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1., Introduction

Let

L. 1) L o] =(p, (19")' - C ()o(t), k=12

be two regular Sturm Liouville operators defined on [0, 1]. That is

p (1) e C'[0, 1], C (t) € C[0, 1],

pk(t) z P, > 0, Ck(t) > 0.

Consider the nonlinear system of ordinary differential equations

l(t,u,G), o< t< 1,

LZ[G] = ?\uHZ(t, u, 6), 0<t<

L [u] = néH

1.3)
1,

where the functions u(t), 6(t) are required to satisfy the boundary conditions

Ao[u] = aou(O) - bou'(O) 0, Al[u] = alu(l) + blu'(l) =0,

1.3a)
B,[6] = a,6(0) - B '(C) =0, B [6] = a (1) + B EL(1) =0,
with
ak,ak,bk,ﬁkz O; k=l,2,
1.3b)
T oy > 0.

a +bk>0’ ak+ Bk>0, a0+al>0, g




The functions Hk(t, u,6) are even, and positive, i.e.

1.3c) H, (tu, €) =Hk(t,1u1,\e|)>o, k=1,2.

In a companion paper [12] we studied such problems under a set of
assumptions which allowed the iterative construction of a "maximal", "positive",
solution. In this report we apply the Schauder fixed-point theorem to obtain
(under appropriate hypotheses) the existence of solutions having a specified
number of zeros.

This work, and the work described in [12], was motivated by a problem
studied by F. Odeh and I. Tadjbakhsh [10] and N. Bazley and B. Zwahlen [ 1 ].
These authors consider the nonlinear system

Asin @, 0<t< 1,

C_
H

1.4)

" A u cos G, 0<t <1,

subject to the boundary conditions

A.) u'(0) = u(l) = 0, g0y = 6'(1) =0,

B.) u'(0) = €'(0) = 6(1) =u(l) = 0.

Because of the physical interpretation of the function (u(t), &(t)) an

important condition which was not imposed by these earlier authors is

1. 4a) 1 6(t)] <§



The case of the boundary conditions (B) has been discussed in [l12]. Thus
one of our major aims is to obtain "physical" solutions of (1.4) subject to the
boundary conditions (A). This result will follow from the general results ob-
tained here together with a simple construction based on the a priori estimates
of [12].

The approach we use here is closely related to our work [1l1] on sub~
linear Hammerstein equations and is related to the work of Pimbley [13] and
Wolkowisky [14]. Indeed, using the method of [11, lemma 7] these
results go over to problem involving pairs of integral equations with oscillation
kernels. Nevertheless, at this time, we limit ourselves to the case of

differential equations.

In Section 2 we discuss some preliminary ideas relating these problems
to the theory of "oscillation" kernels [ 4] and variational problems. In
Section 3 we develop some basic facts of oscillation theory for fourth order
problems. Section 4 is devoted to the basic existence theorem. In Section 5
we show how the results of [12] may be used to obtain additional existence
theorems. In particular we obtain results which apply to the problem A of

Odeh and Tadjbakhsh.




2. Preliminary Notions

In addition to the assumptions (1.3c), we assume that the functions

Hk(t, u,6) satisfy

P.1) H, (t, u, 6) € C[0,1] % C[=», @] X C[=o, ], k=1,2,

P.2) O<aSHk(t,u,6)Sb, k=12

where a and b are positive constants.

Let
2.1) A ={(a,(1), q,(the C[0,1] X C[0,1]; a = qt)=b, k=1,2]
2.2) B= {(ql(t),qz(t))e LZ(O, 1) XLZ(O, 1); a < qk(t) <b, a.e., k=1,2}

For any pair (ql(t), qz(t) ) € B we consider the linear eigenvalue problem

1
i

0,

L [ul = A (t); Aj[u] = A [u]

2.3)

LZ[G] 7\uq2(t); BO[G] = Bl[G] = 0.

Let Kl(s’ 1), Kz(s, t) be the Green's functions associated with the operators

"-Ll[u] and —LZ[Q] subject to the appropriate homogeneous boundary conditions

(Aj[u] = 0, BJ.[Q] = 0.). Then the equations (2.3) are equivalent to

1

2.4a) u(t) = -A Jf Kl(t’ %) ql(x) G(x) dx ,
, flexa

2. 4b) o= n [T, Gey) @y v dy

0
Upon substitution, we see that this pair of integral equations is equivalent

to either



1
u(t) = 7\2[ Gl(t’s) u(s) dx ,
Yo
2.5a) 1
Gyltrs) = | Ky(6) 6y () Kylx,8) ayls) e
or
) 1
6(t) = A f Gz(t,s) E(s) ds ,
2. 5b) 0

1
Gz(t, s) = 4 Kz(t,x) Kl(x,s) ql(s) qz(x) dx .
The kernels Kj(s, 1), and therefore the kernels Gj(s, ’c)(l '), are
"oscillation kernels" in the sense of Gantmacher-Krein [ 4] and hence a
great deal is known about their spectrum. In particular, consider equations

(2.5a) or (2.5b). The spectrum consists of positive, simple eigenvalues

2 2 2
2.6 e e
) 0< ?\O < 7\1 < < )\k <
Moreover, the associated eigenfunctions cpk(t), k=0,1, --- satisfy the

"oscillation" condition. That is, in the open interval (0, 1) ka(t) has exactly
k "nodal" =zeros and no other zeros.

Thus, returning to our original problem, we see that the eigenvalues are
real and occur in pairs (7\k: - ’)\k). Indeed, if A is an eigenvalue with associated

eigenfunction (u(t), 6(t) ), then -Ais an eigenvalue associated with (-u(t), 6(t)).

(1 ')The theory developed in [4 ] is restricted to the symmetric case
G(s,t) = G(t, s). However the results required here are valid in the general
case. Gantmacher-Krein assert the validity of their results in the general
case and cite references to the Russian literature. A discussion of the general
case was given by S. Karlin in classroom lectures and will appear in his book

[61].




