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L. INTRODUCTION

This brief note presents a simple, global, complementary variational
principle for a broad class of general functions. That is, we show that a
point @ which minimizes a certain type of functional f{ over a set S
also maximizes a computable functional f* over a set S* and satisfies
f(4) = £%(0); this fact can be used to provide error bounds for an approximate
minimizer u of f .

Complementary principles have been studied rather thoroughly for
differential equations [ 5, 6, references therein ] and general operator
extensions of the differential equation problem [7], although primarily
local principles from a somewhat different viewpoint are obtained. A global
principle has been presented in [2, 9] for nonlinear boundary value
problems of variational type in order to obtain variational error bounds; this

present note extends those results to more general functionals.

2. THE MAIN THEOREM

Theorem 1, Let f be areal valued nonlinear functional on a real
Hilbert space H with inner product <.,.>, and let @ minimize f on
the norm closed convex set S . For each w in some given set 3% & H
let a self-adjoint linear operator PW be defined, satisfying <PWh, h> = aW< h, h>
forall h in H , with aw > 0. Suppose that f 1is twice continuously

Frechet differentiable on the set of points of the form Av + (L-ANw for v in S,



w in S% and A\ in [0,1], and that <[f" w " P | (v-w), v=w> 2= O

Av+(L=A) w

forall v in 8§, w in S*, and A in[0,1l]. Foreach w in S*, let
Ve in S be defined as the (unique) point in S minimizing % <PWv,v> +
< Vi(w) - P, w,v>, and let f* be defined on S* as

o b3 - *l- - - > —
fx(w) = f(w) + 3 <VW w,PW(vW w) > + <vW w, Ji(w) > .

If O is in 8%, then f*(w) is maximized by w =14, and f*(4) = £f(4). For

all u in 8§ and w in S* we have the estimates
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f(u) - £*(w) =
flu) - f(w) 2 3 <Pa(ﬁ —u), G-u> .

Proof: Since U minimizes f over the convex set S, we have
<Vi(Q), s-1 > = 0 forall s in S . Let g(v)= 3 <Pﬁ v,v> +
<Vf(ﬁ)—Paﬁ,v> . Then <s—ﬁ,Vg(ﬁ)>=<s—-ﬁ,PaG+Vf(ﬁ)-PaG>
=<g-0, Vf(i)> =2 0 forall s in U . Since the quadratic functional

g(v) has g"\'/E P. , a positive definite operator, a unique point VG exists

a
(similarly for Ve for all w in S%*) and is characterized by the condition
<s-vﬁ, Vg(va) > =z 0; therefore Ve = 4 and hence f*(Q)= £(4). To prove

that @ maximizes f*, we write, for w in 8%, letting vW = v and

PW = P for notational ease,



£(0) - fx(w) = £(0) - f(w) - 3 <v-w, P(v-w) > - <v-w, Vf(w) >

[H

<P(U-v), G-v> + [f(t)- 3 <PG,T > ]

i
WP

- [£(w) - 3 <P w,w >] + <{-v, Pv-Pw + Vf(w)>

+ <{d-w, Pw- Vi(w)>

by adding and subtracting 3 <P(i-v), i -v> . Since v minimizes
3 <Pv,v> + <Vf(w) - Pw,v> over S and @ isin S, the inner product

inequality characterizing v gives <U-w,Pv-Pw + Vf(w)> = 0 . Hence

F(0) - Bx(w) = 5 <P(Q-v), G-v> + d(@1) - d(w) + <8 -w, Pw~ VE(w) >

where d(u) = f(u) - 3 <Pu,u> . We have

1
d(d)-d(w) = <wvd(w), G-w> +\"€ t <dj['}71 (1 —t)w(u -w), 0 ~w> dt
L
<gf(w)-Pw, G-w> +f t<[f
0

t3+(1 -t)

W—Pw] (4 -w), 4 -w>dt

v

<VEw)=-Pw, G-w> .

Inserting this we find
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£:(0 ) -f%(w) 2 (W)=-Pw, 0 -w> + <{ ~w, Pw-yf(w)>
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<P _(G-v), 8 -v> 2 En || & -v]
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Thus U maximizes f* over S*., To obtain the first error estimate, we
merely write f(u) - Dx(w) = f(Q)-f*(w) = £R(Q) -f*(w) 2% <Pw(ﬂ —vW), 4 —vW> .

