COMPUTER SCIENCES DEPARTMENT
University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

A CORRECTNESS PROOF OF THE FISHER-GALLER
ALGORITHM USING INDUCTIVE ASSERTIONS

by

Ralph L. London

Technical Report #102

October 1970

A CORRECTNESS PROOF OF THE FISHER-GALLER
ALGORITHM USING INDUCTIVE ASSERTIONS*

by

Ralph L. London

INTRODUCTION

In Morris (1970b), J. H. Morris uses truncation induction
(Morris 1970a) to give a correctness proof for the Fisher-Galler
algorithm of recording equivalence relations (Knuth 1968, pp.
353-355). When Morris presented his proof at the Symposium, he
remarked that he had been unable, after a brief attempt, to give a
proof by inductive assertions. Accordingly, the purpose of this
note is to record a proof for the algorithm using inductive assertions.
The proof will follow the style of London (1970b) and, in addition,
will use backward substitution, briefly described in London (1970a).

Some comments about Morris' and my proof are also given at the end.

THE AIM OF THE ALGORITHM

The Fisher-Galler algorithm "is to keep track of an arbitrary
equivalence relation over a finite set of integers [1,k]. We must

*This work is supported by the National Science Foundation under
Grant GJ-583.

provide two subroutines, Enter and Equiv. After initialization
Enter may be called with pairs of integers in the range [1,k] and is
expected to record the fact that they are equivalent. Equiv(x,y)
should return true if x and y are equivalent -- either because
Enter(x,y) has been executed previously or because the laws of re-
flexivity, symmetry, or transitivity make them so, given other ex-
plicit equivalences. Otherwise Equiv returns false." (Morris
1970b, Section B.)

The Fisher-Galler algorithm starts with an array A[l:k] set
to all zeros. A subroutine Rep(x) is defined (see below), intended
to return a canonical Representative of x's equivalence class.
Initially, Rep(x) = x for 1 < x < k. The value of Equiv(x,y) is
true if Rep(x) = Rep(y) and false otherwise. The subroutine Enter,
which uses Rep twice, is defined below. If = denotes the equi-
valence relation, the correctness statement is: After each call of
Enter(x,y), then z = w iff Equiv(z,w).

Informally (and not part of the proof), the array A is viewed
as a forest of trees. Rep(x) is, in fact, the root of the (unique)
tree containing x . Initially the array consists solely of roots
(hence Rep(x) = x). Enter(x,y) makes x and y equivalent by

making x's tree into a subtree of the root of y's tree.

THE RIGOROUS PROOF OF CORRECTNESS

All inputs are assumed to be positive integers and the array A
is initially zeros. It is easy to verify, therefore, that all quantities
manipulated by the subroutines are non—negative integers. Part of

this verification is omitted.

Lemma 1: The integer-valued subroutine Rep(x) is defined by
the following flowchart., If x Z0 and A is a forest on entry to
Rep(x) and if (Al) and (A2) below hold for root (x), then on exit the

returned value t of Rep(x) satisfies

0 #£t=root (x)A\A[t]=0.

Proof: Rep(x): I~— l. xZ0AA is a forest
=
T o 3. 041t =root (x)A
Aft] -
2. t £ 0 A~ -YeS return t
root{t) = root(x
no
l t Aft] }

First note a global property of Rep(x), namely A 1is unaltered
by Rep(x) since only t is changed. Second we assume for a forest

A that if x Z 0, then

root (x) = root (A[x]) if A[x]Z£O0 (A1)
root (x) = x if A[x]=0. (A2)
(This property will be shown to hold initially as part of the proof of
Theorem 1. The property will be shown to be preserved as part of the proot
of lemma 2 for Enter, the only place where the array A is changed.)
The assertions are verified by backward substitution:
Path 1~3: wverification condition (vc):
xZ0NA is aforest A A[x] =020 # x = root (x) N A[x]=o0.
True by (A2) and identities.
Path 2-3: vc:t # 0A root(t) = root (x) \ A[t]=0 20 # t = root (x) A Aft] = 0.
Use (A2) to obtain t = root (t).
Path 1-2: ve: x 20N A is a forest A A[x] # 0 2 A[x] # 0 A root (A[x]) = root (x).
True by (Al).
Path 2-2: wvc: t # 0N root (t) = root (x) N A[t] # 0 2 Aft] # 0 A root (A[t]) = root (x).

Use (Al) to obtain root (t) = root (A[t]).

Since the array is defined only for A[l:k], one should show all
array references are in bounds. Since t #0 and t is a non-negative
integer, one need only show t< k., If we augment assertion 1 (i.c.
the assumptions of lemma 1) with "x < kAA[i]<k for 1<i<k"
and augment both assertions 2 and 3 (i.e. the conclusion of lemma

1) with "t < k," these additional assertions are easily verified by

the latter holds

backward substitution using Af[ij<k for 1<i<k;

everywhere in Rep(x) since A is unaltered by Rep(x).