Thus we may restrict ourselves to a consideration of the positive eigenvalues

2.7) 0 <A <A,

If (uk(t), Gk(t)) is the eigenfunction associated with }\k’ then each function

uk(t) or Gk(t) has exactly k interior nodal zeros and no other zeros.

Another useful fact about oscillation kernels which is clearly related to

the above remarks is the variation diminishing property. That is, for f(t) € C[0, 1]

let Z(f) denote the number of interior nodal zeros of f(t). Let K(s,t) be

an oscillation kernel and

1
2. 8a) o(s) = f K(s, t) g(t)dt,
0
then
2.8b) Z(p) = Z(y)

The representations (2.5a), (2.5b) show that 7\]‘ is a continuous
function of (ql(t), qz(t) YeB, (see[7 , page 213 ]).

In the special case where L. = L

) > Aj = Bj the linear eigenvalue

problem (2.3) is essentially self adjoint and we know even more about the
spectrum. The eigenvalue ?\k are given by the variational characterization
of Courant [2 ], Weyl, Ritz etc. Thatis,

2.9a) A = Ma

u 2

a,(t) (u(t)) dt
JAES



and for j = 1,

2
2.9Db) ?\j = Min Max 1

L

2
where Sk denotes an arbitrary k dimensional subspace of WZ (0, 1) whose

elements satisfy the boundary conditions

2.9c) Ao[u] :Al[u] =0
and S; denotes the orthogonal complement of Sk in LZ[(O’ 1), qzdt], i.e.,
9(t) € S, if (2.9c) holds and
( 1
2.9d) J q,(t) @(t) u(t)dt = 0
0

for every u(t) € Sk .

From this basic fact we obtain the following lemma.

Lemma 2.1. Let (ql(t;O‘), qz(t.;cf))e A, 0 < 0s o be aone parameter family
of pairs of functions which is continuous in B as a function of o . Let 7\j(0’)

th . .
denote the j' positive eigenvalue of

=
—
~~—
ot
i
I

%qu(t;d), Ao[u] :Al[u] =0,
2.10)

=
et
-
D
[—
i

Aug. (t; o), AO[G]:AI[G] =0 .

2

Suppose 9, < o, implies




2.11) q].(t, g,) = qj(t, 0,), a,(t, 0,) a,(t, 0;) ¥ q,(t, 0,) q,(t, 0,) .

Then the eigenvalue ?\j(cr) is a continuous function of ¢ and

2.12) 7\],(01) > xj(az) .

Moreover, for each j, there exist two positive constants A], and Mj such

that
2.13) O<A],S %J.(q

for all (ql, qz) € B.



3. Linear Problems - Oscillation Theory

In this section we develop some further properties of system (2.3). Our
fundamental tool is an extension of some basic results of W. Leighton and
Z. Nehari [ 9] .

Let A > 0 be a fixed constant and let (ql(t), qz(t)) € A and consider

the linear differential equation

Ll[u] = )\qu(t), 0<t< 1
3.1)

LZ[S] = 7\uq2(t) , 0<t<1
Lemma 3.1. Let (u(t), 6(t) ) be a solution of equation (3.1) and let
ael0,1). If u(a), u'(a), 6(a), 6'(a) are nonnegative (but not all

zero), then the functions u(x), u'(x), €(x), 6'(x) are all positive for a < x = 1.

Proof: In the case where

Ll[u] = Lz[u] = u"

thisresult is lemma 2.1 of [ 9 ]. In the general case we use the repre-

sentations (Volterra integral equations)

6(s) = 6(a) + p,(a) 6'(a) P, + A [ dx 'Xu(t)q (t) dt
2 L o, TN A 2
3.2a) s x
+ X C,(t) 6(t) at




[ dx rSdx ®
- : ax ax 6
uis) = wi@) + 9@ wia) [ F’l(X’fa ()a, (1)
o + °_dx PXC () u(t) dt
Ja P, (%) /a 1 ’

¢

Case 1. 6B(a)'+ 6'(a) > 0. There is an interval (a,a+gs) in which 0(t)

is positive. Let us assume 6(t) is known and use equation (3.2b) to obtain
u(t) in this interval. Since we are dealing with a Volterra integral equation

we may use Picard iterations with uo(t) = uf{a). A straightforward induction

shows that un(t) is positive on (a,a+ &) and hence

u(t) >0, a<t<a+d.

Using this result in equation (3.2a) we see that
Ba +6) > 0.

Hence 6(t), u(t) are (strictly) positive for t € (a,1]. Using the representations

(3.1a) and (3.1b) we see that 6'(t) and u'(t) are also positive for t e (a, 1].

Case 2. u(0) + u'(0) > 0. A similar argument (reversing the roles of u

and 6) completes the proof in this case.

Lemma 3.2, Let (u(t), 6(t)) be a solution of equation (3.1) and let
a e (0,1]. Suppose uf(a) z 0, 6(a)z 0 while u'(a) = 0, 6'(a) = 0 (but

not all zero). Then for t e [0,a) we have

u(t) > 0, 6(t) > 0, u'(t) <o, ()< 0.
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Proof: As in the proof of Lemma 2.2 of [ 9], welet s =1 -1t and

apply Lemma 3.1.

Lemma 3.3. Let (u(t), 6(t)) be a nontrivial solution of equation (3.1) and

let a € (0,1). Suppose either

u(a) =u'(a) =0
or

6(a) = 6'(a) =0 .

Then, in (at least) one of the two intervals [0,a), (a, 1] all four functions

u(t), u'(t), 6(t), 6'(t) are different from zero.

Proof: This result follows from the two preceding lemmas exactly asin [9 ].
These rather elementary results are the basis of some interesting theorems
on the "continuity" of the spectrum of equation (2.3) which are stronger than

the results mentioned earlier ([ 7, page 213).

Lemma 3.4, Suppose there is a sequence (ql

and functions (q

l(t)’ Ez(t)) € B, such that

3.3) qj(k)——x Efj(t) weakly in LZ[O,l] as k=, j=1,2.