For the second, we write



f(u) - £x(w) 2 f(u) -£%(0) = f(u) - £(0) = <u-G,YHE)>

) 1
< " - a P 1 e P
+ L/;’t [ftu+(l-t)u Pﬁ](u G), u-t>dt+3 <Pﬁ(u 4),u-6>

<P. (u-4),u-G>
u

[
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by the assumption on f =P and the neces sary; condition for U to minimize

f over S, since u is in S .

Remarks:

i) Theclosedness and convexity of § are used only to guarantee
the existence and uniqueness of VW for w in S and to deduce that Vﬁ =0 ;
these properties can be guaranteed in other ways as well.

ii) The differentiability hypotheses can be weakened easily;
in particular, f(v) - 3 <PWV, v> need only be differentiably convex on S
for each w in 8% .

iii) Independent of any convexity hypotheses on f, points other
that G can maximize f* without added restrictions on f" - P; this is of no
consequence for our pruposes of error bounding, however.

iv) In order for the error bounds to be effective, one would require
that f* is continuous at U ; this requires further study of PW . An
examination of the expression for f*({) -{*(w) shows that if f';l and PW
are uniformly bounded for u and w near @ then for some constants a, b, c
i 2

we have 0 < £¥(0) -f*(w) < a“ﬁ—vwl +b“ﬁ—w“2+c“ﬁ—vwn | a-w|:



thus we need only study @ Ve T vﬁ Ve for w near O . If for example
a, ze>0, | vEw) -~ vE@)|| = K|w-G| near @, and 8 =H, then

I ﬁ—vw | =+ ‘E‘)“ﬁ"w | . For the general situation we have the following

more restrictive situation.

Theorem 2, Let the assumptions of Theorem 1 hold. Moreover suppose
that “f;v“ <A, |P ~Pﬁ“ < A|jw-t], and a ZE >0, all for w near 0 .

Then [|G-v || = o(|8-w|?) and hence f¥(@) - f¥(w) = O([|a-w[).

Proof: ~Let g _(v)= i <PV v> + <VEiw) - wa,v> . Then
lgg (V) - g, = ol [G-w]). Then we have g (v )= g (0)=
gq (@) + [g,(@)-g, ()] = g5(T) + o(a] ||a-w]) and similarly
g, ()= ggv )= g, (v )+ O(]lv | |G-w|). Hence

[gﬁ(ﬁ) -g (v )] = HVW“O(“G—-WH). Now also for w near {

W W

gW(v) > 2 awnvnz - |lv|. M for a fixed constant M, and since gW(O) =0
2M ey - i < a4y, v-a> +

we have || Vw“ ol In addition g (v) = ga(u) + \Vgﬁ(u),v 4> +

3 <Pﬁ (v=t1),v-U> = g. (Q) + % || v-t nZ Therefore %uvw-—ﬂ nz <

a
gﬁ(vw) - ga(ﬁ) < gw(vw) + O<“VW“ | a-wi) - gﬁ(ﬁ) < O(fja-wl)+ gw(vw)-gﬁ(ﬁ)
< of a-w|).

Q.E.D.

3. EXAMPLES

We wish to give two concrete examples to the meaning of the general

theorem; it is simplest to consider differential equations, and in order to



minimize technical complexities we consider the equation

u'(t) = c(t,u(t) ), t in (0, 1), u(0) = u(l) =0,

More precisely we consider minimizing the functional

1 5 L u(t)
fluy = 3 f[u'(t)] dt + [[ c(t, x)dx dt
0 +0+/0

over the set H of absolutely continuous functions u having u' in LZ(O’ 1)

l
and u(0) =u(l) =0. For u,v in H, we take <u,v> = f[u'(t)v' (t) + u(t)v(t)]dt.
\JO
Since we wish to illustrate ideas rather that technicalities in this section, we

shall be rather sloppy and speak blithely of Dzu = u" for u in H; the precise

formulation is easily filled in.

