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A DEFINITIONALLY EXTENDIBLE TYPE-LOGIC FOR

MECHANICAL THEOREM PROVING

G. H. Woodmansee
Under the supervision of Associate Professor Larry E. Travis

If a mechanical theorem prover is to be utilized as the basis
of a mathematically oriented question answering system which is appli-~
cable to arbitrary user-specified theories it is desirable that the
theorem prover have direct means of handling concepts peculiar to
the user's theory. Current work in mechanical theorem proving has
regarded the problem of application as extra~logical and has concen-
trated on producing proof procedures which are adaptable to particular
theories only insofar as axioms specifying properties of primitive
concepts of the theory can be introduced along with expressions to
be proved.

In this thesis, we take the view that the logic, which underlies
a general purpose mechanical theorem prover, must be responsive to
the peculiarities of a given theory and should provide a framework
in which strategies, which nanipulate the inference rules of the
logic, may take advantage ol the state of development of the theory.
Specifically, we propose & refutation-type-logic € which extends
the first order Analytic Tableaux of R. M. Smullyan to a higher
order type-language similar to the B and C languages of Carnap.

This logic provides for the intrcduction of defined constants and
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can utilize derived rules of inference computed from defined con-
stants, axioms and previously established theorems. Unabbreviation
of subexpressions containing defined constants is treated as a
primitive rule of inference of the logic, thus making it possible for
strategies which utilize E to take advantage of the semanﬁic struc~
ture of an expression which is implied by occurrences of defined
constants within the expression. \

Quantification is not explicitly represented in E, but, as in
the case of many current systems, occurs implicitly in the form of
variable dependencies. These dependencies are explicitly represented
in two ways: via Skolem Functions and by structures called depen-
dency forests. Useful instances of a varisble are ultimately deter-
mined by a unification procedure (similar to that of J. A. Robinson )
which utilizes the Skolem function representation of variable de-
pendencies. Skolem function representations of variable dependencies
are calculated from dependeuncy forests which are utilized by the
primitive unabbreviation rule of inference (and a rule of inference
called A-reduction) to calculate dependencies between variables
occurring in a defined constant's definition and variables in whose
scope the defined constant occurs.

Dependency forests allow Skolem functions to be introduced into
an expression at arbitrary points in the course of a proof any time
new dependencies are uncovered by wnabbreviation. (Such introduction
is automatically taken care of by the inference operators of E.) It

is thus possible for a strategy to incrementally (and selectively)
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unabbreviate a given expression. Such acapability is not only a
user convenience in the sense that inclusion of defined constants
allows concise representation of concepts peculiar to the user's
theory, but can be strategically important since the degree of un-—
abbreviation can be controlled by the strategy and thus sensitive
to the state of development of the theory of which the expression
being processed is a part. The logic E and associated notions thus
provide a framework in which adaptive strategies may operate.
Finally, as a demonstration of the generality of &, we show how
four proof procedures (due to Prawitz, Robinson, Loveland and
Friedman respectively) for the first order predicate calculus may
be simulated within the framework of E. This raises the possibility
that mixed strategies for E, vhich utilize current first order strat-

egies as subparts, may be written.

Approved by:
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1.

CHAPTER I (INTRODUCTION)

The current state of mechanical theorem proving

modularity

Historically, mechanical theoren proving research has been con-
cerned with the problem of constructing general purpose proof pro-
cedures for areas amenable to mathematical representation and manip-
ulation. Such procedures must embody formal systems of reasoning
which possess expressive power sufficient to allow formulation of
arbitrary mathematical concepts. The early observation by Hilbert
that all of classical mathematics could be formalized within gquan-—
tification theory has led to almost universal adoption of the first
order predicate calculus for this purpose, the reasoning being that
a general purpose first order procf procedure would also be a gen—
eral purpose mathematical proof procedure. This view neatly splits
the general mechanical theorem proving problem in two, producing
the subproblems of determining suitable translations from mathematics
into the first order predicate calculus and constructing first order
proof procedures. Current researchers, spurred on by this divide
and conquer philosophy, have, almost without exception, addressed
themselves to the latter task and more or less ignored the former.

Efficiency, perhaps the most important consideration after con-
sistency, has further limited the form of the mechanical theorem
proving problem as it is viewed today. It is reasoned that the

more one can say concerning the form of an expression to be processed,



the better the chance for taking advantage of the particular syntac-
tical characteristics of the form. This consideration and the fact
that an arbitrary expression of the first order calculus has a ca-
nonical representation in a prenex normal form in which the quanti-
fier-free matrix is in conjunctive normal form, has led to wide-
apread adoption of this canonical form of input for first order
proof procedures.

We may thus characterize much of the current mechanical theorem
proving research as research concerned with devising efficient proof
procedures for those formulas of the predicate calculus which are
in the indicated canonical form. This is felt to be equivalent to
devising efficient proof procedures for arbitrary areas of mathe-
matics since any general purpose proof procedure may then be en-
visioned as consisting of a translator preprocessor and a core first
order proof procedure. We shall call this conceptual partitioning
of the general mechanical theorem proving problem into a prepro-

cessing stage and a first order proof procedure stage, the modularity

principle.

limited scope non-adaptive strategies

One may naturally focus attention on two aspects of any proof
procedure: the underlying logic and the strategy which applies the
logic. The efficiency of a proof procedure derives both from the
efficiency of its logic and the efficiency of the strategy which it

employs. Research in the late fifties and early sixties produced a




series of proof procedures each of which attempted to improve on the
efficiency of its predecessors (mainly) by proposing more efficient
strategies. Since each of these more or less directly implemented
existing classical formulations of first order logic, each incurred
inefficiencies due to the mismatch between the logiec's formulation
and the computer. Robinson [34] was the first to consider how the
logic's formulation might be matched vo the computer. His formula-
tion, the resolution principle, was to prove a milestone in mechan-
ical theorem proving research and has played a major role in shaping
the field of mechanical theorem proving as it exists today.

At the time the original resolution paper appeared, the role
played by a strategy in a proof procedure had been fairly well es-
tablished. A strategy was an overall plan for applying the rules
of the underlying logic to input expressions and their descendants
with the goal of producing a proof. The global behavior of the
strategy was essentially independent of the particular nature of
the input expression. In essence, the scope of a strategy extended
over one proofl. It was thus impossible for a strategy to produce

results applicable not only to the current expression, but which

lThis is not guite true for all systems under consideration.
Certain systems allow a kind of minimal exploitation of previously
proved results in the following sense: Suppose that = consti-

tutes the set of axioms of some theory and that Tl,...,Tn are
previously proved theorems of this theory, i.e. 2+ T3 1 = 1,...,n.
Further suppose that we wish to demonstrate = F A for some ex-
pression A . It then suffices to demonstrate B F A for some

Bcz U {Tl,...,Tn}.



later could be applied to other input expressions. Thus, a strat-
egy was conceived of as being essentially nonadaptive, and this
meant that the proof procedure was no Dbetter prepared to prove the
thousandth input expression than it had been prepared to prove the
firstg.

Binary resolution and its progency have, for the most part,
accepted this conception of strategy3 and settled down to the task
of devising resolution strategies which limit the potential combi-
natorial excursions of these clash oriented logics.

Thus, if we may characterize the mainstream of mechanical
theorem proving research as it exists today, we see a field of ever
newver and better resolution (based) proof procedures which are moti-
vated by the modularity principle and embody strategies which are
essentially non-adaptive and which make minimum use of previously

proved results.

2At best, the systems under consideration utilize previous

results in the manner outlined in footnote 1. BSuch systems must
assume that a small set of relevant theorems has been supplied by
some unanalyzed external agency or the procedure quickly bogs down
under the sheer weight of irrelevant material. The question of
relevancy, which is crucial if such a technique is to work, is
considered to be a problem isolated from that of determining an
efficient core procedure.

3The set of support strategy [49] probably comes closest to
being adaptive. However, its success as an adaptive system de-
pends on the relevancy of the set of support and thus the comments
of footnote 2 apply.




Some observations concerning the inadequacy of modularity and non-

adaptive strategies

Now, if we can produce acceptably efficient proof procedures,
which are appropriate for arbitrary branches of mathematics, using
the modularity principle and limited scope non-adaptive stragegies,
then the preceeding considerations are of little concern. But can
we? Is there any strong evidence that efficient general purpose
proof procedures are being produced (or can be produced) using the
modularity principle and non-adaptive strategies? I would argue
there is none. For the current spate of proof procedure generation
has produced programs which have been applied only to toy problems
and which produce as indicators of their worth relative rather than
absolute measures of efficiencyh and the somewhat irrelevant mantle
of completenesss. Such measures shed relatively little light on

whether or not continued relative ilmprovement of this sort will

usually of the form ... this procedure is more efficient

than its predecessors because in o given situation it applies
operation x fewer times

5Completeness, a useful concept in formal logic, is somewhat
irrelevant for the purposes of mechanical theorem proving since
programs which implement first order proof procedures are never
complete in practice. Furthermor=, the fact that a particular
procedure is incomplete does not necessarily mean that it is not
useful. (Consider for examnle Friedman's semi-decision procedure
[10] which is incomplete for the entire first order logic.) Com-
pleteness guarantees nothinz concerning the amount of effort re-~
quired to prove a given result. (For certain early systems, which
uniformly instantiated the Herbraid universe, such effort quickly
became excessive even for trivial proofs. (cf. Robinson 1963))



eventually lead to the desired end. Furthermore, we may argue that
for a proof procedure to be acceptably efficient, it must on the
average, expend only a modest amount of its resources in proving
valid arbitrary formulas of modest difficulty. But, the difficulty
of establishing a given result depends to a large extent on the
state of development of the theory of which the expression is a
part. BSince limited scope non-adaptive strategies make minimal use
of contextual information, we might expect expressions of even a
moderately advanced theory to be excessive resource consumers be-
cause the proof procedure must, in a certain sense, start from
scratch each time it encounteres a new expression.

Now, it could be argued that even 1f some sort of adaptability
is necessary for the efficient operation of a proof procedure, it
could be handled within the framework of modularity. (That is,
one can envision the proof procedure as consisting of a core proof
procedure and a hybrid preprocessor, which in addition to trans-
lating from mathematics to canonical form predicate calculus, also
reflects the current state of the theory to which the stream of
input expressions belong and which can take advantage of it by
supplying this information to the non-adaptive procedure.) I would
argue that this is not the case. From a general point of view,
such a division makes the preprocessor a major component of the
total proof procedure with its own structures and strategy. In
addition, since the efficiency of the whole is not negessarily

aqual to the sum of the efficiencies of its parts, these structures




and strategy must be matched to the core procedure and the core
procedure to them. Thus the proof procedure must be designed as a
whole. This philosophy is at odds with the principle of modularity
which requires that the core procedure be designed totally out of
context. This is basically an argumenut about problems associated
with interfacing autonomous procedures. However, problems associ-
ated with modularity run deeper than the interface between the pre-
processor and the core procedure, for the sort of adaptability re-
presented by inclusion of defined constants requires that the core
procedure's strategy have an incremental unabbreviation capability
which is only possible if the core procedure can deal directly with

expressions containing abbreviations.

6

Tt is common practice in mathematics and other fields to intro-
duce abbreviations for frequently used or important concepts. The
set of defined constants used in abbreviations reflect certain as-
pects of the stage of development of a theory and thus constitute
adaptive information. As a particular theory expands and new abbre-
viations are found to be necessary, statements of the theory tend
to include deeply nested abbreviations. A statement of a moderately
advanced theory may thus be highly stratified with each successive
level of abbreviation obscuring the structure of the previous level
until unabbreviation brings it into view. In terms of primitive con-
cepts the obscured structure might be highly complex. Additionally,
the very nature of an abbreviation - i.e. user supplied shorthand
for important concepts of the theory - tends to make the abbrevia-
tional structure strategically significant.

Now, if we wish to allow abbreviations in a system which obeys
the modularity principle, unabbreviation must be total and handled
as part of the preprocessing operation. This means that even though
the canonical representation obtained by preprocessing is logically
equivalent to the input expressions, the strategic hints implicit
in the abbreviational structure are lost. In addition, the infer-
ential portion of the core procedure is confronted with the entire
complex structure of the expression rather than the series of rela-~
tively simple structures that abbreviation affords.



1.2 The nature and content of this paper

The advent of resolution constituted recognition of the fact
that a proof procedure's underlying logic must reflect its execution
context, i.e. that it is to be applied by a machine rather than =z
human. This paper takes the view that the logic must also reflect
the fact that input expressions are not isolated entities, but rather
part of some structured body of knowledge.

Specifically, we here develop a system of logic and a notion
of strategy relative to this logic which can make direct use of cer-
tain types of adaptive information. The logic provides for intro-
duction of defined constants and can utilize derived rules of in-
ference using defined constants, axioms and previously established
theoreﬁs. Unabbreviation of expressions containing defined constants
is treated as a primitive rule of inference of the logic rather than
a preprocessing step. It is thus possible for proof generating
strategies to exploit the occurrence of defined constants in the ex-
pression.

Within the framework of the logic presented in this thesis, it
is also possible to simulate current first-order strategies such as
[10], [19], [30] and [3h].

In the appendix, we suggest a language for writing strategies
which utilize the logic. The notion of strategy relative to this
language and the proposed logic is sufficiently general to allow
strategies to be written which are closed and total (i.e. require

no human intervention and have as goal, production of a proof of




the input expression) or open and partial (i.e. require human inter-
vention and have as goal some useful intermediate result such as

producing all resolvants of some pair of clauses).
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CHAPTER II SPECIFICATION OF A DEFINITIONALLY EXTENDIBLE TYPE-LOGIC

Introduction

The definitionally extendible type-logic E specified in. this
chapter, is based on a primitive system Ul and various notions re-
lated to the concepts of trees and forests. The presentation is
divided into three major sections: A section which provides the
necessary material on trees, a section which presents the unextended
system U wupon which € 1is based, and a section which presents the

extendible logic E . We begin with the notions of trees and forests.
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Trees and Forests

Trees and forests play an important role both in the unextended
system U and in its extension E . For this reason, it is useful
to have a precise definition of tree-related terminology at hand for

future reference.

Trees with content

Both U and E wutilize trees to structurally represent the
consequences of truth value assignments to sentences of the logic.
In this application, it must be possible to associate certain types

of information with the nodes of any given tree. Trees with content

will serve in this capacity and are introduced in terms of the more

general notions of tree and ordered tree.

tree A tree 1t consists of the following:

1. A set of elements Nf called nodes.

2. A binary relation PT(n,m) defined in W _ x N which is

read 'n is the immediate predecessor of m" or 'm is

1

the immediate successor of n." Furthermore, P satisfies

t
the following conditions:
a) There is a unique node n , called the origin and
denoted by '"org (t)," which has no immediate prede-
cessor.

b) Excepting the origin, every node has a unique

immediate predecessor.



Excepting the origin,

K e N

nodes kl,... n +

ke N

t
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implies there exist

such that k;, = k, km =

1

is the immediate predecessor of ki for

origin and ki+1

1 <i<m.

A node having no immediate successor is called a leaf.

other nodes including the origin are called internal nodes.

All

A path

is a finite or denumerable sequence of nodes, beginning with the
origin and having the property that each term of the sequence (ex-
cept the last if the sequence is finite) is the immediate prede-

cessor of the next. A branch is a path connecting the origin and a

leaf.

A node n will be said to be an ancestor of a node m (denoted

n <y m) if either 1. Pt(n,m)

or 2. there exists node 2z such that Pt(n,z)

<e m

and =z +

The specification of a tree induces a unique 1vl  correspondence

between the leaves of the tree and branches of the tree on which

they appear. Thus, if k 1is the leaf determining the branch b ,

we shall sometimes use the phrase "the branch k" to denote b

then

If x 1s an ancestor of y and y an ancestor of z .,

y will be said to be between x and z. In those cases where no
confusion can arise, the subscripts denoting the tree's name will

be dropped.
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ordered tree An ordered tree T igs a tree together with a function

Bt which assigns to each internal node an enumeration of its immedi-
ate successors. Given the tree, <Nt’Pt>’ an ordered tree t' is

<N P

£ t,,et,> where N_, =N and Pt‘ = Pt' Furthermore, an ordered

t! t
tree can be represented alternately as a geometric diagram with the
origin at the top and immediate successor nodes below their immedi-

ate predecessors and ordered from left to right. Arbitrary trees may

also be represented this way if the left-right order 1is ignored.
example + is <N,P,8> where:

N

{nl,ng,n3,nh,n5}, P = {<nl,n2>,<n2,n3>,<n3,nh>,<n3,n5>}

8 {<nl’<n2>> ,<n2,<n‘ >>,<n

3 3’

<1’1u 3n5>>}

org (t) = n s the leaves are 1 and n. and the internal nodes are

5

ny o 0y n.. The geometric representation is given by:

3

6D
£
€3
Cy G5

Notice that the names I .,n; are redundant in the geometric

100

diagram.

trees with contents from S A\ tree t with contents from a set

s is a tree together with a function Ct on the nodes of the tree



1k

into the set 8. It Ct(n) = X where n ¢ Nt and x € S we say
that x is the content of n . Trees with contents from 5 will
be represented geometrically by displaying the content of a node
near the node in the geometric representation. A tree t is said
to contain an element x if there exists a node n ¢ Nt such that
Ct(n) = X. The tree is said to contain x once if there is one

and only one n such that Qﬁn)=x.

Further tree-related terminology (parts ana images)

Various relationships between trees and tree rarts are of
interest in U and FE . For the most part, these relationships
are structural in the sense that they may be defined for trees or
ordered trees and extended in an obvious manner to trees with con-
tent. Concepts arising from four such relationships are introduced

below.

subtrees A tree § is called a subtree of t if:

1. N% c Nt

and 2. Py < P, with the vroviso that n,m € N:  and Pt(n,m)

implies Pé(n,m).

If £t is a subtree of the ordered tree t , then the relative

~

order induced by t on t 1is given by

9£ < et with e% such that n,m, € Nt and <n,<ml,...:mp>> e 0

implies <n,<m ,...,mp>> € 8£

If t is a subtree of a tree with contents from S +then a content

function Ct may be obtained by suitably restricting the content
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function of the parent tree. Unless otherwise noted, a subtree will
be considered to be of the same type as the parent, i.e. if the

parent tree is an ordered tree, then its subtrees will be considered
ordered and if the parent tree is a tree with contents from S +then

its subtrees will be considered to be trees with contents from 8 .

ma jor subtrees The major subtrees of a tree t are the subtrees

of t whose origins comprise the set Gt(org(t)).

tree isomorphism Two trees t and t will be said to be iso-

morphic if there exists a 1Vl mapping Y with the following pro-
perties:

1. ¥ maps Nt onto N£

then P(n,,n.) if and only if

2. If nl, n2 € Nt’ 1285
P,E(‘P(nl), ‘i’(ng))

In addition, if t and %t are ordered and 3. holds

3. If n.,n ,nD e N then <n,<n .,np>> e 0O

100

),...,W(np)>> e 6;

100 £ t

if and only if <¥(n), <‘P(nl

then t and t are said to be isomorphic to within order (or order

isomorphic).

image of t in s If ¢t and s are trees and there exists a

subtree t of t which is isomorphic or order isomorphic to s,

then t is said to be an image of s in t
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1.3 Further tree-related terminology (tree operations)

In U and E we are particularly interested in certain oper-
ations which produce new trees by altering or merging the structures
of existing trees. Three of these operations are introduced below.
In practice they apply to trees with content, however, since the
operations are basically structural and thus independent of node
content, we shall define them for the somewhat more general concept

of ordered trees.

appending Let t and s be two ordered trees having disjoint
node sets. The ordered tree r 1is said to result from appending

t to the leaf n ¢ NS if

N =N, U (NJC - {org(t)})
Pr =P U (Pt - {<orgl),k>:k ¢ Q})uU{<n,k>:k ¢ Q}
Sr =6, U (6t - {<org(t),<kl,...,ki>>:kj e Q}) U

{<n,<k ,...,ki>>:kj e Q} where Q = {k:<org(t),k> ¢ Pt}
and cardinality of Q = 1i.
The operation of appending one tree to the leaf of another has

a simple geometric interpretation which is illustrated in the follow-

ing example:

example Let tl and t2 be as glven
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Then the result of appending %, to the leaf 6 of tl is
o

Appending may be defined for trees with content by defining

- {<org(t), ¢, (org(t))>}. This

C as follows: C =C U (cC
r r s t

t

will be considered in detail later.

node removal Suppose n € Nt’ n # org(t) and further m 1is the

immediate predecessor of n and n . o] are the immediate

1 k

successors of n . The tree (ordered) g which results from re-

moving the node n from +t 1is defined as

N =N, - {n}
q t
Pq = (Pt - {<m,n>,<n,nl>,...,<n,nk>})kl{<m,nl>,...,<m,nk>}
eq = (et - ({<n,<nl,...,nk>>}\){<m,<m1,...,n3...m2>>})) U
{<m,<ml,...,nl,...,nk,...m2>>}
example If t 1is ! and g 1is obtained
2 7
3 4

5 )

by removing node L4 ,



1.k

18

then q 1s

Y

branch removal Suppose b is a branch consisting of the elements

bl,...,b (where b is a leaf and bi+ is the immediate pre-

k 1 1

decessor of bi). If b is not the only branch then the tree g
resulting from the removal of b from the tree t is obtained by

removing the nodes b, ,b

1 -,bm l‘where m is the smallest number

PERR

<k for which bm has more than one immediate successor. (Since

bl is a leaf, m is necessarily greater than 1.} If b is the

only branch, then remove nodes D .,b

170" K
example The tree which results from the removal of the branches
designated by leaves 4 and 7 in the append example, is illus-

trated below: (Broken lines indicate removed branch. )

Torests and forest related terminology

Tt is often useful to group trees according to some common

property. Such groupings are called forests and occur in U and
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E as the result of performing certain operations on trees.
A forest is a set (possibly empty) of trees such that if s

and t are in the set, then N, N NS = ¢. A forest will be said

t
to contain an element x 1if there exists a tree in the forest
which contéins % . A forest will be said to contain x once if
there exists a unique tree t+ which contains x and t contains
X once. Each category of tree produces a corresponding category
of forest. Thus, for example, a forest with contents in § is
simply a forest consisting entirely of trees with contents in S .
Ir F is a forest, then NF and PF will denote the node set
and immediate predecessor relationship respectively. NF = \g i)

Ft

and PF = \J P,.

teF T
The notions of isomorphism and image can be extended to forests

in the obvious manner.

the forest F determined by the tree t and the node set ﬁ

Suppose t = <N,P,8,C> and ﬁ«: N

1. C 1is the restriction of C to W

~

2. for each n,me N <n,m> ¢ P if and only if

a) n <r.om

and b) there is no node g € N between n and m .

A A A

F = <i,p,8,0>

-

where © is the union of the relative orders induced by t on

~

the subtrees of t Ybelonging to <ﬁ,P,6>.
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consist of the s0lid nodes.
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The unextended system U (Introduction)

The unextended system U , presented in this section, consists
of a language, and a set of inference operators. The presentation
is divided into two major subsections: A language section which
specifies the syntax and semantics of U and a theory section which
specifies the ten inference operators of U and develops the notion
of "provable in U".

UL’ the language component o U , is based on the syntax and
semantics of Carnap's "B and C languages" [3] and is a parti-
cular species of the higher-order languages known collectively as
"type languages.'' These languages preserve the expressive power
of higher-order languages while avoiding the logical paradoxes that
can arise when a language's formation rul s are not sufficiently
restrictive.

u differs from the B and C languages in several respects.

L
In UL, predicates are considered to be a special kind of functor
and expressions are formulsted in terms of Sheffer stroke CD
and V rather than T . Vs &, 2, =, Vl . This
latter difference alloss the presentation to be somewhat less cluf-
tered than would be th: cas¢ 1f the traditional operators were used.

The logical power of tie sy:stem is not compromised by the smaller set

of operators and the convenience afforded in practice by the larger

lWe shall follow the convention of allowing such object lan-
guage symbols to stand for themselves. (cf. Carnap's concept of
autonomous symbols. [3].)
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set is recaptured in the extended system € since 25 v s &

U
u
n

can be considered defined constants of the extended system.

The inferential (or theory) protion of U is patterned after
the analytic tableaux of R. M. Smullyan [L43] which is4a complete
and consistent characterization of first-order logic and bears a
family resemblance to the system of Beth [2], Hintikka [16] and,
more remotely, Gentzen [12].

A deduction in U , consists of a series of trees whose nodes
have as content single formulas with associated truth-values. The
inference cperators formalize the process of making explicit the
various atomic truth-velue assignments implied by a formula's asso-
ciated truth-value. T¢ prove a formula, one begins with a tree whose

origin 1is formula which is satisfiable if and only if the nega-

6]

tion of the formuls to be proved i3 satisfiasble, and generates other
trees using the inference oyperators of the system. If a special tree
(called the empty tree) is jroducedi, the initial formula is said to
be provable. As with >ther logical systems., the syntactical notion
of provability can be tied 1o the semantic notion of validity.
Formulas that are provable in U are valid.

Ir certain cases, features of the unextended syétem, which are
cueperlent or the syn.ax of UL ., can be illustrated using examples
rom a language of the sort nresented in Russell and Whitehead's
rincipia Mathematica [47]. Where possible, this will be done since

ach examples usually vrovice a more lucid illustration of the con-

certs under consideration than would examples involving expressions
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2.1 The language U

I—

2.1.1 Language (syntax)

Sentences of UL, are called polarized expressions and are con-
structed from a vocabulary of symbols according to a set of forma-
tion rules. These rules involve an intermediate class of objects
(called expressions) which may be subcategorized according to the
last formation rule applied in their construction. Expressions may

be further subcategorized according to type.

type

1. 0 and 1 are types

2. If = +»T » T are types, then (1 .,Tn:T> is a type.

150 100
"0" is the type of an individual, "1" the type of a truth-value

and ( ,Tn:T) the type of a functor (function symbol) having

Tysees

arguments of type T and which, when applied to a full set

Tyoee
of arguments of the correct type produces an object of type T ,

otherwise non well formed.

symbols
1. For any type - a denumerable set of
a) variables
b) Skolem function symbolsl

2. The special symbols (D s Vo, () . C} s A, @

lCalling these symbols "Skolem function symbols'" gives an
indication of their intended use. As they stand, they are of
course just distinguishable arbitrary symbols.
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The class of variables (of all types) will be denoted as V ,
.and the class of Skolem function symbols as S . Any element of
Vu S u {¢} will be called a type system symbol (TSS). It is
agsumed that UV, S and the set of special symbols are pairwise dis-

joint.

formation rules (for expres:ions)

Expressions belonging to UL are constructed according to the
rules R1-R4 given below. If e is an expression formed according
to these rules and Ri was the last rule invoked in its construction,
e will be called an Ri expression. For each rule Ri’ we shall
assume an exclusion clause of the form, "Only expressions formed
according to this rule are Ri expressions."

In addition to specifying the form of a given type of expres-
sion, we shall specify which parts of an expression are well formed2
and undeg what conditions variables occurring in subparts of the

expression become bound. These notions enter into the definitions

of subexpression and variable dependencies given later.

Rl - Any TSS of type 1 1s an expression of type T.

The type of (D is (1,1:1).

R2 - If e 1is an expression of type (t .,Tn:T) and e, 1is an

12"

expression of type Ty then ee ... is an expression of

type T

2Arbitrary character substrings of an expression are not
necessarily expressions. An analogous situation holds in the pro-
positional calculus where the substring ) & C of the formula
(A\/ B) & C is not well formed.
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The expressions e e are said to be within the scope of e .

1o
The expression e is the operator and el,...,en the arguments.

Bound3 variables occurring in e,el,...,en must be distincth and

are considered to be bound in ee e

18,
R3 - If e is an expression of type 1 , Xi a variable of type
. (i =1,...,n) with the property that x; 1is distinet from
any X (3 #1, §=1,...,n) and from all bound variables
occurring in e , then kxl...xn @ ¢ 1is an expression of type

(

Tl,...,rn:r). Pach variable y which occurs bound in e and

each x, is bound in Ax....X e e.
i 1 n

3Rules R1-RL constitute a recursive definition of "expression"
and "bound." We note, for example, that a variable may become bound
only through application of rules R3 and RL4Y. Once bound, the rules
insure that a variable remains bound in any expression constructed
from the expression in which it is originally bound. Rules R3 and
R4t provide a basis for determining whether a given variable is bound
in an expression. Thus x is bound in the expression e if e is

an R3 expression of the form Ax,...X...X e e or an RL expres-

. . : n, . ‘
sion of the form Vzxe,, or if x “is bound in some constituent ex-
pression of e . Note that since a constituent expression is smaller

than the containing expression, the recursion will eventually termi-
nate. (We assume the exclusion clause "the only bound variables
are those prescribed by rules R2-RL4".)

The requirement, that a set of variables 8 cceurring in ex-
Pressions  a. ,..., be distinct, can be satisfied by revising the
variables. %hus, i v and v are the same variable (both oc-
curring in S), then we Choose a Variable v not contained in S
and replace all occurrences of v in & ,..., by v. DNote,
the requirement that variables be distinc% does not effect the ex-
pressive power of the language.
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Rl - If e 1is an expression of type 1 and vV € V and v 1is not
bound in e , then Vve 1s an expression of type 1. The
expression e 1is sald to be within the scope of V and vari-

ables occurring bound in e are bound in Vve,

Any variable which is not bound in an expression is said to be
free in that expression. An expression which contains no free vari-

ables is said to be a closed expression.

Well formed parts of an expression are certain character sub-

strings of the expression and will be used to define subexpression.

well formed part (See also expression definitions R1-RkL.)

1. Rl expressions have no well formed parts.
2. R2 expressions have the well formed parts e,el,...,en.

3. R3 expressions have the well formed parts A,xl,...,xn,@ b

L. RL expressions have the well formed parts V,v.e.

subexpressions R1-R}t specify means by which expressions may be

combined to form other expressions. Any expression which enters at
some stage into the construction of another is said to be a sub~
expression of that expression. Precisely stated: An expression &

is a subexpression of an expression e if:

1. e ig a well formed part of e

or 2. there exists an expression e, such that

a) e, 1is a well formed part of e

2

and b) ey is a subexpression of ey




We note that in general the well formed parts X , V , (D .
and e are not subexpressions. (Notice that the reason they do not
satisfy the above definition is they are not expressions. )
We define an atomic expression as follows: An expression e is
atomic if
1. it has type 1 and its first characters is not (D , v
or A and
2, it is not a subexpression of any other expression which

also satisfies 1.

3. only expressions satisfying 1 and 2 are atomic.

This syntactic éefinition is motivated by the semantic consider-
ation that an atomic subexpressior of an expression e 1is a type 1
expression which is truth functiorally unanalyzable. For those
accustomed to working only with first order logics, it might seem
more reasonable to define an atomic expression as a type 1 expression
which has no type 1 subexpressions. Unfortunately, the nature of the
type language UL makes such a definition unsuitable. Consider, for
example, the pe @ vwrqu() PQ where P,Q have type 1 and M
type (1:1). Under this latter definition, P and Q would be atomic
expressions. However, the expression D&CD'PQ is unanalysable in the
sense that knowing it is false tells us nothing about the truth or
falsity of P or Q. Under the former definition, DﬂCDTPQ is the
only atomic subexpression of (:)VWVPV@M(DZPQ.

Expressions formed according to the rules given above provide

the raw materials from which the sentences of U are formed. The
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sentences of U are called polarized expressions and are syntacti-
cal forms which may be thought of as asserting or denying a state of

. . .. 5 .
affairs in some domain” of discourse.

POL - polarized expression (pe) If e 1is a closed expression of

type 1 which contains no elemen®ts of S , then:
1. CD e 1is a polarized expression. C) and e are its well
formed parts. () is called the prefix and e the suffix.
2. @De is a polarized expression. () and e are its well

formed parts. (B is called the prefix and e the suffix.

Polarized expressions are not assigned types and thus can not
further combine under R1-R4. The conjugate of a polarized expres-—
sion Me (Me) is the polarized expression ®e (Me). The
subexpressions of a polarized expression are the subexpressions of
its suffix.

Expressions formed according to R1-RY4 have several desirable
properties which make parsing possible. If e and e, are ex-

1

pressions, then

5Later, we shall develop the notion of semantic evaluation.
Semantic evaluation provides a mapping from the set of expressions
into a set of objects called a derived domain. Under this mapping,
polarized expressions are mapped into the subdomain {T,F}. The
elements T and F may be thought of as truth and falsity. If
D is an arbitrary non-empty set of objects and D¥ is the derived
domain corresponding to D , then we say that a pe is true
relative to D if it is mapped into T e D¥ and false if it is
mapped into F e D¥,
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1. they only have a finite number of subexpressions
and 2. If ey and e, have the same type and are both Ri
expressions (for the same i), then it is decidable if
their well formed parts correspond. If they do, there
exists a unique correspondence (1vl) and this corres-
pondence can be computed. (In particular, the well
formed parts of el and e2 will correspond if and
only if they agree in number, type and order in the
representing string, i.e. the ith well formed part
of e must have the same ‘type as the ith well formed
part of e2.)
1t follows as the direct result of these properties that any polar-
iéed expression has a unique derivation in terms of RL, R2, R3,
R4t and POL. This and the fact that subexpressions of
corresponding expressions correspond makes a unification6 algorithm
for U possible as well as allowing the kind of decompositional
inference rules which are presented in 2.1.3.
A polarized expression contairing quantifiers may impose com-
plex dependencies among its variables which must be taken into

account any time an inference rule involving instantiation of a

variable is applied to the polarized expression. As an extremely

6

If xq,...,%x, are variables contained in the expressions ey
and e, and if 81 ,...,8, are expressions which when substituted
for the occurrences of X seeesX) in ey and eo produce identi-

cal expressions, then we say that e; and e are unifiable.
(Unification and substitution are considered in detail in section
2.1.2.)
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simple example of dependency in the first order predicate calculus

we have

Vx Hy Axy
in which the choice of an a, for which Aala2 is true will in
general depend on the choice of a - A similar phenomenon occurs

in Uu.