Let (un(k)(t), Gn(k)(t)) and 7\0nk be the n'th eigenfunction and n‘th positive

eigenvalue of
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(k) _ (k) 45 (k) _k (k)q _ (k) _
Ll[un ] = X@n Qn a (t), Ao[un ]-Al[u ] =0,
3.4
| e My = gy Mg kg, 5 oMy ey oy
2t n n n 27" 70t n 1 'n '

Suppose there is a positive constant © such that

3. 4a) U(k)-»B' as k — o

Finally, suppose there are functions u(t), €(t) € Cl(O, 1] such that

¥ o T in clo,1] as k= w0,
3. 4b)

Sn(k')(t)—» e(t) in Cl[O,l] as k — o,

Then the functions (u(t), 6(t)) are the n'th eigenfunction associated with the

"th

n (positive) eigenvalue A O of

Ll[u] = AGEq,, a,e; Ao[u] =Al[u] =0,
3.5)

LZ[G] = 7\6qu, a,e; BO[Q]zBO[G]:O

Proof: While the functions (El(t), Z:I—Z(t)) need not be continuous, they

belong to B . Moreover, the functions u(t), 6(t) are weak solutions of
equations (3.5). Hence, strong solutions. Thus, as in the development of
equations (2.5a), (2.5b) we see that u(t) and §(t) are separately eigen-
functions of a linear integral equation whose kernel is an oscillation kernel.

Thus each has only a finite number of interior zeros in (0, 1) and each such

interior zero is a nodal zero. Let N be the number of interior zeros.
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1
Because of the C [0,1] convergence there is a kO such that
k = k. implies that u (k)(t) has at least N interior nodal zeros. Since
n

0
(k)

each un (t) has exactly n interior nodal zeros we have

3.6) N £ n.
et n= 1 and let

(k)

o< g Mgy

be the n interior zeros of un(k)(t). There is a subsequence (k') and a

set of values

such that

3.7) @j‘k'

)-»_{ifj as k' — o«

If N <n then either there is a pair

3.8a) 0<E =, <1
or

3.8b) é‘l:o,

or

3.8¢) 'én=1.

However, if (3.8a) occurs then u(t) has a double zero at ﬁj . If

8(E) 9'<€j) > 0
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then (because of the linearity) we may take
BE)=z0 B(E) = 0
and then Lemma 3.1 contradicts the boundary conditions at t = 1. On the

other hand, if

&' <"e;’j)

A
o

5(&}) > 0,

then the boundary conditions at t = 0 and Lemma 3.2 lead to a contradiction.

If (3.8b) occurs as a result of E;l(k ) — 0 then (because of the

boundary condition at t = 0) u(t) has a double zero at t = 0. However, we

also have

6(0) 6'(0) = 0 .

Hence, the boundary conditions at t =1 and Lemma 3.1 lead to a contradiction.
A similar argument disposes of the case (3.8c).

This result leads us to consider another basic assumption.

P.3) For every fixed n there are constants A , B such that A,
n’ "n n

the n th positive eigenvalue of the linear eigenvalue problem (2.3), satisfies

<
3.9) O<Ans ?\n_Bn

for all (ql(t), qz(t)) € A .

Theorem 3.1, Suppose P.3 holds. Let (ql (1), qa, (t)) e A for

k=12, . Suppose there are two functions (—(i'l(t), qz(t)) such that
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k -
3.10) q(, )(t) -——>qj(t) weakly in L,(0,1), k=, j=1,2.
The convexity of A implies that (El, EZ) € B.

Let 7\(};) and (u(};)(t), 9(};)(1:)) be the n'th (positive) eigenvalue and the
corresponding eigenfunction of equations (2.3) with qj(t) replaced by

q(].d(t) . Let (u(i)(t), e(r}f)(t)) be normalized so that

]

)y =

0 n Yo

max (|| Q(E) I

where

Hf“m = max {|f(t)|, 0=t =1},

Let S\-n and (u(t), 6(t)) be the n'th (positive) eigenvalue and corresponding

eigenfunction of equations (2.3) with qj(t) replaced by E},(t). Then

k),
n
%) ¥ smn woco
(k) B(t) '
Lo, (1 =8t in C [0,1] -

Proof: There is a subsequence (k') and a constant p and two functions U(t),

(O(t) such that

u(};)(t) — U(t) in C'[0,1],
9(]:1)(‘[) - @) in C'[0,1].

On applying Lemma 3.3 we see that
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>|

LL:

1
=X
=
Nt
=
L
0
o
=

U(t)

A straightforward argument based on the uniqueness of the quantities A,

u(t), 6(t) shows that the entire sequence converges.

Having established this result, one is naturally led 1o the guestvion
when does P.3 hold?? Clearly, lemma 2.1, the variational characterization
of _Xn given by equation (2.9b), asserts that P.3 holds in the symmetrizable
case. It seems reasonable to conjecture that P.3 always holds. However,
we have not established this assertion. On the other hand, the methods of
this section may be used to establish this fact for certain cases. These

results are presented in an appendix. We note that the case (A) of Odeh

and Tadjbakhsh is included.
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4, The Basic Existence Theorem

In this section we return to our original nonlinear problem (l.3), (l.3a).

We assume that P.1, P.2, and P.3 hold.

Let
= 0 =
hk(t) Hk(t, , 0), k=1,2
44 t) = H (t k=1,2
= oo, O o
gk( k( 2 3 )3 H
Let 7\3" j=0,1,... denote the positive eigenvalues of the linear eigen-
value problem
Ll[v] = M h (1), AO[V] =Al[v] =0,
4.2a)
Let uj, j=0,1, ... denote the positive eigenvalues of the linear eigen-

value problem

Ll[w] =LLy/gl(t), AO[W] :Al[w] =0,
4.2b)
L[yl =pwg (), B[] =B [«] =0.

Naturally, we assume

4.,2c¢) 7\), < 7\j+l; uj < Mj+1'

Let N> 0 be fixed. Let (ql(t), qz(t)) €A.
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Let

a -
) - Un(ql:q

n 2)

(4.3) U (t) =U (tq,,q

n n 2)

k@n(t) =®n(t;ql, q,)

denote the n'th positive eigenvalue and eigenfunction respectively of the

linear eigenvalue problem

i

[
(]

L,[U,] = Ao @ a1, AU ]=A[U] =

(4.4a)

]
(@]

i

L,[® ] =20 U a), B[W]=3[®]

normalized so that

4. 4b) max {[U || [©ll,,}=1
Note: Since the eigenvalues are all simple, this normalization determines
(Un,@n) up to sign.

