and of then describing the
resulting motion of each particle. This will be done as follows.
Foreachof j=1,2,s..,n, determine aj 0.y from (7.1) and the

’ !

initial conditions. Next, determine v, 1/2 from

?

At
T. 4 v, = V, -
(7.4) i 1/2,y Vi,o,y T2 8

Then, generate yj K’ j=1,2,60e,n, k=1,2,00., recursively from

(7,,5 Y, = . +AtV, P 7 k:o,l,oooo-,
DYk T Yk i kH/2y

7
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where each a, 18 determined for k =1,2,... from (7.1), while

j.k,y
each v, is determined from
i, k#/2),y

7-6 v. :V, + At°a, P k:].,z,.con
(7.6) i, kH/2),y ~ i,k/2),y ik,y

In particular consider a "heavy", 20l-particle string with 199

moving particles and with xj = TC])T) , J=0,1,...,200, Ax =0.01,
m = 0,005, TO =20, £ =0,0]1, At = 0,001, g =32,2, The string is

placed and held in a position of tension, so that each vj 0,y =0

by setting the particles whose centers have x coordinates which
satisfy .xj <1 on the line y = x, while the remaining particles are
centered on y = -x+1. This initial configuration is marked tO in
Figure 7.1. The string is then released from this initial position

and its downward motion from t_ to is shown typically in

0 t280

Figure 7.1, while its upward motion from 't320 to t52,0 is shown

typically in Figure 7. 2.
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