Since variable dependencies are implicit in a polarized expres-—
sion and since determination of substitutions which make distinct
expressions identical is an important operation in both U and E
and is closely tied to variable dependencies, it is desirable to
have an alternate representation for polarized expressions which ex-
plicitly exhibits dependencies among the varisbles of an expression.
Furthermore, in addition to simplifiying determination of unifying
substitutions the appropriate choic: of an explicit variable depen-
dency representation can facilitate the unsbbreviation operation,
which plays an important role in the extension E .

The occurrence of an abbreviation (a particular kind of sub-
expression of the & equivalent of a polarized expression) implies
certain dependencies among the variables occurring in it and in ex~
pressions of which it is a subexpression. Since an abbreviation is
considered to be an unanalyzable object7 of E until it is explicitly

unabbreviated, these dependencies can not be accounted for until un-

T

In much the same way as an atom is considered unanalyzable.
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abbreviation has occurred. It is thus necessary that the particular
representation chosen to exhibit variable dependencies allow depen-"
dencies which are implicit in an sbbreviation, to be linked to ab-
breviation-external dependencies any time an abbreviation is ungb-
breviated.

The requirements imposed by unificatién and wnabbreviation upon
the form of dependency information representation are somewhat at
odds. The representation of variable dependencies for the purposeé
of unification is best accomplished using Skolem functions, which
are unsuitable for the purposes of unabbreviation. On the other
hand, dependency forests, which are suitable for the purposes of
unabbreviation, are extremely cumbersome for the purposes of unifi-
cation. It is thus necessary to adopt a redundant representation

which involves both.

Skolemized polarized expressions (spe)

The representation adopted for exhibiting the nonquantifica-
tional information previously contained in a given polarized ex-
pression as well as exhibiting explicit variable dependencies con-
sists of a modified pe called an spe and a forest associated
with the spe called a dep:ndenc- forest. The spe results from
removing all occurrences of "vx" (x € V) in the original pe and
replacing certain variable »ccurronces with Skolem functions. The
associated forest (dpf) explicitl:: exhibits the variable dependencies

present in the original pe .
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The combination of spe and dependency forest is redundant to
the extent that the Skolem functions occurring in the spe contain
the same information as contained in the dpf. However, as mentioned
above, the redundant representation is necessary.

Skolem functions for a given spe are obtained directly from the
dependency forest which in turn is derived from the structural repre-
sentation of the original pe. The structural representation of a
polarized expression is essentially the tree that would be obtained
by parsing the formula to the level of atomic expressions. We shall
begin by specifying an algorithm which computes the structural rep-

resentation of a type 1 expression.

AMgorithm A (Structural representation, T(e) for type 1 expression, e)

Let e Dbe a type 1 expression. Then T(e) is an ordered tree
with contents which is determined as follows:
Al. If e 1is an atom or is of type 1 and of the form
Xxl...xn ® elal...an then T(e) is a tree consisting
of a single node whose content is e+

A2, If e = (De162 then T ((Dele2 is

The structural representation for e computed by algorithm
A will contain nodes having contents of the form ay where a
is a subexpression of e and y 1is + or - . The suffix vy
indicates the parity of a in e , i.e. 1t indicates whether in
e , a occurs in the scope of an even (+) or an odd (-) number
of occurrences of



where T¥(e) is the complement of T(e) obtained by
changing all occurrences of + to - and - to +
in T(e).
A3. If e = VYve then T(Vve) is
v

T(e)

The structural representation of a pe 1s obtained as follows:
1. T(@De) is T(e)
2. T(®e) is T¥(e)

We may now compute the dependency forest for a type 1 expres-

sion. This is accomplished by algorithm B.

Algorithm B (Dependency forest of a type 1 expression)

Let e be a type 1 expression

Bl. Using algorithm A computs the structural representation
of e . Let this be T(e).

B2. Compute the set ¥ where N is the set consisting of
the leaves of T(e), and the nodes of T(e) which have

content v+ or v- where v e V.



3L

B3. The dependency forest for e 1is the forest determined

by T(e) and N (cf. page 19.)

example @VXPX VyQy has the dpf

x- . y-
Py~ Qy—

The complement of the dependency forest for the type 1 expres-~
sion e is just the dependency forest determined by the tree T¥*(e)
and N . The dependency forest for a pe is defined in an analogous

fashion.

Dependency of one variable upon another in the dependency forest F

A variable y 1is possibly dependent upon a variable x if

in t such that C,(n. ) =

there is a tree t & F and nodes £ (0

By By

X+, Ct(ng) =y- and n, < n,. A varisble y is dependent upon

a variable x if y 1is possibly d:pendent upon x and X occurs

in the contents of at least one leaf which has ¥y as an ancestor.
A variable y 1is dependent if either there exists at least one
variable x such that y is dependent upon x or y is a nega-
tive variable (i.e. there exists node k such that Ct(k) =y =)
which has no positive variable ancestors.

Let us once again consider an example from the first order
predicate calculus using only the connectives 9.y 5 & . If a
variable x possibly depends upon a variable y then the following

situation holds in the formula contszining x and vy . (We assume
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that all variables of guantification are distinct.)
Cux(e. . (@yM) L),

where vx (...(@yM)...) and (&yM) are both in the scope of an even

nunber of negation symbols.

Now suppose M contains no occurrence of x ; then the occur-
rences of y in M do not depend in any way upon X . (Note thét
v can occur only in M due to the distinct-variable-of-quantifi-
cation restriction imposed above.' Thus, treating y as if it did
depend upon x would introduce spurious dependencies.

The definition of "dependent" ensures that spurious dependencies
of this sort are not introduced; computing efficiency demands that
they not be.

The phenomena illustrated above have their analogs in UL'
Thus CD behaves somewhat like negation and (DVX(D AxAxVX(DAxAX
like dxAx.

As an illustration of the notions of structural representation,

dependency forest, possibly dependent variables and dependent vari-

ables, we have the following example:

example Let e = vx(Dvu Axu vyAyy then T(e) is

v
X+
@
v N v
u- y-
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and dpf(e) 1is then

The variables y and wu both possibly depend upon x, however,

only the variable u depends upon x .

Skolemization of closed type 1 expressions via their dependency

forests

Given the dependency forest for a polarized expression, it is
possible to utilize the forest's dependency information to aid in
the determination of the corresponding spe. We shall begin by
specifying how the Skolem replacement for a negative variable which
occurs in a dpf, can be computed. Algorithm C, which computes this

replacement, can then be used to Skolemigze any type 1 expression.

Algorithm C (Calculating Skolem replacements from a dpf)

Let n be anode (but not a leaf) of the dpf F . Further-
more, let the content of n be v-~. The Skolem replacement for

v 1is calculated as follows:

case 1 v ___does not depend upon any variable.

Ci.1 Let v have type T and let f have type T , belong
to S8 and not have been used previouslyBa. The Skolem

replacement for v is £ ,

BaA Skolem function £ has been used previously if either it
occurs in the dpf or it is part of the Skolem replacement for some
negative variable of F other than v .
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case 2 v _depends upon the positive variables vy,...,v,

C2.1 Let v have type 1 and VyseeesV types 1 o T

1" n

respectively. Let £ have type ( ,Tn:T) where

Tysens
f £ S and has not been previously used. The Skolem
replacement for v is fvl...vn where the ordering

of the v.s is determined by the linear order induced

by the dpf8b.

Let e be a closed type 1 expression. Skolemization of e

is accomplished as follows:

AMgorithm D (Skolemization of a type-l expression)

Dl. Calculste the dependency forest for e wusing algorithm
B.

D2. Remove all character strings of the form Vv from e
(where v ¢ V) which are not within the scope of some
A,

D3. Replace all occurrences of negative variableslo both in
e and dpf(e) with their Skolem replacements which

are calculated by algorithm C.

A polarized expression may be Skolemized in exactly the same
way as a closed type 1 expression. As in the case of the closed
type 1 expression, the dependency forest for the pe is used to

calculate the appropriate Skolem replacements for negative variables

8bAny arbitrary ordering will do, though.
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in the modified pe . We note that occurrences of negative variables
in the dpf, as well as in the pe , are replaced.

In practice, spe's are obtained in the manner just described.
However, any given spe can also be constructed from elements of TS5
using formation rules R1-R3 and POL if, in POL, we relax the restric-
tion that the type 1 expression not contain elements of S . It is
thus possible to extend the notions of well formed parts, subexpres-
sions, expressions, suffix and prefix to cover arbitrary spe's. Un-
less otherwise indicated, references to these notions should be con-
strued to mean the extended sense of the notion. The language com-
ponent of U which consists of spes and their dependency forests
will be denoted UL* .

In succeeding sections, we define certain computations on de-
pendency forests. These computations make use of the notion of leafl
expansion which in turn makes use of the notion of algebraically re-
placing a dpf leaf with another dpf.

Given two dpf's F and H and a leaf of H , we can compute
a dpf H' wusing algorithm E . Algorithm E simply replaces n
with either F or Fx2 depending upon whether n is positivelo

or negative.

9Recall that F* 1is obtained from F by replacing occurrences
of + with - and - with +
lOThe node n 1is positive (negative) if its content has the
form e+ (e-) where e 1is an expression.




39

Algorithm E (Algebraically replacing a dpf leaf with another dpf)

) Let F and H be dpf's and let n be a leaf of H . The
dpf H' which results from algebraically replacing the leaf n with
the dpf F is determined as follows:
El. Calculate the dpf G = J’F if n is positivelo
lF*g if n is negative
F2. Calculate H' as follows:
Nyo= (0, - {n}) U Ng
Py, = (PH - {<m,n>}) U {<m,ml>,...,<m,mp>}

where mi's are origins of all trees comprising G.

]
]

H, (eH - {<m)<kla"'an>"'ks>>}) k)

{<m,<kl,... STy 5 e s e ,ks>>}

Cyy = (CH - {<n,C(n)>1) U Cq

We may now use algorithm E to compute a dpf which results
from algebraically replacing a leaf in a specified dpf with the dpf

for the content of the leaf.

Algorithm F (Leaf expansion)

Let H Dbe a dependency forest which contains the leaf n and
let the content of n be ey where vy is either + or - .
Fl1. Calculate the dpf for e wusing algorithm B. Let F
be the result.

F2. Using algorithm E, algebraically replace n with F .
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example Application of algorithm E +to the leaf 4L of the dpf H.

v+
H is U=
Avv— Vy(D Vxwau(I)AUV'Ayv -

where A takes two arguments
and B takes three

Nas

Fois
X~  Ayv+ Ayv+

Bxwu-

/ v+
H' is u- This is the expansion of U

Avv- in H. TNote the sign changes

- caused by leaf 4 being nega-
~__tive.
/ \0
d///// X+ Ryv- Ayv-

Bxwut

2.1.2 Substitution, instantiation and uwnification

unification of spe's The possibility of proving theorems in U

ultimately depends upon the possibility of determining under what

substitutions for positive variables (if any) two expressions of
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substitution components (sc) An sc is a pair <e,v> where v 1is

a variable of arbitrary type and e is an expressionl distinct from

v  but of the same type. If ¢ is an sc, then cl will denote
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The instantiation of the expression e by the sub-

wlor 4 over © {(Genoted =a) i3 defined as:




1. If e is an Rl expression, then ea =e¢ if e ¢ S
= e if e e V and for no ¢ e o
is it the case that c¢. = e

= a otherwise (where <a,e> € a)

2. If e is an R2 expression and of the form ae ... 8

then ea = aaela...enu. That is, ea is obtained by

. . . 2
forming an R2 expression from the expressions aa ,

E_ Oyess & O

1 n
3. If e 1s an R3 expression and of the form Xxl...xne €
then ea = Ax....Xx © e u3

1 7 1

It follows by induction on the number of subexpressions of an
expression that the type of an expression is invariant with respect
to instantiation. In fact, this is necessary if the results of 2
and 3 (above) are to be well defined.

By instantiation of a prefixed formula e we mean the prefixed

formula obtained by instantiation of the suffix of e .

unifiable We shall say that two expressions el, e, € ¥ are uni-

fiable if there exists a substitution ¢ over Z such that elc =

e,0. The substitution o is called a wnifying substitution.

21f a 1is the character (D then aa is (D

31t is necessary, in this case, that o mnot contain any com~
ponent whose first element is X (i =1,...,n).

hFor example 1if e was type 1 but ejo  was not, then (D e,0 eyl
would not be well formed. (In pa-ticular, it would not be an R2 ex-
pression.) Thus, rule 2 above wo1ld not define (D ekega.
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.1.

L3

composition of substitutions  The composition of two substitutions

p and o is defined to be the substitution pa given below.

pa = {<ea,v>:ea # v and <e,v> & p} U

feifc e o) & - (e o) ke, = 4,003

Robinson established the following properties of substitutions
in his formulation of first order logic. They may similarly be
established for expressions of =. (Let p, o, u, 0, be arbitrary
except for constraints explicitly indicated. )

1. ¢p = pd =0

2. (pa)u = plaou) (associativity)

3. If e is any expression and o = pa then eo = epa

k., If for all expressions e, ex = ep then a = p

5. TIf e 1is any expression then (eo)a = e(oa)

substitution in trees with contents If t 1is a tree with contents

over the set of spe's and o 1is a substitution over =z, then to
is the tree obtained by replacing C(n) with C(n)s for each

‘N.
I'lE_t

Language (semantics)

In this section, we present the model theoretic foundations

for the formal system U. Although the system U is syntactical

in nature, its inference operators are closely linked to the semantic

5Note that if <t,,x> € p and <t,,x> € a then pa contains the

component <tl,x> but not the component <t2,x>.
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notion of truth-value analysis. In fact, given the intended method

of interpreting the formal objects of u, the inference operators
presented in the next section may be viewed as truth function analyzers
which determine what truth value assignment to the subexpressions of
the given expression could account fo: the value of the expression.

In introducing the following concepts, we are necessarily vague.
The discussion is meant to motivate rather than define the concepts,
which will presently be precisely defined.

U is a refutation system in which the syntactical notion of
proving a sentence amounts to demonstrating that the negation of the
sentence can never be true. In practice, the closed type 1 exXpres-—
sion e , which is given in quantificational form, is presented in
the polarized form ()<e. This polarizéd expression is translated
into its associated spe. If processing the spe with the inference
operators produces a dintinguished object called the empty tree,
then the spe can never be true. This implies that ® e can never
be true. It then follows that e must always be true.

In this section, we are mainly concerned with the concept of
true expression. Intuitively, given an expression of type 1 and a
set of objects about which meaningful statements may be made, we
may think of the expression as being interpretable aé a statement
about the objects of the set. If the statement can be verified for
elements of the given set, then the formal expression giving rise
to the statement may be thought of as being true for the particular
set relative to the interpretation which relates it to the statement

and the objects.




b5

Rather than interpret expressions of UL in exactly this manner,
we specify an evaluation procedure which maps expressions into a set
of objects derived from the given set. The derived set contains possi-
ble values for each expression type. In particular, type 1 expressions
map into either of the elements T or F which both belong to the
derived set. We say that an expression is true under an evaluation
if its image under the evaluation is T . We now present the evalu-

ation procedure and related notation.

derived domain D¥ Given the non-empty set of individuals D whose

elements will be arbitrarily designated as type O, we can define a
related set D¥ which contains elements of each type allowable in
UL. D¥ will be the range of the valuation mapping which provides
values for arbitrary UL~expressions by mapping a given expressicn
into an element of D¥. D¥ is defined recursively as follows:
1. Dy {T,FlcD¥ where T and F are distinct elements
not occurring in any D .
2. Let S be any set of the form {<xl,...,xn> DX € D¥
and has type Ti} and let y Dbe a function whose domain

is S and whose range is included in D¥ and contains

only entities of type 1. If Q= {<x,y(x)>:x ¢ S} then

Q is an element of D¥ and has type (rl,...,ruzr).l

lD* may be generated as follows:
1. Apply rule 1 to obtain the initial current D¥ (basis)
2. Using the current constituency of D¥ form a set 8
which satisfies the stated requirements.
3. Choose any non-empty subset A of the current D¥
whose elements are all of the same type. Let this type
be T.
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value assignment Let M be a subset of V U S. A value assign-

ment for the elements of M relative to the domain D is a mapping

of M into D¥ with the property that an element of M and its

image in D¥ have the same type. A UL—expression containing free
variables may be evaluated according to rules which follow if the
free variables are fixed for purposes of evaluation by specifying

a value assignment for them. In this case the expression being
evaluated is said to be evaluated for (or at) the specified value
assignment. Evaluation of a set of UL—expressions at a value
assignment for their collective free variables gives rise to a valua-

. .2
tion mapping .

valuation of UL—expressions If E is a set of UL~expressions,

D an arbitrary non-empty set and p a value assignment for the
free variables occurring in elements of E , then a valuation for
E relative to D at the value assignment p is a mapping from E
into D¥ which satisfies the following recursive definition:

For e e E and e
F2 - an R2 expression, then e has that value which the value

of the operator of e coordinates with the n-tuple of values

l(continued)
4. Choose any function y which maps S onto A .
5. Let the new D¥ be D¥ y {<x,y(x)>:x e 8J}.
#6, Go back to step 2.
#Note that we assume there is some exhaustive method of enumeratlng
all triples <B5,A,y>.

2'I‘his simply means that if R 1is a set of UL~expressions
containing the free variables Vj,...,V, then the valuation mapping
is a mapping of R into D¥ which preserves type. In order that




determined by the argument expressions
El - (D is assigned the value {<<F,F>,T>,<<F,T>,T> <<T,F>,T>,
<<T,T>,F>}

E3 - an R3 expression of the form Ax ...X & e then e has

1 n 1°?

the value @ = {<X,e1x> : xe 8}, (8 was given in step 2

under the definition of D¥ and elx is the wvalue of el at

the values of x .,Xn.h) We note in particular that Q 1is

10"

obtained by varying over all possible value assignments for

X yeensX .
1° >

EL - an R4 expression of the form Vve,, then e has the value

l)

T 1if the value of e at each value of v dis T. Otherwise,

e has the value F .

a polarized expression with prefix () (C) ) and suffix

v
\J1
!

el,
then e has the value T(F) if el has the value T. Other-

wise, e has the value F.

2(continued) it be possible to define such a mapping, it is neces-
sary to first fix the values (D¥ images) of the variables ViseeesVpe
This is accomplished by specifying a value assignment for the vari-
ables, i.e., a type preserving mapping from {Vl,...,vn} into D¥,

3We assume that D¥* has been generated. This means that D¥
contains elements of every allowable type, (regardless of the choice
of D). Since valuation of E relative to D is recursively defined,
we assume that the operator of the R2 expression as well as its
arguments, has already been evaluated using E1-E5. We note that
any variable may be assigned any value in D¥ of the correct type.
This and the fact that rules E2-E5 require evaluation of smaller
expressions than the given one insures that the recursion terminates.

hNote that x..,. X can recelve values either by a value
assignment or if %x ...X o e 1is applied to the arguments 8yseeen8
in which case their values are the values of 8ysesend
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Valuation as just defined has the property that given an arbi
trary set E of UL—expressions, a domain D and value assignments
for the free variables in members of E, the rules El-E5 produce a
correspondence between E and D¥ which assigns to each element of E

exactly one element of D¥ (i.e. valuation is a function).

valuation of Ugexpressions  Expressions of UL% involving Skolem
functions may also be evaluated using rules E1-E5 if Eh is replaced

by EL' below.

E4W' - Let e contain the variables v SV and the special con-

10

stants fl,...,fm then e has value T if and only if there

exists a value assignment f for {f ..,fm} such that for

12"

every value assignment v for {v "’Vh} e is true at f

12

and v .

As in the case of UL—expressions, the evaluation process just
given may be used to define a valuation mapping from arbitrary sets
of spe's into D¥. We note, however, that EL' must be applied to the
set of spe's as a whole. That is, there must exist a value assign-
ment for all Skolem function symbols occurring in spe's of the set
which works for all value assignments to all the variables occurring

in the set.

example Evaluation of the spe (@) (D'hfxxhxx relative to the

domain D = {a,b}
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Type object

0 x eV
(0:0) felS
(0,0:1) hel

Part of D¥ follows
type objects
a,b
1 T,F »

(O:O) fl fg f3 f’-}-
<a,a> <a,a> <a,b> <a,b>
<b,b> <b,a> <b ,b> <b,a>

(0,0:1) hy ho hig
<<a,a>,T> <<ag,a> ,F>
<<g,b> F> <<a,b>,T>
<<b,a> B> <<b,a>,T>
<<b b>,T> <<b,b> ,F>

We apply rule E4' and find that the value assignment to {h,f} re-
quired to make @@G}hfxxhxx true is {hl,fl} i.e., Q@G)hfxxhxx is

true for x = a and x =b at this value assignment. That is:

y
o
i
I
=

1 a hlaa =T (D]a f aah aa = F CE(I)h f aahlaa =T

flb = b hlbb

i
]

T (thbbhbb F @(thbbhbb

The definition given for valuation makes precise the intuitive

notion truth-of-an-expression. Other intuitive notions previously
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discussed such as sometimes-true-expression (satisfiable), always-
true—expression (valid) and never-true-expression (unsatisfiable)

are defined as follows:

satisfiability A polarized expression e (or an spe) is said to be

- satisfiable if there exists a non-empty domain D and a valuation

relative to D under which e has the value T .

validity A polarized expression e (or spe) is said to be valid if
for every non-empty domain D and every valuation relative to D

the value of e is T .

unsatisfiability A polarized expression e (or spe) is unsatis-

fiable if it is not satisfiable.

remark 1 The polarized expression@@ e 1is unsatisfiable if and

only if e is wvalid.

remark 2 If e is a polarized expression and e 1is the spe ob-
tained from e , then e 1is satisfiable if and only if e is

p

satisfiable”.

The properties set forth in remarks 1 and 2 lie at the core of
the operation of U . As mentioned earlier, the quantified expres-
sion e to be proved is presented in the pe form Q§ e and is

translated into its spe associate. The inferential operation of U

5There is a second kind of Skolemization, the dual of that
used in this paper, which preserves validity [5]1.
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attempts to show the unsatisfiability of this associate. By remark
2, this means that C)e is unsatisfiable and thence by remark 1

that e is valid. These aspects of U will be considered in greater

detail in the next section.



N

52

Inference operators of U

Intuitively, the inference operators of U provide a means of
analyzing the truth-functional structure of a given spe. Commencing
with the spe representation of the negation of the expression to be
proved, analysis of the spe proceeds under the assumption that the
spe is satisfiable. The nature of valuation is such that only cer-
tain valuations for the atomic subexpressions of this initial spe
could account for the assumed value of T.

At any given stage of analysis, the truth-functional structure
of the initial spe thus far uncovered is represented in tree form.
Such a representation explicitly exhibits which valuations for those
subexpressions of the spe reached at that stage can account for the
assumed satisfiability of the initial spe. The goal of analysis 1is
to produce a truth-functional tree which is manifestly unsatisfiable,
i.e. one which explicitly demonstrates the impossibility of any valu-
ation for the subexpressions of the initial spe producing the assumed
satisfiability.

The truth-functional structure of an initial spe is represented

at any given stage of analysis by an wngrounded tree.

wmgrounded tree An ordered tree whose nodes {excluding the origin)

have contents in El is called an ungrounded tree. An ungrounded
tree is just an ordered tree with contents in £ whose content func-
tion is undefined at the origin.

An initial tree, which is related to the initial spe, is defined

in the following manner:

T ig the set of spe's.
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initial tree If t 1is an ungrounded tree of the form Nt = {no,nl},
P, = {<no,<nl>>} C, = {<n,, ®e>} e e E then t is said to be an
initial treeg. ir C)é is the polarized expression for which C)e

is the associated spe, then e 1is called the initial expression for

t &and (Fe is called the initial spe for
Diagramatically, if C)e is an initial spe, then the initial

tree for it is simply

ny ®e
The semantic concept of satisfiability can be extended to un—

grounded trees. We say that a tree is satisfiable if there exists a

valuation (relative to some domain) for the set of all spe's con-
tained in the tree having the property that some branch is true under
the valuation. A branch is true under the valuation v if all its
contents have value T wunder v. It is satisfiable if there exists
a valuation v under which it is true.

A branch is said to be closed if it contains a pair of conju~-
gate3 spe's. A tree ( ungrounded) is said to be closed
if each of its branches is closed. It follows immediately that a
closed branch cannot be true under any valuation and a closed tree

is unsatisfiable.

2We shall denote initial trees by ©. This should not be con-
fused with the ordering function frr the tree t, i.e. et. The
correct meaning will always be clear from the context.

3Two spe's are said to be conjugates if their suffixes are
identical and one has prefix C) while the other has prefix C).
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The inference operator Oh of U removes closed branches from
ungrounded trees. If this operator is applied to a closed tree, the
resulting object is arbitrarily designated as the empty tree and is
denoted as ¢ . Since a closed tree can never be satisfiable, we

agree that ¢ 1s unsatisfiable.

basic inference operators The inference operators of U formalize

the process of determining, for the set of atomicga subexpressions

of the initial spe, valuations which are implied by the assumed value
of the spe. The possibility of such operators is the direct conse-
guence of the semantic properties developed in the last section.

The starting point for inference operation in U is the initial
tree O . With this tree we associate the dpf for the initial spe.
The U-inference operators, presented in the following pages, operate
upon ungrounded trees, which represent some stages of truth-function
analysis of the initial spe, and produce new trees which represent a
deeper level of analysis. Each inference operator, in addition to
producing a truth-function analysis tree, produces a dpf which is
associated with the tree. This dpf is computed from the dpf(s)
associated with the operand tree(s) and reflects the variable de~
pendencies associated with the content expressions of the associated
tree(sy. Part of the definition of each inference operator specifies

how this dpf is calculated.

3aq
See page 27.
hThe dpf's assoclated with ungrounded trees are required by
both the A-reduction operator (Ol) and the unabbreviation operator
(0,.).
11
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Let us call any type 1 subexpression whose first character is
A and which does not occur within the scope of any A, a maximal A-
expression. Any type 1 expression may be considered to be constructed
from maximal l-expressions and atoms which are not contained in any
maximal A-expression using rules R2 and R3. We shall refer to the
set of such subexpressions of an expression as the pseudo atoms of
the expression.

Given an initial tree © and its associated dependency forest,
the method of determining the dpf from the structural representation
of the initial spe provides a natural correspondence between the
pseudo atoms of the initial spe and the leaves of dpf(@).

As the inference operators of U are applied to © and its des-
cendants, the initial spe is decomposed into its constituent subex-
pressions until, at some stage, the pseudo atoms of the initial spe
begin to appear as suffixes of the content of some nodes. TFor any
tree, thus obtained, we may define a correspondence between these
nodes and the leaves of the dpf associated with the initial tree.
This correspondence (let us call it r) will have the following pro-
perties:

1. It is a function on a subset of the nodes of the given

tree into the set of leaves of the dpf associated with
the tree.

2. It is 1n1.

3. Nodes for which the mapping is defined contain spe's

whose suffixes are either atoms or whose first character

is A.
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example 1 ¢ not defined for any node of the given tree

Let the given tree be the initial tree 0 where 0O is

n
0
n, ICEG)AxnyPy end apf(0) is

]T-'l"
! 6////y\\\\“ )
AxPxy- Py-

The pseudo atoms AxPxy and Py at the leaves my and m,
are proper subexpressions of the initial spe. Thus, ;(nl) is not

defined.

example 2 ¢ defined on the initial tree

¥+
Suppose O 1is n, I@ rx (D PxPyy vwhere dapf(e) is (.Lml
ax () PxPyy+
then the only pseudo atom of the initial spe is Xx(I)PxPyy which

corresponds to leaf m,. We thus take Q(nl) to be m,.

The operators of U (and of E) provide a means of associating
new dpf's with the new trees which they produce. It is also possible
to calculate a correspondence between a subset of the nodes of the
new tree and the leaves of its associated dpf. kThis is described
in detail in appendix D.) This correspondence is motivated by con-

siderations discussed above. It is the same as ¢ (in fact we shall

denote it by ¢) except that it fails to be 1vl in general. The
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reason for this will become apparent in section 3. Given the func-
tion ¢ , we may calculate the setb C_l(m) as follows:

—l(m) = {n:n ¢ N, and c¢(n) = m}

e %

where m is a leaf of dpf(t). i.e. C‘l(m) ig the set of nodes

which map into m under ¢ .

example

The tree t

n, 0 @O rxPxy D AyBy
n, 0/////// n

3
@ rxPxy ®D aysy

and its associated dpf

P'+

A+
l J oo M3
AXPXy - Ay+ By+

may be derived from the initial tree

@O rxpxy O AyBy

¢t 1is defined on the node subset {n2}; C(ng) =m (in this case

Q~l(m1) = ne).
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We note that ¢ does not map a node subset of Nt onto the
leaves of dpf(t). However, if we apply the O2 inference operator

(to be defined presently) to t we obtain the tree

n, 20O rxPxy O AyBy

P
n, o/ n, @D ayry
® rxPxy
ny, @ Ay
n lC@.&y
5
with the same dpf as given above. Since ;(n2) =m, C(nh) = m,,

c(ns) = mj, L maps {ng,nu,n5} onto the leaves of its associated dpf.
From a purely logical point of view, certain operators intro-
duced below are redundant in the sense that the class of U-theorems
would not be reduced by their removal. However, from an overall
point of view, which takes into account the purpose of the logic U,
their inclusion (and later that of éther inference operators) is
justified on the grounds that they allow more efficient (and thus
in a sense more powerful) strategies to be written.
The inferential portion of E consists of twelve inference

0

). Operators 0 0

operators (0 belong to U.

1002000 gstens

Functionally O 0, and Oh determine the class of expressions

1’02’ 3
which are provable in U. Operators 05, and O6 are editing operations;

and OT‘and 08 provide a lemma utilization capability. Finally, 09

and OlO provide for synthesis of results stemming from applications

of O,.
T




- A * E
s Lnle 07 Toe uzgiocurnied Tree T oand suppose That
3 suLzoression a sveciiied cocurrernce ofF @n ex-
. R - R - "\ g —~ T = P
30z of the form Ax. ...X . d e ...e . Furthermore, assume

= a 1 n

. contant of &, has the fcrm de where 8 is either (D

1.1 dpf calculation In thi: case it can be shown that each

-1

X € C *(m) as well as 1 has content Ax....X s d e,...€
, L n 1 n

wrnere d has type 1.5

. .6
1.1 Let dl = d& vwhere 0 = {...,<ei,xi>,...}

[}

}__l

1.2 Let ©# Dbe the dpf which results from replacing
the content of m with dl and the same suffix
as originally contained in m.
1.i.3 GLet Hl be the result of expanding the leaf m
in H as prescribed in algorithm F of section
2.1.1.
1.1.4 Let 4 a;n-i H. be the result of Skolemizing

2 2

dl and Hl f-om the dpf Hl

rithm D of nection 2.1.1.

as prescribed in algo-

1.2 tree calculation For eaxch x ¢ C—l(m), replace the

suffix of C. (x) w:th d. as calculated in 1.1.

t 2
-
“This follows inductively froin the definition of dpf. We note
“at Tor X C (n) the content also includes a prefix which is either

(D

H, 5 m 4

-3
eas m contains a saiffix which is either + or - the
Cy (x )-—@Dkxl X e d;l... n and - otherwise).

“he Tormation rules for expr3ssions of U , insure that "e,
s free for x, in d." (See Kleene [18], page 755 for the meaning

4




example

@ rx Q vyFxyvwhxve
B p—
d

d1 = @Vyfzwahzw

H is 7+
(D Vyrxyvwh wr+
H is z+
1 / \
/ \
N W
fzy-

d2 = CD fzglzhzg2z

60

original tree and associated dpf are

|

Ax CD Vyfxyywhxwa+

(0 = {<z,x>})

hzw-—

where g2 and g,2 are the
Skolem replacements for y

and w respectively.

H, is zt finally, application
2 / \ of 1.2 produces -
277 =
? f
frg zm hig, z- @(D fzglzhzggz
1 2
(continued) of the quoted expression. )




case 2 a is a proper subexpression of e. (We assume a has the

form Ax ...X de...e and that a 1is not type 1.)

2.1.1 dpf calculation Replace the subexpression a occurring

in the content of m with do where o = {...,<ei,xi>,

.}

2.1.2 tree calculation Replace the subexpression a occurring

in content of Cf(x) with do . (x e c-l(m).)

(We note that cases 1 and 2 fail to exhaust all possibilities. In
particular, the case where a is type 1 and a proper subexpression.
Such a case, however, may be reduced to case 1 by applying the éther
inference operators of u.)