Remark: Each function Un(t), @n(t) has exactly n nodal zeros in (0, 1)
and no other interior zeros.

Given (4.,q.) €A, and hence (Un’ @n)’ let o € (0,) and let

1" "2
P, =P,la 9,5 0)
4. Sa) Vn(t) = vn(t: ql: qZ: (l)
k‘}{n(t) = \yn(t: C{l, qz: a)
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denote the n'th positive eigenvalue and eigenfunction respectively of

the linear eigenvalue problem

e _ i
L[v ]= 2p ¥ H(taU (b), OL@ﬂ(t)),
4.5b) ( L[¥ 1= np V Hy(t aU (), aw (1),
\AO[Vn;I =A1[Vn] - BO[Yn] - Bl[\yn] =0

normalized so that

4.5¢) max (v || ¥ [l =1-

al

Note: Because the functions Hk(t, u, 6) are even, the functions

a 1" - i
Hk(t,a Un(t), On(t)) are well defined.

Lemma 4.l: The quantities Un(t;ql, C{Z), @n(t:q , q H

l 2)7 t’ aUn’a®n)’

1

i a i
Hz(t, OLUn, a On), pn(ql, q ), Vn(t, qp 9y ay, Yn(t, a4, Q) are continuous

functions of (ql, qz, a) in the following sense. If

(k) —
an-—va<oo as k o

q(k)(t)-——\a-j(t) € B, weakly in LZ(O,l) as k — o«

j

then
U(};)(t) = Un(t;q(}f), q};) =2 Un(t; E{—l, Efz) uniformly on [0, 1]
4. 6a) ‘
@(:)(t) =®n(t;q(]l<)’ q(];)) = @n(t;ffl, 6-1'2) uniformly on [0, 1]
4.6Db) I—Ij(t, cx(k) U(];) , Ot(k) @rgk) ) => Hj(t, a U, @n) uniformly on [0, 1]

p @, oK) p@, T,
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k k) (k _ -
Vn(t;ql( ), qz( :)oc( )) ==> Vn(t, CIRCPY a) uniformly on [0,1],

4.6c)

(k) (k)

. (k), __ - = -
¥ o(taha,ha ) = ‘En(t,ql,qz,a) uniformly on [0, 1],

Al

Proof: Apply theorem 3.1.
Lemma 4.2, Suppose

. < <
4.7) 'An A un

Let (ql (1), qz(‘t)) € A. Then there is at least one value of a ¢ (0,®) such that

Proof: By Lemma 4.1, for fixed (ql, a,) € A, pn(ql, qz; a) is a continuocus

5)

function of ¢ . The lemma follows from the observation that

- A

4.8a) Lim p (d;,d, 0) = n/y <1
s 0

and

4. 8D) Lim p_(d;,d, a) = Moy >l
o=+ ®

Lemma 4.3: Let (4.7) hold. There is a positive constant % > 0 such

that, for all (ql(t), qz(t)) e A and all o € (0,a,) we have

L

4.9) P ql,qz,a) <1,

A
Proof: Assume the lemma is false. Using the continuity of pn(ql, qz, a)

and condition (4.8a), we may assume that there is a sequence

(q(];)(t);q(];)(t)) € A and a sequence o (0,2) such that
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4.108) Q — 0 as k — o

4.10Db) P (q( ) q(k) a')y=1 forall k=1,2,..

However, we may extract a subsequence (k') and a pair of functions

(ql(t),az(t)) € B so that

k"
q(.

4.11) J

(t) — Ej(t), weakly in LZ(O, 1), u=1,2.
Applying Lemma 4.1 or Theorem 3.1 we see that

() ) G0y o

Lim Pn(ql a5

k'...,oo

which contradic*s equation (4.10b).

Lemma 4.4: Let (4.7) hold. There is a finite positive constant &

2 ¥
such that, for all (ql(t), qz(t)) € A and all o ¢ (OLZ,OO) we have
a
4.12) IR O IPGR I
Proof: Assume the lemma is false. Using Lemma 4.1 and condition

(4.8b) we may assume that there is a sequence (q"]f)(t), q(];)(t)) € A and

a sequence OL(k) > 0 such that

(k)

4.13&) Q -—r 00 A8 k —» o

4.13Db) pn(q(]f),q(];),ak) -1, k=12, ...

Using Lemma 4.1, and extracting enough subsequences we may also

assume that there are two functions (C—Il(t)’ qz(t)) € B so that
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k —
rq(_)(t)———>q]_(t) weakly in LZ(O’ 1y, 1 =1,2,

< U o (ty = U (t;q(k), qk

n 1 Z) => Un(t, q,,4 uniformly ,

5)

®" ) = u_(t;q™), ¥y => ®_(t,d; @,) uniformly .

.~ n n 1'*2 1,
Then
R S BN N L o
Hj(t,@ Un(t),a @n(t)) Hj(t, , ®) gj(t), i=12

uniformly on all closed intervals not containing the zeros (at most 2n) of

U (6T, q,) @n(t;ql, qa,) .

Thus, this convergence is LZ(O’ 1} convergence and

p ") a® s

which contradicts (4.13b).

Theorem 4.1: Let inequality (4.7) hold. Let An’ Bn be the constants

of (3.9) describing P.3. Let

4.14a) OLO = BZ\- ocl ,
n
4, 14b) Qay = ]&Z\—ocj,.
: n 2
Then
4,15) q0<al< OCZ< (13.

Also, let F be a mapping defined on

S EAX[@O,CIS]



23

by

4.16) F(q,,q,, ) = {0 tavu ,a®)H

X !

Then F has a fixed-point (Efl, Efz, a). Finally let

Q Un(t, ql, qz) = u(t) ,

tayu ,a @n),

S S }
Pn(ql, qz,a)

Then (u(t), 6(t)) is a solution of equations (1.3), (l1.3a) and each function

u(t) or 6(t) has exactly n interior nodal zeros in (0, 1).

