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L. INTRODUCTION

Many authors (e.g. [ 1], [6],[8],[ 9]) have studied the convergence
of finite difference methods for self-adjoint Sturm-Liouville eigenvalue

problems. In this report we are concerned with the non self-adjoint problem

Hi

(L.1) c(u) = -[a(x) u'] - b(x)u' +c(x)u =3y, 0< x <1

where a(x) = 3, > 0, c(x)= 0, and b(x) are all smooth functions. This

problem has an infinite sequence of positive and distinct eigenvalues
0 <A, A < A < ees
1 2 3

1 2 3
and a corresponding sequence of smooth eigenfunctions u (x), u (%), u(x), ...

which we assume normalized so that

(1.2) [ luplzdx:[_ p:[’z’..

Of course, as is well known, the transformation

X
Lo b8 ) vix

(1.3) u(x) = [exp (-3 a(t)
Y0
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puts (1. 1) into the self adjoint form

However, we consider the direct approximation of (1. l) by means of the

finite difference equations

B {ak+é~ Wy ~WJ ma s w —w )} -blw,mw )
Ax® 20 %
] = -
(1.5) + Ck Wk Aw k L, 2, M
wO = WM+1 = 0

where M is a large positive integer, Ax = is the mesh spacing and

1
M+l
the notation 9y is used for g(kAx). Equivalently, we may write (L.5) as

the finite dimensional eigenvalue problem:

(L.6) LW = AW ~
1
where W is the M component vector W = w2 and L the M XM
tridiagonal matrix
M
a By }
: v2 e e
(1.7) L = Z;’Z‘
oo, PM-1
M M



Lemma 1

There exists a non singular, positive, diagonal ma trix D such that

...1 ~ l.

D L D = L isareal symmetric matrix. Moreover, “D“Z, | D" “2
remain bounded as Me» ®©, Ax-s 0, (M+1) Ax = 1.
Proof: We construct such a matrix.
dl
dZ
Let D = " . where dj#<3 j=1l++++ M and
. dME
d; =1 and let L =p%LoD-= (Zij)

m

Since werequire I, = L we must have

d 4..d, = d, =~ 4, d where L = (4..)
i ij 7 j ji i ij

Further, since &ij =0 for j>2i+]1, j<i-1, the dj's must be determined

so that

a? = tiinl g2
4 T i-1

[y

i-1,1

Starting from d, =1, we may solve recursively to obtain

1

i-1 v
d2= H (..._..15:1-_]') i=2,""M

k=1  Px
and, since -, B < 0 for sufficiently small Ax, diz > 0 if Ax is

small enough.




With D constructed as above, we have

2

a, ‘('YZBI
..l .
_(’YZB]_)Z.
-~ [ .
(2.1 L = Z;z‘ )
O “ty 2
g MPM -1

O

. .
'“Nl“UMSM—n:

and we must show that | D] 5 I D-l“ , remain bounded as M — « ,

i-1 b, Ax i-1 b, Ax
Let Q. = 1 (l*z‘k‘ﬂ"—) and P, = H(l-i-"z}s———)
bkl "kt 2 bkl K+
2 Qj
then di = ‘P;‘ Now for sufficiently small Ax,
i
b, Ax b, Ax
log (I - ;Z” ) = - EfiL—- + O(Ax2)
k+3 k+3
so that
i-1 by i-1
log Q, = -Ax 3 23 “: + Ax b O(Ax)
! k=1 k+3 K=1
Hence,
P b
lim [log Qi] = -5 | a(t) dt
AX e 0, jes « “0

iAx =X



Similarly,
p; b(t)
lim [log Q] = 3 a(t) dt
Ax— 0, 1= oo ! v
iAx =X

N

LoaX
Consequently, lim di = e ° f g‘(%‘} dt = KO < = which shows both
0

1Dl |l D—l“ , remain bounded as Ax — 0, M-, (M+l)Ax =1,

Lemma 2
For Ax sufficiently small, the eigenvalues of L are strictly positive

and they remain bounded away from zero as M — «, Ax— 0, (M+1)Ax = 1.