The complexity of case 1 is necessitated by the fact that Ol
must calculate the dpf for the type 1 expression 4 which was pre-
viously inaccessible due to its occurrence within the scope of A.
Had ) Tbeen eliminated from the initial expression as a prepro-
cessing step, then the dpf for the initial spe and that calculated

here would be the sameT.

02 - the operators T(D and 'F(D

Let a8y be a node and a, @ leaf of the ungrounded tree t

The tree 0, ( ) is the tree which results from

(a, < o '80%

1 <ty %)
appending the appropriate tree (given below) to the leaf as-

7This assumes that no other I3 expressions occurring in the
initial expression have been processed at this stage.
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form of C(al) form of appended tree
1 @D e e, o/\o
1 2
D ey @ e,
2. @O e e, I
30 De
L l D e2

The dpf associated with Og(al,ae) is the same as that asso-
ciated with the tree t. (Two nodes are called disjoint brothers
if they arise from the same application of ()2 and occur on differ-

ent branches in the resulting tree.)

example

Before applying Oo__ After applyving 02(5,5)

@(D(D Axfx () BxyDxCxx
@CD Axfx (D BxyDx

o"@ CD(D Axfx CD BxyDxCxx
@CD Axrx (] BxyDx

® Axfx ®Q BxyDdx @ Axfx

Figure 1




63

The symbol "(D " denotes Sheffer stroke. In Russell-Whitehead
[47] notation, infix Sheffer stroke is definable in terms of = and
vV, i.e..A(f)B is truth-functionally equivalent to - Av - B. Thus,
A(DﬁB is true if and only if A is false or B is false. This
corresponds to the rule for CD(D &) given above. A(I)B is false
if and only if both A and B are true. This corresponds to the
rule for @CD & 85 given above.

The U-operators tree substitution and multiple closed branch

removal operate on ungrounded trees and produce other ungrounded

trees as follows:

O% - the operator tree substitutio:

Let t be an ungrounded tree and o a substitution over =&
(the set of spe's). OB(t’O) is the ungrounded tree which results
from applying o to the content of each node of t.

The dpf associated with the tree 03(t,0) is obtained by applying
o to the content of each node of the dpf for t.

The operator O3 may be applied to the tree illustrated in

Figure 2. If o 1is the substitution {<a,x>,<b,y>} we obtain the

example of Figure 3:



example

Ogl) is
Lo@®DaAa@ =B
2 L @a
3 & @D BB
" 5

66

- OFSOF:E
2! >®A

3' o @D BB

T S@®B
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Proving initial expression using the operators {Ol’OE’OS’Oh’OB’O6}

The inference operators thus far presented provide the necessary
mechanism for analyzing the truth-functional structure of any initial
expression. Commencing with an initial tree ©, which represents the
negation of the initial expression e, the inference operators of U
may be applied to © and 0O's descendants in an attempt to demon-
strate the unsatisfiability of © and thus the validity of e. Since
each of the inference operators preserves truth, it suffices to demon-
strate that the above procedure produces a tree which is manifestly
unsatisfiable. We note, in particular, that any ungrounded tree
which contains only closed branches is unsatisfiable.

The preceding semantic considerations motivate the syntactical
notion of proving an initial expression given below. This notion
(relative to the current set of inference operators) depends on the

notion of linear extension.

linear extension

L
We write s —> t and say that t is a linear extension of

s 1if there exist ungrounded trees t .t such that t. = s,

0°"" N 0

tN = 1t and ti is obtained by applying Ok to ti-l where

1l <i=<N and Ok e L = {Ol,...,06}. Any ungrounded tree is con-

sidered to be a linear extension of itself.

proving an initial expression e

Suppose e 1s an initial expression and 0 is the initial tree

L

which represents the negation of e. If 0 > ¢ (where ¢ 1is the
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empty tree) then we-say that e 1s provable relative to the operator
set L. .

We note that since 0 # ¢, asserting © —E~> ¢ implies that
there exists a tree t containing only closed branches such that
¢ = Oh(t)8. Since t is manifestly unsatisfiable we see (by a
simple inductive argument) that O is unsatisfiable. Thus demonstra-
ting © ‘£~> ¢ ensures that the initial expression is Vvalid.

The operators O5 and O6 belong to a class of operators whose
inclusion in U is motivated by extra-logical cohsiderations. Both
operators perform an editing function thus reducing storage require-
ments for ungrounded trees. In addition, under certain conditions
they allow strategies which utilize U to be simpler than would be
possible if they were not included in U. The operators 07, 08’ 09,
and O10 (introduced later) also share this latter property. As with

O5 and 06 the class of provable initial expressions would not be

reduced by their exclusion from U.

operators which deal with subproblems

In attempting to demonstrate that a given initial tree 0 is

unsatisfiable, we produce a sequence of ungrounded trees O , tl,

tE"" . We can demonstrate that O is unsatisfiable if we can

demonstrate that tl is unsatisfieble; that tl is unsatisfiable

if tg is unsatisfiable and so on. Our goal, of course, is to

The parameters of 0) are branches. However, in certain
cases where the particular branches are irrelevant, we shall schema-
tically indicate an 0) applicatio. in this manner.
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produce the tree ¢ . In pursuing this goal, we must deal with the
problem of demonstrating that an arbitrary linear extension of 0
is unsatisfiable. The inference operators 07 and 08 introduced
in this section allow this problem to be split into subproblems.
Loosely speaking, the operator 07 allows us to generate un-—
grounded trees which are derived from certain subforest {called
proper subforests) of any ungrounded tree. If it can be demonstrated
that the generated tree is unsatisfiable, then 08 allows the proper
subforest from which the tree was derived to be deleted from its
parent tree. The parent tree is then unsatisfiable if the tree pro-
duced by applying 08 to it is unsatisfisable.
The operators 0, and 08 require the introduction of several

T

new notions. These notions are now presented.

linear descendant

It is useful to have a notion of descendancy which holds between
nodes of trees related by linear extension. We say that a node m
occurring in the ungrounded tree t+ is a linear descendant of the
node n occurring in the ungrounded tree s if

1. m=n (and thus t = s)

or 2. there exist ungrounded trees tl and t2, nodes nl and n2

belonging to tl and t2 respectively such that:

a) s =t Es g

1 2

b) t results from applying 0, to t,

c) ny is a linear descendant of n
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d) n, is the image of n., in t, (see appendix C)

2 1 2

e) m is one of the nodes {(but not the origin) in the

appended tree associated with O (ng,k). (Here k

2
is some leaf in tg')

If the node m is a linear descendant of the node n, then the
content of m (excluding the prefix) is essentially a subexpression
of the content of n. The rather involved definition given above 1is
necessary in order that we properly account for the heredity of the
subexpression which must be traced through the sequence of ungrounded
trees commencing with s and terminating with t

The notion of linear descendancy is necessary in order to talk
about the logical heredity of an expression which occurs as the con-
tent of a given node. The successor relationship of the ungrounded

tree is inadequate for this purpose since two successors are not

necessarily related by logical descendancy.

proper subforest

The forests, from which O generates ungrounded trees, must

T
obey certain constraints if the consistency of U is not to be
violated. In particular, we require the following:

Let t ©be an ungrounded tree and R E-Nt - {org(t)}. Further,
let F be the subforest determined by R and suppose that x 1is a
positive variable occurring in F, ne Nt - NF and Ct(n) contains
x. If it is not the case tiat thore exist nodes m, m n, € Nt

such that m € NF . Ct(m) contains x, m 1is a linear descendant
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of ml’ n is a linear descendant of n:L and ml, n_.L are dig-

9
Jjoint brothers”, then F is a broper subforest of + .

To understand why these constraints are required, let us con-
sider the following formulas of the first order predicate calculus.
1. Vx (AxV Bx)

2. Vx Axv VxBx

The basic difference between 1 and 2 is that given arbitrary
terms tl and t2, 2 allows us to deduce A’tlv Bt2 whereas 1
does not. Alternatively, Vx does not distribute over v .

Now in the case of U , a similar situation holds with regard
as to what deductions can be made from the spe @@ AxBx. Suppose
for example that (F)Bx occurs as :ontent of one of the nodes of F.
If (® Bx has resulted from an expr2ssion such as @CD AxBx, then it
1s necessary that the node contain ing @ Ax also occur in F.
Otherwise, the operators of U al'ow independent instantiation of
@Ax and @Bx implying that the scope of quantification relative
to x was not the entire expression @AXBX. The constraints,
which a proper subforest must satisfy, preclude such an omission
while allowing omission from F of nodes containing x bubt whose

content could have been revised in the initial expression.lo

9It will be recalled that nodes are disjoint brothers if they

arise from the same application of 0o and occur on different branches
in the resulting tree. (See page §5.)

OThis is analogous to the following situation. Suppose we have
the formula Vx(Ax&Bx). We may replace this with the following equi-
valent formula VxAx&VyBy.



OT - the operator proper subforest copy

Let F be a proper forest of the ungrounded tree g . The un-
grounded tree, OT(F) is a tree which is determined in the following
manner:

The forest F consists of trees ’tn which may be ordered

130

(i.e. tl precedes t, ete.) according to the relative positions

2
of their origins in the tree g containing F. OT(F) is the un-
grounded tree obtained by creating a node n and linking n to each
origin of the copies of trees comprising F. Each node of the resulting
tree except n , has content.

The dpf associated with O0.(F) is a subforest of that associated

T
with the tree g and consists of the nodes containing any variables
occurring in F as well as all leaves dominated by these nodes. (Further-
more, any leaf m not included by the foregoing rules for which there
exist a node n € N such that z(n) =m 1is also to be included.)

The operators of U combined with 0, , provide a means of break-

T
ing down the goal of demonstrating the unsatisfiability of the initial

spe into subgoals. Suppose, for example, that the tree g given be~

low has proper subforest Fl and Fg'

//// T e m e

' N
__..____:./.f:.‘ { F J
y F \\ \ 2 /l
{ 1 1 S e -
N 7
N -

The tast of demonstrating the unsatisfiability of q may be broken

into the tasks of demonstrating the unsatisfiability of Fl and FE'
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The notion of proper forest thus allows the delineation of sub-

goals, and O allows any subgoal to be abstracted from the parent

T
tree in which it occurs and dealt with independently. The copy oper-
ator is defined in such a way as to be applicable to any proper for-
est of any ungrounded tree. We may thus abstract subgoals of sub-
goals. In general, it is not necessary to abstract all subgoals at
the same stage or level of a proof attempt. This is a useful property

since some strategies, which use the logic of U, may follow several

lines of attack simultaneously.

O8 - the operator proper subforest removal

Suppose that s and + are ungrounded trees, F is a proper

subforest of s, t = OT(F) and b L ¢ . The ungrounded tree OB(S)
is obtained as follows:
For each branch b occurring in F, remove all branches of s

which contain each of the nodes of Db .

(The dpf for 08<S) is the same as the dpf for s.)

We note that if s contains subforests Fl""’FN such that
F.) = F.)= ... = = 1 initi
07( l) 07( 2) OT(FN) t, then the above definition allows
08 to be applied N times to remove Fl""’FN from s. Further-
L

more, once it has been demonstrated that t —> ¢, then 08 may
be applied to any tree containing a proper subforest H such that

OY(H) = t. The operator Og thus provides U with the capability
of utilizing lemmas since T —£~9 ¢ may be regarded as a proof of

the unsatisfiability of t. By the above observation, this subresult

may be used as often as desired.
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broving initial expressions with the operator set {Ol’02’03’Oh’05’o6’07’08}

The notions of "linear extension" and "proof of an initial expres—

sion'" may be extended to include the operators O and 08. Linear ex~

7

tension, as previously defined, was introduced both as an aid to defining
the notion of proof, and as a means of talking about logical descendancy.

,0.,0

It involved application of operators chosen from the set L = {o 5303>

1
OM’OS’O6}'
With the introduction of O7 and 08,‘we need a means of talking

about logical descendancy as well as proof of an initial expression.

It ;e define Ll =L U {08} and L2 =1, \J {07,08} the notation
s ~—£—> t, s —=—> t wparallels s ~L—> t and has the obvious meaning.

Different notions of linear extension are necessary for several reasons.

L
The notation s —~g~> t 1s necessezry in order to talk asbout the heredity

of a given tree when the set of operators L2 is available. However,

L
2‘€>¢ does not in general imply that © is unsatisfiable,ll

L
we need the notation s ——i—é t as an aid to defining the notion of

since ©

provable with respect to the operator set L2.

If © is the initial tree for the initial expression e and if
L

o L > ¢ then we say that e 1is provable with respect to the oper-

ator set L. (Note that the operator set must be L2 rather than
)

L since application 08 implies previous application of O,

1 T’

L
11Note that s ——g—é t implies that O may have been utilized

to generate t. BSince application of 0, to a proper subforest gen-
erates a tree whose unsatisfiability onl; implies the unsatisfiability
of Ehe subforest and not in general the parent tree, we see that

3 ~—g—> ¢ wusually does not imply that s is unsatisfiable.
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The operators restricted append and unsatisfiable branch removal

The final U-inference operators to be presented are the re-
stricted append operator 09 and unsatisfiable branch removal OlO'
Restricted append takes two ungrounded trees, which satisfy certain
conditions, and produces an ungrounded tree which is the append of
the two (see page 16 ). The conditions imposed upon the operand
trees ensure that the tree resulting from the restricted append will
be satisfiable if the operand trees are simultaneously satisfiable.
This requirement is necessary if U is to be consistent.

The conditions which the operand trees must satisfy in order
for 09 to be applicable depend upon the notation of "patriarch."
"Patriarch" is another hereditary notion which allows us to talk
about the set of expressions necessary and sufficient for the gener-
ation of a given ungrounded tree.

The operator OlO is used in conjunction with O9 (in a fashion

analogous to the way O8 is used with O0,) to remove branches con-

T

taining sets of patriarchs shown to be unsatisfiable via a deduction

of ¢ using the operator 0_..

9
patriarchs
Ly

Suppose s and t are ungrounded trees such that s —— t.

Further suppose that s has the form

nl Cs(nl)

Dy 6 Cslny)



where i # j implies n.

these conditions we say that {Cs(ni)

is not a linear descendant of nj.

T6

Under

:1 < i<k} is a set of patriarchs

for t.
Suppose tl and t2 ‘are ungrounded trees having sets of patriarchs
s; and 5, respectively. TLet us say that the ungrounded tree t can
generate tl and tg__if the following conditions hold:
1. Some branch of 1t contains (among others) the nodes o
Cafy 3 Ty ety which have the property that {Ct(ni):
1<i<k}l=s, and {Ct(\mi):l < i< 2} = s,

{n.:1 < i <k} and {m:1 ¢
it —" = it -

subforest of t .

We note that if T

applied twice to t to produce

Ct(nl)
E and
b Ct(nk)

Since {1C,(n.)} and {C (m.)} are yatriarchs o
t i i

L
pectively, we see that t BN 1

can generate tl and tg,

within the framework of u.

S

1 and 52 are contained on the

egssentially the same as the tree resulting from appending tl

some leaf of t2

can generate

same branch of t,

can be deduced from t

i < &} each determine 2 proper

t

1 and tz, then O7 can be

Ct(ml)
) Ct(mz)
f tl and t2 res-
Lo
and t —> t_. Thus if t

2

then «ither tree can bve deduced from t

Furt 1ermore, since all expressions of

a tree which is

to

i s. N

1 S

2

¢.
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Finally, we need to extend the notion of descendancy to cover
derivations involving the operator 09 (restricted append) presented
below. This notion, "derivable" deals with the heredity of a given
ungrounded tree t and is used to relate t +to a set of trees from
which it may be produced under the full set of operators of U.

We say that an ungrounded tree +t is derivable from the set of
ungrounded trees I' and write T => t if

1. teT
or 2. there exists an ungrounded tree s such that I' => g

and s m22—> t
or 3. ‘there exist ungrounded trees + and t2, sets of un-

1

grounded trees Tl and' F2 such that Tl U T2<: r,

Fl ==> tl’ P2 ==> t2 and t is the result of (restric-

tive) appending t2 to some leaf of tl

the operator O

9._..
Let tl and t2 be non-empty ungrounded trees with sets of

patriarchs s, and 85 and suppose there exists an ungrounded

tree t which can generate tl ard t2 and such that {0} => t.

We then say that the restrictive arpend operator 0., is applicable

9

to tl and t2 and define the restrictive append of t2 to the leaf

n of tl as follows:

1. Let {x,:1 <1 <k} and{ ¥;:1 <1 <1} be the sets of
variables occurring in tl and t2 respectively and let
{vi:l < 1 <k}, {Wi:l < i < k} consist of variables

of the same type as those contained in {Xi} »
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{yi}, and be pairwise disjoint and not contain any of the
variables contained in {xi}, {yi}. Define ¢ =
{...,<vi,xi>,...} and p = {...,<Wi,yi>,...}.

o to the image of the leaf n in t 0. The

2.
Append t 1

2
result is the ungrounded tree Og(tg,n).

(Note that if t, = ¢ then 09(t2,n) is the result of removing

2
the branch determined by n from tl.)

If and t, have patriarch sets s, and s, then Og(tg,n)
has the patriarch set s U 8,- e dpf associated with Og(tg,n)

is the unionlg of the dpf's associited with tlc and tgp.

example Referring to figure 1 (page 62) the forest determined by

nodes 2 and 3 is proper. Thus, 07(F) is the ungrounded tree

(:KI)Axfx(D'Bxny

(M Cxx

(where F 1is determined by the node set {2,3}.)

Furthermore, {D(D(D~Axﬂx<D?BxnyCxx} is the patriarch set
for OY(F)' The tree given in figure 3 has the patriarch set

MO axrx Q) BxyDx}. Thus this tree and the tree OT(F) given above

leThe union of two forests is the union of the sets of trees
comprising the two forests. We impose an order on these trees as
follows: All trees from dpf(t ) precede all trees from dpf(t,).
We assume that the trees of dp%(tl) and dpf(te) are already ofdered.
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can be generated from the tree t given in figure 1 (right hand

tree). If we define 0 as ICE(D(D.AXfx(DTBxnyCXx we see that
{6} => t. We may thus apply restricted append to OT(F) and the

tree given in figure 3 to produce

CE(I Aufu(DIBuvDu

@D Cun
0////// \\\\\o
® Aafa @D BabDa

which has the patriarch set {@CD .AxfxCD BxyDx, @(D(D Axfx(D BxyDxCxx}

OlO ~ unsatisfiable branch removal

Suppose that by using the operators at hand we can demonstrate
{6} ==> ¢. Can we then conclude that 0 is unsatifiable? In general,
the answer is no for the derivation of ¢ from © may include applica-
tions of the proper subforest copy operator.l3

Fortunately, if by previously given rules, a set of patriarchs
has been associated with ¢, we may take advantage of the fact that
¢ has been derived to remove branches from any trees which possess
branches containing all elements ©f this set. This is accomplished
using the OlO operator. .

Suppose {0} ==> ¢ and that i is a set of patriarchs for this

particular occurrence of ¢. Further, let t be any ungrounded tree.

13It will be recalled that if F is a proper subforest of s,
t = 0,(F) and t is unsatisfiable, hen we can conclude only that F
is Zatisfiable. Thus, if s contains non-closed branches which
are not common to F, then the unsa.isfiability of t does not imply
the unsatisfiability of s.
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Tt t possesses any branch b which contains all expressions of s,

then remove b from +t. The result is denoted by Olo(t). The
dpf for Olo(t) is the same as that for t.
With the introduction of O (which behaves in a manner similar

10

to Oh> we extend the various hereditaiy notions previously presented

to include by redefining L, as L, U {Olo}.

OlO 1 1

example In this example we shall consider a derivation containing
expressions of the propositional logic. This particular example in~
volves the connectives & and 2 . We note that rules gimilar to
O2 could be specified for these connectives. (In fact, this is done
in [43].) For the purposes of this example, we shall assume them;
their structure is fairly obvious.

Suppose a tree s of the form

h——

t
-

1@ & (ADB)) DB

®(a& (ADB))D B

is derivable from some initial tree ©. The operator O applied

T

to the proper subforest determined by node 1 produces the tree

®asg (ADB)) DB
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which linearly extendslh to the tree to

®a
2 0@MA
30(MADB

the operator O may be applied to the proper subforests determined

7
by {1,2} and {3} to produce the respective trees

B >
® 1@1:\ B
@A

The latter linearly extends to the tree t

/\\o
A DB

Now {(® B, @A} is a partriarch set for ty and { (D) A DB} for Ty

2

Since to possesses a branch (its only branch) which contains each

of the exhibited expressions, we may append t2 to tl using the O9

operator:. This produces the tree t3

lhThe operators, which could be specified for the connectives
& and > , behave in a manner similar %o 07. Thus linear extension
could be extended to these in the obvious manner.
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which linearly extends (using one application of Oh) to the empty

tree ¢.

has assoclated the patriarch set {® B, (D A, M ADB}. Thus

may be applied to the single branch of tO

tree ¢. The operator

to produce t

By the preceding remarks, this particular occurrence of ¢

OlO

to produce the empty

08 may then be applied twice to the tree s

This entire example may be summarized in the following diagram:

ST

s 08
the fact that sO—L——:» b.

Denotes linear

extension 1
Denotes appli-
cation of res-
tricted append
operator O9

g
t., has patriarch set t3
{%F)B,@A,@ADB} 0)

t This application of 08 is justified by

Analysis of
subproblems
abstracted by
applications

of 0. operator.

7
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the current attempted proof graph for an initial tree ©

The schematic diagram given above provides an example of a
structure called an attempted proof graph. An attempted proof graph
is a particular kind of directed graph used to explicitly exhibit
the heredity of the various ungrounded trees generated in the process
of attempting to prove an initial expression. Actually there is not
just one attempted proof graph, but a sequence of such graphs. These
record the history of any attempted proof and provide a record which
is useful when attempting to ascertain whether or not certain inference
operators apply. In addition, attempted proof graphs are utilized by
the system described in appendix A.

For the purposes of the logic U (and also E) it is only necessary
to record the most recent attempted proof graph since previous graphs
appear as subgraphs of the most recent graph. In fact, if we take
the graph consisting of a single node whose label is 0 as the initial
attempted proof graph, succeeding graphs are produced constructively
by rules given below.

The graph depgcted abcve is actually only part of an attempted
proof graph since the heredity of the tree s is not indicated and
certain linear subgraphs are only suggested. In general, an attempted
proof graph consists of nodes lsbelled with the names of ungrounded
trees and edges labelled with the names of inference operators.

(The treatment of restricted append is an exception to this rule and
is described below.)

Let the initial attempted proof graph be as described above and
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suppose that the current attempted proof graph TN (N = 1,2,...) is

defined. (Tl is the initial attempted proof graph.) TN+1 is

constructed as follows:

1. If s 1is an ungrounded tree occurring as a label of
some node of TN and application of the operator

Ok € {Ol,...,Olo} - {09} to s produces an OCCUrrence

of the ungrounded t then not in TN’ add a single node
to TN labelled with t and add a directed edge
labelled with Ok from the node labelled with s to
the node just added.

2. 1If tl and t,. are ungrounded trees occurring &S labels

2

of two nodes of TN and application of O9 (restricted

append) produces an occurrence of the ungrounded tree

+ then not in TN add the following structure to TN

i.e. add the auxilliary node (shaded) with label 09,

the node labelled with t and the three indicated di-

rected edges.
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The following example illustrates some of the notions presented
in this section. It represents a U-proof of e vwhere e is the

U-equivalent of the given first order formula.-

example of a U-proof  The spe C)i)Afy(I)Angwh is the U version

of the first order predicate calculus formula = (AxVyAxy > VziwAzw &
YugvAuv). f, g and h are Skolem functions of zero arguments and

X, ¥, Z, U, Vv, W are positive variables.
The initial tree 0O is I@(D,m (D AvegAwh

Linear extension utilizing the 0, operators @D ana @O

produces the tree t3 .

(T) Afy

@ Avghwh

@ Avg ® Awh

Figure 6

An attempted proof graph is given below.
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Note ¢ and t both

> T ‘
8
have the same patriarch set Oh
{ ®Q aty D AveAwh} which is 5o ¢

~

therefore the patriarch set :t‘or-«/“”“’”"ED

This justifies the application of 0 ., to 6 .

The various ungrounded trees occurring in the attempted proof graph

are as follows:

t), b
@ re @) Afh
@D AfgAwh / @D AvgAth
®arg  ® Avh ®Ave @ afn
tg t,
@ Afg (M Afh
M AfegAwh @D avgath

@ Awh ® Avg
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@ Afg
.<>G>AngWh

® Avh

M Afh

@ AveArh

® Aveg

Ly {010}
Since 06 —— ¢ (i.e. © —=—= ¢) we see that the initial

spe DD Afy (D Avghwh is unsatisfiable. If e had been the initial
expression producing this initial spe, then e would be provable,
and, therefore, valid.

The syntactical idea of U-provable expression is related to
the semantic ideas of unsatisfiable set and valid expression. These

relations are developed here for the operator set {Ol,...,olo}.

0.,.}, (where 0O and Ol

They extend to the operator set {Ol,..., 1o 11

2

are inference operators presented in section 3.)

The formal system U with operators 0 o) is consistent

1°°°°°710
in the sense that if a closed type 1 expression e is provable then

it is valid. The consistency of U can be demonstrated using the

following lemmas:

lemma 1 If t is true under some valuation v and s results from
the application of some operator o M = {OE’OB’Oh’05’06’07’08’09’

010} to t, then s is true under v. If t 1is satisfisble and

s results from the application of 0. to t, then s 1s satisfiable.

1
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proof (See appendix I.) Note that if t is true under v, then
t 1s satisfiable.

L

lemma 2 If t is satisfiable and t —> s, then s 1s satis-
fiable.
proof (Induction on the number of trees n occurring in the
L
1

deduction t ——> s.)

If n =2 then lemma 2 follows by lemma 1. Thus, assume that

L

lemma 2 holds for any deduction t . s of length n and let

1
L
t St N s be a deduction of length n + 1. There exists an un-
L
grounded tree tl such that ¢ ——;—9 tl and s is obtained from

tl by application of an operator from M U {Ol}. Thus tl is
satisfiable by the induction hypothesis and s is satisfiable by
lemma 1. Therefore, lemma 2 holds for an arbitrary deduction

t —> s.

by o
Theorem (consistency) If © —=—> ¢, then 0 is unsatisfiable.
proof  This result follows immedintely from lemma 2 and the fact
that ¢ is unsatisfiable.

The development of the inferer ce operators of U has been moti-
vated by the semantic idea of truth-function analysis. The operators
and the associated notions of line:rr extension and derivability em-
body these ideas and provide a syniactical mechanism for establishing
the provability of initial expressions. The fact that the formal sys-
tem U is consistent simply reaffiris the tie between the formal sys-

tem and its semantic foundations.
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3.0 The extended system E

UL—expressions representing interesting relationships have one
striking feature in common - they tend to be un;eadable. Moreover,
as one gets further from pure logic into areas of gpplication, this
tendency increases since complicated expressions, which represent
concepts central to the area, tend to reoccur. The predicates of
equality and transitivity provide a simple but apt illustration of
this point.

Loosely speaking, we may say that two entities x and y are

equal if anything we may predicate of one may be pfedicated of the

other. This may be represented in UL by the expression

1) YFOOODO Fxrx O ryry O FxFx QO FyFy QDD FyFy @) Fxrx D
FyFy O Fxrx QOO Fxrx O FyFy O Fxrx D Fyry QDD Fyey O
Fxrx (D FyFy Q rxFx '

Let us denote this expression by G'x,y). Now suppose we wish to
represent the fact that equality is transitive, i.e. for arbitrary
u, v and w if u equals v and v equals w then wu equals w.

Schematically we may represent this as:
(2) VuvvWw G(u,v) and G(v,w) implies G(u,w)

The UL representations of "and" and "implies" are not parti-

cularly complicated, but the axpres:ion which results from replacing

the three occurrences of equality in the above expression is.
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The extension of U , presented in this section, provides a way
around this difficulty by providing for the introduction of defined
constants. These defined constants may be nested, thus allowing con-
cise formulation of concepts which in UL would be unrecognizable.

n_n

For example, in E we might define as followsl

A\xy e VYF (Fx = Fy)
and Trans (transitivity) as

AH @ Yurviw ((Huv & Hvw)>Huw)
Thus allowing (2) to be represented as
(3) Trans(=)

The inference rules of E allow aiy expression such as (3) to be
replaced with an equivalent expression in which prescribed defined
constants have been replaced with primitive symbols or other defined
constants. (We note that in these illustrations, = , & and =

are defined constants also.) The degree of unabbreviation is com-
pletely flexible and in the example just given could range from one

step of unabbreviation applied to Trans in (3) yielding

vuvww (((uw=v) & (v =w))> (u=w))
to the expression which would be ostained by replacing all occur-
rences of G(x,y), "and" and "implies" in (2) with their UL—repre—

sentations.

lFor the purpose of illustration we use infix notation rather
than the actual prefix notation of E .
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We note that the complexity of a given non-primitive concept
depends heavily upon our choice of primitive logical concepts. Thus,
the complexity of (1) is due to our choice of CD as a logical primi-
tive. The choice of some other set of primitives does not change
matters though, since as we precede into arbitrary areas of applica-
tion, any fixed set of primitives will sooner or later prove as
cumbersome ag (D did in this example.

What is needed is not some large set of predetermined logical
primitives but rather the facility of introducing appropriate con-

stants as a given ares of application makes their need apparent.

This facility, combined with a mechanism which allows newly intro-

duced constants to function as if they had originally been included
among the primitives of U is what gives the extended system E
its power.

The extended system E is obtained from U in two stages. The
first stage consists of a minor modification to the language UL.
The second stage, which is more extensive, consists of adding several
inference operators to the set {Ol,...,Olo}. We begin the extension

of U with a disecussion of unabbreviation.

Definitional extension of an object language

In the following discussion we shall be considering three dis-
tinct languages: OL the given object language, EOL the extension
of 0L containing formulas with abhreviations, and DL the language

in which definitions are written.
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The general framework in which we intend to set definitional
extension does not depend upon the particular object language being
extended nor the form chosen for definitions. In order that this
framework be presented in a familiar context, we begin the discussion
of definitional extension with an example in the language of the first
order predicate calculus found in Kleene's I.M. [18]. This language
which we shall call H , consists of well formed formulas constructed
with the operators - , vy » & , 2 , & , V .

A

Consider the H-formula-like expression ¥

F= Vy(M(y)gg!x(P(X,y)v TzQ(x,2))

A

which involves the abbreviationl A and una,bbrevia,tes2 to the H-

formula F

F = vy(M(y) & 3x(P(x,y)v @2Q(x,2)) & wwYu((P(w,y)

vV a4zQ(w,z)) & (Plu,y)v ZzQ(u,z)))

Strictly speaking, f 4is not a formula of H since it contains
a symbol (H!) not in the vocabulary of H . It is, however, struc-
turally similar to formulas of H . F will be considered to be a
formula of a new language (EOL for H denoted fi) which allows OL-

like formulas over an extension of the OL-vocabulary.

lThe term abbreviation will be precisely defined in 3.2

2We shall take as the definition of #!zM(z) the expression
axM(x) & Vyvz(M(y) & M(z)>y = z) although we do not specify the
mechanics of unabbreviation at this time.
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DL

definition of (2 The definition appears in DL

(3 The unabbreviation

<i/ appears in OL

— 0oL EOL

<

FooL gy (M(y) & Aq@ Abbreviation
. . appears in EOL

Abbreviations provide a concise representation for lengthy ob-
Ject language expressions. Total unabbreviation3 provides a means
of getting from an EOL expression to some OL expression. Thus,
unabbreviation ultimately produces a formula of the object language.
This suggests that a reasonable way to extend the OL is by modi-
fying the definition of OL formula to include abbreviations. We
note that prior to unabbreviation an abbreviation such as A will
appear as an unanalyzed object of the EOL in much the same way as
an atomic formula appears as an unanalyzed object of the OL. This
suggests that an appropriate formula modification can be obtained
by specifying a set of abbreviation formation rules and extending
the OL notion of atomic fcrmula to include abbreviations.

In the case of arbitrary OLs, the framework for definitional
extension will consist of three languages (oL, EOL, DL) bound to-

gether in the manner indicated by the example. In its most rudimen-

3Replacement of all defined constants with appropriate expres—
sions which contain only primitive symbols of the logic.
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tary form, definitional extension consists of extending the OL by

introduction of a single new constant cy - (! was such a constant

in the above example.) The EOL for this extension is structurally
similar to OL but contains formulas constructed with the help of

cl. The DI will consist of a single expression which is the defi-

nition of cl. Such an extension will be called unit extension.

Tn general, the OL will be extended by introducing a seguence

of defined constants Such an extension may be thought

Cys Cparer -

of as arising from a sequence of unit extensionsLL where the OL for

the introduction of ci is the EOL for the introduction of Ci-l'

¥ is an abbreviation if F is a subformula of a formula5

P! which contains a specified occurrence of some . and F is
the smallest subformula of F' containing this occurrence of e -
(In general, any subformula which contains a specified occurrence
of a symbol and is the smallest subformula containing the occurrence
of the symbol is called the completion of the symbol.)

As noted earlier, abbreviations and atomic formulae are equiva-
lent with respect to the manner in which they enter into EOL-formula

construction. Thus, differences between an 0L and its EOL arise

solely from differences in the formation rules for abbreviations and

This assumes that the abbreviation formation rules are inde-
pendent of the particular constants used in the extension.