Proof: The inequalities (4.15) follow immediately from the inequality (4.7).

By Lemma 4.1, the mapping is continuous. Clearly, 8 is convex. Moreover,

standard estimates, together with the continuity of Hj(t, u, 6) show that F

is compact. Finally we will show that F maps S into S. Clearly,

H au ,a H ay ,a A
( l(t’ n’ n)’ Z(t’ n’ n)) €8
Thus we need only show that

Q
4,17 Q. € ———<
! 0 pn(ql’ qZ’ a) 3

If a € [OLO,O&l], then from (4.9) we see that

4.18a) a

From (3.9) we have, Q¢ [OLO,CLZ] implies




24

a 2
4.18b) < = @ .
If ae [CLl,%] then (3.9) implies that
4,18c) a, = ap Mo a .

Finally, if g € [az,al], then (4.12) implies that

a
4,184 —_— g .
) pn(ql,qz,a) 3

The inequalities (4.18a), (4.18b), (4.18c), (4.18d) show that F maps S
into §S.

The Schauder fixed-point theorem [ 3 ] asserts the existence of a fixed

point, (q, (t), d,(t),@). Then

2

4'19) pn(ql’qZ’a) = l .
Moreover, using equations (4.4a) and (4.4b) together with the fact that
‘t,a. ’(—}',—n :-'t’ ':l’Z
H(LFU T ) =31,

we see that

and the functions u(t), 6(t) satisfy equations (1.3),(l.3a) .
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5. Modified Problems

In many cases of interest Theorem 4.1 cannot be applied directly.
For example, condition P.2 does not hold in the case of '"cut-off" prob-
lems discussed in [12]. In general, condition P.2 does not hold when
lim H

] =

| 6] o

l(t, u, 6) Hz(t, u,6) =0 .

However, it often happens that one may modify the functions Hk(t, u, 9)

for large u, 6 without changing the set of solutions, and the modified problem

satisfies all the hypotheses of Theorem 4.1. We turn our attention to a special
class of such problems.

Following [l2] we assume

H.1l) There is a constant (W > 0 (which may be + «) and in the region

R={(t,u6); 0<t=<1, [u] <w |6 <O} the function

F(t,u 6) =6 I—Il(t, u, 6)

l(

is monotone nondecreasing in 6 while the function

F_(t,u,8) = uHZ(t,u, 8)

5

is monotone nondecreasing in u . We write

9 _ -

5 Bt w, 6) = Hy(tw, 6) + 6 5 H(tu,6) 20,
5.1)

8

9.
ou Fz(t, u,€6) = Hz(t, u, 8) +u 5u Hz(t, u,6)z 0.
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H.3) The functions Hk(t, u, ) are monotone nonincreasing in |u|, |6].
That is
5.2) uj‘“H(tu@)<O QLH(tuG)<O k=12
. au k ’ 3 - ’ 89 k H ] - 3 - 3 .

However, the system (1.3), (1.3a) should be genuinely "nonlinear”.

Hence, in addition to (5.2) we assume if :1—, 6 are positive and C is a

constant with C > 1, then
5.2a) H, (¢, cT, ce < Hk(t,ﬁ‘,é'), k=1,2, CE6<®.

H.4) There are four positive constants M, UO’ @0’ a with 0 < a< 1,

0 < @O < () such that

5.3a) Kj(t, s) Hj(t, u(s), 8(s}) = M, j=1,2
2t -
5.3b) A f K, (s, 1)K, (x, s) H (&, u(t), 6(t) Hy(s, (s), &(s))ds = @
0
for all functions u(x), 6(x), @(x), 6(x) which satisfy
Uy s |u)]s |a=)], 0sxs<1,
5.3¢)

©, = o), |6(x)] = ©®, 0s=xs=1.

Lemma 5.1, Let 7\0 <7, Let H.l, H.3 and H.4 hold. Then there
exists a unique maximal, positive solution (u(t), 6(t)) of equations (1.3),

(1.3a) which satisfies

5. 4) ey <® .
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That is, (u(t), 6(t)) satisfy (5.4), equations (1.3), (1.3a) and

5.5) u(t) < 0 < 8(t), 0<t< 1.

Moreover, if (v(t), ¢(t)) is any other nontrivial solution

I

<

—
—

A

-u(t) = ()],

5.6)
o(t) = |6(t)]

-
——
=

In

Finally, if ¢(t) has no interior zeros, then

Proof: See Theorem 4.3 and Theorem 5.3 of [l2].

Theorem 5.1, Let

5.7) A< A
n

and H.1l, H.3, H.4 hold. Let (u(t), 6(t)) be the maximal, positive solution
whose existence is asserted in Lemma 5.1. Suppose there are two positive

constants Ul’ ®1 > @O such that

1A

|lu)| = U, 0=ts= 1

5. 8)

IA

o(t) = @1<@’ 0<t=< 1.

Suppose also that there are two functions Gk(t, u, 8y, k =1,2 such that

5.9) H (b w6 = G (tu,8), [u] =U, [6 =

k(

and H.l, H.3 hold for all (u,f)when G, (t, u, 6) is substituted for

k
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Hk(t, u, 8). In that case H.4 also holds. Finally, suppose that P.1,

P.2, P.3 hold when Gk(t, u,6) is substituted for H, (t, u, ). Then there

k
exist at least n distinct solutions (u},(t), 6.(t)) j=0,1,...,n, of equation

(1.3), (1.3a). The function (uj(t), Qj(t)) are characterized by the fact that

each functions has exactly j interior nodal zeros in (0, 1). Of course,

(1 (8,6, = (u(t), B()).