Proof: For Ax sufficiently small, 7 Bk < 0. Hence if L = («Cij) and

k)
Q = 5 lxui, then

i 7,
i
Jf{ a.. 1 +a, 1
q = i4+3 1-5
i Ax“
a + a
and L, = i+% i-—% + ¢ =2, since c =z 0.
11 2 1 1 1
Ax

By Gershgorin's theorem, ([7]), the eignevalues of L lie in the union of the

discs

in the complex plane. Hence if A is an eigenvalue of L, then A= 0

since A 1is real.

Now let }Lh be the finite difference operator corresponding to -L i.e.




, b, Ax
2 k
oy = - (ak+% +ak_§:)+ckAx - ak‘+21_ + > .
h 'k Ax ) k Ax2 K+l
ak-% _ bkAx -~
+ 2 v
Ax? k-l
o

Then, for sufficiently small Ax, —ﬁ’h is of positive type and so satisfies

the discrete maximum principle (See [3]). Consequently if w(kAx),

k=0,1,...M+! is an arbitrary real valued mesh function, there exists

3

positive constraints K and & such thatif 0 < Ax < 0,

(2.2)  fw|l_ = I\}/iax [wk] < Max {lwol, lWM_Hi] +K “(&hw)“w

Now let V = {Vk]l]:/l_l be an eigenvector of L corresponding to A . We

may assume V to be real. Defining VO = Vel T 0, LV =AV is equivalent
to
(2.3) H’hv]k = —-Avk K=1,...M.

Hence, using (2.2) and the fact that A 2 0,
vl = kg, v, = axfvi,

i.e. A=z > 0 Q.E.D.

L
K



Corollary
Let I' be the M x M matrix given by
[ )
+1 ()
s
r = -1
+1
-
) . -
f; ) (M-l
~ -
-1 =~
then T L T' is an oscillation matrix.
—-l v~
Proof: r L I' is a positive definite real symmetric matrix with

positive elements along the first super and sub diagonals.

follows from a theorem of Gantmacher and Krein [ [4], p.

3. CONVERGENCE OF THE CHARACTERISTIC PAIRS OF L

The proof now

103].

Let

0 <A

be the eigenvalues of L . Fix a positive

<A2<---<_/\_

1 M

integer p and let Vp(Ax) be the eigenvector corresponding Ap(Ax), normalized

so that || Vp“ , = 1. Let VP be the continuous piecewise linear function,

vanishing at x = 0, 1, and which, in the interior of [0, 1], is obtained from
vP by linear interpolation. Consider the families {Ap(Ax)], {VP(AX)} as
the mesh size Ax — 0 .

A direct proof of convergence of V to up(x) and Ap to >\p may be

given, which is based on the compactness of the family {VF(Ax)] in

C[0,1]. Such an approach was used by PARTER in [9] y (See also [2]); but




10

this method does not yield estimates on the rates of convergence.
Nevertheless we will make use of the fact that Ap-» Xp together with
lemma 1 above to bbtain these estimates. The argument given below is

a modification of that given by GARY in [6] for the self-adjoint case.

Theorem 1
Let Ap, vP be characteristic pairs of L with || Vpnz =1. Let D

p

be the diagonal matrix of Lemma 1 . Let u be an eigenfunction of £

corresponding to Xp and let Up be the M vector obtained from up by
p
(

mesh-point evaluation. Assume u (x) normalized so that

(3.1) Io" uPy, = o7V,

then as Ax -+ 0, we have

2
(3.2) 1xp—.Ap1 = KAx

(3.3) ju® - v, = Klez

where K, K1 are positive constants defining only a p .

Proof: Because the difference scheme in (1.5) is properly centered and we
assume sufficient smoothness of up and the coefficients of £ , we have at

the mesh points,
(3.4) c[uP] = LU+ T=prp

where T 1is the "truncation" error and



L1

(3.5) “T“Z < K(p) Ax? where K is a constant.