5Throughout this section, the term "formula" will be used in
general discussions to denote a syntactical object of some gpecified
language (o1, EOL, etce. ) whose semantic interpretation is either
"truth" or "falsity". In specific cases, the precise meaning will be
clear from the context. Thus, in the case OL=H then "formula' will
have the meaning given in I.M. [13] and in the case OI=lp, "rormula'
will be taken to mean type 1 expr=ssion. Similar remarks also hold
for "subformula'.
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atomic formulae. dJust how different abbreviations and atomic formu~
lae are will depend upon the particular characteristics of the given
0L, EOL, and DL.

Unabbreviation of a specified abbreviation F occurring in a

formula G and containing s is a form of subexpression replace-
ment in which F is replaced by an expression which ig determined

by the definition of cso the subexpressions of F , and under certain
conditions, the G subexpressions which contain F .

In U, the replacement performed in unabbreviating a type 1 ex-
pression containing defined constants has the properties of either
logical eguivalence or equality depending on the type of the defined
constant. This will be considered in greater detail under "semantic

considerations." (ef. 3.2).

The language E.

The general considerations of the last section may be applied
to the special case of extending the type theory U . The extension
obtained will be denoted by E. In the terminology of the last

section, UL is the OL, EL the EOL, and DL the DL.

the extended object language The language extension of UL (i.e.

EL) results from a simple modification of U. The vocabulary of

U is extended so as to contain constants, which enter into expres-
sion’formation in exactly the same way as do elements of V and S.
In practice, any such constants occurring in an expression will also
occur in the DL as definientes, in which case they are called de-

fined constants.
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The extension of U is obtained by modifying the U-vocabulary
rule as follows:
1. For any type - a denumerable set of
a) variables (V)
b) Skolem function symbols (S)
c¢) constants (C)
where V, S and C are pairwise disjoint and TSS is taken to

mean V y S y C.

If ¢ 1is a defined constant (i.e. ¢ ¢ C and is defined in DL)

occurring in a type 1 expression (or a pe or spe) G, then the smallest

type 1 expression F containing c¢ is called an abbreviation. The
constant ¢ 1is said to be an associate of F . An abbreivation F
occurring in G is said to be maximal (with respect to G) if it is
not a subexpression of any other abbreviation occurring in G . Note
that we could have defined maximal A-expressions of a type 1 ex-
pression G ¢ UL in an analogous manner.l

Dependency forest calculations, for type 1 expressions of U .
treated atoms and maximal l-expressions alike. Dependency forest
calculations, for type 1 expressions of EL’ treat atoms, maximal
A-expressions and maximal abbreviations alike. We shall thus refer

to these collectively as pseudo atoms.

lLet us define a A-abbreviation as the smallest type 1 expres-
sion containing a particular occurrence of an expression of the form
AXp...X @ ea ...a . A maximal A-expression can then be defined as
a A-abbreviation wﬁich is not contained in any other A-abbreviation.
(All expressions are considered relative to some expression G of
which they are subexpressions.)
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The dpf for a type 1 expression e of EL is calculated from
the structural representation of e in exactly the same way as was
dene for type 1 expressions of UL. The structural representation
of e 1is determined by applying algorithm A of section 2.1.1 with
step Al modified as follows:

A'1.1. If e 1is a pseudo atom, then T(e) is oe+.

Excepting occurrences of abbreviations, EL is the same as UL.
The EL definitions of syntactical categories such as closed expres-—
sion, type 1 expression, atomic expression, pe and spe are the same
as given for UL.

The structural representation of an expression, which is defined
for any pe or type 1 expression, determines a mapping from the pseudo
atoms of the expression onto the set of leaves of the dependency
forest. Because duplicate branches are removed during calculation
of the dependency forest, this mapping will not be 1n1 in general.
(cf. p. 56). In what follows, it will be assumed that given an spe
e, the following hold:

1. The associated dependency forest of e can be determined.

2. Given a pseudo atom of e, a unique leaf of dpf(e) is

determined.

3. Given a leaf of dpf(e), a set of pseudo atoms of e is

determined and distinet leaves determine distinct sets of

pseudo atoms.
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example 1

The closed type 1 expression G illustrates many of the con-

cepts given above.

Ah A2 AB A

N

!

5

Al’ A2 and AB aresabbreviationS‘with assoclates &, ﬁ and - . A1
and A3 are maximal abbreviations. Ah and A5 are atoms. S  Thas
type 1, M type (0:1), P type (0,0,0:1), # type ((0:1):1), o type
(1:1), & type (1,1:1) and wu, v, X, ¥, 2z type O. The defined con-

stants = , &, and & appear in the DL as will be seen presently.

ut
apf(G) is Vs S
/ Ag
M L&ﬁkyon@ MxPxyuS— — VzPzvu,
A, A Ag

Note that v depends upon u and that u occurs in A3, G 1is

Skolemized with the aid of dpf(G) yielding G.

AL 2
6, = QO Mru D & Ahyevx D MxPryus - VzParuus
? ?

Note that both occurrences of v have been replaced by fu.

However, quantifiers appearing within an abbreviation are left

intact.
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a pe in EL.

Gy =r:7vy’&t%ﬁ[illkx'ty ny' Az . Qxz is an example of

Here we have assumed that P,Q have type (0,0:1),\, has type (1,1:1)
and ﬁ! has type ((0:1):1). Note that & and \V are elements of

C and occur in subexpressions of G by rule R2a. This polarized
expression is the EOL version of the formula F given at the be-
ginning of this chapter. Close inspection will reveal that i is

not the same as T and H! is not the same as d!. Skolemization

of Gl gives:

v v+
T(Gl) is v+ dpf(Gl) is
& Myd1Ax.vPxyEAx. Qxaot & My 1 Ax.V PxydAz. Quz+

G, =& My ! ax.v Pxyirz. Qxz

the definition language The definition language DL for the ex-

tended system E is based upon the components of EL' We begin by

singling out a subset of EIwclosed expressions which we shall call

4

pseudo type l-expressions. These are of interest since they occur

in definitions and may contain implicit dependency information. As
in the case of type 1 expressions, a useful notion of dpf may be

defined for pseudo type l-expressions.
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Pseudo type l-expressions are closed expressions of the form

Axl...xl‘e ...Axk...xk e e in which e is an expression of type 1
1 n, 2L n,
whose first character is not X . The character string Axf...
xt e ...Axk...xk e 1is called the prefix, the substrings Axi...xl )
ny 1 0y » n;

segments and e the kernel. In particular, we allow pseudo type
l-expressions with empty prefixes (i.e. in which the prefix is the
empty string).

A pseudo type l-expression Sk of the form Xxi--.xi ® -
1
k k

Xxl...xn @ ¢ can coccur in a given pe in various ways. We are
k

particularly interested in the case where e, occurs as an operator

(ef R2) in a type 1 subexpression e.al...al et 85 L m this
171 ny 1 ny
case, repeated applications of A-reduction produce elo where
o= {...,<aT ,x0 >,...} (1= l1,...,k and j, =1,...,n.). 1In
Ji o dy 1 1

general, such an occurrence of ey will cause implicit dependencies

between the variables occurring in e which are bound in e and

K ). The X-rule (0.},
nk 1

as defined for U , takes such dependencies into account, however,

those bound outside of e (excluding x%,...,x

some of the dpf's necessary to perform A-reduction are calculated

at the time A-reduction is applied. Thus, in A-reducing several
. 2 . . .

variant subexpressions of an expression, the same dpf3 will be

calculated more than once.

N 2Two subexpressions of the forms ) 1...x% é cel A k...xﬁ o e
Xyl...yn ® ...Ay%...y% ® e, are said to be vartants of each k
other. ¥, and e, are such that there exists a substitution o of

the form {...,<xi,yi>,...} where Xx.,y. € V  ana e,0 = e,0.

3Same up to substitution of expressions for the variables
occurring in the subexpression's prefix.
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In the case of a pseudo type l-expression e, it is possible
to calculate a dpf for e prior to A-reduction and then use the dpf
for any A-reduction involvini a variant of e. The unabbreviation
operation presented in section 3.3 and the A-reduction operator al-
ready presented take advantage of this property by providing a more
efficient means of calculating dependency forests than ﬁould be
possible if dependency forests for pseudo type l-expressions could

not be pre-calculated.

definition in DL“~ Flements of DL’ which are called definitions,
may contain pseudo type l-expressions. A definition is a syntactical
object of the form o<—>f where <> is a new symbol, c e C and
f 1is obtained from the closed expression e (which has the same type
as c¢) in the following manner: I° e is not a pseudo type 1-
expression, then f = e. Otherwise, we associate the dpf for the
kernel of e with ¢ and form T by removing from e all occur-
rences of Vv not occurring in a pseudo atom of the kernel. The
defined constant ¢ is called the definiens and the expression f

%’5

the definiendum” To avoid multiple definition, we require that

each definiens is distinct from any other definiens.

3'SA closed expression e i: an element of E_. The logic of
E deals with expressions o' E .y (i.e. elements o% E.  which have
been processed by the Skoleizaticn alge rithm). Rather than take
the closed expression e a3 the =2finiendum of ¢, and then apply
the Skolemization slgorithm (incli ding dpf calculation) each time
¢ is unabbreviated, we pre:alcul: te the dpf and remove occurrences
of "Vv" once - at the time the ccaustant is first defined. The
result is taken as the definition
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Circularity can be avoided by the simple expedient of ordering
the definientes and requiring that any newly introduced definitions
be defined only in terms of primitive symbols and previously intro-
duced definientes. Unfortunately, this precludes recursive defini-
tions. 1In order to avoid such a limitation, we shall leave the
general question of circularity open and not further constrain DL'
Thus, in general, we have no guarantee that any finite sequence of
unabbreviation operations applied to an arbitrary element of EL
will produce an expression of UL' (For particular DLS it is often
possible to prove that arbitrary EL expressions unabbreviate to
UL expressions. All DLS considered in this paper will possess this

property. )

example The pseudo type l-expressions displayed below determine

the definitions dl - d8.

H

AP. (D PP
2. APQe~ (D PQ P and Q have type 1

3. 2PQe (D -P-Q

L. APQev 2PQ F and R have type (0:1)
5.  APQe& DPQDQP

6. Axy o VFEFxFy x, vy and z have type O

T. AR o = VXﬂRx3‘6

8. AR » &IAx RxVyVz > &PyPz=yz

3'6We note that 0. does not allow direct definition of operators
such as Hx. Fortunate%y,Awe may define operators which have the same
effect. Thus dg defines . We note that TAx is then notationally
equivalent to HX in the sense that IxPx and \xPx are semantically
cquivalent (assuming the usval interpretation for @x).




LO3

d o = APe (D PP fop -} T
i, & <— APQ.q(DPQ {o 4D Pq + }
d3 vV e APQe@-; P+Q {o 9 P-, 04 Q-1
d 2 < APQev-PQ {o 47Q + }
d5 = > APQe&DPQ>QP {0 &2PQ > QP+}
P+

dg = < Axy. = FxFy {IEFxFy+}

~ X—
d,_(, 4 <> ARe Rx { I R }

dg & <> )Re &EAX.RXVyVz D &RyRz=yz
{oARe&HIAXeRXVyVz 2 & RyRz = yz +}

Figure 8
semantic considerations in E The valuation procedure for ex-
pressions of UL and UL* can be extended to the expressions of

EL. The extension is accomplished by requiring that a defined con-
stant have the same value as its definiendum. This means that any

defined constant which can be evaluated is associated with a fixed

element of each derived domain whose specific nature is determined

by the definiendum. Thus, defined constants are treated in the

same manner as the primitive symbol (D . This 1s necessary if the

3. 7The dependency forest for the associated pseudo type-1 ex-—
pression XP(DiPP would be {o P-, o P-}. However, the duplicate
branch provides no additional information and is Thus removed.

(ef algorithm B section 2.1.1)
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assoclation between definiens and definiendum introduced at the

syntactical level is to extend to the semantic interpretation.

example Consider the definition dl given previously. P has
type 1. This determines the type of the definiendum and thus the
type of o (i.e. type (1:1)). If o is to have the properties of
negation, there is clearly only one acceptable value for = 1n any
D¥ and that value is {<<T>,F>,<<F>,T>}. The evaluation procedure

produces this value as follows:

CD is assigned the value {<<T,T>,F> <<T,F>,T> <<P,T>,T>,
<<F,F>,T>}, Using valuation rule E3 (for valuation of UL—
expressions) we obtain S = {<I>,<F>} and Q = {<<T>,F>,<<F>,T>}

since (D]ﬂ? has value F when P 1is assigned the value T

and T when P 1is assigned the value F .

Thus, the evaluation procedure assigns a value to = which is
consistent with our intended meaning for = .

We note immediately that expressions of EL containing either
undefined constants (i.e. elements of C which do not occur as de-
finientes of elements of DL), circularly defined constants or non-
primitively defined constantu (see below) can not be evaluated.

We noted in section 2.1 3 that valuation relative to a domain

D produced a function from _HL~«iﬁto the derived domain D¥.

Valuation for EL relative 10 a domain D produces a function

from a subset of E. into the derived domain D¥.
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If D is a given non-empty domain, e an expression of EL
for which valuation is defined, and p is a value assignment for
the tree variables occurring in e , then we shall denote the value
of e in D¥ relative to the value assignment p by v%(e), (or
where D and p are irrelevant to the aiscussion at hand, by v(e)).
Valuation (both for UL and EL) has the important property that if
Al and A, are expressions, e and e are subexpressions of A1

2 1 2

and A_ respectively and A is obtained by replacing e, by e

2 1

in Al and if V(el), v(ez), V(Al)’ V(Ae) are defined then v(e

2

1) =

v(ez) implies v(Al) = v(Ae).
The pseudo type 1 expression APQ@-7Q)PQ which determined
the definiendum of & in Figure 8, contains an occurrence of the
defined constant - . This can be eliminated if = is replaced
with the pseudo type 1 expression APo(D'PP. In general, we could
replace more than one such occurrence of a defined constant in an
expression by the defired constant's definiendum. It is convenient
to have notation which expresses the relation between the original

definiens and the expression obtained from it in this manner.

We write ¢ <==> ¢ if

1. ¢ «> f ¢ DL and f 1is obtained from the expression
e as indicated under the formation rules for elements
of DL'
or 2. There exists an expression d such that ¢ <=> d and

e 1s obtained from d by replacing some defined constant

occurring in d with its definiendum.
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If e 1is @n expression of UL and ¢ a defined constant such

that ¢ <=> e wé-say c¢ 1is primitively definable. It can be shown

that ¢ <==> e implies v(c) = v(e). Thus, it follows that if c
is primitively definable by e and by f then v(e) = v(f).
Primitively definable defined constants may always be evaluated
using the procedure previously set forth. Defined constants may fail
to be primitively definsble for several reasons. They may be cir-
cularly defined, i.e. there exists an expression e 3 ¢ <=> e and’
e contains occurrences of ¢ , or for any e such that c¢ <=> e
it may be the case that e contains constants which are not defined.
Because of the close relationship between semantic evaluation
and truth-function analysis (as embodied in UL and EL inference
operators) the logic of € is mainly concerned with expressions
which contain primitively definable constants. The occurrence of
non-primitively definable constants in EL—expressions, while accept-
able in certain casesh, will, in general, cause the expression to be
unprovable5 in E. This is in keeping with the semantic nature of
E (and U) which requires that type 1 expressions of EL be
meaningful in any arbitrary domain (i.e. they evaluate to either T

or F).

Suppose ¢ ¢ C but is not defined. The expression Ve - ¢
(ev = ¢ in infix) is provable in E since the nature of ¢ does
not bear on the validity of ve 4 c.

5

Not to be confused with unsatisfiable.
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Inference operators of €

The inferential notions developed for U, including inference
operators and attempted proof graph, may be applied without modifi-

cation to E. Given an spe of E€_, the inference operators of U

I?
then provide a means of determining what value assignments for pseudo
atoms of the spe could account for the assumed satisfiability of the
spe. Truth functional analysis may continue if the pseudo atom is
A—reduciblel, however, if the pseudo atom is either an atom or a
maximal abbreviatior, there is presently no mechanism which allows
further analysis. This is certainly reasonable in the cagse of an
atom, since a truth-value assignment to an atom implies nothing about
truth-value assignments for its type~1l subexpressions. Truth-value
assignments to maximal abbreviations, on the other hand, do imply
truth-value assignments for some of the abbreviation's type-1 sub-
expressions. Furthermore, if the first character of the abbreviation
is a defined constant which is primitively definable, the semantic
rules for E then allow evaluation of the abbreviation. It should
thus be possible to define an inference operator within the current
framework which produces the desired analysis since the truth-func-
tional synthesis performed during semantic evaluation is the inverse
of truth-functional analysis.

The inference operator O11 produces the required analysis by

replacing a specified occurrence of a defined constant occurring in

a tree t with its definiendum. Dependencies caused by the context

1An expression is said to be A-reducible if the A-reduction

rule O1 can be applied.
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of the constant's occurrence and the particular nature of the con-
stant are explicitly exhibited in the dpf derived from dpf(t). The
folloﬁing algorithm specifies how this derived dpf and the tree re-

sulting from application of Oll are obtained.

Algorithm A  (unit unabbreviation)

Let a2y be a node of the tree t and suppose that the content
of a; contains a specified occurrence of the defined constant c¢ .
Furthermore, assume that the content of al has the form dJe where
8§ is either (D or @ and let m = c(al).

case 1 The specified constant is the first character of e

and has a pseudo type-l expression for its definiendum.

Al.1 tree calculation For each x ¢ Q-l(m), replace

the first character of the suffix of Ct(x) with

the definiendumofcla’z.

Al.2 dpf calculation Algebraically replace leaf m

s

with the dpf associated with ca.

laWe shall say that two dpfs conflict if they have any variables
in common. Now suppose that G and H are conflicting dpfs and that
Xy see e Xy is an enumeration of all distinct variables common to both.
Let z.,,...,2 be distinct variables such that z; has the same type
as x; and such that zj occurs neither in G nor in fl. We shall say
that h has been revised relative to G irf z; is substituted for each
occurrence of x. in H. If H has been revised relative to G, then
G and H no longer conflict. (If H is the dpf for the tree t, then
we revise t whenever we revise H by calculating to where o =
(..o, <zi,x5>,...10)

21t is assumed that the dpf associated with ¢ has been re-
vised prior to carrying out Al.1 and Al.2.




cage 2 ¢ does not have a pseudo type 1 definiendum

A2.1 tree calculation Replace the specified occurrence of

c in3 Ct(X) with the definiendum for ¢. Here X € c_l(m).

A2.2 dpf calculation Replace the specified occurrence of

¢ in the content of leaf mu.

example Suppose we have the following tree

®

Q@ Qvasvas

@/ and dpf { (@ VAB- }

® vAB @ VAB

We apply Oll to node 3 with Vv +the specified occurrence.

Step Al.l produces

(DVaBV AB

o

®@»rQ Q- P - qaB @ @ Q- P - qaB

3Note that x,y e g_l(m) implies Ct(x) = Ct(y) thus specifying
an occurrence of ¢ in (al) determineés occurrences of ¢ in
each Ct(x) where X ¢ c‘l m).

The content of ‘'m is the same expression as the suffix of

58y
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Step Al.2 produces {0 = P+, 0 4 Q+} (where o o P+ is a tree with
one node whose content is - P+). Here we have used the
dpf associated with v . (See page 103.) Note sign changes

caused by leaf m being negative.

total vs. partial unabbreviation

There are two ways one can handle unabbreviation in a system
such as E. The first is to remove all defined constants at the out-
set by preprocessing the initial expression. The second is to pro-
vide an incremental unabbreviation capability by including operators
such as Ol and Oll'

The former approach has the advantage of allowing us to work
with expressions in which all dependencies can be explicitly repre-
sented by Skolem functions. This renders dependency forests and
associated paraphernalia unnecessar;r but at the expense of total
unabbreviation.

Total unabbreviation is not always desirable. For, while it
is true that some provable expressions require total unabbreviation
in their proofs, there are many cases where total unabbreviation is
not only unnecessary, but needlessly complicates the proof. The
trivial example cv - ¢ was given previously. Not so trivial is
the theorem (a # b & (&!Px & Pa)) o 4 Pb, which can be proved

"=", In gereral, certain basic theorems

without unabbreviating
for each new concept are proved using unabbreviation; the further
development of the concept uses the theorems and unabbreviation is

not further needed.
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Unabbreviation generally leads to a marked increase in the
complexity of the truth-function trees occurring in the attempted
proof graph. This is due to the dependency of a tree's complexity
on the number of connectives occurring in the initial spe. Unab-
breviation has the property that it generally increases the number
of such connectives. It is thus desirable to unabbreviate as little
ags possible.

The operators of E allov partial unabbreviation, thus allowing
possibly irrelevant structure in an expression to be suppressed until
it is actually required. The hierarchical structure created by -~ he
inclusion of abbreviations in & can thus be examined in whatever

L

detall is necessary.

Derived rules of inference zind theorem utilization in E

Introduction

The operators thus far presented allow the complete (if tedious)
truth-function analysis of all primitively definable constants which
may occur in any ungrounded tree with contents over spe's of EL*O.

Consider, for example, the occurrence of = in the ungrounded tree

A

bo .

1 (T = AB

Thirteen applications c¢f O (unit unabbreviation) folloved by Ol

11

{\-reduction) (i.e. twenty six operations in all) produces the tree

o} . .
Skolemized expressions of El'
.
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I CODODD 22D 42 O BB DDD B8 ] 85D 22 OOOO 42D 48 8
OO D B 24

Finally, many applications of O2 followed by duplicate branch re-

moval, multiple closed branch removal, and node removal, produces

the tree tl

@a ®a
M B ® B

which is satisfiable if and only if ‘to is satisfiable. We note

that had the expression @ £ AB occurred in a more complex context

such as

a ;

some tree <2~ node with content @ = AB

o~

Q
LL\ some leaf k

then the same sequence of operations would have produced

?
®A\®A
(@] @B
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where the leaf k plays the role of leaf 1 of +t..

0
We make the following observations: 1) The form of tl depends
only upon the definition of = and the prefix (D ; 2) Total analysis
of = in arbitrary context, as discussed sbove, produces a tree which

could have been obtained by appending t to leaf k; 3) If =

1
occurs frequently, total analysis of each occurrence by the sequence
of operations used to obtain tl, will result in an excessive amount
of processing.

Observations 1 and 2 suggest that given a defined constant, whose
completion is a type 1 expression, we may pre-analyze the constant by
assuming a prefix and dummy arguments and applying the operations of
E to produce an ungrounded tree such as tl. The analysis is per-
formed twice; once for an assumed @ prefix and once for an assumed
@3 prefix. The resulting trees are called truth-function analysis
trees and are considered to be associated with @ and ® occurrences
of the parent constant respectively.

Once the truth-function analysis trees (tfat's) associated with
@ and @ occurrences of a constant are calculated, total unabbrev-
iation of an arbitrary occurrence of that constant becomes an oper-
ation essentially the same as 02. Thus, suppose that some node n
of the tree t contains 6cal...an and that the tfats for ¢ have
previously been calculated. If k is some leaf of +, (n <L k) we
simply substitute a; for X, in the tfat associated with a &

occurrence of c¢ (where 6§ is either @ or C)) and append the

result to k .
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In the general case, unabbreviation is somewhat more complicated
than might be assumed from the above discussion. Complexity enters
in the form of implicit dependencies arising from the context of a
defined constant coupled with the occurrence of quantified variables
in the definition of the constant. As long as a constant contains no
implicit quantified variablesl we may proceed as above. However, once
implicit quantified variables are present, unabbreviation should pro-
vide explicit representation of any dependencies uncovered by the un-
abbreviation operation.

In the following sub-section we present an algorithm for computing
tfat's for defined constants from their definitions. Associated with
each such tfat will be a dependency forest which explicitly represents
the internal dependencies of the associated constant which result
solely from the nature of the particular constant. These dependency
forests provide the necessary mechanism for determining dependencies
among implicit variables occurring in a constant's definition and
variables in whose scope a particular occurrence of the constant
appears.

The operator O is extended to cover defined constants having

2

associated tfat's. Its operation is essentially the same as before

1@! is an example of a constant which contains implicit quanti-
fied variables. Although such variables may be positive in the defi-
nition (i.e. represent universal guantification) they will be negative
when ®! 1is unabbreviated if the particular occurrence of d! being
unabbreviated is in the scope of an odd number of occurrences of (D
if prefix is (D or an even number of occurrences if prefix is @ .
Thus, unabbreviation may uncover dependencies, since there is always
the possibility that a negative variable will be within the scope of
a positive variable.
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except that dependencies arising from wmabbreviation are explicitly

represented in a dpf associated with the new tree Og(n,k) and as

Skolem functions occurring in the contents of 0,(n,k) and associated

dpf.
In any system such as E, it is desirable to be able to take
advantage of previously proven results. The operator O dis-

12

cussed in sub-section 3.4.2 provides E with a primitive capability

for utilizing tfat's calculated for expressions known to be valid.

3.4.1 Calculation of truth-function analysis trees for defined constants

Bagic method

Suppose that the following are true:

l. ¢ <> Axi...xle e Xxk N xk @ e 1is a definition with

ny X
associated dependency forest F.
2. The first character of e is not A.

3. t 1is the ungrounded tree e with associated dependency forest

F (given in 1) and & is either @ or @ .

Given t as Jjust described and assuming that e contains no
circularly defined constants, the procedure presented below produces
a tree t which possesses thz following properties:

1. % is an ungrounded tree (with associated dpf).

2. 6cxl...xl . xk is trie if and only if t  is satisfiable.
1 n, ny

3. If b is the suffix of tle content of any node of %, then
b 1is either an atom or ar abbreviation whose first char-

acter is an undefined con: tant.
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example (4,) 2 <—> APQuv+ PQ {oV - PQ+}"

t 1is the tree with associated dpf {ov = PQ+}

I@vﬂ PQ

t is O////n\\\\o with associated dpf {oP-,0Q+}

®p @a

Algorithm A (basic calculation of tfats)

The tree £ associated with SCXi...Xi ...xﬁ is calculated as
1 k
follows:
{ start }
v
N = {1} where 1 is node 1 of t

|
v

Choosel and element from N and fully process

it using algorithm B (given below).

no

N = ¢

yes

Remove duplicate branches from the tree thus far

constructed. Remove duplicate nodesla on same branch.

Stop

*
Where oe is a tree having one node with content e .

1We shall assume that some ordering for N is generated which

allows exhaustive enumeration of its elements.

laRemove node furthest from the origin.
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Meorithm B (fully processing a node)

Let Ct(n) = Se where n # org(t) and n € NCN . The processing
of node n depends on the nature of the first character of e . Let

this characterg be denoted by vy .

case 1 (y is the character A or a defined constant. )

Bl.1l Apply‘modified3 A-reduction (Ol) or unabbreviation (Oll)
whichever is applicable

Bl1.2 Do not remove n from N

case 2 (y is the character (D.)

B2.1 Apply Og(n,k) for each leaf Xk such that n <-t k.

B2.2 Remove n from t

B2.3 Remove n from N

B2.4 Add to N those nodes created in B2.1 (i.e. by applica-

tions of 02).

case 3 (y eV U S or y is an undefined constant.)

B3.1 Remove n from N

2Any EL*-expression of the form C)e or C@ea has the property
that the first character of e must be (D, A or an element of
Vu S u C. Thus, the given case analysis is exhaustive.

3Skolem functions are introduced by the A-reduction operation.
The sole purpose of introducing these functions is to expedite the
determination of unifying substitutions. However, wmifying substitu-
tions are not sought during the calculation of truth-function analysis
trees, thus making introduction of Skolem functions unnecessary at
this stage. In addition, the manner in which dpf's for truth-function
analysis trees will be used precludes any reasonable usage of Skolem
functions which might be introduced at this point. Modified A-reduc-
tion is A-reduction without Skolem function introduction.
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example calculation of the tfat associated with CD\NPQ

case truth-function analysis dependency forest N
tree
lI@CD"IPﬂQ ‘ {O"'"P",O"]Q—}* {l}
2
same {2,3}
> o/\c 3
®a.P ®A-Q
1
use 0O
H fo M+, o 4 Q-} {2,3}
2 /\o 3
® w D mp ®- Q
1
use A-red.
{o P+, 0 4 Q-} {2,3}
> /\ 3
® CD:PP @A Q
2
{0 P+, (o] -1 Q"‘} {’4’35)3}
Lho®p 3
5 ®-Q

@rp
Nodes 4 and 5 are removed by step B3.1 (case 3). TFurther processing

of 3 (which is identical to that of 2) yields

*
Where oe represents a tree having one node with content e.
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{o P+, o Q+} {3}
@p % (D Q
@®P @q

There are no duplicate branches, and duplicate node removal yields

the final tree t given below:

d////Q\\\\O {o P+, o Q+}

@er @aq

which is assoicated with (DvPQ.

Controlling the depth of analysis afforted by a truth-function tree

In certain case, it may be desirable to limit the depth of
truth-functional analysis afforded by algorithm A. This can be ac-—
complished by treating specified defined constantsh as if they were
undefined. Thus, defined constants are partitioned into two sets:
those to be analyzed and those not to be analyzed. The former set

are processed by case 1 of algorithm B, the latter by case 3.

example - limited truth-function tree
If algorithm A is applied to the defined constant 3!, which
is introduced on page 103, the following tree associated with C):i!R

is obtained:

We might even wish to treat specified defined constant occur-—
rences as undefined. That is, rather than consider all occurrences
of a specified defined constant as defined, consider only certain
occurrences as defined.
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X- y+
X R}L L\
Fx @ rFx Ry- Rz- F+
() Ry C):RX /////j;y \\
Fy Fy Fx+ Fy+ Fx- Fy-
If, on the other hand, = 1s treated as if it were undefined, we
obtain:
Rx Rx+ /z+\
— —-— - +
®ry @rz @=yz R Rz ye

We note that the level of analysis afforded by the above tree
and its associated dpf is sufficient to deal with the theorem (a # b

& (d1Px & Pa)) > 4 Pb.

Fxamples of truth-function trees for selected defined constants

We have already considered the truth-function analysis trees
associated with MV , D>, D« and M H!. The truth-function
analysis trees associated with the remainder of the constants intro-

duced on page 103 are given below. All implicit constants are analyzed.
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@ occurrence @ occurrence dpf

@ & PQ

® & PqQ {oP+,0Q+}
®p ®Q

%P

Q

@ = pq ® = pPq {oP+,0Q+,0P-,0Q-}
O
@a ®aq ®a Q

i

© =xy ® =xy P+
@ F\( \f Fx @ F'/ }® F%‘% \B“x\w_
@y ®ry ® 7y, @y

@H R '
I@RX ® R I@Rx Rlx+
®ar
I@P
®vrq
®r
®a
®>rq
@p
®aq
GERS:
® Rx Ry
Rz
@.Fx Fx
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Utilizing truth-function analysis trees in E (the extended operator le

At the time inference operators were first introduced, it was ob-
served that they provided a means of investigating the ramifications
of assuming a given spe to be satisfiable. The inference operator 02,
for example, covered spes of the forms CDQ)eleg and C)d)eleg. Asso-~
ciated with each form was an ungrounded tree5 which represented the
possible truth value assignments which could account for the presumed
satisfiability of the particular spe. The operator O2 simply ap-
pended the appropriate tree to some specified leaf of the tree con-
taining the original spe subject to the condition that the node con-
taining the spe was an ancestor of the leaf.

The truth-function analysis trees, which we have been considering,
allow exactly the same sort of analysis as do thé trees associated
with CD(D e e, and C)(D e ey It is thus reasorable to extend the
operator O2 to apply to any spe of the form Gcal...an where 6 is
either () or C) and ¢ 1is a defined constant which has associated
truth-function analysis trees for (D CXyevn X and ® CXqevrX - Ir
we now agree that C)(D e &, and ® e e, have associated truth-

function analysis trees, then 02 may be extended to cover constants

such as ¢ as well as (D .

Algorithm C (calculation of 0,(n,k) for the extended operator 0,)

Let ¢ Dbe a defined constant and suppose that C)cxl...xn

and () CHysee X have been processed by algorithm A (i.e. they

5This was called the appended tree (see page 62).
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have associated truth-~function analysis trees). Further suppose that

Ct(n) = § ca;...a, where & is either (D and & and that k is

a leaf of t(n < k). Let s ©be the tfat associated with 6cxl...xn

and dpf(s) its corresponding dpf.

case 1 (z(n) is defined and is the leaf m of dpf(t))

Cl.1 opreprocessing If dpf(t) and dpf(s) conflict, revise

dpf(s) (and s) relative to apf(t).

Cl.2 truth-function tree calculation Calculate tl = s0 where

o={...,<8,,2.>,...}; 2, is x. if x. was not revised in
i*%i i i i

step Cl.1, otherwise zg is the varisble substituted for
X, - Remove all occurrences of Vv(v e V) which are not
within the scope of some A or constant. Let the result
be tg' (Steps C1.1 ana Cl.2 produce a tfat which is

specialized to the particular expression § cal...an and
which contains no variables which conflict with those

already occurring in dpf(t).)

Cl.3 dependency forest calculation Let F be the result of

expanding each leaf of dpf(s)o using algorithm F section
2.1.1 (node expansion). Algebraically replace m (leaf
of dpf(t)) with F using algorithm E of section 2.1.1 and
let the result be G .