One reason Morris said he failed using inductive assertions was
Going

that he wrote A[A[t]]. I avoided this by using (Al) and (A2).
backward is not important since the proof for Rep(x) is easily done

by working forward.
2: The subroutine Enter(x,y) is defined by the following

Lemma 2:
flowchart., If assertions la and 1b on the flowchart hold on entry,

then assertions 2a - 2d hold at the exit.

Proof:
Enter(x,v)
la. x20Ay #0AA is a forest
root (z) = root (A[z]) if A[z]/0, z/0

(2)
lb"’<rc>c>t (z) = 2 if Alz]=0, z/0

Yy
B L+ Rep(x) W
© | re Rep(y)
D e
Tpep™N©e
<\\ - 3
W’?es 8 lA[L]** R \
]
§Za, A is a forest
~~~~~ 12b. 1b holds
/. V2c. 1oot (x) = root (y)
Exit }md, root (w) # root (x) » root (w) unaltered

PEEEREEEY




The assertions 2a-2d are verified as follows: First note
that la and 1b show the assumptions for calling Rep(x) and Rep(y)
are satisfied. Hence at box D (using lemma 1) L £ 0 /\ L = root (x)

AB[L]=0 and RZ0 AR = root(y) /\ A[R] = 0.

If L = R, then 2c holds. There is no change to the forest
A so 2a, 2b, and 2d hold. Assume L ZR. Then L £ 0 implies
A[L] is defined; after box E, A[L]=R#Z 0. A is still a forest
since the only change to A is at A[L], now setto R . Thatis,
the structure whose root is R is still a tree since the tree whose
root was L (#R) is now a new son tree of R . In symbols root (L) =
root (R) = root (A[L])with A[L]# 0 and L # 0. Butroot(R) = R since
A[R] = 0; hence 1b still holds at the exit. Moreover, 2d holds since
only root (x) is changed at box E .

It remains to show 2c¢, root (x) = root (y):

root (x) = root (L) by definition of L and the change

1

to A at box E ,

= R by above (in showing 1b holds at
exit),
= root (y) by definition of R .

To show that all array references remain in bounds after Enter,
one can augment assertion la with "x <k Ny <k A Ali]<k for

1<i<k" andassertion 2a with "A[i]<k for 1<i<k." The




new 2a holds by la and box L[ since R < k by the augmented
assertion 3 of Rep. Finally, note that the new 1la is precisely
the augmentation to Rep's assertion 1, the assumption for calling

Rep.

We are now ready to prove the statement of correctness.

Theorem 1: Let = denote the equivalence relation. Let =z
and w be integers, 1<z, w<k, Then each call of Enter (x,vy)

preserves the relation
7 EW iff Equiv(z,w).

(I.e, this relation could appear as both assertion lc and assertion

2e on the flowchart for Enter(x,v).)

Proof: Since Equiv (z,w) iff Rep(z) = Rep(w) by the definition
of Equiv and since Rep(z) = root (z) by lemma 1, the relation to prove

(preserve) is
z = w iff root(z) = root(w) .

It is first necessary to show that Lemma 2's assumptions, la
and 1b, for calling Inter (x,y) are satisfied. By assumption x #0
and y # 0. Prior to the first call to Enter, we have by the array
initialization, A[z] =0, i.e. root(z) =z forall z, so A is

initially a forest (of all roots). Hence both la and 1b hold prior



to the first call. For subsequent calls to Enter, the assertions
2a and 2b guarantee la and 1lb since A is changed only in
Enter. (The augmented assertion la, x<k Ny <k A Ali] <k for
1 < i<k, for showing valid array references is satisfied for
similar reasons: by assumption on x and y, and first by the
initialization A[i] = 0 and subsequently by the augmented 2a, A[i]
<k for 1<i<k.)

The proof proceeds by cases prior to the call of Enter(x,y)

which by lemma 2, assertion 2d, changes only root (x).

1. x=y. Thus root(x) = root(y) and Enter(x,y) makes
no change to the forest A.
e XZy. Let s be an integer, 1< s<k, and consider
which equivalences and roots are changed.
a) s =x, il.e. root(s) = root(x). After Enter (x,v)
we have root (x) = root (y) by 2c. Then s = x
and x =y means s =y iff root(s) = root(x) =
root (y). For this case these are the only changes to
z = w iff root(z) = root (w).
by s=zvy, i.e, root(s) = root(y). After Enter(x,y) we
have root (x) = root(y). Then s =y and x =y

means s = x iff root{s) = root(y) = root(x).




c. s#x, s#vy, i.e. root(s) £ root(x), root(s) #
root (yv). Note that s, x, and y are all different

else either s=x, s=vy, or x=y. After Enter (x,v),
we have root(x) = root(y). Then s Zx =y £ s iff

root (x) = root (y) # root (s).

Note that z = w iff root(z) = root (w) holds prior to the first
call of Enter (x,y) since at that time z =w iff z = w iff root(z) =

root (w) by root(z) = z for all z initially. [§

Theorem 2: Enter (x,y) and Equiv (x,y) each terminate.