Let L = D_l L D have orthonormal eigenvectors Xl, XZ, . XM and

write Up as a linear combination of the DXJ's:

M .
(3.6) v’ = 3 o ¥
=L
so that
p_M J M J
LU =3 o0, LDX' =3 o0 A DX
j=1 j=1
then,
p M j
T=0_-LU = 3 ag ( -_/\.j)DX
j=1
and
M
2 . 2 -l g2 -l 2 2
I R R Th R S L P

= Kl(p) Ax4 where Kl

is a constant.
Now, the eigenvalues of L are distinct and converge to the corres -
ponding distinct eigenvalues of £ . It follows that
(3.8) inf  {|x -A])=zw, > 0 forall sufficiently small Ax .
. p j 0
iZp
Hence, on using (3.7),

(3.9) by cjz < Kle4

i#p




12
and

2 1 _py 2
(3.10) of = D" U7, +o@x 2w >0

for all sufficiently small Ax.

Thus

. x <-— 2

since VP = gDX® for some B and “Xp “2 =1 we have

i8] = D7 VP,

On taking square roots in (3.10), we have

_ -1 _.p 4
o = [D " UT|, +0x)

and we may assume that op and B have the same sign; hence using (3.1},

(3.12) (0, - 8 = oaxh
Writing UP -vP = £ o DX +(0_-p) DX"

i#p P
we have
(3.13) I P - vp)nzZ = 5 crjz t(o - 5)2 = oax?)

iZp

1.€.
(3.14) |vP - vP < o)l 2 Ip7 WP - v o K (P) ax*  Q.E.D.

Notice that the above inequality also implies uniform convergence at the

/
rate of O(Ax)3 2
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4. PROOF OF THEOREM 2

Lemma 3
Let 0K< Al Ceve AM be the eigenvalues of L . Then there

exists a positive integer jO » independent of M, such that for

j.=j= M we have

0
2 2
(4.1) Kjm = A =K j27r2 K,, K, positive constants.
1 j 2 1" 2
Proof: In the self adjoint case, this result may be found in Bilickner [1].

In the present more general case see [2].

Proof of Theorem 2.

w!

Let W) = . be an eigenvector of L corresponding to ./\.j . Then

w?

M

J satisfies the difference equations.

W

- i b Ax

- . k ]

L2+ G M A% W s [Tkt ¥ H— ] W
- k k+1

l wk w

i k

|

(4.2) / 5 _ b, Ax J

) + [“k-3 s~ 1w, _ =0 k=1, M
"

. b _ b= 4

;\where w —WM_H =0 and w 3 (ak_}% +ak-—L)




- (ck~A)AxZ
Let o = -[2+ —
Tk
a 1 ™~
~ _ k_—a-
v =

and let A be the tridiagonal MXM matrix

o
¥
(4.3) A =
Then we may write (4.2) as
(4. 4) AW = 0
(4.5) e apy ptwl = o

2

B

or equivalently

if P

Choose P to be the diagonal matrix

H

(4.6) P

fpl ,\‘}

O ..pMAJ

where P

=1 and Pf)‘= I
1 i

is any non singular matrix.
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2
For all sufficiently small Ax, pi > 0 and as in Lemma !, P symmetrizes

A .
~ ~
Let Gk = (vk+l Bk)2 , then
. : a9 L ]
(4.7) P AP = o . |
| M-1

L o OMm-1%M
Observe that by the mean value theorem

2
(4.8) Wywy T (ak+%) [1+0(Ax7)] as Ax — 0

Also if b(x) € Cl[O,l] ,

2 2
~ ~._ [(a,,1)%+a, 1 (b, -b JAx _ b b . Ax"]
(4.9) (ka Bk)- k+ 3 k+3 ‘k 2k+l k k;-l
Pk Prl
2 2..
(ak_{_%) [l + 0O(Ax7)] as Ax — 0
2 2
(ak_*%) [1+ O(Ax~)]
Hence,
(4.10) o, = (V4 Bk)a = 1+ O(Ax") as Ax — 0

Let V = P~l w? and write the system (4.5) as




2
(c, =AY Ax
-2 ) =
[2+ %k ™ vt v P9 v =0
(4.11) K
V0=VM+1_O K=1,- - M

Let Kl and KZ be the constants in Lemma 3 and define

2 _ Ay
4.12 = ]
( ) B K,

Let y(x) = Sin 5]. %. Then yk = y(kAx) satisfies the difference equations.