Cl.4 Skolem function introduction Introduce Skolem functions

into t, (calculated in step C€1.2) and G (caleculated in

step C1.3) by replacing all negative variable occurrences



12k

with Skclem functions as prescribed in algorithm D section

2.1.1 step D3. Let r. and H be the respective results.

The tree Oz(n,k) is obtained 1y appending r to the leaf k

where n <°  k Tts associated dpf is f.

case 2 (z(n) is undefined)

For this to be the case, O2 case 1 above must have previously
been applied either to n or to some node of ;ul(m) where m was
the leaf of dpf(t) corresponding6 to the node n at the time of that

case 1 application of 02.

Let r be the tree calculated in step Cl.h.

€2.1 Append r to the leaf k where n << k. (The apf(t) is

associated with Og(n,k).)

case 3 (¢ is the character D )
€3.1 Calculate Oz(n,k) as specified for old version of 02
(see page 62).

The tfat and dpf associated with ¢ possess several character-
istiecs which should be discussed. The tfat explicitly represents

structure which is determined sclely by the particular distribution

6If case 1 is applicable, then there exists a leaf m of dpf(t)
such that ¢(n) = m. Furthermore, t=1(m) is the set of all nodes of t
which correspond under ¢ to m. In applying O, (case 1) to n we des-
troy this correspondence since in general steﬁ (1.3 replaces the leaf
m with a forest whose leaves correspond to pseudc atoms of the con-
tent of node n. The reference here (in case 2) pertains to the set
of nodes corresponding to the leef m prior to the application of 0o
under ~ase 1, i.e. while z{n) was still defined.
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of (D in the primitive definition of c¢. The quantificational struc-
ture, on the other hand, is represented in the dpf of the tfat. If
02 is applied to a node n occurring in the interior of some tree t,
the tfat associated with ¢ may correctly be appended to any leaf

k *> n. The first application of 02 to n causes calculation of a
dpf (C1.3 and Cl.L) which is associated with Og(n,k). Since this
dpf explicitly represents all dependencies resulting from the context
of the pseudo atom containing ¢ 1in the intial spe, and since these
in no way depend on how many times (after the first) Og(n,k) is applied,
it is unnecessary to recompute the dpf under case 2. In fact, had we
wished to do so, the tree r computed in Cl.4 could have been ap-
pended to all leaves dominated by n. This, however, is undesirable

for the same reason that blind total unabbreviation is undesirable.

We now present two examples of extended 02 usage.

example 1 (In this example, we shall use the truth-function analysis
tree for (MT R. This is given on page 103.)
Suppose that at some stage of processing, we have the following

tree and dependency forest

1 o@D Erpvryay (D Pxax 21 L 5
) @Dﬁlky-VPyQy BAyvPyQy+  Px— Qx-




P06

and wish to calculate 02(2,h) and its dependency forest. Case 1

applies since 2 corresponds to the indicated node in the above dpf.

Furthermore, xl is R, and al is Ay«VPyJy. The tree r computed

in step C1 .4 is then

I (7)) \y«VPyQyz

and F 1s the Apf

Ay VEY QY 2

Application of OQ(Z,M) thus produces

@D Fryevryay O Pxax x+

l
CE)E S ////////// ;7\\\~\\\\5'

7+ Px— QX
PzQx l
y o o 3
¥ s (B Qx
I D Px 5w © AyeVPyQy z+
6 ¢ @iyvPylyz

Note that node 2 no longer corresponds to a leaf on the de-
pendency forest.
If we now wish to sppiv  0,.(2,5), case 2 spplies. We thus

obtain
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0
1 ¢ @O Try.vryqy  Pxax
2 0 ME \y.VPyay

CD PxQx

®Px ® ax
@ ryevPyQyz 7 o@D Ay.VPyQyz

The dependency forest is unchanged. We note in particular that
z(6') = {6,7} since both 6 and 7 correspond to node 6' of the de-

pendency forest.

example 2 proof of transitivity of = using extended 02_

Let the following definition be added to those given on page

d9 l Trans } «> AH.D28& Hxy Hyz Hxz xt+
»
J+

D& HxyHyzHxz+

Application of algorithm A produces the truth-function analysis trees

and associated dpf

@[ Trans II:/I\ ®[ Trans |5

@ = x+
@Hxy @Hyz @ Hxz CD-éjZ y}
@ Hxz z+
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Now suppose the initial tree 0 is 1 I@ = with associated

dpf {o [ Trans |= - }. Application of 02 to | Trans | followed
by five applications of O2 to various occurrences of "=" y'ielélsT
O‘,
(D[ Trans | =
D= fg
D= gh
{E)= rh
\\‘\
\\\
D Fr B Ff
% Fh
2
(T Gr Gf of  ~¢@®or
Gg Gg Gg Gg
~_
Hg Hg Heg I’ ® He
Hh Hh Hh ® Hh

The associated dpf is

PIANN AN

Hg+ Hh+ Hg- Hh- Gf+ g+ f- Gg- Ff+ Fh- Ff-

YReferences to O2 now refer to the extended version as con-
puted by algorithm C.
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Applying tree substitution with o = {<F,G>,<F,H>}, and multiple
L
closed branch removal produces the empty tree ¢ . Thus O —«lé ¢

and !Trans |=is therefore provable. 1i.e, T1 lTranqj = is a theorem

of E .

Modification of the truth-function analysis tree algorithm (algorithm A)

Algorithm A reduces primitively defined constants to their primi-

tive definienda by alternately applying umabbreviation (0 and A-

ll)
reduction (Ol). This can involve a considerable amount of processing
if the constant in question has a definiendum which implicitly contains
deeply nested8 defined constants. Fortunately, if a constant appearing
in a definiendum has already been processed by algorithm A and conse-
quently has an associated truth-function analysis tree, it is possible
to avoid reprocessing the constant by utilizing the pre—~calculated
truth-function analysis tree. This modification of algorithm A is ob-
tained simply by altering the method used to fully process defined con-

stants as described in algorithm B. In particular, we define algorithm

D and E as follows:

AMpgorithm D (modified algorithm B)

case 1 (y is the character A or a defined constant )

DL.1 same as Bl.l1 if y is A or a defined constant without an

associated tfat.

The defined constant "=" 1is an example. It implicitly con-

tains the defined constant VvV which occurs two levels down.



D1.2 Let n b= the nole whose content contains ¢ and such
that n = £(n) siculate 02(1,x) for each 1 and k

such that 1 e ¢ {m) and 1 <-_ x, (use algorithm c)
omitting step Cl.+ if case 1 appliies and using t2
instead of r .

D1.2.1 Remove 1 from t

D1.2.2 Remove n from N

D1.2.3 Add to XN those nodes created in D1.2 by

applying 0, (extended).

case 2 (v is the characier CD ) same zs case 2 of algorithm B.

case 3 (ye V U S or Y is_an 1nd¢fined constant) same as

case 3 of B.

Algorithm B (tfat calculation utilizing tfats)

Same as algorithm A except use algorithm D in place of algorithm

Algorithm E produces the same results as algorithm A but with

less processing. Depth control may be included if desired (ef.

page 119).

G
|
=
L@ yva 43 {oVv ~ AB+}
Tt odg, appos oy b Bl 085S snbrodactiaa of new Skolem

i oodnto tha Lo T lrew.
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The tree associated with MVPQ is calculated on page 118.
Substituting o A for P and B for Q and completing the re-

maining substeps Dl.2 - D1.2.3 yields.

with associated dpf {oA+,0B+} which is

derived from the original dpf {ov -AB}.

OER DB

Finally, taking the tree associated with M- R to be 1®R

and its dpf to be {o R-} we obtain

{0A~,0B+}

® A @B

Utilization of the precalculated trees for @V and @V
results in. a relatively ‘small amount of processing compared to the
amount of processing required by the unmodified procedure. This
becomes clear when we note that in order to calculate (M > using
the wnmodified procedure, it is necessary to calculate @V as a
subprocedure. This caleculation by itself (see page 118) is longer
than the entire calculation by algorithm E of @3 . Since the

examples given are simple, one would expect even greater differences

to exist for more complex cases.

3.4.2 Utilizing theorems in E .

Suppose that e 1is a provable expression with initial spe

(®e. By definition, = must always be true. It follows that if
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t is any ungrounded tree over EL*’ then adding a node containing
C)E to any branch of t can not affect the satisfiability of .
That is, t will be satisfiable or unsatisfiable whether the node
is added or not.

The ability to make such an addition, while not adding to the
logical power of E , can significantly reduce the amount of work

necessary to close a given tree if the tree contains an expression

® a where 4 and e are unifiable.

example Suppose we have proved the following theorems:

‘TF
T, = (where <—> AH.oHxyHyx — y+ )
SHxyHyx+

B+

T 5% [ Trans| B [ Sym | H [Refl | H

3 >t [Trens| H [Byd B Befl] H+

X+
wherel Refl| <—> AHe2& = xyV EAweHxw # AzHzxHxy
Def
Def+

T3 states that if H is any transitive and symmetric relation,

then H is also reflexive (our definition of reflexive).

lThis is essentially the same as the first order predicate
calculus formula Ihﬂ.EVﬂVUﬁy)&Ghmmvﬂzﬂmﬁame To
aid in parsing expressions containing defined constants such as
Refl, we shall enclose the defined constant in a rectangle.
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We wish to prove the simple corollary2 l Refl ! = , We thus take

{1 I@! Re—f—l[ = } as the initial tree © and append three nodes, ob-

taining the following:

H

®[Fer] =
2 o @[ Irens] =
@[5y =

4L 6(M>& | Trans] = | Sym| = |[Refl] =

w

The last node appended is recognizable as an instance of the general

expression previously given. Applying O2 tooand to & yields

® [Ref1] =
@[ Trens] =
T@EEJ =

(D) > & | Trans| = [ Sym = | Refl] =

By = 7 ©[Ref1] =
® | Syn] =

% [Tems) -

Since each branch has conjugate nodes, we can obtain a proof
of = by applying multiple closed branch removal.

We note that in the above example it was necessary to truth-

functionally analyze the expression @:D_& lTrans] = | Sym] = [ Refl| =.

This can, of course, be proved directly, however, we wish to
illustrate the use of previously proved expressions.
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Now, it is possible to calculate a truth-function analysis tree for

the expression C)D& ﬁrans]H lSym]H lRefﬂ H wutilizing either algo-

rithm A or E . Had we done this, we would have obtained:

H+

®[frans| i @FmH @Fefl®  [Frons B- Bym B-  [Refl] B+

Here we have assumed that all defined constants, with the ex-
ception of & and 2 , have been treated as undefinedB. If we

substitute = for H in the above tree and associated dpf and

append the result to leaf 3 of the tree

®[Rerd] =
2 CDl Trans|=
30@[Em =

we obtain

®OFemd - OFm- ©Ferl-

3That is depth control has been applied as discussed in
section 3.L4.1.
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Thus, it is more desirable to append a partial truth-function
analysis of the theorem than to append the unanalyzed theorem as was
done in the first case.

We may systematize the above operations by adding the operator

O12 to the existing inference operators of E.

012 ~ theorem utilization

Let t be an ungrounded tree which has been produced by appli-
cation of the inference operators of E and let k be a leaf of t.
Furthermore, let s be a truth-function analysis tree corresponding
to (D Eu which has no variables in common with variables of ts.
Finally, let 0 be any substitution for positive variables of s

The ungrounded tree which results from applying O12 to t,

0 and s 1is obtained by appending so to k and removing any

branches which contain conjugate nodes. Its associated dependency
forest is composed of the trees which comprise dpf(t) and dpf(s).
That is, it is the union of the two forests considered as sets of

trees.

axiom utilization in E

The operator 012 may be applied with axiom as well as theorem

arguments. Suppose we wish to demonstrate that a closed type 1

%:)E is the initial spe corresponding to the provable expres-
sion e . ‘

5This can be arranged either by revising conflicting variables
as a preprocessing step or as part of 012.
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expression B is valid6 in any domain in which the axioms A ""’Ah
sre valid. In the system E, this is equivalent to showing that

®>&h ... A

n—lAnB is unsatisfiable7. 1f we define © +to be the

initial tree
@3&Al &An_lAnB

we can obtain the following tree by applying the operators of E

o,

1o
®B

Thus, if we wish to prove that B is valid in the context of the

axioms Al,...,An, it is only necessary to append the trees

I(ﬁDAi i=1,...,n. As in the case of theorems, we may calculate
the tfat for any axiom A by applying algorithm E of section 3.h.1

to CDIL In particular, if we can obtain the empty tree as a linear

extension of the initial tree I(:)B using O12 with the axioms

Al""’An (as well as using other operators of E)uthen o & Al"'

& A _A B is a theorem of E.
n-1"n

We mean, of course, that B is true for all possible value
assignment in each domain in which A ,...,An are true (simultaneously)
for all value assignments.

T1n infix notation this would be (A & (A, & ... A)..)2 B.
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example Let us define the axiom of extensionality as follows:

Ext <—> D= FxGx = FG8 {o0D = FxGx = FG+}

Agorithm E, applied to a @ occurrence of Ext, produces9

and dpf E+

@ = FG Gk

- //'

® cx xz =TG-+

Gx~ Fx%-(}x\x-—

We shall now outline a proof of the E equivelent of Ext 2 vP(P = AyPy).

The initial tree and associated dpf are

I [
@® = hiyhy = hiyhy

where h 1is a Skolem function. If O12 is applied with Ext (above)

and o = {<h,F>, <\yhy,G>} we obtain:

h+ h-

= hiyhy th + Ry —
T ®hx D= hiyhy _— K\ v

X =hiyhy+

A
Ayhyx~- hx+ Ayhyx+ hx-

@ Ayhyx (D Xyhyx

BSemantically, this is the same as vr(VGe( (Vx (Fx=Cx)) 2 F=G) ).

9he constant "=" is treated as undefined for the application
of algorithm E as discussed under depth control in section 3. h.1.
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Two applications of A-reduction yields:

= hiyhy
@th
C)hx

@ = niyhy
® hx
Multiple closed branch removal produces ¢ thus demonstrating that

L
) —~;9 ¢. This completes the proof.
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CHAPTER 3 DEFINED RULES OF INFERENCE

Introduction

In this chapter we wish to introduce the notion of a defined
rule of inference and demonstrate how specific instances of this
notion may be used to simulate selected proof procedures for the
first order predicate calculus. Since the actual form of a defined
rule of inference is dependent upon synbtactical detailsl which are
p eripheral to the main considerations of this chapter, we shall con-
fine our treatment to a general discussion of the setting and pro-
perties of these rules.

A defined rule of inference is basically a generalization of the
inference operators presented in Chapter 2 which combines the oper-—
ation of one or more inference operators in order to produce system
trees possessing prescribed properties. Specifically, a defined
rule of inference (DRI) is a well defined procedure which accepts
as input a set of wgrounded trees satisfying some prescribed con-
dition2 and solely by application of E-inference operators to these
trees and their descendants, produces a sequence of ungrounded trees.
If this sequence is finite, we then distinguish some subseguence
as the output of the DRI. It follows that an output tree is satis-

fiable if the input trees from which it descends are simultaneously

lThese details are covered in appendix A.
2The E-inference operators given in Chapter 2 are examples of
DRIs. Corresponding to each operator is a set of conditions which
must be satisfied if the operator is to be applicable to a given
input tree. For example,QDd)with given parameters n and k (a spec-
i fic instance of Oo(n,k)) applies to the tree t if the following
properties hold:
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satisfiable. In these respects, & DRI is similar to an E-inference
operator since an E-inference operator accepts a set of ungrounded
trees as inputs (either a singleton or pair), produces & set of un-
grounded trees (a singleton) as output and preserve satisfiability in
the above sense. A DRI differs in gensral from an E-inference oper-—
ator in that it may produce no output set (i.e. it may not terminate)
or an output set consisting of more than one ungrounded tree. The

DRI fpn (fully process node) illustrates some of these ideas.

The defined rule of inference fpn

If t is any ungrounded tree which satisfies the property of
containing a node n whose major connective y has an agsociated
tfat ty, we shall say that O2 is applicable to t at n. Let
K(n) = {km <= k and k is a leaf}. If 0, is applicable to t
at n, then for any k € K(n), 02(n,k) is the result of applying
O2 to n for the leaf k and is the ungrounded tree obtained by
appending tY to the leaf k. Furthérmore, if t is satisfiable,
then Oz(n,k) is satisfiable. Fully processing n produces the
tree fpnl(n) which is the result of applying O2 to n for each
k ¢ K(n). This tree has the property that it is satisfigble if and

only if t is satisfiable. It is an intermediate step in the pro-

duction of fpn(n).

2(continued)

1. n<°_k

o, k is a leaf

3. Ct(n)==()ﬂ>e ) where e and e, are type 1 expressions.
We note in particular %hat properties 1, % and 3 are decidable. In
general , we require that the prescribed input properties, which con-
stitute an applicabllity test for the given DRI, are decidable over
the class of input trees.
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example:
If t is

@a @B @a @ B

The defined rule of inference fpnl exhibits the general char-
acteristics of a DRI. It accepts a set of trees satisfying some
property. (t satisfies the given property.) It produces a sequence
of trees (t and a new tree for each application of O2 to n for
k € K(n)). Tt clearly terminates and upon termination then pro-~
duces the last tree of the sequence as output. It preserves satis-
fiability. Furthermore, the output tree has the property that it
is satisfiable if and oaly ii the input tree was satisfiable. This
latter property continues to hold even if n 1is removed. Thus,
there is no need to retain r . We may thus specify another DRI

fpn which has the same oroperties as fpnl and which produces an out-

put which does not contain n.

fen 1. Apply f‘pn.L to n.

2. Apply node removal to the image of n in the result.

In the above vxample fpn(l) is
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fpn(3)
@/\® T
4 F - P& 1 Q - (Pva) S P& = Q \®- (PVQ)
P -~ P& 4 A P -+ P& = Q
Q Q
- P ~Q
fpn(h)
P zﬁ(PVQ) P - (PVQ)
Q - P& 2 Q (M) Q - P& 2 Q
5 - P -4 Q @4 P ® - Q
M P
fpn(5)
P “‘\(PVQ)
Q - P& 4 Q
P - Q

Continued processing of the remaining tree branches produces the

output tree fep(t).
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It follows by a simple inductive argument that fep will terminate
for any input system tree containing only primitively definable de-
fined constants. Consequently, fep will always produce an output tree
under these conditions. In general, if we place no restrictions on
the input trees (other than that they be ungrounded trees, we can not
even guarantee that fep will terminate. Even if the above input con-
ditions are satisfied, we can still only conclude that fep(t) produces
an output which is mutually satisfiable with the input and generally
provides a deeper truth-functional analysis than the input. However,
it is possible to restrict the class of input trees by strengthening
the input applicability test, in such a way as to be able to guarantee
that the output tree posses$ some rather useful properties.

Suppose that tfat's have been computed for -,y , & , > , =,
and that P is the set of all type 1 expression of the form  ¥v

AR

an R(v ""’Vh) where v, e V has type 1 and R(w

l,...,vn) is a

type 1 expression involving only the variables v sV and the

1°°
defined constants -,y , & , ® , . P is the E-equivalent of the
familiar propositional calculus3'5. If we limit initial expressions

to elements of P, then all system trees will contain expressions in-
volving only = , v - & , © , = and the Skolem functions fl,...,fn
which are introduced for the universally quantified variables Vi

.,vh. If we require that input trees for fep be chosen from un-

3'SThus, in particular, the propositional formula PvQ would have
the E-counterpart VVIVVEVV1V2. Quantification is necessary in the
latter expression since arbitrary formulas may be substituted for the
propositional variables P and @Q in the former formula.
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grounded trees of this class, we observe the following:
1. The output tree representsu a disjunctive normal form for

R(v

l,...,vn).

N

The suffix of the content of every node of the output tree

other than its origin, is an atom.

Since the output of fer is satisfiable if and only if the input
is satisfiable and since a branch containing only atoms is unsatis-
fiable if and only if it contains conjugate spes, property 2 (above)
guarantees that the following simple modification of fep is a de-

cision procedure for P .

1. Apply fep to the input tree.
2. Apply multiple closed branch removal to the result of

step 1.

If we denote the sequence of operations carried out in steps
1-3 by dpp (decision procedure propositional), we observe that dpp
is a terminating5 DRI. Furthermore, if dpp is restricted to initial

trees for e € P, then e is a theorem of P if and only if dpp(0)

:¢_

1 1
M'I‘he DNF for R(vy,...,v,) is (1] & ... & Ll)v...v (Lk & ...

Ly, ). The literal L} is obtained as follows. ~If n is %he ith
nolie of the jth brafich and C(n) = e then LI ={ e if 6 =D
J lheirs=0®

5Excepting the pathological case where the input tree contains
circularly defined constants.
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example If we take O to be I@ - (PVQ) = = P& - Q then step 1

produces the tree

@r @®q OF Q

and step 2 produces ¢. Thus dpp(@) = ¢ and - (PVQ) = - P& ~ Q
is a theorem of the propositional calculus.

Thus far we have considered only DRIs which take one tree as
input and produce one tree as output. The following DRIs (multiple
append and multiple proper forest copy) accept more than one tree

as input and produce one or more trees as oubput.

multiple proper forest copy (one in -~ many out)

If Fl,...,Fn are proper subforests in T then mpfc(Fl,...,Fn) =

{0 (F ),...,OT(Fn)}. We note that mpfc takes as input a single

...,Fn).)

0
7
input tree. (This is implicit in the notation mpfc(Fl,

multiple append (many in - one out)

Ir +t ,...,tn are ungrounded trees, ll is a leaf of tl, 12

)see., and 1, is aleaf of 0 (t

is a leaf of 0 9 n—l’ln—l>’

9 tyody
.,tn) = Og(tn,ln).

sl

then ma(tl,..
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example Suppose T is 9

¢ @ (avB) & (( 2 BVC) & ( 4 CVD))

P DT ——

\V \
Fl o (D AVB . and Fl’ F F3, are

29

o ( 4 8vC) & ( 5 CVD) as indicated.

mpfc(Fl,FQ,Fs) = { I@AVB, I@—, BVC, I@-; CvD}

If tl, tg, t3 are the trees then ma(tl, t2, t.), for the

3

images of the indicated leaves, is the tree

@F @B (gﬂB @c ®c @D

@B D c
®c D

Applications of multiple closed branch removal and node removal

produce the tree /\
M™a o . MDD
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The DRI fep illustrated the fact that the input applicability
test effects the properties of output trees. In certain cases, the
severity of the input applicability test not only effects properties
of the output trees, but also determines whether or not the DRI
terminates for all inputs satisfying the test. The following DRI
is an example of a defined rule of inference which terminates for

certain inputs and not for others.

The DRI bfs (brute force strategy)

Let e ©be any formula of the first order calculus and © =

I(E)M(xl,...,xn) its initial tree. (The variables X;,...,X are
distinct positive variables occurring in the dpf for ©. They
correspond to the existentially quantified variables occurring in

6 . .
e .) Let o5 = {...,<xin+j,xj>,...} i>1l,1<J<n wvhere
k # & implies Xk # %,. If we define Mi to be the ith variant

M(X ,...,%x )0, , 8

| )0, 8) = - M(xl,...,xh) and s:.L = 3 & Mi then the

i-1

DRI presented below generates a sequence of trees tl, tz,...

which represent disjunctive normal forms of Sl’ 82,... and, as

each ti is generated, determines if there exists a substitution

for which causes all branches of ti to close.

X b SR
1° "2° >in+n

Herbrand's theorem7 guarantees that such a substitution will exist

6Recall that since we work with ® e, universal variables of e
correspond to - variables in the dpf for ® e and existentially
gquantified variables of e correspond to + variables.

Tsee [1L4].
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if e 1is valid. Since ti contains only atoms, the question of

closure can be decided using only the unification algoritth.

1
2. Apply unify to T and multiple closed branch removal to

bfs 1. Let tl=fep(®),i=2 and T = ¢

the result. If the result is ¢ then terminate, otherwise
3. Let ti result from appending 03(t1,0j) to each leaf

of ti-l’ set T to ti and i to i+ 1. Co to 2.

Any expression of the first order predicate calculus (H) may
be represented in E9. If we denote the set of type 1 expressions
corresponding to these by Pd then bfs restricted to Pd consti-
tutes a proof procedure for H 1in the sense that it is a proof
procedure for Pd and every element of Pd is provable if and
only if it corresponds to a theorem of H . QSince the class of in=-
put trees for which bfs does not terminate corresponds exactly to
those formulas of H which are not theorems we see that it is im-
possible to sharpen the input test so that it excludes exactly these

input treele. Generally speaking, bfs is a non~terminating DRI

We define a procedure in the appendix which utilizes the wmi-
fication algorithm (applying to pairs of atoms) and which always
terminates with a substitution which closes the given tree or another
value which indicates that no closing substitution exists.

9We note that if e € H is of the form dxP(x) then its repre-
sentation in E is ®xPx.

OIn fact, even if bfs is restricted to P, it will not termi-
nate for those elements of P which are not theorems since the tree
generated at step 3 will never be closed.
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since it will not terminate for certain elements of any set S
(determined by an applicability test) which contains Pd.

We have characterized a DRI as a well defined procedure which
accepts a set of input trees satisfying stated properties, generates
a sequence of system trees, and, if terminating, produces a specified
set of system trees as output. This rather general characterization
may be sharpened.

We note from the preceding examples that a DRI is applied by
executing a sequence of operations whose order and nature condition-
ally depend upon properties of the system trees being processed.
Each operation falls into one of two categories.ll In the first
category we have the inference operators of E , as well as other
DRIle. Since these operations are the only operations which can
produce new system trees, we call them effector operations. The
second category consists of operations which provide the capability
of recognizing arbitrary features which may be present in the system
trees being processed. These operations will be called perceptor
operations and include the applicability tests for the various DRIs
as well as tests which control the order of application of the ef-
fector operations. A simple example of the latter would be the test

for the empty tree.

llFor the purposes of this discussion, we exclude certain

necessary (but peripheral) notions such as counting, recognizing
0 (zero) and similar arithmetically related operations.

12We note in particular that a DRI specification may be re-
cursive. For examples see fep in appendix A.
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If we designate the E-inference operators as primitive effector
operations, we note that any non-primitive effector operation must
ultimately reduce to Primitive effector operations. For example,
i‘pn:.L is defined directly in terms of primitive effector operations
and fep is reducible to primitive effector operations since its con-
stituent effector operations are reducible to primitives.

Analogously, we may specify a set of primitive berceptor oper-—
ations13 and construct non-primitive perceptor operations which are
ultimately reducible to these primitives. The perceptor operation
"clash" used in the DRT which simulates Resolution, is an example
of a non-primitive berceptor operation. Tts specification is given
in the appendix.

Finally, we note that the exact nature of g DRI depends not
only on the sbove considerations, but also upon the language used
to specify the DRI. The procedural nature of DRIs, as well as their
conditional dependence on prescribed data features, requires that
any formal DRI specification language have the Properties usually
associated with brogramming languages. In fact, DRIs may be speci-

fied in any of a number of 1anguageslh. Formalization of DRI speci-

fications within a particular brogramming language is a fairly in-

13These are considered further in appendices A and G. We note
that the primitive perceptor operations in combination with the
language used to specify DRIs must at least allow construction of
the applicability tests for the primitive effector operations.

lhIn appendix A we consider how DRIs may be specified in s
Problem oriented language embedded in the LISP meta language.
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volved problem in its own right.
Since knowledge of the details assocciated with such a formali-
zation are not required to understand the remainder of this chapter,

we relegate them to appendix A.

Simulation of selected proof procedures

In this section, we shall demonstrate how DRIs may be used to
simulate selected proof procedures of Prawitz, Robinson énd Loveland
as well as a semi-decision procedure of Friedman. Each of these
procedures assumes that input expressions are in prenex normal form.
(Friedman's assumes, in addition, that the expression is in Skolem
normal form.) DRIs do not deal directly with expressions of the
first order predicate calculus, but rather with expressions of Pd.
It is thus necessary to describe how expressions in prenex normal
form are represented and dealt with in Pd.

Suppose HR(zl,...,zn) is an expression of the first order pred-
icate calculus in prenex normal form. I is the quantifier prefix,

.7 are

R(zl,...,zn) is the quantifier free matrix and Zysenea,

variables occurring in 1 . HR(zl,...,zn) is represented in Pd
by the type 1 expression H'R'(zl,...,zn). " is obtained from
I by replacing occurrences of Hx with Hix and R'(zl,...,zn)
1s the prefix (as opposed to infix) equivalent of R(zl,...,zn).
Suppose e is an initial expression and that HR(Zl""’Zn)
is in prenex normal form and equivalent o0 <~ e. IFf I = HlHQ

where Hl contains only universal quantifiers and H2 is a
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quantifier prefix beginning with & , then the initial tree for the
expression e will be C)HéR'(zl,...,zn). We note that given
an initial tree © of this form, it is possible to define a termina-
ting DRI in terms of A-reduction and unabbreviation which takes ©
as input and produces as outpubt a system treéee 0% which has the form
C}IV(xi,...,xk) and is satisfiable if and only if © is satisfiable.

(Where x .,xn are those zi which correspond to universal

1o
quantification.) In defining the DRIs which follow, we shall thus

assume that 0¥ rather than © is given as input.

A defined rule of inference which simulates a proof procedure of Prawitz

Given any closed formula E of the 1lst order predicate logic,
there exists a quantifier-free formula M(xl,...,xn) such that E is
valid iff there exists a finife subset of the set S = {M(tl,...,tn):
ti € HF i < n} which is unsatisfiable. F 1is a prenex normal form
for =+ B and HF is the Herbrand universe for F . The question
of validity can thus be reduced to the problem of determining whether
S contains an unsatisfiable finite subset.

The basic method proposed by Prawitz determines a minimal un-

satisfiable subset of 8 (if E is valid) by sequentially examining

where S. = M(X

the formulae S S 1

0> Spoeee . ,...,Xn)&...&

M(an+l’°"’an+n)' For each k = 0,1,... the procedure determines
whether any substitution for the variables Xl""’xkn+n makes Sk
inconsistent. If E is valid, there will exist a k for which

the answer is "yes."
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The feasibility of this procedure hinges on the existence of
an efficient means of answering the question, "Does there exist a

substitution for the variables X

l,...,Xh which makes S incon~

k

sistent?" Prawitz's original procedure made use of the fact that

if Sk is transformed into DNF, then any substitution which makes

Sk inconsistent must make contradictory at least one pair of literals

( of the form P(tl,...,tn), - P(ul,...,uh)) ocecurring in each dis-

junct (i.e. for each disjunct the substitution must simultaneously

satisfy the atomic substitution conditions u1 = tl,...,un = tn).
A pair of literals for which the substitution condition u, = tl
& ... & u = tn is satisfiliable is said to be a possible contra-

diction with corresponding substitution condition w o= tl & .
& u = tn. The entire procedure, hereafter called Unmodified

Prawitz, is given below.

1. Transform the formula Sk into the disjunctive normal

form Dk.
2. PFor each of the m clauses of the disjunction obtained
in step 1, form the condition aiv...va; called Ci’
. . i
where a;,...,a; are the substitution conditions that
i
correspond to possible contradictions among the formulae
. . .th
occurring in the 1 clause.
3. Form the conjuction Cl &...& Cm. of conditions obtained
in 2.

4. Decide whether the conjuction formed in 3 is satisfiable.

(i.e. whether there is a set of substitution conditions,
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one from each Ci’ which are mutually compatible.)

A substitution o which satisfies Cl & ... & Cm will have the

property that for each 1 <1 <m o satisfies ag for some

1< i-hi' Thus each disjunct of D, o will contain a contradictory

k
palr of literals and Dko will be unsatisfiable.

The method given above may be reformulated in such a way as to
avoid explicit development of Sk into DNF. This modified formu-
lation, which includes several additional refinements of the original
procedure, is the version of Prawitz that will be simulated. The

reformulation is as follows:

Let S, be written in conjunctive normal (CNF) form thus

k
(Allv "'V'Alnl) B ... & (AnﬂAv CeV Amnm) and represented by the
following matrix:
All, Alz,...,Aln
1
A = ¢ A21, A22,. .,A2n2 L
L Aml’ Am2” "AmnmA,

A path in this matrix is determined by selecting exactly one
literal from each line. The disjunctive normal form for the formula
is obtained by forming a disjunction of all conjunctions formed by
conjoining literals on paths. The formula Sk is then inconsistent

if and only if there exists a set I of atomic substitution conditions

which has the following properties:
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1. Each path of the matrix contains at least one possible
contradiction such that the atomic parts of the corre-
sponding substitution condition belong to X

D, The substitution conditions in I are simultaneously

satisfiable.

The set I may be determined in various ways. Prawitz sug-
gests, among others, the following:

Take the paths of the matrix in some order. For each path, as
it is encountered, pick out a possible contradiction and form the
corresponding substitution condition. If the newly formed substitu-
tion condition is simultaneously satisfiable with the current ele-
ments of I , then the new condition is added to I . Otherwise,
the procedure backs up to the last path for which an untried sub-
sﬁitution condition exists. If no such path exists, then Sk is
satisfiable - otherwise all substitution conditions formed for the
path and later paths are purged from T , the untried substitution
condition is added to I and the procedure continues with the next
path.

