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L. INTRODUCTION

It has been observed by J. Ortega and W. Rheinboldt [ 3 ] that
there is an error in this author's previously published paper [ | ]J. In
particular, the fifth line from the bottom of page 22 is false since the
inductive method being used at that point breaks down at i = 0; thus
the Theorem 2.1.2 has not been proved. Since the application of this
theorem to finite dimensional problems yields the only known results
concerning superlinear convergence of the conjugate gradient method for
nonlinear equations [ 2 ], the theorem is worth further investigation.
In this note we prove the theorem correctly using a method which, when
slightly generalized, appears to give some hope of proving superlinear
convergence for linear or nonlinear equations in infinite dimensional

spaces.

2. AVIEW OF THE METHOD

We use the notation in[1,2] without further explanation; for con-
venience we restrict ourselves to the simplest form of the CG method,
although the results apply in total more generally.

We seek to solve the equation
Mx = k

in a real, separable Hilbert space H , where M is a bounded, self-

adjoint, positive definite linear operator from } onto } , having a






d

All the known theory of the CG method for linear equations applies here

and we can in particular deduce that
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A straightforward calculation shows that the iterates xi generated by this
general algorithm on M1 in }Ll are precisely the same as the iterates
generated by using the standard simple algorithm on M in } if the

in the simple algorithm is not chosenas r_ =k - Mx =k

initial direction p 0 0

0

as usual but by the formula

that is, by the usual way of generating CG directions if we identify d
with Py -

All that this says is that the standard CG method, modified to
require the first direction pO to be conjugate to d, is equi\}alent to a
general CG method in a space M-conjugate to d ; therefore the modified

standard method converges and in fact, since El(x) =[h ~-x,h-x] =



<h - %, M(h - x)> = E(x) in standard notation,

More generally, if we have proceeded through standard CG directions

= 0, then the solution h is M-conjugate

p to arrive at x

o’ Py TP L

to pi, 0 =1is=s L-l, and we can define P_ as the orthogonal projection

F

}, P.=1I-P_,

(in the [+, -] sense) onto the span of {po, - I P

P
3:[1 = PIH, 1\/[1 = PIM' Then the remainder of the standard CG iterates
are precisely the same as those generated by the more general CG method
applied to 1\/Il in 3:[1 and therefore ou;‘ convergence estimates can make
use of the speciral bounds of I\/Il on 341 rather thanof M on H . Since
the projections PI are "contracting" as we do this analysis after each new
standard CG step, tihe spectral bounds on the operators Ml might be con-

tracting, allowing a proof of superlinear convergence. While we have not

been successful in accomplishing this, it seems a worthwhile approach.

3. THE CORRECTED PROOF

Let J be a continuous nonlinear operator form }H into } ,

. : < T8 " < ' .
satisfying 0 < al < J' = AL “IX“ < B, J' self adjoint, for all

2 2
= ‘- 8 s g
x € 5(xy, Ry) Ry (Va/a(l dy) ) € X, suchthat @ = q" + o < L
‘ A-a . ‘
q = Ata " Then for any m there exists an integer nm such that for

all n= nm, we have

2
Xn+m) = m + 6n) En(xn)

(

En-i—m




200 - )"
where én tends to zero, w = Za > , Q= %,
1+ Vo) M+a-va)<"
En(x) = <, I';l r>, r=r(x)=-~J(x), and the x ~are the iterates generated

by the standard CG method to solve J(x) = 0.
Proof: Consider the iterate X and the linear equation I'nz =
-1
' x +r for z, having solution h = x + 7T r . We note that
n n n n n n n

hrl - xn is I‘n—conjugate to pn_l . If we consider the standard CG

method to compute z = hn starting with 25 = X’n but requiring that the

first direction SO be I'n—conjugate to the given direction d =p , we

n-1

have precisely the situation discussed in the preceding section. Therefore

the sequence of such iterates zi converges to hn aad, since o) > q,
' 2 |—l
<h -z L, T th -z )>=so <,7 ">,
m m n "n n

The first direction ;O in the modified method is the projection of

1 - ] - [ N ,
In Xn + rr1 In z 1"]r1 onto the In conjugate complement of pn“l, that is,
pO = pn
2
Recall that € = E (x ).
n n n
If we show that
1<hn T i Im(hn - zm)> - E1’1-{-m(xn—l~m)i ’
which equals
l<hn. T In(hn B Zm)> - <hn+m T X htm’ IJn+m(hn+m T Fn4m

is of order er‘? , then we will have



En+m(xn+m) - \hn - Zm’ In(hn h zm) ”

(%, ) ~<h_ =z, T\(h -z )>

+[E R

n+m n4+m

< 2 -
= (cum + O(en))En(xn).

We indicate the proof of the order of magnitude. The sum to be estimated

splits into

l<hn T (In - In+m)(hn - zm)>l

and
lahn "Bt T Faim T e Tnem “n ¥ Pogm ” Xn+m)>1 )
the first of which is less than
2 3

Bl = 2% Ity = 2, = 00
by (2.1.1) and the proof of Theorem 2.1.l (for bign) in [| ]. Clearly the
second part of the sum is less than

“ hn - hner + xn+m - “ O(en)’

we estimate the normed term. First

m-1

I hn "B m =1 iZ: 0 (hn+i B hn~1~i+l)n ’
while
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since
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We still must estimate
“ X‘r1+m - zm “ - “ Xn-i—m-l + Cn+m—lpn+m—-l T %m-1 Cm—lpm-—l “ ’




where the ~ indicates the 2, iteration. Since S

0 = Pn, a simple inductive

argument yields

~ o~ 2
H “n+i Pt TGP “ B O(en )

for all i , which leads to
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