Proof; Consider equations (1.3), (l.3a) with H, (t, u, 6) replaced by

 {

G, (t,u, 8). Let [u,j} be the eigenvalues of equation (4.2b) when

1 {
gk(t) = Gk(t’ 007 OO) -
The integral representation (2.5b) and (5.3b) together with (5.7) imply

As A <AL W=, j=0,1,...,n.
j n 0 j

Thus, Theorem 4.1 asserts the existance ofa solution (uj(t), G],(t)) of this

modified problem which is characterized by the fact that

o
=
St

in

-
£

ot
=

In

-

@
—
e

IA
L

-~
S

i

—

Using (5.9), we see that (uj(t), Gj(t)) is also a solution of the original

problem.
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Having obtained this result, we are naturally led to ask:

construct the functions Gk(t, u, 6) 7"

Theorem 5.2.

5.10)

Suppose H

k_(t, u

» 6)

l H

"When can we

satisfy H.l, H.3 and H.4 for

0= 6= @l<@’

where Ul and ®1 satisfy (5.8). Suppose there exists an EO> 0 such

that, when t € [0,1] and (5.10) holds,

5.11)

Let

5.12a)

and

5.12b)

Suppose

5.13a)

and

5.13Db)

ses@l

8 o 8
o H(bwé) + e o0 =% H (t,u,6) =0,
€ 9 2
56 Hk(t, u, 8) + €0 3u 56 Hk(t, u, 6) = 0,
'}’l(’r_,@) = 88 Hl(t’Ul’@l) ,
H,(tu, @)
2y (U6
V,(t 6) = pu By
H,(t, U},6)
p, = min 1+ @ v (tw}> 0
O=u=U
1
p, = min {1+ Ulvz(t,e)} > 0.
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Then, one may construct the functions Gk(t, u, 6) having the properties

specified in Theorem 5.1.

Proof: We proceed in two stages, first we obtain a function ql(t, u, 6)
which satisfies
5.14) Hl(t, u, 6) = a,(tu ), |6] = @1 ,
and has the desired properties in the strip
5.15) S= {(t,u,8); 0<t=], Oslu[SUl, |6] < =} .
Let r be a positive constant so large that
-1
5.16a) Eq S V1
and
1
5.16b) Max | v, (tu)| = p Vr .
1 10 1
O0=u=sU
1
Let m be a positive constant which satisfies
5.17 0 < < L
5.17a) m 50
1
5.17b) m@l\/ 2r = o P1
Let
' 2
5,18) E(t,u, 8) = exp { - Yl(t, u) (l 9[ —@l) - r(l 9[ - ®l) ],

and set



5.19)

ql(t, u, 6) =

Then, for @l <6

5.20)

Moreover,

5.21a)
where

5.21b)
If |u|s
5.22a)
5.22b)
5.22c¢)
5.22d)

Hence,

and
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Hl(t, u, 0), A ®1

t u,@ Yy {(1-m) +m E(t, u, 6)], @l< | 6]

= Hl(t’ u,@l){vl(t, u) - Zrm(G—@l)} E(t,u, 8) < 0.

as a function of 6, ql(t, u, ) € Cl . For ®l < 6 we have

Ul’

q(tu, 6)+0 3%

At, u,

then

1
10 P

m +

p =

p =

+m-=1z=

ae 4

) = {[rrl-}-@l‘yl(t, u)] - 2mr@1(6~@l)+vl(t, u)

@ly(t,u)szrm-l
—Zm@ 9-@)Etu,8)_0

Vl(t, u) E(t, u, 6) (6 - ®l) <

2

-2mr (6 - ®l) E(t,u, 6) = 0,

A{t, u, 6) E(t, u, 9) ,

t, u, 6) =H1(t,u,@)l)[(l—m) +A(t, u, O)E(t, u, 6)]

@) 2mr(6 - @
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5.23) Os-l—(-)- p = (1-m) + A(t, u, 6) E(t, u, 6).

Therefore, in S, the function Gl(t, u, 6) is strictly monotone in 6 .

For @1 <8, 0= u, consider

2 q,(t,n, 6) < '8‘85 Hl(t, u, ®l) {((1-m) +m E(t,u, 8)} +

ou -1
5.24)
2 L m(Luw®)) (8- ©,) Etu, ©)
86 du “1'7 T 1 T :
Since
1
6 - E(t,u,8) = — < g (l-m
(6 - @) E(t,u, 6) = = o1 -m)
we obtain
0
5.25) u g{;ql(t,u,G) < 0, |u U, |6] < .

Finally for @l < 6 we have

9 9 - _ - 9

50 80 ql(t, u, 6) = - 2mr (6 @1) ", Hl(t’ u, 1) +
a9 9H, 9H)
o an e t, AN e ty ’

where A and B are bounded in S . Thus, using (5.20) and (5.11)
obtain an £ > 0 such that,for 0 € u = Ul’ 0< 8< o,
82

0q) ‘
5.26) 2 (t,u,0) + € q,(t,u,6) < 0.
56 10usé "1

we

Using a similar construction we may extend 9, (t, u, 6) to a function
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Gl(t’ u, ©) of the form

q,.(t,u, 8), lulsU

1 1

5.27) G, (t,u,6) =

q,(tu, &) ((1-n) +nE(t, u, &), U < |u] .

1

Clearly, this function has the desired properties.

A similar construction yields Gz(t, u, ©) and the theorem is proven.

Corollary: In the case of problem A of Odeh and Tadjbakhsh [10], let

A<
n

Then there exist at least n distinct solutions (uj(t), 6j(t) y j=0,1,...,n

with
= 2] = i
Z(uj) Z( J.) j .

Proof: See [12] for the formulation of this problem as a "cut-off"

problem.

Remark: Clearly there are other constructions which yield the functions
Gk(t’ u, 6). In fact, my colleagues Ben Noble and Robert Turner have

suggested other forms for slightly different conditions.
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Appendix

This appendix is denoted to establishing P.3 in two cases of
special interest. The basic tools are lemmas 3.1, 3.2 and 3.3,

We will be concerned with three problems. In all three cases

we take
L[] =L,[e] =L(e] .

The difficulties will arise from the boundary condition. Let (ql(t), qz(t)) € A

and consider the differential equations

L
£
1]

%qu,
A.l)

=

—

D

[—
i

= 7\qu .

Problem S
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Note: This is a symmetrizable problem and the remarks above apply.

Problem N

Problem A

Note: These boundary conditions A are the boundary conditions A of Odeh

and Tadjbakhsh [10]. The eigenvalues of these problems will be denoted

by A (S), A (N), A (A) respectively.