2
. _2 - - k=1,2,....
where
4 2 BiAx
= i ]
(4.14) uj A2 Sin 5
2
The distance between successive zeros of y(x) is E—' = > =
; A ]

for j large enough by Lemma 3.

Let v(x) be the piecewise linear function corresponding to "graph"

1

of vector V=P ~ W’ . Define the auxiliary function z(x) by

z(x) = vix) whenever v(x) # 0

v(x)
We proceed to estimate the distance between successive nodes of v(x)

by investigating the difference equation satisfied by z(x).
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We may assume that & (V) > 3Ax. Forif ¢ (V) = 3Ax, then

Max Max
' icular, & B N ici -
in particular, Max(v) S Ml < ;s 37 !T— for all sufficiently large j .
]
If 6 > 3Ax, then there exists a set N of consecutive mesh points,

Max

containing at least three members on which v(x) is strictly positive (or
strictly negative). Let N' be N minus the 2 end points of N . Since

z, = Yk for ke N,
v

kv
2
(2 - LLij )Gk
4.17 =
(.17) (4, 21y L. (o iaxe Ve P |
{Dk
+ =0 KeN'.

Vil kel T Vol Zra)

We now show that for all sufficiently large j , the difference operator

j,_h (or -&h if v 1is strictly negative) occurring in (4.17) is of positive

type, and hence satisfies the discrete maximum principle:

It is sufficient to show that if j is sufficiently large,

[2 -, sz]ck
] 1 if KeN'

4.18 >
( ) 2 + (°k " Myax2

@,
J L4

From (4.14) we have y, < .‘/_X_L < _[E]_ if K2 is chosen so that K2 2 26:1l )
b Ky 24
where a is an upper bound for a(x) on [0,1] . Hence,

(4.19) (2 - LLJ.AXZ) o =2 -1, Ax?% + O(Ax?)
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since uija = 4 and O = 1+ O(sz) .

Now,
2 - LLJ.AXZ + O(sz) > 2 —_f\' Ax? + O(Ax2)
K2
> 2 - Ay Axe 2
2 ] + O(Ax")
20y
=2 c, = I, 2 - 2¢c.)A 2 2
=2+ (“x PIAR® + (1 Clax 4+ O(Ax4)
Wy Zugk
i.e.
(4.20) (2 - uijz) ka 2 24 (Cx - Aj )sz if j is sufficiently large,

since we assume c(x) is bounded.

Furthermore 2 + (kx ~ A"J')Ax‘2 is positive for K e N' since
w
k

Y have the same sign, on using (4.11). Thus (4.18) is

V., V k-1

k® kHl

satisfied.

Suppose now that z(x) has two zeroes in the interval spanned by N .
At any mesh point lying between the two zeroes we must have z(x) =0 by
the maximum principle. Since z(x) = 0 if and only if y(x) = 0, this means

and j = M.

that the distance between successive zeroes of y(x) is = Ax =
i
However, as already noted, this distance is = j‘

Thus y(x) has at most one zero in the interval spanned by N.
Hence the maximum distance between successive modes of v(x) must be

T
less than or equal to é_ + 2Ax .
j



(4.21) 6 (V) = K(&A))

A similar estimate is valid for the eigenvector w! of L since W’ = PV

and P is a positive diagonal matrix. Q.E.D.
5. REMARKS
(@) It seems plausible that one also has an estimate
1
(4.22) 5Min = KO(Aj) 2 for j large for the minimum distance between

the nodes of WJ .

(b) The estimate in Theorem 2 may be combined with Lemma 3 to show that

if the eigenvectors {V') of L are normalized so that I Vp“ , =1 then

[N

(4.23) I Vp“oo < K, p? for all sufficiently large p . (See [2]). Such

1

an estimate was obtained by Blickner in the self-adjoint case using an elementary

device ([1]). Combined with Lemma 3, (4.23) shows that

s | vP ., remains bounded as M—s « .
P A
p




[10]
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