In building the set I it is not actually necessary to con-
sider all paths of the matrix. In fact, it can be shown that if
<Aij’Akp) i # k is a possible contradiction with corresponding
substitution condition a, then in further building I it is only
necessary to consider thoss paths which contain Aij or Akp but

not both.
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Simulation of ]?:c'a;witz'L

Tt has been noted previously that full expansion of a proposi-
tional formula produces a tree which explicitly represents a DNF for
the original formula. Since both versions of Prawitz's method ulti-
mately depend upon the DNF of the input formula, it is possible to
simulate the essentials of Prawitz's method without constraining the
form of the quantifier-~free matrix M(xl,...,xn). However, in an
effort to maintain fairly close contact with the second version of
Prawitz, we shall tolerate the inefficiencies introduced by assuming
the quantifier-free matrix to be in CNF.

The DRI which simulates the above procedure consists of two
major phases: 1) Production of the tree Tk representing the DNF
of B and 2) Determining if there exists a substitution o

k

which closes Tk.

1 Production of the DNF tree for S

s

Theoretically, full expansion of the initial tree I@)Sk

produces a DNF tree for Sk' However, due to the particular form

8 it

assumed for M(xl,...,xn) and the relation between Sk’ 1

is possible to produce Tk in a more efficient manner.

CASE 1 k =0

Starting with the tree I(@)M(xl,...,xn) TO is

obtained by applying the operators " &", "copy", "(@Mv" and

lA formal description of this DRI is given in appendix A.
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"M@~ " as indicated in '"Description of Prawitz"e. This produces
a tree having the property that each branch contains one atom from
each disjunct (clause) of M(Xl,...,xn). Furthermore, if the atom
is part of the literal = Aij then its prefix in T, is "®"

0
otherwise "(D".

CASE 2 _k > O

Let T be the tree resulting from substituting

S for x, in TO. Tk is obtained by appending T to each

leaf of Tk 1" This results in the same tree as would have been

produced by applying the procedure for case 1 to <:)Sk’ however,

it requires less computation.

2 Determining if T, can be closed

The paths in Tk correspond exactly to the paths obtained
from the matrix A. Rather than construct the set 2 of gsimultane-
ously satisfiable substitution conditions, we construct the closing
substitution o. The method used to comstruct o , however, exactly
parallels that used to construct I

Assume that a set of substitutions {Gl,...,Gn} has been
constructed which closes the first n paths of Ti where Tﬁ =
Tkal...on. We consider the n + lS"t path. If this path contains
a possible contradiction (in our case two expressions of the form
C)E%tl,...,tn) and C)IP(ul,...,un) which are unifiable under the

substitution ¢ ) we add Un to this set, and delete from the

n+l +1

2See appendix A.
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remaining paths of Tk all those containing neither ()I%tl,...,tn)

nor @DIP(ul,...,un) or containing both. The process is continued
with the images of all remaining paths in T§On+l' If a path is
encountered which is not unifiable, then the process is backed. up
to the last path for which untried unifying substitutions exist.

If no such path exists then Tk can not be closed and we must con-

sider Tk+ Otherwise if the process backs up to the path which

1
was assoclated with the closing substitution Oi and for which

the untried closing substitution oi exists, we delete Oi’0i+l’

50, from {o .,on} add di and continue as before. If the

1o

procedure processes all paths of T then we are assured that the

k)

substitution o = o has the property that Tko is closed -

0,050
thus if we apply multiple closed branch removal to TkO we obtain ¢.
The DRI thus takes 0 as input, produces a sequence of trees
(each deducible within the type theory logic from the previous one)
and checks each to see if an immediate derivation of the empty tree
is possible using only tree substitution and multiple closed branch

removal. TIf the input formula is unsatisfiable, then some tree Tk

will be generated which closes.

Simulated binary resolution

Tn this section, we shall specify a DRI which simulates a
simplified version of the Resolution logic formulated by Robinson

[34]. This logic is equivalentl to the first order predicate

lEquivalent in the sense that given any formula of the first
order predicate calculus, there corresponds a set of elements of
Resolution logic which is unsatisfiable if and only if the given
formula is valid.
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calculus, has a single rule of inférence and is comprised of sen-
tences called clauses which possess & Very uniform structure.

A complete presentation of Resolution logic is beyond the scope
of the present section. We must therefore assume that the reader is
generally familiar with Resolution and confine our attention to the
following key definitions which derive from a version of Resolution
described by Luckham [51].

A resolvant of two clause52 C and C2 is a third clause D

obtained as follows:

(1) 1If vl,...,vm are the variables of 02, and the highest
variable of Cl in the lexical order is uk, let ¢ =
{<uk+1’vl>""’<uk+m’vm>}' (None of the variables in

ccurs in  C,.
CZC occurs in C; )

(ii) If there is a pair of sets of literalsS, L = {L1°""Lk}
and M = {Ml,...,Mn} such that L < Cys 5
and the set {Ll,...,Lk, Mic,...,Mgc} is unifiable let

and McC

% be the chosen simplest unifying substitution so
that LOO and MQUO are complementary literals; then

D is the clause

(c. - L) o

2A clause is a finite set (possibly empty) of literals (see
footnote 3).

3A literal is either an atom of a negated atom.
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1
(We note that Mi is 4 M if Mi is not a negated literal and

Moif M, is - M.)

Resolution principle

From any two clauses C and Cg’ infer a resolvant of C

1 1

and CQ.

A refutation of a set of clauses T is a sequence Cl’ CQ,...,

Cn of clauses such that each clause either belongs to T or is

inferred from two earlier clauses by a resolution, and Cn = ¢ (the

empty clause). If we denote a set of clauses by T and all resolvants
. . 1 . n+l

of pairs of clauses in T by R*(T); and define R (T) +to be

RL(R?(T)), then it can be shown that ¢ e R(T) for some n if and

only if T is unsatisfiable. The following procedure is thus a proof

procedure for the first order predicate caleculus.

Binary resclution

1. Given an arbitrary formula e of the predicate calculus,
calculate the prenex normal form for - e and transform
its guantifier free matrix into conjunctive normal form.

2. Let C1 &...& Cn be the result of introducing Skolem
functions into the conjunctive normal form quantifier
free matrix obtained in step 1.

3. Let T = {C .,C 1
n

Lo
L. Generate Rk(T), for kx =1,2,... . For each k, test

to see if ¢ € Rk(T).
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Simulation of binary resolution

The logic of Binary Resolution may be embedded in E by estab-
lishing a correspondence between the set of clauses and a subset of
ungrounded trees which preserves the operation of forming resolvants.
System trees which correspond to clauses will be called F-clauses
and the DRI which simulates +the operation of forming resolvants will
be called rslv. In order to establish the required correspondence,
we now introduce the following definitions:

It {Ll,...,Ln} is a clause, then the corresponding E-clause

is the ungrounded tree

4

GlAl 6nAh

where Ai is the atom occurring in the literal Li and

D if L; = A,

$ = and

® ir L, =4
(If C is a clause, and L a literal, then we denote the corresponding
E~-clause by D* and the corresponding E-literal by L¥.) If
A is an atom, then the spe 8 A is called an E-literal. (Note
§ = () or C).) Two E-literals are complementary if their suf-
fixes are identical and their prefixes are different. In particular,
the complement of the E-literal 1L (denoted T ) is obtained by

changing its prefix. The E-literals L = {Ll,...,Ln} are contained
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in the E-clause C (denoted L < C) if each L, is the content
of some leaf of C . Finally, we agree that the empty clause corre-
sponds to the empty tree.

The operation of forming resolvants in Binary Resolution is

simulated in € by the DRI rslv. This DRI is defined as follows:

* *
1. Applicability test Two E-clauses Cl and Cg, whose

patriarchs are on the same branch, are acceptable inputs
for rslv if ¢ is as given in (i) above and the following
modification of (ii) is satisfied.
(ii) There is a pair of sets of E-literals, L* =
% % % % ‘
{Ll,...,Lk} and M* = {Ml,...,Mm} such that

L* E~C§ * and the set {LF

> 1ol
=%

MlZ;,. - ,Mnc} is unifiable.

and M* cC

2. Specification of rslv Let 00 be the chosen simplest

substitution so that LOO and MQOO are complementary

E-literals.

(a) Calculate 0, (cg,c)

(b) Append (09) C, ‘to each leaf of the result obtained
in (a) which contains one of the Mi'

(¢) Calculate O, (t,0.) where t is the tree resulting

3 0

from (b).
(d) Apply multiple closed branch removal to the tree

obtained in (e).
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(e) Apply node removal to each node of the tree obtained
in (d) which contains MiCOO for some i 1 < i <k.
(f) Apply duplicate branch removal repeatedly until no

duplicate branches remain.

Remark It Ci and CZ satisfy the applicability test given above,
then rslv has the following properties:
1. It always terminates
2. Its output rsiv (C;, CZ) is an E-clause whoseé leaves con-
sist entirely of the E-literals corresponding to the
- L)o

literals (C Y] (02 - M)goo.

1 0

Each of the above steps ((a) - (f)) constitutes a DRI. Since
each terminates and is executed only once, rslv must terminate.
Furthermore, all steps will be executed since the applicability test
for each is satisfied. Part 2 of the above remark is justified by

the following considerations:

Without loss of generality assume that Ci has the form

¥
and 02 the form



166

Execution of steps (a) - (f) produces the following sequence of sys-

tem trees.

(a)
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(4) By hypothesis, the indicated branches are closed. Thus, execution

of (d) produces

(e) Removal of the indicated nodes is allowable and produces

(f) Finally, multiple applications of duplicate branch removal

yields

(c.-L)o

This is an E~clause and corresponds to the clause (Cl - L)

00 U (C2 - M)coo which is the resolvant of C1 and C2.
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We thus note that if Cl’ C2, D are clauses corresponding to
the E-clauses Ci, C; and D* and if D is the resolvant of C1
and C2 then p* = rslv(Ci,CZ). Thus, whenever it is possible to

infer the resolvant of two clauses within Resolution logic, it is
possible to infer the corresponding E-clause within the framework of
E . We are now in a position to specify a DRI which simulates Binary

Resolution.

E-Binary Resolution

We assume an input @?e where‘ 0¥ 1is obtained from the initial
tree O for the Pd equivalent of the expression obtained as the
result of step 1 of Binary Resolution. (O* is described on page

. . 1o s
.) The input © has the form @& Cy &...& Cy ,Cp E-

Binary Resolution is divided into two phases. We note that each is

a DRI.

%
Phase 1 Obtain the constituent E-clauses T* of 0 .

(a) Apply O, (relative to (M &) N - 1 times

this produces

I@& Cy--+& Cy_+Cy
@c,
@& Cye.a8 Cp o€

N-1"N
@c,

I@)CN-_‘L
Mc

N
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Each node having content of the form @ C_.L
determines a proper forest of this tree. Thus,

for each 1 < i <N apply O7 to produce the

ungrounded tree I@ C,

(b) Apply fpn to each ungrounded tree i@ C; formed

in (a). This produces for 1 < i <N

i, i1
(SlAl (SniAni
i, N .th
where 'Aj is the atom contained in the
; ;@ ir Lé = AT
litersl L of C, and 6, = ‘I
J Jo® ir Ly = A

The DRI specified by steps (a) and (b) thus takes the single
*
tree 0 as input and produces a set of E-clauses corresponding to the

constituent clauses of the content of 0',

Phase 2 Form the sets corresponding to Rk(T) for k = 1,2,...
(a) Let X =T (the E-clauses produced by phase 1).
(b) Form R (X) by applying rslv to each pair of elements
of X satisfying the applicability test for rsiv.
(e) If ¢ e R (X) then terminate. Otherwise,

(d) set K =R (K) and go to (b).

The following is an example of E-Binary Resolution simdlating
Binary Resolution applied to the formula VxVyVz(x=y & y=z>x=z)>

Vulww(u=v & ve=v & w=s>Du=s).
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example

0¥ is & C. & C. & C & C),C; where C

1 = V - = =] - i
1 5 3 is Va=xyva=yz=xz; C, is

1 2

= flfz; C3 is = f2f3; Ch is = f3fh5 C5 ig =5 = flfh' fl’ f2, f3, fh
and f5 are Skolem functions of zero arguments introduced for u,

v, w and s respectively. Phase 1 produces the E-clauses

t £
T* = o/////////I\\\\\\\\\o , 1 s
®=x ®=yz O=xz @= 1,1,
iB iu iS
©= 1,15 @= 151, ®= 11,

tl and t2 satisfy the applicability test for rsiv. We thus obtain

the following sequence. (Note that ¢

¢, 05 = {<f,x>,<f,5>}.)
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Thus rslv (tl,tg) is

@ﬁféz C)flz

Tn a similar manner, wWe obtain the remaining elements of Rl(T*).

. e t
s /\ /\

Q s s

®= f,z @= 1z ®= xf; D 5

= xT

5 12 1
R=(T*) - RY(T*) = I 1



R3(T*) - BE(T*)” /\ , /\
= xf
= )z = T,z M= x
%
‘RL‘(T*) - R(TH) = 1 RO (T*) - RM(T*) = {¢} .
©= 1,5,

We may thus obtain a refutation of {tl’tQ’tS’th’tS} as indicated

below:

\\\ /// ///’ (note t /////t
9 e
e

\\\tlg\\ ////th t6=rslv(tl,t2))
g ///t5
AN

[
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We note in conclusion that given any Binary Resolution refuta-
tion of a set of clauses, there corresponds an E-Binary Resolution
refutation which can be obtained by applying the phase 2 DRI to the
E-clauses produced by the phase 1 DRI. There is also reason to be-
lieve that given any strategy for producing resolvants, there exists
a DRI which simulates it. In particular, Pl—Binary Resolution [35]
can be simulated by strengthening the applicability test for rslv.
This can be accomplished by requiring that one of the input clauses
be positive and the other negative (i.e. all literals of one be of
the form ().A and at least one literal of the other be of the form
@ B). If we wish to insure that the resolvant possess a certain
property, we can define a DRI which applies rslv to the inputs and
tests the result for the property. If the property is satisfied,
then rslv(Cl,Cg) is the output, if the property is not satisfied

then the DRI is not applicable. Semantic Resolution [L0] would be

an example of a type of Resolution requiring this kind of DRI.

gimulated Model FElimination

The Model Elimination proof procedure proposed by Loveland
[20] is similar to the Binary Resolution procedure presented in the
1ast section. Both procedures operate upon gsets of clause—likel
elements representing the negation of the formula being processed

and attempt to produce a terminal element which is manifestly un-

lIf clauses are considered to be sets of literals rather than
disjunctions of literals then Resolution deals with clauses and
Model Elimination with ordered clauses.
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satisfiable. In addition, both procedures produce as a result of
applying their respective inference operators sequences of inter-
mediate elements, which possess the same uniform structure as the
initial input elements.

Model Elimination, however, differs from Binary Resolution in
several respects. Unlike Binary Resolution, Model Elimination deals
with sets of ordered literals. Further, Model Elimination requires
three inference operators where Binary Resolution requires but one.
Detailed specification of a Model Elimination proof procedure is
thus somewhat more complicated than the specification of a Binary
Resolution proof procedure since the relative order of inference
operator application must be taken into account.

Several Model Elimination papers have appeared in recent years.
The procedure outlined below is one of three presented in [20].
Because a complete presentation of this material is beyond the scope
of this thesis, we will assume that the reader is generally familiar
with Model Elimination.

In the Tollowing discussion, the notions of clausevand literal
will have the meanings given in the last section. Additionally, we
let T stand for the set of clauses which represent the negation of
the formula to be processed.

Model Elimination deals with clause-like elements called chains

which consist of ordered finite sets of literals. Elementary chains

are those finite sets of ordered literals which are obtained from

clauses. The initial stock of chains is called the auxiliary set
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(denoted MO(T)) and consists of certain elementary chains. 1In
particular, there is one elementary chain in MO(T) for a given

clause of T with a given first literal. Literals comprising chains

are partitioned into A-literals and B-literals. Elementary chains
by definition contain only B-literals. Arbitrary chains may con-

tain both. A chain is preadmissible if three conditions are satis-

fied:
a) Complementary B-literals are separated by A~literals.
b) If an A-literal and B-literal are identical, then the
B-literal must precede the A-literal.

c) No two A-literals have identical atoms.

A chain is admissible if it is preadmissible and its last element is
a B-literal.

The Model Elimination procedure to be simulated, possesses
three operators which produce new chains from existing chains. Bach
operator accepts one (or two) input chains satisfying stated con-
ditions and produces a single output chain called the derived chain.
A deduction consists of a finite sequence KO,...,Kn of chains such
that Ki+l is derived from Ki 0<i<n-1.

The operations used to produce derived chains are defined be-
low. In each case we shall assume that unless otherwise stated
the classification of a literal in the derived chain is hereditary
(i.e. if a literal L1 in the derived chain is derived from the

literal LO in an input chain, then Ll is an A-literal (B~

literal) if L is an A-literal (B-literal)).
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Basic Extension The input chains are an admissible chain X and a

chain C € MO(T). Let I, be the last literal of K£K2 and L,
the first literal of Cnc3. If a matchh is possible between Ll and
LE’ then let o be the most general unifier associated with the match.

@f no match is possible, then Basic Extension is not applicable %o

the input chains.) The derived chain is obtained by deleting L20

f rom Cnco and appending the result to KEKO. The literal Llo

becomes an A-literal.

Basic Reduction The input chain is an admissible chain K. A match

is sought for some A-~literal L. and a B-literal L2 following L, in K.

1 1

(If no match is possible, then Basic Reduction is not applicable to

K.) Let o be the most general unifier for Ll and L2' The derived

chain is obtained by deleting LEO from Ko.

Basic Contraction The input chain is a preadmissible chain K. The

derived chain is obtained by deleting all A-literals from K which

follow the last B-literal of K.

QIf Vis...,V, are variables occurring in E, then by E&E we mean
the chain obtalne% by applying the substitution &g ={. s SX; L, V52 -
to E. (Note: for no i and J is it the case that xl = Vj'

3Same as footnote 2 except the substitution np = {...,<yi,vi>,...}
is used. The sets {vl,...,vk}, {x1,..0ox ) and {y3,...,y} are always
assumed to be pairwise disjoint.

L

Ll and L2 has a possible match if there is a most general uni-

fier o for their atoms and L,o0, L,0 are complementary.

1 2
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The Model Elimination Procedure Cl

Commencing with the auxiliary set MO(T), the three operations
given above may be used to generate a sequence of sets of chains
0 « C- « C- < ... having the property that the set T is unsatis-
figble if and only if there is some N such ‘that the empty chain
{consisting of no literals and assumed to be admissible) is an ele-

ment of Cl. The sets Ci are defined as follows:

N
1
= T
¢y M (T)
1 . .. . .
Cn = {K : K is an admissible chain deducible from MO(T) whose

deduction contains at most n applications of Basic Extension.}

The Model Elimination proof procedure C1 thus consists of

generating the sets Cl C:L

0° G 0t and checking each for the presence

of the empty chain. If T is unsatisfiable, then Cl will always

terminate. If T is satisfiable, then it will not.

Simulation of Cl

Within the framework of E , and arbitrary chain L:]L_,...,L:L ,

™

2 12 L. 15, L LF with the A-literals I~ 1<i <k -1
1’ n, 1 ny n, -7 =

has the following representation:
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Where the order of the literals is indicated by the dashed line and

where A; is an atom and

il
B>-

® if L
j
§ = and

® ir Lé-in,

In particular, we allow the case where a node containing an A-literal
has no successor or only a single immediate successor. (In the
latter case, if the A-literal is not the last literal of the chain,
then its immediate successor is also an A-literal.) An elementary
chain has the same representation as a clause, (see the previous
section). We shall denote the system tree corresponding to the chain
K by K*¥.

The proof of procedure Cl can be simulated in E in the sense

that given a deduction K _,K

0 1""’Kn of the chain K, it is possible

R
n

K using the

to produce a sequence of system trees Kg,K

5In this particular case, the correspondence between K. and Kz
implied by the notation is slightly inaccurate. The exact ~corre-




three DRIs ext, red, and cont specif

the Model Elimination operators Besic Extension, Basic Reduction

and Basic Contraction respectively.
. . 6 .. .
minor differences , it is true that

KA and KB produces KC or Basic

KB or Basic contraction applied to

* % ¥y_ ¥
or red(KA)—KB or cont(KA)-KB.

The DRIs ext, red and cont are

ext The input E—chains7 are an admissible
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ied below. These correspond to

In fact, if we ignore certain

if Basic Extension applied to

reduction applied toe K, produces

K produces K

A B’

defined as follows:

A
then ext(

*
KA’

E~chain K* and an ele-

% .,
mentary E-chain C € MO(T*). (Recall that an elementary E-chain

ig obtained from an elementary chain as indicated above. )

*
1. K & and CF are formed
K n
C
3
tween the last literal Ll
L. of C*n

2 C

Let o be the most general wnifier of the atoms of L

and L,.. Form the restricted append of K*QK and C*n

2

by applying 03(K*

of K*gK and the first literal

let the result be t. Apply 03(t,o).

,EK) and

0 (C*,nc) respectively. (If no match is possible be-

then ext is not applicable to the inputs.)

1

C

5(continued) spondence may be inferred from the definitions
of the DRIs ext, red and cont and is discussed at the end of this

section.

6

and

These differences are discussed at the end of this section.

T

An E-chain K¥ is the system tree vhich represents the chain K.

Here we use the same sort oi notation as in the last section.

¥ *
KB)OKC
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2. a) If C*nc contains only one branch, then ext (x*,c*) =
Og(t,o)
b) If C*n con sains more than one branch, then

C
ext (K¥,c¥) s the result of applying multiple

closed branch removal to the branch of OB(t’O)
which contains the literal corresponding to LQ'
3. The literal of ext (K*,C*) corresponding to Ll is de~

signated an A-literal.

ext example
Let ’KO be d///){\ and tl be
@ rFela)x @Fely)a ® rela)x @ Fyy
step 1 produces
@ Fela)x, O Falx,)a ® relaly, @ Fyv,
C)Fg(xe)a C)Fg(a)xl D rgla)a
C}Fg(a)xl
® Fs(aly; @ Froy, ®rFe(a)a @Fy,y,

where o = {<a,x2>,<a,yl>}
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steps 2b and 3 produce

C)Fg(a)xl M rgla)a
\) @ Fy,v,
(Note that A-literals are indicated by square nodes. )

red The input E-chain is an admissible E-chain K*. A match is

sought for some A-literal L and a B-literal L following L

1 2 1

*® -
in K . (If the match is impossible, red does not apply to the

input.) Let o be the most general wnifier for the atoms of Ll

and Lg‘ If L2 is not the last literal of K% then red(K*) is

the result of applying multiple closed branch removal (Oh) to the

It L is

branch of O (K%,G) corresponding to the literal L2. 5

3

the last literal of K* then red (¥¥*) = o_(x*

G ).

red example

Let K2 be

@ rgla)x O rFg(a)a
AN

\D
\@DFaa

®rela)y

there is a match between @) Fgla)y and (M Fgla)a with o = {<a,y>}
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) is

since ®Fgla)y is the last literal, red (K2

cont The input E-chain is a preadmissible E-chain K* ‘which con-
tains at least one A-literal and whose last A-literal is followed
by exactly one B-literal. The E-chain cont (K*) is the result of

applying multiple closed branch remcval to the last branch of k¥,

cont example Let K3 be red (K2>’ then cont (KB) is

@ Fgla)x

The following example illustrates the use of the preceding DRIs.
It is essentially the E-equivalent of the example presented in

[20].

example Refutation of T = {Fg(a)xV Fgl(y)a, =~ Fgla)x V Fyy,

-« Fax v = Fg(x)y} MO(T*) contains the six E-chains
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t t

AN AN

@ Fe(a)x @ Fely)a @Fely)a @ Fela)x @ Felalx

K. is = ext(K_ ,t.) —
o T AL & 0>z’ ==

< \ —

D rglala
@ rela)x @ Fely)a @ Fela)x
@ Fyy
K2 = ext;(Kl tl?/\ K is red K’g)
@Fg aj)a

@ rFgla)x

T\%a

® rFelaly ® rglala

K, is rontK)Z I KSlS ex’rKh, 70\

Fg(a)
@ Fala)x \Qg a)x

@ Fyy
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K6 is ext(KS,tu) W? K,_( is cont(K6) = ¢

/

> D Fela)x
() Faa

o @ Fgla)y

This refutation corresponds to the Model Elimination deduction given

below.
Given clauses 1. TFgla)x v Fgly)a
II. - Fgla)x v Fyy
III. - Fax v - Fg(x)y
Deduction (A-literals are underlined.) Reason
1. Fgla)x Fgly)a Initial chain I
2. Fgla)x Fgla)a TFyy Extension using IT
3. Fgla)x Fgl(a)a Faa - Fglaly Extension using III
L. Fgla)x Fg(a)a Faa Reduction
5. Fgla)x Contraction
6. Fgla)x Fyy Extension using II
7. Fegla)x Faa =+ Fglaly Extension using III
8. Fgla)x Faa Reduction

9. ¢ (Bmpty chain) Contraction
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The primary differences between the Model Elimination operators
and the DRIs given previously have to do with the contraction oper-
ation. We note that immediately preceding any contraction (in the
Model Elimination procédure) either a reduction operation or a de-
generateB extension operation must have been applied. In either
case, the removed B-literal is the conjugate of some A-literal.
Since the logic of & allows only closed branches to be removed, this
literal is required to justify removal of the A-literals during con-
traction. Thus, the DRIs ext and red behave exactly as their Model
Flimination counterparts with the exception that under the appropriate
conditions, the B-literal necessary for contraction is left in the
output E-chain. The DRI cont then removes this B-literal as well
as a1l A-literals following the next to last B-literal. That the
DRI cont removes the correct A-literals is demonstrated as follows:

Suppose Ll""’Lk""’Ln—an is an admissible chain in which
Lk-l and Ln are B-literals and Lk’Lk+1""’Ln-1 are A-literals.
Further assume that Ln i the complement of some preceding A-

literal. Basic Reduction then produces L .50 . ol with

Rk LR n-1

o = ¢ (the empty substitution). Basic Contraction applied to the

result produces Ll""’Lk—l' Now the E-chain for Ll""’Ln is

gA degenerate extension is an extension in which the chain
chosen from MO(T) consists of a single literal. Thus, after a
degenerate extension, no descendant literals of this chain occur
in the derived chain.
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where the order of literals is as indicated by the dashed line,
the DRI removes the branch segment which extends from the node
containing 5iAi to the leaf containing énAh. This is due to
the fact that since there are no B-literals in the sequence

L

k""’L

1> none of the nodes containing SkAk,...,S A has

n-1 n-1
more than one immediate successor. Further, by hypothesis Lk—l
ig a B-literal and thus the node containing the A-literal which

ig its immediate predecessor has more than one immediate successor.

Thus the DRI cont produces

s . S-1k-1
1+1%41
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which is the €E-chain for L

y D

1777 k-1

Finally we note that the correspondence between the operations
of the Model Elimination procedure and the DRIs ext, red and cont
while not exact, is sufficiently close as to allow any seguence of
Model Elimination operations to be mimicked by these DRIs and vice
versa. The E-equivalent of the classes Cé,Ci,... may thus be formed
in exactly the same manner as is done in the Model Elimination pro-
cedure Cl. If the empty tree is produced at any stage, then we
have produced a proof of the initial expression within the logic E
since Olo may then be applied to the tree containing the patriarchs

of the initial E~elementary chains.

Simulation of Friedman's decision procedure for the prefix

(Fy, ) Ey, ) (Ve ). (2 )

The last system selected for simulation is the decision pro-
cedure of Joyce Friedman for the class of first order formulas whose

Skolem Normal form is (Hyl)(ﬂyg)(Vz )...(Vzn)M. This system,

1
while the simpler of the two systems presented in [10], is suffi-
ciently different from those described previously in this thesis

as to provide an interesting example of DRI simulation. Because

of the relatively complicated nature of this system, we must refer
the reader to Friedman's paper for detalls, examples and motivating
discussion. The following outline is included mainly to provide a

reference point for the discussion of the simulating DRI.

We assume that the input formula has the form
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(1) @y ))@y,)(Ta). . (T2

where M 1is a quantifier free matrix containing the N functional

l""’FN' Further, it is assumed that all permissible

elementary parts are included in M?. Let Al""’AmA be the ele~

variablesl F

mentary parts occurring in M . It is possible (in theory) to con-

struct a table for (1) whose columns have the heading:

vy ‘ y2 t Zl l BN ‘ Zn ' A1 ' A2 ' I i Am

Fntries for the first n + 2 columns are natural numbers whose cholce
depends on the exact form of the prefix of (1). The remaining
colums contain instances of the elementary parts which head the
particular colum. The particular instance is determined by the
values assigned to the variables MK Vs Zl""’zn for the row in
which the given instance is to occur. The reader is referred to
[10] for details and examples of the exact construction of this
table. For our purposes, it 1s only necessary'to know that a given
row of the table contains specific values for each of the variables

that the values of =z XN depend upon values

Yo Yoo Zysees?y 100
arbitrarily (but systematically) assigned to Vs Too and that the
instances of the elementars parts within the row are determined by

the values taken on by the variables in the row. The table, in

1 . - .
Functional variables are here taken to mean predicate letters.

9 - . F
For example, if M coes no contain the elementary part

:v. , then replace M witl the equivalent matrix M & (= Fizjylv
{See Friedman [101})
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essence, amounts to instantiation of (1) over its Herbrand universe.
It can be demonstrated that (1) is a theorem if and only if it

is not falsifiable in the decision table described above. In order

that (1) be falsifiable in this table, it must be possible to con-
sistently3 assign truth values to the elementary part instances in
each row in such a way that the corresponding instance of M is
false.

In considering possible truth value assignments for each of the
rows of the decision table, it is only necessary to consider those
truth value assignments which cause M to be false. These are called
falsifying systems for M and can be computed for a given M in a
straight forward manner.

Friedman observed that the consistency requirement (mentioned
above) limits the choice of possible falsifying systems for a given
row of the decision table. Choice of a given falsifying system for
a particular row may, for example, make it impossible to falsify
some other row or at least make it impossible to falsify some other
row with certain falsifying systems.

Friedman's decision procedure utilizes these observations (in
the form of three rules) to reject certain falsifying systems or
certain combinations of falsifying systems from the set of falsi-
fying systems for M. The first two rules reject falsifying systems

whose assignment to one row of the table would make it impossible

3For example, an elementary part instance such as F.(1,2) night
oceur in two or more rows of the table. The truth value assignments
for each of these rows must assign the same truth value to each
occurrence of Fi(l,E) iT the assigaments are to be consistent.
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to falsify some other row. The third rule determines when a pair
of falsifying systems conflict and splits the set containing these
into two descendant sets, neither of which contains both elements
of the pair.

Commencing with the s=t Sf of falsifying systems for M,

rules 1, 2 and 3 are applied to Sf and its descendants to form
the sets {Sl,...,S; }. For any formula of the form (1), there ex-
i
ists a K such that rules 1, 2 or 3 do not apply to any of the sets
. K K "k K :

comprising {Sl""’sn }. If })1Sj = ¢, then (1) is a theorem. ITf
n K J=

k
jgl S? # ¢, then (1) is not a theorem. Rules 1, 2 and 3 are pre-

sented for reference below. They are stated exactly as in [10].

Rule 1 Let the elementary parts which contain the functional

variable Fi and none of the individual variables Zl""’zn be
Ail’AiE""’Aihi' For each possible set of truth-values al,
Bo5e e sy, if there is no remaining system of S in which
a, 1is assigned to all of the elementary parts All’AlE"°"Alnl’
a, 1is assigned to all of the elementary parts AEl’AQZ""’AQng’

and ay 1is assigned to all of the elementary parts ANl’ANQ""’ANhN,

and in which the assignment to any two elementary parts Bl’ B2 is

, Y2 Lo . X 2

the same whenever S B1| is identical with Sy B2 , then delete
1 1

from 8 all systems in which for some individual variable u,

Fl(u,...,u) = g F2(u,...,u) =a ..., and F _(u,...,u) = By

1’ 2 N
L . YieeVp .
The notation & x D| means the same thing as Do where
e X

o = {""<Xi’yi>""}'
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2 5 ible set of ftruth-va N
Rule 2  For each possible set of truth-values 81> 850 sy >

if there is no remaining system of S in

parts A are assigned th

11° A12""’ANhN

all’ al?""’aNh , delete from S:
N

(a) all systems in which the elementary parts 8§

assigned a,, (i = 1,...,N; A =

1A

N
which the elementary

e respective truth-values

yiye l
Vo¥yy 1A

l,,..,hi),

(b) and all systems in which for some j, 1 < j < n, the

A
elementary parts 872 Aik are

assigned a,, (i =1,...,N;

1A

(¢) and all systems in which for some j, 1 < J < n, the

Y1y
elementary parts S e Ai are

z,
2]

A= l,...,hi)

assigned a,, (i =1,...,N;

(d) and all systems in which for some Jj, k, 1 < j < k < n,

Y190
the elementary parts S ° A,
Z,% iA
Jk
(i = 1,...,0; x = l,...,hi).

Rule 3 If there is no remaining system

] are assigned &

in which the elementary

parts Fl(yl,...,yl), FE(yl""”yT)’°"’FN(yl°""yl) have the

respective truth values a ,...,aN and in

FQ(YQ,---,yg),---,FN(yZ,.. ,yg) have the
then form, from S , two scts such that:

all systems of S except hose in which

Fo(u,...,u), F (u,...,u),. o0 (u,...u)

1 2

for some individual varisgbie u; a1d (2)

which F1<y2"" ),

93"2
truth-values bl’bz""’bN’

(1) the first contains
the elementary parts

are assigned @, ,...
& 120 2%

the second contains all



systems of S except those in which oo elementary parts F {t,...,t),

Fp(t,,..,t)j..a.,FN(t,v.,.,;tj) are assi 3By

vidual variable T .