L(8) A (N), A

We now turn our attention to a basic boundary value problem.

Lemma A.l. Let A be a fixed positive constant. Let (ql(t), qz(t)) € A.
There exists a unique pair (u(t), 6(t)) which satisfies equation (A.1 } and

also satisfies the boundary conditions

[us
—
o
e
1
[
(@]
Syt
il
(@]

AL 2)

D
—
(=]
~—
th
(=]
@
—
(=]
~
]
o

Moreover, if tO € (0,1) and uf(t ) # 0. Similarly, if

t, € (0.1) and 6(t)) =0, then &'(t) £0.

o)
Proof: Let uj(t), j =0,1,2,3 be the basic solutions of equations (A.1l )

which satisfy the initial conditions
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4K
— =0,1; §=0,1,2
(dt uj(O) 6](] ! k }’ 1 ] O) ) b 3
A.3) N
(—d“) [ : Llu,] (0)] =6 : k=0,1; j=0,1,2,3
dt Aq O =0y i I EE L

These functions exist. The existence of uO, u1 is clear when we view

equations (A.l ) as a fourth order equation for u(t). The existence of

u u. is clear when we view equations ( A.l) as a fourth order equation

27 73
for 6(t). Moreover, they are linearly independent. A direct computation

shows that

EENCERNG

3
is a solution. And, 6(t) is obtained from the differential equation. Suppose
there were two solutions, say u(t) and v(t). Then (u(t) - v(t)) = w(t) is

a solution (of the fourth order equation in u) satisfying

| I ' _
w(0) = WO_) L{w](0) = (MIl L{w]) (0) = 0.

Then, using Lemma 3.1 we would have

But,

w(l) = 0.

The concluding remark of the lemma follows from Lemma 3.3.

Let
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P(t) = Aqg.,(t) .

For the remainder of this section we let r(t) and P(t) be continuous
functions of a parameter ¢ . That is, the coefficients of equation (A.1l)
are

A ql(t, o) = [r(t, 9)] and A qz(t,d) = P(t, 0).

Let u(t, o), 6(t, o) denote the solution of equation (A.1) which also
satisfies the boundary conditions (A.2). With this notation we obtain a

corollary to the preceding lemma.

Corollary: The functions u(t, o), u'(t, o), 6(t, 0) and 6'(t, 0) are continuous

functions of 0.

Proof: The functions uj(t, o) satisfying (3.13) (for each 0) are continuous

in 0 . This follows from general theorems for u_(t), uz(t). For ul(t) and

0

u3(t) the continuity follows from the representations (3.2a), (3.2b). Also,

those representations establish the continuity of u'(t, 0), 6(t, 9), 6'(t, 0).
Following Section 2, let Z(u, o) denote the number of interior zeros of

u(t, ) while Z(6, ) denotes the number of interior zeros of 6(t, o). Because

Kl(s, t) is an oscillation kernel,

A, 4) Z(u, 0) = Z(6, 0)

Lemma A.2. For every 0’O there is an € = g(0.) > 0 such that

o)
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A.5) {G-—GO] <e => Z(6,0) = Z(6,0,) .

0

Proof: Let I\/I=Z(9,OO). Let §O=O and for j =1,2,..., M let ﬁj denote

the ordered interior zeros of 6&(t, ¢ i.e.

o)

0< & < g, <L 6E,0) =0.

By Rolle's theorem there is a point nj with

< n < g, , j=0,1,...M -1
G;J N 514—1 j
such that

Q(nj,GO):O.
Let

—'l" + 1

= 2 Byt V)

Let

p = Min |B(n, 0g)| > 0, j=0,1,2 - M.
There is an € > 0 such that ]G-—GO} < & implies
|6(n,, 0) - 6(n,, 0,)] < 2 p
j’ i’ 70 2 ’

Thus, there exist M+ 1 points at which the continuous function 6&(t, o)

alternates in sign. Hence, 6(t, 0) has at least M zeros.

Lemma A.3. If 6(1, 0,) # 0, there exists an € = €(0.) > 0 such that

|o - OO[ < & implies that

A.6) Z(6,0) = Z(6,0,) .

0
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Proof: Suppose not. Then there is a sequence dn——> GO such that

2(6,0 ) > (6, 0,).

0
Let éj(an) denote the zeros of 6(t, on) as in the above lemma. Consider

+1
the vectors in ]RM

A CRCR RN TR R SRR RS o S
)

. n . o
There is a subsequence E;( which converges to a limit vector £ =

(&l, ﬁz, Cees €M+l)' We observe that

0<é <¢ . =1

5= &

and

6(€ =0 .

(éj,co) 0

But 6(t, OO) has only M interior zeros. Hence, one of the following must
occur.
Case 1. &l = 0. But then the point T]l(cn) at which 6 ml(gn)’ Gn) =0

must also converge to zero. Hence

6'(0, 00) = 0.
But, of course, 6'(0, O’O) =1.
Case 2. €n+l = 1. But then

o(1, 60) =0

contrary to our assumption,
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Case 3. Thereis a j such that

< = ¢ < 1.
0 gj ei'j+1

But then T]j(cn) — &j and

which is impossible.

Definition: A value o will be called a "k-value" for the problem A

(the problem N, the problem S) if

A.7) L= AA0), (I=7NO 1=2r(S0).

We shall let A., N

K K Sk denote the set of all k wvalues. That is

A ={o|1= A (@B 0] ,

k k
A.8) N, = {o[l= NN, 0},
8, = {o]1 = xk(s, o) )

We observe that Sk contains at most one element.

For the remainder of this section we assume that
or(t, o) < o0, eP(t, 0) S
eo faXe]

and, crl < o’2 implies that

P(t, 0,) £ P(t, a,)
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Lemma A. 4, Suppose

L= N(S.op) L=n (S 0,).