Proof: Clear provided Rep (x) and Rep (y) both terminate.
This follows in one of three ways: First, note that A is always a
(finite) forest and hence A[t] = 0 eventually. Or second, note that
only roots are altered by Enter (x,y), and then only to another root;
specifically root (x) is changed to root (y) which, by box D of
Enter (x,y), is different from root (x) and hence no cycles in the forest
are generated. In other words, within each call to Rep (x), the var-
iable t does not assume the same value twice; hence the loop in

Rep (x) is executed at most k times. Or third, employ an induction

proof based on the number of non-redundant calls to Enter(x,vy).



10

DISCUSSION

It seems appropriate to comment on the discussion (section G)
in Morris (1970b). His proof and my proof are not fundamentally
different. A rough indication of where his lemmas appear in my

proof is:

Morris London
Lemma 1 Lemma 1
Lemma 2 Theorem 2
Lemma 3 (keystone) Lemma 2 (keystone?)
Lemma 4 Apply lemma 1 and (A2) to
show root (root(x)) =
root (x), i.e. Equiv (root (x), x)
Lemmas 5,6,7 Theorem 1

Morris calls his lemma 3 the "keystone" to his proof. Perhaps my
lemma 2 is also a keystone.

My proof appears to avoid induction; however, the use of in-
ductive assertions allows my inductions to appear only implicitly.
Note, though, that there is an easy correspondence between his ex-
plicit inductions and my uses of assertions. Indeed, my proof of
theorem 2 is almost explicit induction.

The notation in my assertions corresponds vaguely to his

introduced functions. He notes, "Throughout [his] proof [he] was



11

able to think of expressions »«. in terms of the objects they denote
rather than something to be evaluated by an interpreter." In my proof
my notation similarly allowed me to think of the effect or "evaluation"
of a subroutine on the data (the forest) "rather than something to be
evaluated." That my proof is not as "algebraic"” [his term] as his is
reduces the elegance and formal checkability of my proof, but I claim
it does not reduce the rigor.

I think Morris is overly pessimistic about our ability to show
objects are unaltered between subroutine calls. The use of inductive
assertions can do this and has. In London (1970b), the proof involves
a subroutine siftup which is called in the main program, The proof
for the subroutine shows that only certain parts of the array being
sorted are changed. In other words, there are no side effects (beyond
the statement of what siftup does). The last example in London (1970c)
involves showing the absence of side effects ("nothing else is changed").
The same methods can show no change over larger units as demonstrated,
for example, in London (1968). Thus when Morris asks for "ways of
combining proofs about sub-programs into proofs about larger programs
without having to reprove everything," I note that this has been done
in a few cases, albeit not routinely or mechanically.

Finally, I certainly agree with a point of view Morris expressed

in the context of the design of programming languages. He added the



emphasized words to "the traditional question, 'How easy is it

to write and prove correct a program to do X7?' ™"




13

REFERENCES

Knuth, D. E. (1968). The Art of Computer Programming, Vol, 1 --

Fundamental Algorithms, Addison-Wesley, Reading, Mass.

London, R. L. (1968). Correctness of the Algol Procedure Askforhand,
Computer Sciences Technical Report No. 50, University of
Wisconsin.

London, R. L. (1970a). Experience with inductive assertions for

proving programs correct, Symposium on the Semantics of

Algorithmic Languages, E. Engeler (Ed.), Springer-Verlag

Lecture Notes Series (to appear). Also Computer Sciences
Technical Report No. 92, University of Wisconsin,
London, R. L. (1970b). Proof of algorithms: A new kind of

certification, Comm. ACM, Vol. 13, June, 1970, 371-373.

London, R, L. (1970c). Proving programs correct: Some techniques
and examples, BIT, Vol. 10, No. 2, 168182,

Morris, J. H. (1970a). Another recursion induction principle,
Computer Center Technical Report No. 38, University of
California, Berkeley,

Morris, J. H. (1970b). A correctness proof using recursively defined
functions, Proceedings of Symposium on Formal Semantics of
Programming Languages, R. Rustin (Ed.), held at Courant
Institute, New York University, (to appear). Also Computer

Center Technical Report No. 39, University of California, Berkeley.