Simulation of the decisjon procedure

In discussing simuwlation of ths decizicn procedure given above,

we shall employ the same approach in previous sechtions

of this chapter by establis

falsifying systems and certain
pondence between the three rulez given
below.

We first note that demonstrating (1) is not falsifiable in the

nonstrating that the formula ob-

decision table is equivalent to
tained by negating (1) and introducing Skolem funchtions is unsatis-

figble. This follows immediately fFrom the fact that the instantia-
J

tion effected by the decision tabie treats the variables ¥y and

o

ied {which indeed is the

y, as if they were universally guanti
case if we are dealing with the negation of (1)) and the variables

Zysees,% 88 functionally dependex t on y, and . Thus the first

“rolem Tunctions

n + 2 colums of the table, in & Tect, introduce
into the negation of (1). iMnall, we ncte that demonstrating M
ig Talsifiable in this contexi is esqulvalent to demoastrating -+ M
is satisfiable.

Now suppose that © is the in'tial tree corresponding to the

£
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P’ equivalent of (1). Application of the DRI fpn6 to @ produces

an ungrounded tree which contains only literals and is satisfiable
if and only if O is satisfiable. Furthermore, it is always possible
to transform (1) into an equivalent formula (élso in Skolem normal
form) which has the property that application of fpn to its initial
tree produces a saturated treeT. We shall thus assume without loss
of generality that (1) has this form. The tree resulting from the
application of fpn to © will be denoted by S? . We note that any

o]

branch of D? has the property that each elementary part of M
occurs as content of some node of the branch and that the truth-
value assignment implied by the branch8 causes M to be false. 1In

fact, the nature of E 1is such that any truth-value assignment,

*
which causes M +to be false, will be represented in 8 by some

£
*
branch. Thus Sf constitutes the set of falsifying systems for
Mg. Viewed in this context the rules discussed above (rules 1, 2
#
and 3), in effect, cause branches to be removed from Sf under

certain specified conditions. The three DRIs presented bhelow, which

correspond to these rules, do exactly this.

5It will be recalled that Pd is the subsystem of E that results
from embedding the first order predicate caleuwlus in £ .

6Fully process node. (This IRT was discussed in the introduc-
tion to this chapter.)
T

Each branch contains each elementary part in M.

8Thls is determined by assigning the atom A the truth value
Tif 03]— = (D) L1=<51A1) and F if al =(P.

We note that given an arbitiary formula of the form (1), a
saturated system tree having the property that it is satisfiable
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The logic of € is such that only hranches which are closed may
be removed from a system tree. Thus, we can not arbitrarily remove
a branch without violating the consistency of &. Friedman's rules,
however, not only specify under what conditions a branch is to be
removed, but also suppy exactly enough information as to determine
a construction within the framework of € which justifies remcving
the branch within the logic E. As an example, consider rule 1.

If rule 1 spplies, no remsining falsifying system of S has

the properties stated and the rule then specifies that if SO is

a system such that for some variasble u it is true that pre-

0
(tye e u)

scribes the truth-~value assignments F (u,,. u) = a

1

L © e

. F
1’ N

= aN, then SO may be deleted. Friedman justifies this rule as

follows: If we consider a general row of the decision tdble, it

assigns the variables yls y23 Zl’"'"’zn natural numbers kl’ k2’

My e e Sl respectively. IElsewhere in the table there must exist

"uniform'" rows which assign vy and Vs the numbers k., k. k2’

1° 7

k2; mj, mj (3= 1,...,0). If any system.eliminated by this rule

were used in the general row, it would be impossible to falsify at

least one of these uniform rows. This proof outline may be utilized

%
to motivate removal of the branch of S corresponding to S

-~

* X
Suppose that we represent bf scuematically as

e

9 . . . R .
(continued) if and only if S°. is satisfiable may be constructed
without first transforming (1). "This tree generally will represent
the falsifying systems for M in a more compact form than S, .
L




*
,P are the paths of S which correspond to the

-
where ll"“ b Sp

falsifying systems of M. (Note that ST do not appear in
this notation since the zis have bheen replaced by Skolem functions
of the variables yl, ye.) If rule 1 is applicable to the set of
falsifying systems of M and if its application causes the falsi-~
fying system corresponding to P to be deleted, then the following

1

#
conditions hold in Sf:

There exist truth-values al,...,aN and & u such that

1. For 1 <i <N P assigns Fi(u,...,u) the truth-

value ai

and
.}(.
2. For each path P of Sf
either a) there exist an 1 and Jj such that ai is
not assigned to A, (1 < j < h,)
ij i S |
or b) there exists Pl and B2 such that
< o> = T < >
Blf Yy, 1 E, { NS }  and Bl’ 32
are assigned ccnjugate truth-values.
\ . - ~ 10
Now u 1is one of the following, yl, y?, Zl""’zn . We thus

define o as

( teypayp>d i m=y,

o = < {eyyoy >t if u= Vs
L {<ii’yl:’<£i’y2>} if u=12z, (L<1i<n)

Oiere we use 2. to denote fi(yl’y2) where f, is the
Skolam function introéuced Tor z,



196

%

Let t Dbe the result of appending 5 ¢ +to the leaf of B, which
T I
determines the branch P.. The tree t may e represented sche-

9
A

matically as

vy ;y“2>
/ \
// Pl . ¥ Pp
,///
—
P.o f.{ o % P o
1 I

We shall now demonstrate that all paths of t , which contain Pl
as an initial segment, close. It will then follow that spplication
of multiple closed branch removal to sach of these paths produces

the system tree

7
\\
% N
P2 o Pp
* .
i.e. Sf with Pl removed. Thus, if the falsifying system S4
corresponding to the path Pl of S; can be removed by application

%
of rule 1, then P.L can be removed fronm Sf within the framework
of E. Demonstration that Pl may be removed follows:

*
Let us partition the paths of Sf into two classes C1 and

Cg' Cl consists of those paths for which 2a holds and 02 those
*
for which 2b holds. (Since rule 1 is assumed to apply to Sf

%
each path of Sf is in one of these classes.) On the path Pl’
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it is true by hypothesis that Fi(_u.}.,. ,2u)  is assigned a (L < 1 < N).
Further, for each path there exists 1i_, j such that A, . is not
G 0 1030
assigned aio. Suppose u = vy Then, Pl assigns Fi(yl,...,yl) the
S
truth-value ai. In SfO, Aiojoo = Fio(yl,...,yl) since, by hypoth-
esis, Aij contains only the individual variables yl and yg. Now
A, and A, ., 0 must be assigned the same truth-value (since P.g
1.J 1.J k
0“0 00
is a substitution instance of Pk> and this is not a; - Thus,
.

0

each path containing F as an initial segment and a substitution

1

instance of one of the elements of Ol as a final segment, assigns

Foo(yeoene sy ) the truth-values a, and a, . This means that
1o 1 "1 Iy 15
the prefixes of the two occurrences of this elementary part are con-

Jugate and thus the path closes. An identical argument holds for

u=y2 or u = Z,.

i
Finally, if a path P Tbelongs to 02, then there exist Bl’ B2
such that Bl {<yl,y2>} = B2 {<yl,y2>} and Bl’ B2 are assigned con-
%
Jugate truth-values. But, on the path Pg of Sfo, Blo = B,o thus

Po  has conjugate nodes and “hus closes.

The above observations lead us to define the DRI rl as follows:

*
rl Let 8 be a system tree representing some of the remaining
falsifying systems of M then

1. Define the applicability test for rl exactly as in Rule 1

~

(reading "path" for "system").
* #*
2. Append S ¢ to the path of 8 designated by Rule 1 (o

was defined above).
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3. Apply multiple closed branch removael to the paths of the

=
result of step 2 whose final segments occur in S o.

*®
From the above arguments, we see that if S corresponds to
some set of Friedman systems 5 , and application of Rule 1 to S

* *

produces Sl then application of =1 to B8 produces Sl' The

DRI r2 which corresponds to Rule 2 also has this property.

r2 Let S% be a system tree representing some of the remaining
systems of M then
1. Define the applicability test for r2 exactly as in
Rule 2 (reading "path" for "system").
2. Append Sﬁgc to the path of S96 designated by Rule 2
(6 and & are defined below).
3. Apply multiple closed branch removal to the paths of

®
the result of step 2 whose final segments ocecur in S o.

If Rule 2 subpart a applies then o = {<y2ﬁx1>,<yl,xz>}
and £ = [<-X—_L ay1> -_,<X2 sy2>}

If Rule 2 subpart b applies then o = {<Qj,y2>} and &£ = ¢

il

If Rule 2 subpart c applies then o {<y2,xl>,<£j,xﬁ>}

and g = {{Xl ayl>><x2 5:\/2 >}

il

If Rule 2 subpart d applies then o {<£j,y1>,<£k,y2>

and § = ¢

It can be demonstrated by analysis of the cases a, b, ¢ and 4,

using arguments similar to those used above, that each path having
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*
a final segment in S ¢ closes. Thus, a3 in the case of rl, r2
a

.X.
removes any path of 5 whose corresponding felsifying system would

be removed by Rule 2.

The DRI r3, which simulates Rule 3, produces two output trees

Si and S: whose mutual unsatisfiability implies the unsatisfiability
of r3's single input tree. As in the case of rl and 12, we be-
gin by specifying those conditions which hold if the DRI is applicable
to the input tree.

Suppose that Rule 3 is applicable to a sel of falsifying systems
5 and that S* is a system tree corresponding to 8. TFurther,

suppose that 81""’aN’ blg...,bN are truth-values, u, t ¢

{yl,yz,ﬁl,...,in} are specified in Rule 3, and

#
{p:p 1is a branch of S such that for some u,

5v,
il

p assigns &, to Fi(u,,..,u) (1 <i <)}

.){.
{g:g 1is a branch of 8 such that for some *t,

O
i

q assigns 'bj to Fj(t,...,t) (1 <35 <m)}

The following condition holds as a result of Rule 3 being applicable

%
to 8: TFor every path r occurring in S , either there exists

iO such that r does not assign aio to Fio (yl,...,yl) or
there exists jO such that r does not assign b, to Fj
0 “0
(Ypse ey
Friedmasn's Rule 3 produces the two sets S. = S - § and

1



Sg:s_.

P. (P,Q are sets of falsifying systems corresponding to

the branch sets P and Q respectively.) We shall now show how

1

% %
3 and S may be produced within the framework of E. The follow=-

2

ing discussion constitutes an implicit specification of r3.

%
Let S , P and Q be as above and let A consist of those
%
branches of 5 which are neither in P nor in Q . We shall de-
*
note S in the following manner:

[ P ] Q l A } where ©p denotes an arbitrary branch

o of P.

We may append a copy of s¥ to p thus obtaining

lplalal
P where q denotes an arbitrary
[ P I Q | A I branch of Q.

W

Now define Opq = {<u,yl>,<tﬁy2>} where u and t are determined

by p, @ and the applicability test for Rule 3. Further, let
S%Opq, denote the tree which results from applying Opq to
s*. Por a given p and q (as indicated above) we may then ob-
tain the tree
[-lalal]
/// b

[:E:Iﬁéil;é:] where r 1s an arbitrary branch

/‘/

- q_ ¥

m of S o
8o

Pq




el

We shall now demonstrate that for ziven p, q and arbitrary =,
the branch p-q-r 1is closed.

*
Since r 1is a substitution instance of some branch d of & N

and since by hypothesis either there exists iO such that d does

not assign a, to F. (y,,...,y.,) or there exists some J such

i, 1, 1 1 0
that d does not assgign b, to F, (y.,....7.) we have, in

JO JO 2 2
particular, for r, either r dces not assign a, to Fi (Uyen.,u)
0 0
or r does not assign bj to Fj (t,...,t). Without loss of
<0 "0

generality, let us assume the former. We then have by hypothesis

(since p € P) that p assigns a, to F, (uye..,u). Thus the
0 0
(u,....u) contradiectory values. Thus ,

b

path p-g-r assigns T,
Ao
0
p-g~r is closed and the branch segments q - r may be removed for

the given g and all r . The above procedure may be repeated for

each q € Q finally yielding the tree

[(PTalal]

I»

T4

In a similar manner, we may obtain the tree

\\
g\
/

<.
>

FTa (aTx]

It can be shown that [jE:}j}Z] and [:éjl:é:] are proper

forests for the above tree. We may thus apply 0. (copy) to these

7
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to produce the output trees Eéfﬁjé:] and Q;LLE] . These

correspond exactly to Sl and S,.

*®
We have shown that given an acceptable input tree S corres—
%
ponding to the falsifying systems S, r3 produces output trees Sl
#
and 82 which correspond exactly to the two falsifying system sets

produced by Rule 3. It remains to be shown that the wnsatisfiability

¥ * %
of S and S implies the unsatisfigbility of 8 . To this end,

1 2
. # * %
it suffices to show that if Sl and 82 close, then ©O also
closes.

We first note that if and close (i.e.

we may derive the empty tree from each) we can delete P and §

from S* (= ('P l Q I A I } as follows: To each p e P and

q ¢ § append the proper forests [ P N ] . fo | A } respectively.

This produces the tree

Q| A |

N

[P |
oo [Bla]  [Q[a] ---

™~

Appliecations of O8 then produce [Zgj. Now [j{j:}gj
unsatisfiasble and | Q | A ] unsatisfiable implies [ A ] is
closable. Thus, S* is closable and thus unsatisfiable.

We thus see that if S; is the tree corresponding to the set
of falsifying systems for (Eyl)(ﬁyz)(vzl)...(vzn)M then the rules

*
rl, v2, and r3 may be applied to Sf and its descendants in such
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a way as to maintain an exact correspondence between the felsifying
system sets produced by the Friedman procedure and trees of E. If
the Friedman procedure produces a proof, then its simulation will

derive the empty tree (within the framework of E). If the Priedman

procedure terminates without producing a proof, its simulation will

terminate without producing the empty tree.



20k

CHAFPTER L4 CONCLUDING REMARKS

he extendible type-logic E, presented in chapter 2, possesses
four festures which make it suitable as a basis of a general purpose
mathematically oriented question answering system. These features
are:
1. It is a higher order logic.
2. It provides for the introduction of defined constants.
3. S8pecified defined constants, which have been introduced
by the user, may be assimilated into the inferential
portion of the logic.

h. Provision is made for selective incremental unabbreviation.

We have already observed that higher order logics possess greater
expressive power than first order logics and that the ability to
deal with defined constants occurring in the input language makes
possible concise representation of hiersrchical user concepts. The
ability to assimilate selected defined constants is a powerful fea-
ture which deserves further attention.

The logic E can handle defined constants directly by means of
the inference operator 02 and the tfat's computed for selected
defined constants. Thus, a defined constant such as "=" may be
processed via the unabbreviuation and A-reduction operators prior
to the time a tfat for iﬁ has been calculated. However, once a

tfat has been computed, unabbreviation of further occurrences of

"=" {5 unnecessary since "'=" is then part of the logic in essen-




tially the same way as is the primitive operator ”(D ". Dependency
forests make possible the extension of this sort of assimilation to
defined constants involving guantificstion. We note that whether a
given defined constant is assimilated or processed by the unabbrevi-
ation and i-reduction operators, its occurrences within expressions
are handled much more directly than if the defined constants were
introduced via a seriss of axioms. Thus, & provides a relatively
direct means of handling those user-concepts embedied in user-
introduced defined constants.

The provision in & for selective incremental umabbreviation
makes it possible for strategies utilizing £ to take advantage of
strategic information implicit in the abbreviaticnal structure of
the input expression. In this paper, we have not considered what
form such strategies might take, a problem which is clearly critical
if the full power of £ is to be brought to bear. Determination of
such strategies‘represents one area in which research on E might
continue.

It would seem that the next logical step in the development of
E would be to implement a system which embodied the logic of E and
provided a test-bed for experimentation with various theorem proving
strategies, probably a system somewhat along the lines suggested in
appendix A. It is felt that such a system would provide the most
fruitful approach to the problem of developing powerful adaptive

strategies which utilize E.
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The ability to introduce arbitrary defined rules of inference
is also an extremely important feature of such a system, especially
.since the notion of defined rule of inference is hierarchical and
thus mekes it possible to build on previous work. A test-bed of the
sort mentioned sbove would provide a framework for investigation in
this direction also. As a matter of practical concern, we note the
following: The defined rules of inference, considered in chapter 3,
mimicked certain inferential operations of the simulated system by
means of sequences of E-inference operators. In a practical system,
such constructions could be considered to constitute meta-theoretical
justification for the particular end result and implemented in a more
direct manner. For example, the constructions used to simulate
Friedman's rules, which primarily justify the removal of certain
branches, could be implemented simply be removing the specified
branch once it was known that the construction was possible.

From a theoretical point of view, the ability to simulate various
proof procedures in E places such procedures in a common framework
thus raising not only the possibility of mixing parts of these strat-—
egies within a larger procedure, but also the possibility of comparing
simulated strategies. To what extent such comparisons may prove fruit~
ful in suggesting extensions or modification of current strategies de-
pends on one's intuitive feeling for the underlying operations of E.
Whether such intuition is more easily acquired in a system such as
E or in one of the systems considered in chapter 3, remains to be

determined. None the less, it is interesting that strategies such




207

as Friedman's and Robinson's, which at least on the surface are
quite different, can be expressed in the same system.

We have taken the view, in this paper, that any logical system,
which is to serve as the basis of a general purpose mathematically
oriented question answering system, must have the capability to adapt
to arbitrary user-specified theories. The features included in E
provide it with a modest adaptive capability since the set of defined
constants introduced by the user, which reflect the state of develop-
ment of his theory, may be assimilated into the inferential portion
of E. TFurthermore, selective incremental unabbreviation makes possible
the writing of strategies which are sensitive to the abbreviational
structure of user-supplied expressions. Since these presumably have
structural significance relative to the user's theory, this capability
permits the writing of strategies which are sensitive to that struc-
ture.

The current modular approach to mechanical theorem prover writing
provides no integrated framework in which user-theory-sensitive strat-
egies may be produced. The logic system proposed in this paper does.
It, therefore represents an interesting alternative to the current
modular approach, while at the same time providing a higher-order

refutation logic for mechanical theorm prover strategy experimentation.
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APPENDIX A Implementation of defined rules of inference

Introduction

In this appendix, we sketch a system called DELSl in which de-
fined rules of inference might be implemented. The presentation is
not intended as a complete specification but rather as an outline
of the general structure of such a system. Sufficient detail is in-
cluded as to allow the reader to have some feeling for the size and
complexity of some of the defined rules of inference discussed in
chapter 3. In particular, only those primitive functions required
to specify example defined rules of inference are detailed.

DELS is essentially a problem oriented language embedded in
LISP [23] consisting of certain LISP representable operations and
data structures which are designated as DELS primitives. Within this
context, defined rules of inference are just partial function52
written in the LISP meta language3 which are constructed in terms
of DELS primitives and which satisfy the requirements set forth in
chapter 3.

The overall operation of DELS is depicted in figure 1.

lDefinitionally Extendible Logic System.
2See McCarthy ... [22].
3In certain cases, infix rather than prefix notation is em-

ployed. Furthermore, M expressions are formed over an extended
set of symbols.
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Derived Rule Derived Rules

of Inference |~=wmmemm——-—3%0f Inference

Interpreter Specification
' C
Theorem
<7
Memory L]
Primitive
tfats Memory < — —4 Effector

M Machine
Defined Constants J

< - !
Memory :
. ]
Y N4
Attempted
Proof
Graph

A deposits results in B A--++>B
[
A references B A3 B

Control passes A B

Included among the primitive operators of DELS are the operators

D which implement the E-inference operators O

Dl’DE"'°’ 10

,0

1°72?

...,012. These may be viewed as comprising the command repertoire

of a machine called the primitive effector machine which accepts

commands from the defined rule of inference interpreterh. checks

)
*That portion of the LISP interpreter required for execution
of defined rule of inference specifications.
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these commands for validity and, if valid, executes them.

A command issued by the defined rule of inference interpreter
is a command to apply some operator to a set of designated parameters
and is valid if 1) it inveolves one‘of the operators recognized by
the machine (Dl’D”"”Dl2) and 2) the parameters supplied with
the operator meet the requirements of the particular operator.
Execution of a valid command causes a tree to be added to the at-

tempted proof graph. Invalid commands are not executed. In either

case, control passes back to the defined rule of inference inter-
preter.

In determining if the parameters supplied as part of a command
are acceptable, the primitive effector machine may reference one or
more memory structures. All operators reference the attempted proof
graph since, all operators apply to parameters which explicitly or
implicitly reference system trees contained in the attempted proof

graph. In addition, D (restricted append) requires that patriarch

9
information associated with the input trees be available. (This
information is assumed to be retrievable from the attempted proof
graph.) Certain operators reference other memory structures in

addition to the attempted proof g -aph. For example, Dll (unabbre-

viation) references the defined constant memory which contains all

defined constants and their definitions. D2 references the memory
which contains tfat's (tfat memory) both to determine if a tfat for
the major connective referenced by D2 exists, and for the purpose

of constructing the output tree. Finally, D12 (theorem addition)
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references previously proved theorems which are contained in the

theorem memory. Excepting the attempted proof graph, the structure

of each of these memories is left unspecified since such information

is not required to understand the material presented in this appendix.

Data objects referenced by defined rule of inference specifications

Defined rules of inference specifications are written in the
LIBP meta language utilizing primitives of DELS and reference various
objects which are peculiar to DELS. In this section we shall indi-
cate the nature of these objects and describe how they may be refer-
enced in a defined rule of inference specification. Such references
may either specify an object which already is part of the DELS data
base (for example, a tree contained in the attempted proof graph) or
an object which will be part of the DELS data base as a result of the
primitive effector machine executing valid commands. (For example,
the tree which will be in the atteunpted proof graph after D2 is
applied to some pair of acceptable parameters.)

DELS contains the following categories of data objects:

1. Attempted proof graph

2. Ordered sets

3. Substitutions

4. Trees

a) Nodes

b) Leaves

¢) Branch-elements
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Attempted proof graph This is essentially the structure discussed

in chapter 2 augmented to allow retrieval of patriarch information.
(Another slight modification is discussed later in this section.)

We assume a set of interrogation primitives which are at least suffi-

cient to retrieve all information stored in the attempted proof graph.
These would include a node content function., immediate successors
function, and so forth. The attempted proof graph is accessible only

t hrough these primitives.

Ordered sets Ordered sets, which are essentially lists in LISP,

provide a convenient way of representing small finite sets of objects
which must be enumerated in the course of a computation. An ordered
set is simply an n-~tuple <d1,...,dn> whose elements are data objects
of categories 2, 3, and 4. Furthermore, all data objects occurring
in a given ordered set are of the same category. (We note, however,
that subcategories a, b, and ¢ may be mixed in the sense that data
objects of category 4a, b, and c may occur in a given ordered set.)
Initially, the only ordered set in the DELS data base is the
empty set ¢ . Ordered sets may be synthesized from ¢ and other
data objects by means of the operator () . (In LISP, () has the
same properties as cons.) Thus, if d 1is a data object of category
2, 3, or 4 and x is either ¢ or an ordered set comprised of data
objects of the same category as d and of the form <xl,...,xn>,
then d () x 1s either the ordered set <d> or the ordered set

<d, x P We note, in particular, that if 4 = <d1,...,dn$

100
is an ordered set; then 4 = dl<) 0%2C>(....(dn()(bk..).
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Ordered sets may be analyzed using the operators o and w. (In
LISP, these have the same properties as car and cdr respectively.)
If y=4d® x where d 1is a data element and y an ordered set,

then aly]l = d and wly] = x.

Subgtitutions Substitutions were discussed in chapter 2. Initially,

the DELS data base contains only the empty substitution ¢ . New
substitutions are created by the functions "unify" (see appendix B)

and composition, (denoted by the infix operator ¥).

Trees  Initially the only tree contained in the DELS data base is
the initial tree © . This is part of the initial attempted proof
graph as mentioned previously. New trees are created and added to
the attempted proof graph as the resulf of executing primitive effec-
tor operations which explicitly or implicitly reference existing
trees. New nodes, leaves and branch-elements (i.e. 2all nodes of a
designated branch) are created at the time the parent tree is created.
It is assumed that given a node, it is possible to determine the tree
in which the node occurs.

The primitive effector operators Dl’DQ"" while exe-

’D12
cuted primarily for thelr side effects (i.e. they create trees and
add them to the attempted proof graph), do return a value. This
value, which specifies the tree created by the operator, is an
ordered set consisting of the names of nodes comprising the tree

5

ordered by some arbitrary but fixed rule”. In general, an ordered

5One such rule might be:
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get consisting of the names of nodes comprising a given tree and
ordered by this fixed rule will be called a tree specification.

It is assumed that DELS contains a set of primitive tree-
interrogation functions which allow retrieval of all information con-
tained in any ungrounded tree. (This includes the.capability of
analyzing the content of any node.) These primitives include among
others, the following:

Let n name a node of the tree t

1. immediate-successors [n] produces as its value an ordered

set of immediate successors of the referenced node ordered
according to the ordering of the ordered tree.

2. content [n] produces as its value the content of the
referenced node.

3. parent-tree-specificatior [n] produces as its value the

ordered set which specifies t
4., atomic [n] produces as its value T or F depending
upon whether or not the suffix of the content of n 1is

atomic.

5(continued)
1. The origin is the first node
2. If n <+ k then n precedes k
3. If nl and np are immediate successors of n and 1f the
tree ordering funclion specifies ny precedes Ny then all
successors of n, precede all successors of No-

In particular, whatever rule is used for ordering the nodes of a

tree, it is important that a given tree always be specified by the
same ordered set. i
|
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DELS also contains three functions which operate on tree speci-
fications (i.e. ordered sets which specify trees) and produce ordered
sets representing node subsets of the input tree. These functions

are leaves, branch-elements and new-nodes.

Suppose t 1is a tree specification and k a leaf of the tree
specified by t, then

leaves [t] produces an ordered set consisting of the leaves of t.

(The ordering is arbitrary but fixed and might, for

example, be obtained from the ordering of the ordered
set t.)

branch-elements [t,k] produces an ordered set consisting of all

nodes of t on the branch determined by the leaf k.
(The ordering is arbitrary but fixed and might, for
example, be obtained from the immediate successors

function. )

new-nodes [t] Suppose t is prodiced as the result of executing

some DRI which involves n applications of the operator

D, , then new-nodes[t] produces as its value the ordered

29
set consisting of the images6 in t of all nodes having
content) which occur in tfat's associated with the n

applications of DE' In the simple case where the DRI

6This information can be computed at the time the DRI in gues-
tion is executed. At the end of the computation, it is assumed to
be stored (in some form) with % in the attempted proof graph.
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is just Dg, new-nodes[t] produces an ordered set of
those nodes of t which are images of nodes (having con-

tent) which occur in the tfat associated with D2.

example 1 Let © be 0

1o M>VAB & BC

® is then specified by <0,1>. If D2 is applied to © we obtain the

tree tl

1

1 (DDVAB & BC

2! 3’

® vAB @ & BC

1

which may be specified by <0',1',2',3 >. We note in particular that
<0',1',2',3'> = D,[1,1].

If D2 is applied to 3' we obtain the tree t2

@ & BC
M B
(@K

which may be specified by <O",l",2",3“,h",5"> = D2[3',3']
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The leaves of t, and t, may be obtained by applying "leaves"

to the specifications of ¢t and t,, thus
o

1
1
leaves [<O‘,l',2',3'>] = <3',2 > (note here we have assumed

orderings opposite that given
leaves [<0",1",2",3", 4" 5">]=<5" 2"> in the diagrams for t, and tg)

The calculation of t2 from © may thus be specified as follows:

(1) Dg[p,p] where p = o [laaves[Dg[l,l]]]
i.e. p = oa[leaves [<0',1',2',3'>]]=a[<3",2">] = 3"
thus Dz[p,p] = D2[3',3'] - <O”,l",2",3",h",5">.

If (1) is designated as DRIT, then:

new—nodes[DE[p,p]] = <2",3" 4" 5">  (note that this ordered set
does not constitute a tree
specification)

Finally, branch-elements [D,[p,p], u[leaves[DQ[p,p]]]]
=branch-elements [Dg[p,p], al<s",2">1]]

=branch-elements [D.[p,pl,5"] = <5, 4", 3" 1", 0">.

2

We note that in the above examples, references to data objects
may be explicit (i.e. the node 3') or implicit (i.e. a[leaves[Dg
[1,11]]). However, prior to the computation of a[leaves[Dg[l,l]]],

the node named by 3' is not in the data base.

7This causes newly introduced nodes to be accumulated as the
primitive effector operatiomns comprising the DRI are executed.
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Image sets The image of a node n in a descendant tree of the tree
containing n is defined in appendix C. DELS contains a primitive
function im which produces as its value the name of a node in the
descendant tree which is the image of the given node. As an illus-

tration, consider the previous example. We have,
im{l;<0",l",2",3" ,h'l,5|1>} - l"

It is convenient to have a function which produces all images of the
nodes comprising some subset of all the nodes of a given tree. For

example, the images of the leaves of tl in t2. This function may

be defined in terms of "im" as follows:

Im[x;s)=[null[x]+¢; T ~ im[a[x];s]® Im[w[x];s]]
\%

body

The recursively defined function "Im" takes as parameters an ordered
set of nodes (x) occurring in some tree t and a specification s. of
a tree which is a descendant of t. The body of the definition of "Im"
is a conditional which specifiles that the value of Im{x;s] is ¢ if
x is empty and im[a[x];s](® Im[wlx];s] otherwise. Im[x;s] is com-
puted by enumerating the nodes of x, calculating their images in s
(im{a[x];s]) and forming an ordered set of the images (im[a[x];s](®
Im[w[x];s]). The termination condition nulll[x] ensures that all
nodes of the original set =x have been processed. We note that if

Im[x;s] and s are regarded as sets, then Im[x;s] c s.
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example 2  Referring to example 1, we obtain

Im[leaves{Dg[l,l]]; D2[P9P]] = <3",2">

Specification of selected defined rules of inference

We are now in a position to specify some of the defined rules of
inference presented in chapter 3. The syntax used is essentially
that of the LISP meta language augmented by symbols such as im, Im,
o, w, (@ etc. In particular we take {n} to mean n(# ¢ and use in-
fix rather than prefix notation where such notation enhances read-
ability.

The defined rule of inference gpg.(fully process node) utilizes
the function lsuc (leaf successors) which can be defined in terms of
DELS primitives. The function "lsue" has the following characteristics:

If n neames a node of the tree + , then

{n} if n is a leaf.

lsucln] =

<k, ,...,k > where k, are all leaves dominated by n in t.
1 m i

fpn Let n be a node then

fpnlnl=[atomic[n] + parent-tree-specification[n];

T > extl[njlsuel[{n}]]]

If the suffix of the spe contained at the node n 1is an atom,
fpn terminates with value an ordered set specifying the input tree.
Otherwise, fpn[n] is calculated using the auxiliary functions extl

and ext.
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extl[n;x]=Dh[im[n;eXt[n5X}]]8
ext[n;x]=[null[w[x]] - Dg[n;a[x]]; T +,Dg[im[n;p];im[u[x];p]]]

where p = ext [njw[x]]

example Let the inpuﬁ tree be 0
1 R (DVAB

2 3
@c ® D

fpn[1] = extl[1,1lsuc[<1>]] since atomic[l] = F
1sucl[<1>] = <2,3> thus fpn[l] = extl[1,<2,3>]
extl[1,<2,3>] = Dh[im[l;ext[l;<2,3>]}]

ext[1;<2,3>] = De[im[l;ext[1,<3>]], im[2;ext[1,<3>]

ext[1,<3>] = D2[1;3]

D, applied to (1,3) produces

5"
DA @ B
I.ext[l,<3>]=D2[l;3]=<0”,l”,2",3",h”,5"> and im[1ljext[1,<3>]]=1" sim. for 2

I.ext[l;<2,3>]=D2[l";2"]

D, applied to (1",2") produces o

5"1
MDA M B @a @B

Dy is the primitive effector operation - multiple closed branch re-
moval.
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thus, ext[13<2,3>]=D,[1",2"]=<0Mt, 11, 2m, 3, b 5,6t 7>
and im[l;ext]l;<2,3>]]=1m™
extl[l;<2,3>]=Dh[l"'} which produces the tree
o
//////O\
om" c 3" @® D
6" ™" n 5M
@A @B DA @3B

thus, fpn[l]=extl{l,<2,3>]=Dh[l'”]=<O"",2"”,..,,T"">

The defined rule of inference fep (fully expand propositional),
discussed in chapter 3, may be specified in terms of fpn as follows:
fep[x] = [atomiclal[x]enulllw[x]] + p;

T + feplunion[new-nodes[pl; Iml{w(x]l;pl11]]

where p = fpnla[x]] and union [<x1,...,xn>;y]=xl() (...® tﬁnCDIY)"'

The defined rule of inference "fep" repeatedly applies "fpn" to
nonatomic nodes and their descendants until only atomic nodes remaln.
The value of "fep" is a tree specification (ordered set) of the tree
descriﬁed under fep in chapter 3.