Then

A.9) %, < o,

The set Nk+1 is not empty; and, if o € Nk+l then
A.10) 9, < o < 9,

Proof: The inequality (A.9 ) follows from Lemma 2.1. Let (u(t, UO), o(t, UO))
be the solution of equation (A.l) which satisfies the boundary

conditions (A.2). Then (u(t, o.), 6(t, OO)) is (except for scaler multiples)

h

0

th
the k eigenfunction of the problem S. To see this, let v(t) be a kt
eigenfunction of problem S. We need only verify that ¢/(0) = r(0) Ll[v]'(O) # 0.
If 3(0) =0 then Lemma 3.l implies that v(l) # 0. However, v(l) =0,

We observe that because KL(S’ t) and KZ(S’ t) are both oscillation kernels,

we have
Z{u, UO) = Z(6, 00)
Z(u, 0"2) = Z(6, Uz) .
Let © increase from O'O to 02 . Since all zeros of 6(t, g) are nodal

zeros we see that

Sgn 6'(1, GO) = (-1)

: k+2
Sgn 6'(1, 02) = (-1)
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Thus, there must be at least one value of 0 ¢ (Go,crz) such that

A.11) e'(1,0) = 0.

Now there is an Eq = E(OO, GZ) > 0 such that
A.12a) 7.(8, 00) < Z(6,0), |o- GO[ < Eq
and

A.12b) 7(6, a,) = Z(6, o), |o - 021 < ey

Moreover, for every point & in the closed interval [OO + eO/Z, o, - 50/2]

there is an € = g(J) such that
Z(6,0) = 2(6,58), |o-73| < g®@).

Thus, we may apply the Heine-Borel theorem to conclude that
Z(6, 0) = constant, GO+50/2 sosg, - EO/Z.

Thus, on letting &.—0 we see that

(@}

Z(6, g) = constant, GO <ol 62
This fact, combined with the inequalities (A.12a), (A.12b) and the fact that
= 7(6 1

Z(6, 02) Z{ ,GO) +

implies that

Z(6,0)=k+1, o, <gc

IA
Q

Thus

k+l
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Suppose there are values 0 € Nk+l which do not lie in the interval
(oo, 02).
Case 1: There is a value & ¢ Nk+l and & < 9, - Let u(t,3) be the

solution of equation (A.1l) which satisfies the boundary condition (A.2).

Then as before u(t, &) must be the (k+l)SJE eigenfunction of problem N

(except for scalar multiples).

Let © increase from § to O The argument given above shows that

0

k =2(6,0) 2 2(6,8) =k +1 .

o

This is impossible.

Case 2: There is a value 0 € N and & > o, . But again,

k+1 2

argument given above shows that
k+1=2(9,6)>2(9,02)=k+1 .

Thus, the lemma is proven.
Corollary: For any fixed value of ©
A.13) }\k(S, o) < 7\k+l(N, o) < ?\kH(S, o) .

Proof: Let o be fixed, and let r(t, g, ') = r(t, a') while

P(t, g;¢') = (o")2 P(t, o) .

the

Applying the above ideas to r(t, 0, ¢'), P(t, 0, ¢') as functions of ¢' we

obtain (in an obvious notation)
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?\k(S, a, UO) = ka(S, o, 02) = ?\k+1(N, a, 01)

for some O'l € (G'O, 0“'2). But then
0‘)2—7\(% U)<(0')2~ A (N, o) < G')Z-?\ S
(%) = N[5, U R U WELC

We wigh to obtain similar results for the k wvalues of problem A and
the eigenvalues related to problem A. Hence we consider another special

problem.

Lemma A.5. There is a unique function pair (v(t, 0), ¥(t, 0)) which satisfies
equation (A.l ), (under the identification v(t, 0) = u, (t, o) = 6) and the

boundary conditions

v(ly =0, vi(l)=1,
¥(0) =3'(1) =0
Moreover, if t; € (0,1) and v(t)) =0 then v'(to) # 0. Similarily, if
t, € (0,1) and z,l/(to) = 0 then v'(to) # 0.

Proof: Let vj(t), j =0,1,2,3 be the basic solutions of equation (A.1)

which satisfy the initial (terminal) conditions

4k
2 =6 ., k=0,1; j=0,1,23.
) W= by k=01 )

A.14) )
Ay L vy (1) =5 k=0,1; j=0,1,23
dt l J k+2,], s Ay y by Ly .

Then, a computation gives v(t,0) in the form
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v(t, g) = vl(t, o) + Mvz(t, a) .

The rest of the lemma follows exactly as the proof of Lemma A.1 .

Corollary: The functions v(t, g), v'(t, g), ¥(t, o), ¢'(t, o) are all continuous
functions of o .

Let Z(v, 0), Z(y, 0) denote the number of interior zeros of wv(t, c) and
Y(t, o) respectively. Then, as before, because we are dealing with oscillation

kernels

Z{y, o) = Z(v,0) .
Lemma A.6. For every GO there is an € = E(OO) > 0 such that lo - O’Ol < e
implies that

Z(v, 0) = Z{v, UO) .

Proof: The proof of this lemma is exactly the same as the proof of Lemma A .2,

Lemma A.7. For every OO for which v(0, OO) # 0 there is an € = E(OO) > 0

such that |o - 0’01 < g implies that

Z(v, 0y = Z(v, a.)

0

Proof: The proof of this lemma is exactly the same as the proof of Lemma A.3.

Lemma A.8. Let
o, = sup {U:ceNk} ,

0y = inf {o: GeN )+

We assume ~0 < J3, 0y < oo,
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Then
Gl < 03,
B 7 ¢
and, if oeAd then

k+1’

Gl<0<03.

The proof of this lemma is exactly the same as the proof of Lemma A.4 .
Corollary: For every fixed value of ¢

A.15) NN, o)< A (A0 < A (N,o) < A (S,0) .

k( k+.1( k+l( k+1
Proof: The proof of the corollary follows the same argument as the proof

of the corollary to Lemma A. 4.

Theorem A.1. For the special cases of problem A and problem N the

hypothesis P.3 holas .

Proof: Since P.3 holds for problem S, the upper bound on ’An follows
from the inequalities (A.13), (A.15). The lower bound follows from an

elementary argument based on the Krein-Rutman theory [8]. See [ 5 ] also.
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