A) TFor the first example, let us suppose that cu(t, u) =z v > -7T2 for
_
all u in (-, ), t in[0,1]. Let (u,v) = [ u(t) v(t)dt. Then f(u+h) =
0
f(u) + (—Dzu + ¢(t, u), h) + H ([“D2+cu(t, w)] h, h) + small terms. Thus

<Vf(u),h> = (—-D2u+ c(t, u), h) and <f:l h,h> = ([-D2 + cu(t, u)]h, h). We
let S =8%=H and for all w define PW by -DZJr Y which is positive
definite since Y > - m°. Since ¢, 27, wehave <[f'l'l— Pw]h,h> =
(Ic -<vY]h,h) 2 0 and the hypotheses are fulfilled. Here f*(w) =

1
Pl enfacs [ (3 v%0 + i - wio) [ott win) ) -y win)]
Yo wit) 0]
+ (c(t, x) - ¥x) dx)dt where v(t) solves
\JO

v'(t) - Yv(t) = c(t,w(t) ) - Yw(t) for t in (0, 1), v(0)=v(l)=0 .

In this case, discussed in [ 9 ], the error bounds are in the norm <Pe,e> =

1 .
f {[e'(t)]2 + Y ez(t)}dt. This yields useful bounds for any approximate
0



7

solution w and for the corresponding Ve Such a w might for example

be obtained by the Ritz procedure or by an iterative process. For some

problems the Newton iterative process yields a sequence un decreasing

to the desired solution ‘[ 1,2, 3,8 ]; often then Vu turns out to lie below
n

the solution [ 8 ] yielding error bounds for U . The variational procedure

above in addition furnishes bounds involving the derivatives.

BY In some cases, the Newton iteration mentioned above may be
costly to carry out. Certain Picard type iterations, though more slowly
convergent, are sometimes used at least until one is near the solution where
Newton's method might be worth the cost. The process above in A) will
often yield two-sided bounds and the <Pee, e> bounds as well in this case
too. We wish to observe than one Newton step also provides such bounds
in some cases. Suppose now that [c(t, u)[ < N for all t,u, that uo solves
u‘(') = -N, uO(O) = uo(l) = 0, that k = cu(t, u) =z Y >-7T2. Then it is known

[ 4] that the sequence

n+l

— = ¢(t, - , 0) = l.=0, ,l..-
u kun c(tun) ku, u (0)y=u (1) n=20,1,

+1 n n n
is a monotone decreasing sequence converging to the solution @ . Now let
S={wusq in[0,1]},8%= {yu=1q in[0,1]}. For w in 8%, define

PW by --D2 + cw(‘t,w). As we saw before this is positive definite. Let us

also suppose that v = 0, that is cu(t, u) = 0, and cuu(t, u) £ 0. Then

P J(u-w), u-w> =

for w in 8% and u in S we have <[fw+7\(u-w)~ w

([c(t, w+A(u-w)) - c(t, w)](u-w),u-w) =2 0 since u = w and sz < 0 implies

c(t, w+Au-w)) = c(t, w). Thus the hypotheses are satisfied. We now claim



that, for w in S¥%, the vw that minimizes é '»iv,PWv> + Vi w) - PW w, V.
over S in fact minimizes it over all H , that is, that the gradient

PWV+\7f(w)-PWw=O at v=vw;

this is well known. To do this, we show that if Pwv + 7f(w) - Pwv =0

then v isin S8 and hence v =vw . This equation for v yields
v - cw(t,w)v = ¢ft,w) - cw(t,w)w, v(0) =v(l) =0

which is just the Newton iteration from w to v . Since also
a" - ) 4= ALy G - ) » 4(0) =G (L) = )
4 cw(t w) l = c(t, G) cw(t w)ll, G(O) =G(1Yy=0

subtracting we have

(v-0)" - c (t,w)(v-T) = c(t,w) - c(t, 0) - cw(t,w)(w—ﬂ) =0

'
since w = i and Cuu < 0. But then the maximum principle implies thatv-4 = 0,
that is, that v is in S8 and hence v = Ve Thus we find
1 5 L wit) 1 5
fr(w) = + [ [v'(t)] dt+f c(t, x)dx dt +3 fc (t, w(t))(v(t)-w(t)) dt
Yo \.’O\ 0 ' w

1
+ [ c(t, w(t)) (v(t) - w(t) ) dt
0
where v is the Newton iterate of w solving

v'" - cw(t,w) v = c(t,w) - cw(t,w)w, v(0) = v(1) = 0 .

1
2
These error bounds are in the norms f fe'ity]  + cz(t, z) ez(t)} dt for z =w
and z =34 . Since cZ(t, z) =z 0, we have bounds for [ [e'(t)]2 dt as well as
~0

the fact that Vi < i £ w . The computable bound for derivatives would thus
1

use the variational results, 3 f [G'(t) ~- V;N(T.)]Z dt = f(vw) - f(w).
0
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