As a final example of a defined rule of inference specification
in DELS, we have "prawitz." If we allow © to be a specification

of an initial tree, we have
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prawitz [0] = prawitzl[s,s] where s = expand[determine-clauses[cw[0]]]
prawitzl [c3s] = [nulllcloseall(c]] ~ T;
T - prawitzl[sa[D3[s; changevar[varp(s];A{[x];[v ¢ V-varple]lll,c]l;s]]

closeall [e¢] = [nullfa] + c; T =+ Dh[leaves[D [e;allll]

3
where a = close-sub[c;leaves[cl]
close-sub [s3z] = [null[z] » ¢3 T ; ex[s;wlz]; wifysplalz]]]
ex [s32;x] = [null[x] > ¢; null [p] ~ ex[s;%;cdr[x]; T + o¥p]
where 0= subst-part[x]
t = DB[S;U] )
p = close-sub[t;purge-branches[%2; node-set-part{x];t;s]]

purge-branches[e;r;t;s]+Im(all-elements[e;A[[2];[exists[r;a[[al;]

a & branch-elements[s;2]1]11]1111;t]

The function "prawitz' is the top level function. The remaining
functions are auxiliary. Closely related auxilisasry functions are
given above. Others are given in appendix G. Figure 1 depicts the
calling structure of prawitz. (a > b means that function b occurs

in the definition of function a.)

é{////////,/préritz\\\\\\\\\\A ¢:>

expand determine~clauses prawitzl
sa clauses clause-names closeall
k//s}auii\g close~sub
Qef | d@ CxexjA
negl k;E'E;ge—branches
exists all-elements
Note: D. is the tree substitution operation and Dh is multiple closed
bganch removal.
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Description of "prawitz[O]

The function prawitz takes an initial tree "O" of the form

I (:)M(xl,...,xn) as argument and produces the value "T" if (:)Sk
is unsatisfiable for some k ,"F'" otherwise. The top level function
prawitz serves mainly to initialize the strategy by effecting the
computation of TO' In fact, determine-clauses[aw[0]] just produces

the representation

i i i i
61A1 6n.An
i~i
i i . i . i_ .1
for the clause L] V...V Lni, (1zi<N) where & =@ ir L= A
and dk =@ if L; = A; so that the value of s computed for

expand[determine-clauses[ow[0]]] is just the DNF representation of

M(xl,...,xn)

sl

SiA 5i A:rll
// \ l\ ’
afAi 6i Ai <S§A§ ai Ai
o Mo o o
;/ - l \\\ '
csz]iI Y Ag
Oy Py

which is just TO
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Prawitzl determines if the current tree (=Tk) can be closed
(null[closeall{c]]) and if it can, returns "T" otherwise Tk+l is

computed and prawitzl called recursively. The expression
D3[s;changevar[varp[s]; Al[x1; [v e V-varplc]]l]]

produces a variant of the original tree (s = TO) by computing a sub-
stitution o = {...,<e,v>,...} such that v is a universally gquanti-

fied variable in M(x .,xn) (+variable) and e 1is a variable in

10
the set of system variables V but which does not occur in the current
tree Tk' If the original formula which produced the initial tree ©
is valid, then "prawitzl" will eventually terminate.

Closeall[c] returns the tree c (= Tk) if Tk can not be closed
by substitution, otherwise closeall réturns the empty tree which re-
sults from applying Dh to the closed tree Tko. (Here o is the
closing substitution.)

Close-sublecjleaves[c]] in conjunction with its auxiliary func-

tion "ex" produces ¢ if Tk is not closeable and the closing

substitution 1f it is closeable. As part of the computation of a
closing substitution, "purge-branches" removes from consideration
those remaining branches which contain neither current contradictory

pair.
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APPENDIX B Unification related functions

Given an arbitrary pair of type 1 expressions containing Skolem
functions, it is possible to determine if the pair is unifiable and
if wnifiable, what the most general unifier is. In particular, it is
possible to specify a function called "unify" which given as arguments

the suffixes e and e of two spes, produces either the most

1 2

general wnifier or the value ¢

o (= the most general unifier) If e, and e,

. _ are unifiable
unify [el,eg]—

¢ If ey and e, are not unifiable

The function "unify'" applies to a pair of type 1 expressions.
It is useful to be able to determine, given two sets of type 1 ex-
pressions, all unifiable pairsl and associated unifying substitutions.
For example, we may partition the set of atomic nodes occurring on a
given branch into those with prefix (D (QT) and those with prefix
C)(QF). Any substitution which unifies a pair of suffixes (one
chosen from a node occurring in QT and the other from QF) will be
a closing substitution for the branch (i.e. applying the tree sub-
stitution (D3) with the unifying substitution will produce a tree in
which the image of the branch in question is closed).

We may define a function "unify sp" (unify set pairwise) in terms

of the primitive "unify" which has the following characteristics:

lOne component chosen from each of the input sets.
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Let k be a leaf, then unifysp[k] is the list structure

where OSi ig an ordered set of nodes occurring on the branch deter-
mined by the leaf k. Further, if OSi = <nl,m1,...,np,mp> then the

contents of nj,m. have conjugate prefixes and unifiable suffices.

[3

o is the most general unifier.

Associated with "unify sp" we have the following functions:

substpart[zl=caar[z] = o,

OSl

nodesetpart(z]=cadar(z]

These are introduced mainly as a mnemonic device.
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APPENDIX C Image of a node in a descendant tree

Any tree, produced by primitive effector operations, may be
thought of as resulting from operations applied directly to an iso-
morphic image of the input tree (s) (i.e. to a copy of the input tree(s)).
For example, the tree produced by one of the node removing operations
(say Dh) applied to the tree t can be obtained by copying t and
then removing prescribed branches. Each of the operators Dl,...,D12
may be categorized according bto whether or not it increases, decreases
or leaves unchanged the number of nodes in the isomorphic image(s) of
the input tree(s). (This categorization is given below.) If a given
operator either leaves unchanged or increases the number of nodes in
the isomorphic image of the input tree, then each node of the input
tree has an isomorphic image in the output tree. If the operator
descreases the number of nodes, then a prescribed subset of nodes in
the inpﬁt tree (prescribed subsets of nodes in the input trees) has
(have) an isomorphic image in the output tree.

Let ¥ be an isomorphism between a given input tree and its
copy. (In the case where there are two input trees then V¥ is an
isomprhism between the first and its copy and the second and its
copy.) The image of a node of an input tree in the output tree is

defined as follows:

category 1 increase or leave unchanged number of nodes

If the output tree is obtained by applying one of the operators

{Dl’DE’D3’Dll} then for any node n occurring in the input tree,

image[n] = ¥(n)
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category 2 decrease number of nodes

If the output tree is obtained by applying one of the operators
{Dh’DS’D6’D7°D8’D9’D10’D12} then the image of any node n occurring

in the subset(s) prescribed below is ¥(n).

operator prescribed subset
1. D7 all nodes of the proper subforest
2. Dh’DS’D6’D8’D10 all nodes n such that ¥(n) is not removed
3. D9 all nodes except the origin of the appended tree
L, D12 all nodes except the origin of the appended tree

and nodes n such that Y¥(n) is removed.

The function "image" is thus a partial function from the set of nodes
of an input tree (input trees) into the set of nodes of the output
tree.

An output tree is a trivial example of a descendant of the given
input trees. It is possible to extend the notion of image to cover
arbitrary descendants of given sets of input trees. This is accom-

plished as follows:

We call a tree t a linear descendant of the tree s if there exist

trees t_.,...,t such that t,=s, t =1t and t, is obtained from
0 n 0 n i

ti—l by application of one of the operators Dl’DE’DT’DB’DM’DS’D6’

Dg>D; 501D 5 (L <i <n). (We allow the special case where n = 0.)

The tree t 1is a descendant of trees t .,tn if either it is a

IR

linear descendant of one of fhese trees or their exist trees 81’52

such that sl and s, are descendants of tl,...,tn and t is




obtained from sl and s, by application of D9.

If t 1is a descendant of a set of trees T, then there always
exists a minimal subset Ti c T such that t is a descendant of the
trees comprising Tl' Any time we say that t is a descendant of
the trees of T, we shall assume that T is minimal.

Let t be a descendant of {tl,...,tk}. We define the image of

a node n of any by in t im[n;t] in terms of the partial function
"image" given above as follows:

Suppose that we encounter the trees SO = ti, Sl""’sm—l’

s, = t as we traverse the attempted proof graph from ti to .

Let image[nl=n

N and 1mage[nj]=n.

j+l

<

(We note that if n; is defined
for 1 < j <m then nj occurs in Sj') If n, is defined for

1 <Jj<m then im[n;t]=nm. If there exists a j 1 < j <m for

which ns is not defined, then im[n;t] is not defined.
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For each ungrounded tree t occurring as part of an attempted

proof, we define the function Ct

constructively in terms of the
function(s) Z, (and Ty ) for ths operand tree(s) tl (and t2)

1 2
and operator used to generate t . Thus, ¢ ultimately depends

t

on the furiction CO which is defined as follows:

Let ©&e be the initial spe for O with associated dpf F. The
construction of F and 68e from the initial polarized expression
produces a correspondence between the pseudo atoms of e and the
leaves of F. Suppose n 1is any node of © other than the origin

and that C_(n) = 8 e, (where 5§, 1s either M or ®). If e

c] n

is a pseudo atom of e, then (n) = m: where m 1is the leaf of

‘o
F which corresponds to this pseudo atom of e. The function C@
ig undefined for all other nodes of ©.

Suppose the ungrounded tree s 1s produced by applying an

operator to the tree t . The function Cs is constructed from

Ct as follows:

1. operators which remove nodes but leave the dpf unchanged

(Oh’05’06’08’010)'
If k 1is any node of s corresponding to a node n of ¢t
such that Ct(n) = m, then Qs(k) = m., The function Z, is un-

defined for all other nodes of s




2. tree substitution O

3..—
Since s = to and dpf(s) = dpf(t)o, there exist natural corres-
pondences between s, t and between dpf(s), dpf(t). In particular,

if m is a leaf of dpf(t) corresponding to the leaf ¢ of dpf(s),

*
then we shall denocte 2 Dby m .

Iet %k be any node of s corresponding to the node n of t

and suppose Qt(n) = m, then cs(k) = m*. The function z, is wn-

defined for all other ncdes of s

3. proper subforest copy O

7....

In this case each leaf of dpf(s) corresponds to a unique leaf
of dpf(t). In addition, each node k of s (other than the ori-

gin corresponds to a unique node n of t. Furthermore, if ct(n) =

m, then m will correspond to a leaf of dpf(s). Thus, if k

corresponds to n and ct(n) = m, we define gs(k) to be m.

The function QS is wndefined for all other nodes of s .

4,  A-reduction 0,
If case 2 holds or if dl as calculated in step 1.1.1 1s a
pseudo atom (see definition of Ol page ), then dpf(s) differs

from dpf(t) only in that a subexpression of the context of some
leaf of dpf(t) is replaced with another subexpression. In this
case the nodes of t and s correspond and the laves of dpf(s)
and dpf(t) correspond. Thus, if the node k of s corresponds

to the node n of t and ;t(n) = m, then Qs(k) = m*.
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If d1 is not a pseudo atom, then Cs(k) is defined (as
above) for all k which do not correspond to a node n such that

ct(n) is a leaf effected by the application of 0, to t.

5. unit unabbreviation O

11—

The function Cs is defined in the same manner as for Ol'
6. the operator O

The hereditary notion of linear descendant, which relates two

nodes one having content whose suffix 1ls a subexpression of the con-
tent of the other, may be generalized to nodes occurring in trees
which are derivable from others under the full set of E-inference
operators. If n 1is a node of the ungrounded tree t and m a
node of the tree s such that t e I', I = s and such that n
and m are rélated‘by this generalized notion of linear descendancy,
we shall say that m 1is a logical descendant of n and n a
logical anceéstor of m .

The function ¢ will be described for an unextended application
of O2 only (i.e. aﬁplication of 02 to a node whose content has
the form GCD elez). This is sufficient to define ¢ for extended

application of O since the algorithm for extended O2 application

2
(i.e. to nodes whose content are maximal abbreviations) may be re-

garded as specifying a sequence of E—iﬁference operator applications
not involving extended 02.
Let the node n contained in the ungrounded tree t be an

ancestor of the node m contained in the tree s. We define the




distance between n and m to be the number of operators involved
in the derivation of s from t.

Suppose s 1is obtained by applying O2 to anode m of the
tree t and suppose Ct(m) = 6(D ele2 where 6 1is either C) or
C). Let n be the nearest logical ancestor of m having the pro-

perty that Ol or O is applied to n1 to produce the next wn-

11
grounded tree in the deduction of t from the tree r containing
.

In this case, cr(n) is defined and Cr(n) is a pseudo atom.

The application of Ol or O to n causes the leaf Lr(n) of

11
the dpf for r to be expanded. Expansion of a leaf amounts to cal-
culating the structural representation for the content of the leaf.
Thus, there exists a unique correspondence between the pseudo atom
subexpressions of Cr(n) and the subforest of the newly generated

dpf created by expanding the leaf Cr(n). The function Cs is

defined as follows:

1. If the node ay of s 1is the image of a node 51 of
- i a = = ¥
t and if Ct(al) a, then cs(al) a,

2. If the node ay of s has no image in t (i.e. it is

a node of the appended tfat) then Es(al) is defined

just in the case that Cs(al) is a pseudo atom. In

this case, since the suffix of Cs(al) is a pseudo atom

lWe assume that Ol is applied to a type 1 expression whose
kernel is not a pseudo atom.
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of Cr(n), we define Cs(al) to be the image of the
leaf of the dpf caused by leaf expansion of zr(n) which

corresponds to the appropriate pseudo atom of Cr(n).

If m has no ancestor to which Ol or Oll has been applied,
take n to be that ancestor of m which occurs in the initial tree.
This node corresponds to a subforest of the dpf associated with the

initial tree. The function Cs may now be defined as in 1. and

2. above.

T. restricted append O

9__

Suppose s results from applying O to the wngrounded trees

9

t. and t.. Since dpf(s) = dpf(tl) U dpf(t2)02 (where o, and

1 2

a are substitutions specified in the definition of O ) we may

%

2 9
define ¢ to be the union of the functions ¢ and [
s t,0 t .0
11 272

where [ and ¢ are calculated from ¢ and ¢ as

tlcl tzcg tl t2
outlined in step 2 above.
8. theorem utilization 012_

The operator O12 is essentially a combination of substitution,

append and multiple closed branch removal. Thus, if s results from

applying O12 to the ungrounded trees tl and t2 (where t2 re—

sults from applying a substitution to some wngrounded tree t repre-

senting a theorem), we may construct QS from Ct and Ct using
0 1
the rules given in steps 1, 2 and 7.
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APPENDIX B Abbreviation and symbol glossary

1.0 Abbreviations

Abbreviation Inti?%iced Meaning

CNF 156 Conjunctive normal form

DL 91 Definition language

INF 146 Disjunctive normal form

dpf 31 Dependency forest

DRI 139 Defined rule of inference

EOL 91 Extended object language

fpn 1ko Fully process node

fep 142 Fully expand propositional

mcbr 6l Multiple closed branch removal

oL 91 Object language

pe 28 Polarized expression

POL 28 Syntax rule for construction
of pe's

sc b1 Substitution component

spe 31 Skolemized polarized ex—
pression

tfat 113 Truth function analysis tree

TSS 2k Type system symbol
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2.0 Symbols

Many of the symbols occurring in this paper are used in several

unrelated senses. In these cases, the meaning will be clear from

~

the context. As a general policy, the auxiliary symbols - , .
' , as well as subscripts and superscripts, will be used to denote

different elements of the same class. Thus, t may be used in

certain contexts as a generic symbol for tree. In this case, t,

%, t', t t.,... might be used to denote other trees.

1’ 2

Unless otherwise stated in the text, the symbols and notation

given below have the meanings established on the Indicated pages.

C 96 | ¢ 13 | Og 65 | 213 | © 53

DL 101 Ct | 13 O7 72 | € membership| ¥ 15

E 89 | D 45 | Og 73| A 23 | B

ELA 95 | p* 45 | og 771 8 13| T 8l
%ﬁ%???%%lg 00 9| 8, 13 | T 8l

4 15 .011 108 | v 48

Pd 150 0,, 135 |vi(e) 105

S 2k | N 12 | P 12 | o Lo

T(e) 32 | N, 11| P, 11 | 23

T*e) 33 | o] 59 ¢ b1

u 21 | o, 61 w 213

up 23 | 0, 63

U 38 | 0, 6L

v 2k O 65
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<y 12| @ 23 | o 03
<o 12 (Tl,...,Tn ) 23 L 67
A 103 @ o3 | —L» L
vV 103 @ 23 *—£2> Th
& 103 ‘kxl ‘X 0 € 25 > 101
o 103 v+ 33 S 105
= 103 V- 33 I = ¢t T
v 23 | ¢ 230 | o2l o 83
3 103 | ¢t 230
0 8l
® 510 * 213 9
org(t) 11 {xl,. ,xn} - set consisting of the
elements Koo Xy
<x1,.. ,Xn> - ordered set consisting

of the elements

'Xl""’xn with order

given
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APPENDIX F Subject Index

dependency forests

forest

inference operators

semantics

substitution

syntax

algebraically replacing a dpf with another
dpf, 39; leaf expansion in, 39

determined by a tree, 19

(for Uu), 52 3 utilizing truth-function

analysis trees, 122; defined rules of inference,l39

derived domain, value assignment, UL5; valu-
ation of UL—expressions, 46; satisfiability,
50 ; validity, unsatisfiability, 50; seman-
tic considerations in EL’ 103

substitution components, instantiation,
unifiable, composition of, in trees with
contents, b1, L2, 43

symbols of U, 23; formation rules of U,
expressions of U, type of expression of U,

ZM; subexpression, 26; atomic expressions 27T;

polarized (pe), conjugate of, 28; skolemized

polarized (spe), structural representation

of a type 1 expression, 32; dependency forest
associated with a type 1 expression, 33;
skolemization of type 1 expressions via their
dependency forests, 36; uwnification of spe's,
42 . 1inear extension 67;linear descendant, 69;

proper subforest, TO;




tree

patriarchs, 75; derivable in U 7T7; attempted
proof graph, 83; abbreviation, 96; extended
object language EL’ 96; pseudo atoms, 96;
definition language, pseudo type-l expressions,
99 ; definition in E&R 101; primitively defin-
able, 106 total vs partial unabbreviation, 110
depth control in truth-function analysis, 119
ordered, leaf of, path of, 12; with contents
from a set, subtree, major subtrees, 14, 15;
isomorphism, image of tree in another, 15;
appending, 16; node removal from, branch re-

moval from, 17T; ungrounded, 52; initial, 53
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APPENDIX G Alphabetic listing and description of additional DELD

funections

1. all—elements[s;p] s is an ordered set and p 1is a predicate

function whose domain includes the elements of s. An ordered
set is returned which contains all elements of s that satisfy

p. The relative order of elements is the same as in s.

=[nullls] + ¢;plals]] » als]® all-elements[w[s];pl;

T » all-elements[w(s];p]]

2. clash[xiy] x and y are leaves of the E-clauses A and B
respectively (see Binary Resolution chapter 3). Clash is true
if and only if it is not the case there exists a ¢ leaves[A]-

{x} and b ¢ leaves[Bl-{y} and such that conj[as;b] is true.

=clashl[leaves [parent-tree-specification[x]]-{x};

leaves [parent—tree~specification[y]]-{y}]

auxiliary function

clashl[u;v] = [null [u] » T3 exists[v;A[[b]l;[conjlalul;bll] > F;

T+ clashl[viw[ull]

: . . .t
3. changevar[x:;p] produces the substitution ¢ whose 1 h com=-

ponent is <yi,zi> where yi,zi have the same type, ¥ is a
variable, z, an expression, vy e x and zg satisfies the

predicate p.

changevar is a DELS primitive.
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L, conj[n,m] If n and m name atomic nodes whose contents
have conjugate prefixes, then conjln,m] is true. Otherwisé,

conjin,m] is false

=[atomic[n]&atomic[m] + [not[prefix[nl=prefix[m]] - T; T + FJ;

T ~ F]

5. det clauses[n] If content[n] =(:)&Cl&...&CN_lCN and if
C, = YDr V...vD D and L% = A% or A% = L% where A%
i 1 ni—l n. J 3 3 J 3

is an atom, then detclauses returns

where ti is a tree specification of the tree

H
n
> s

@ if L}

@ ir L

I

where 6%
J

e e

iai iai

61A1 5nA'n.
i
=clauses[clausenames[n]]

auxiliary functions clause, clauses

clausesnames[n] = [operator(n] =M & + a[p] ® clausenames[aw[p]];T+{n}]

where p = new~nodes[D2{n;n}]

If content[n] =@ &Cl&"'&CN—lcN then clausenames[n]

returns the names of those nodes (of tree added to attempted proof
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graph during execution of clausenames ) whose contents are

@c, (1 <i2N).
clauses[x] = [nuil[x] ~ ¢; T > clause[a[x]] @ clauses[w[x]]]

clause[n] = fep[@w[DT[{n}]]

If the content of n 1is <:>Ci then DT[{n}] is <1,2>
1

where <1,2> is a tree specification for EE(:)Ci

Thus , aw[DT[{n}]] = 2. (lause [n] produces a tree

specification for the E-clause

exists[xig] If x is an ordered set and p 1is a predicate

function whose domain includes the elements of x, then exists[x;p]

is true if there exists an element a e x such that p[a] is

true. Otherwise, exists[x;p] is false.

=[nulil[x] » F; ple[x]] » T3 T ~ exists[w[x];p]]

ezgand[s] If s 1is an ordered set whose elements are the

tree specifications t,, t2""’tn’ then expand[s] is a tree

specification for the tree:




10.

t

t t t

n n n
where ti denotes the tree specified by ti. We note that
tl,...,tn must specify ungrounded trees whose patriarchs are

all on the same branch of some system tree.

=[null(s] > ¢; T + salexpand[wls]];leaves[a[s]]]

member[x;y] If y is an ordered set and x an element,
then member[x:;y] is true. Otherwise, it is false. In writing

functions which utilize "member," we use the notation x e y

in place of member[x;y].

node-set-part[z] (see appendix B)

salz;x] (series append) If 2z 1is an ungrounded tree speci-
fication and x is a set of leaves of some tree, then salz;x]

appends the tree specified by 2z to each leaf in x. The



11.

12.

13.

ok

value of sa[z;x] is a tree specification of the resulting tree.

=[null{z] - parent-tree-specification[a{x]];
nulllw[x]] - Dg[z;a[x]];
T > Dg[z;im[oc[x];sa[z;w[x}]]]]

set-differencelx;v ] If x and y are ordered sets, then

set-difference[x:;y] is an ordered set consisting of all elements
of x which donpot occur in y. In writing functions which uti-

lize "set-difference" we use x-y in place of set-difference.

=alllx;A[[z];[notz e y]111]

subspart[z] (see appendix B)

varp[x] If x 1is a tree specification, then varp(x] is an
ordered set consisting of all positive variables occurring in

the tree specified by x.

varp is a DELS primitive.
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APPENDIX H Primitive effector operations of DELS

The operators D

l""’DlQ’ listed below, implement the E-

inference operators Ol,.. respectively. In each case the

.,O12
tree described in Chapter 2 for the corresponding E-inference
operator is added to the attempted proof graph and its specification

returned as the value of the operator.

operator parameters
Dl node specification natural number (specified first character
of designated subexpression)
D2 node specification leaf specification
D3 tree specification substitution
Dh ordered set (consisting of leaves which specify branches

to be removed)

D5 node specification
D¢ leaf specification (designates branch)
D7 ordered set (consisting of nodes of proper subforest)
D8 same as for D7
D9 leaf specification tree specification
DlO same as for Dh
Dll node specification natural number (see parameters

for D)

1

D12 leaf specification substitution tree specificationl

lSpecif'ies tree in theorem meuory.
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APPENDIX I Selected proofs

In this appendix, we sketch proofs of the truth preservation
properties of the inference operators of U . These results support
the consistency results presented at the end of section 2 chapter 2.
The operators O and O also preserve truth. This may be demon-

11 12

strated using techniques similar to those used in this appendix.

lemma 1 (A-reduction) If t is satisfiable and g results from

applying Ol to t , them s 1is satisfiable.

proof Suppose Ol is applied to node n of t and that Ct(n)=6e.

Two cases are possible: the expression el = Axl...xn@ aal...an to

which A-reduction is applied is either 1) e, or 2) not type 1.

case 2 In this case ey is replaced with ao producing Cs(n) = e
where o = {...,<ai,xi>,...}. Suppose t 1s true under the valua-
tion v which assigns values in some domain D to each Skolem
symbol occurring in t . IT Ct(n) is trge under v and some

assignment to the positive variables occurring in t , then e 1is

also true under this same assignment.

case 1 In this case e 1is replaced with e where e results
from Skolemizing ac in the context of de. Suppose the new Skolem

symbols h .,hm are introduced. Further suppose that t 1is

1°°

true wnder the valuation v which assigns values in some domain D

to the Skolem symbols occurring in t . It suffices to prove that
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v may be extended to v¥ (i.e. to include value-assignments in D

for the new symbols h "hn) in such a way that s is true un-

15°
der v¥ |

Now s 1is true under an arbitrary extension v¥ for each
value assignment to the positive variables occurring in t which
causes some branch of t not containing n to be true. Let the
class of value assignments to the positive variables occurring in
t not having this property be x . Thus, 6Axl...xne 8a)...a, is
true for every value asgssignment of the form v () x where x ¢ xl.
This means that d&ac 1is true for the assignment v U x.

Let 2 be the class of value assignments to the positive vari-
able52 occurring in s which do not occur in t and let M be the
result of deleting from &ac all quantifiers deleted in the process
of forming e . Since 6ac is true for every value assignment
v UJ x, there exists a value assignment 1 +to the negative varisbles
occurring in M, (these are determined from 6ac) such that M is

true for any value assignment of the form v U p U x Uy (xe ¥,

v € £). Suppose that the negative variable X, oceurring in M is

1i.e. a value assignment to the Skolem symbols occurring in
t(v) and some assignment to the positive variables occurring in
which makes the branch containing n (but no other branch) true
(x e x).

2Let us call the symbols (D and C) negation symbols. A quan-
tified variable x is called a positive (negative) variable of the
expression e if e contains a subexpression of the form Vxe, and
Vxe, occurs within the scope of an even (odd) number of negation
sym%ols. It can be shown (by an inductive argument) that this notion
of positive (negative) variable coencides with that given in chapter
2. (i.e. If a variable is positive (negative) in this sense, then
Skolemization produces a dpf in which the variable in question has a
a + (-) suffix.)
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replaced with the completed Skolem symbol hizi...z; in the process
i

of forming e and that u assigns Xi the value xf. Let h be

a value assignment which assigns the value {<<zi*,...,zi*>, x§>: z;* is
. i . .
the value assigned Zk under x \J y and x§ is wvalue assigned X
. i i .
under ul} to hi' Under evaluation, hizl"'zn receives the value

xf if the Zi are assigned values either directly by value assign-
ments of the form x U y or indirectly by evaluation. Thus, e is
true under any assignment of the form v U h U x U y which implies
s 1is true under v U h.

In each of the following lemmas, v will be assumed to be a

value-assignment for the Skolem functions occurring in the operand

tree (s).

lenma 2 (wnextended 02) If t is true wder v , then Oe(n,k)

is also true under v .

proof By hypothesis, Ct(n) igs either (:XI)eleg or (:Kf)eleg.
Since t is true under v , there exists a true branch for each
possible value-assignment to the positive variables occurring in t.
If this branch is not the branch (etermined by k , then Og(n,k)

contains this true branch. Othervise, Ct(n) is true.

case 1 Ct(n) =®<Deleg.
In this case G)6132 is true which implies either e is

false or e, is false (i.e. C)el or C)eg is true).

2
Let m be that leaf of 02(r1,k) such that
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@el if (F)e1 is true
)y = '

C
OQQg,k) @Deg otherwise

The branch of Oz(n,k) determined by m is then true.

case 2 Ct(n) =®D e e,

In this case (D e is false which implies that e and

1
e, are true (i.e. (:)el and C>e2 are true). Let m be

12

that leaf of Og(n,k) containing C)ez. The branch of

Og(n,k) determined by m is then true.

We thus see that for each value-assignment to its positive
variables, Og(n,k) is true. Thus Oz(n,k) is true wnder v .
lemma 3  (tree substitution) If + is true wnder v and o is
the substitution {...,<ei,xi>,...} where the {Xi} are some of

the positive variables occurring in t , then Og(t,o) is also true

under v .

proof lLet s = OB(t,G). The tree s is true under v if it is
true for all possible value assignments for the positive variables
occurring in s . It suffices to consider the values assigned to
the expressions e, under the semantic evaluation scheme of section

2.1.3. Since e, has the same type as Xi there exists a value

assignment to the xi's which agrees with that calculated for the
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e;- By hypothesis, t is true for this value assignment and thus,

s0 1s 5

lemma 4 (multiple closed branch removal) If t is true under

v and Oh removes the branches b "bn from t to produce

1

the tree s , then s 1is also true under v .

proof Under the evaluation scheme of section 21L.3. a closed branch
is never satisfiable (i.e. there exists no valuation under which it
is true). Thus, for each assignment to the positive variables
oceurring in t , t must contain a true branch which is not in-
cluded among those removed. Thus, for each assignment to its posi-

tive variables, s contains a true branch.

lemma 5 (node removal) If +t is true under v , n € Nt and

Os(n) is defined, then O_(n) is also true under v

p)

proof For each assignment to its positive variables, t contains

a true branch. If n does not lie on this branch, then O (n)

5

contains the branch and is also true. If n does lie on the branch,

then let the branch consist of the nodes {n,n .,nk}. By hypo-

10"

thesis, the content of each of these nodes is true. Furthermore,

since 0. does not destroy branches, {nl,...,nk} must be a true

5

branch of OS(n). Thus Og(n) is true wder v .

lemma 6 (duplicate branch removal) If t is true under v and

O6 removes the branches b .,bn which are duplicates of the

1
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branch b, then the resulting tree s , which contains b, is true

umnder v .

proof By hypothesis, for each assignment to its positive variables,
t contains a true branch h . If h ¢ {b,bl,...,bk} then h is

a true branch is s. If h e {b,b ..,b.} then b must be a true

1’ k

branch of s

lemma 7 (proper subforest copy ) Let F be a proper subforest
of t, s = OT(F) and r be the tree obtained by removing all
branches from +t which contain nodes in common with F. If + is

true wnder v , then either s or r is true wder v

proof Since F 1is a proper subforest of t , there exists a tree
which is truth functionally equivalent to t and has the property
that 1f 2z 1is a positive variable occurring in F , then 3z does
not occur in the content of any of the elements of Nt-NF' We may
thus assume, without loss of generality, that t has this property.

et x = {x

l,...,xk} be the positive variables occurring in

F and vy = {yl,...,yn} those occurring in contents of elements of
Nt—NF. By hypothesis t 1is true for all value assignments to

x U y. If for each such assignment, some branch of r is true,
then r 1is true under v. Otherwise, suppose for some assignment
xf,...,xﬁ, yf,...,yg no branch of r is true. Thus, some branch

of F (and consequently s) must be true for this assignment. But

clearly, some branch of s must be true for each assignment
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xf*,...,xﬁ*, yf,...,yﬁ since changing the value assignment of x
can not effect the truth of the branches of r . Thus, if r is

not true under v , s 1is true for each assignment to its positive

variables. Thus, s dis true under v

lemma 8 If t is true wmder v and s = 08(t), then s is also

true under v

proof It can be shown by an inductive argument that ——L—> ¢

implies t is unsatisfiable. By hypothesis, there exists a proper

subforest F of t such that r = 07(F) and T L, ¢ . It

follows from lemma 7 that s 1is true under v

lemma, If tl and t2 are true under v and s is the restricted

append of t2 to the leaf n of tl, then s is true under v .
proof It follows from lemma 3 that tlcl and t202 are true

uder v (where Gl and 02 are as given in the definition of

09). The trees tlcl and t202

ables. Furthermore, for each assignment to the variables oceurring

contain no common positive vari-

in tlol, t202 these trees contain true branches bl and b2

regspectively. If bl is not the branch determined by n , then s
contains a true branch. If bl i3 the branch determined by n .

then the branch of s consisting of the images of bl and b2 is

true. Thus, s contains a true branch for each assignment to its

positive variables. Thus, s is true under v.
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lemma 10 If t 1is true under v and s = Olo(t), then s 1is

true under wv.

proof  Utilizing lemma 8 and the fact that r L. ¢ dimplies r
is unsatisfiable, it can be shown that r —~l—> ¢ implies r is
unsatisfiable. Now & is obtained from +t by removing all branches

which contain all patriarchs .,Sn associated with some occur-

sl,..
rence of ¢ in the attempted proof graph. This means that there

is a tree r of the form

i

such that r ~;~~> o . Thus, r is unsatisfiable (i.e. for every
valuation v and all value-assignments to the positive variables
occurring in t, some s, (L <i<n) is false). Since t is
assumed to be true under v , some branch is true for each value
assignment to the pesitive variables occurring in t . By the above
argument, each branch removed from % by OlO contains at least
one false node for each such assignment. The tree s must there—

fore contain a true branch for each value-assignment to this positive

variable. Thus, s is true wnder v
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