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I. INTRODUCTION

We seek to compute numerically an approximate solution to an optimal
l

control problem of the following general type: Minimize f{x, u) = [‘
v

c(t, x(t), u(t) Ydtover the collection of functions (x, u) satisfying

s = 3—‘% = s(t,x,u), x(t) € X(t), u(t) e U(t), 0sts=l, where X(t) and

k
U(t) are subsets of E£ and E= respectively; for the moment we remain

vague as to the continuity properties of ¢, s, X, and u. The following

numerical method has been proposed [6]: for positive integers n, set

L :
h= =, t =ih, 0 =i s n, find vectors x_= (x ,re e X ),
n i n n, 0 n,n
n .

u = {u ;U ) minimizing h 5 c(t,x_ ,u_ .} over the collection

n n, 0 n, n Q=1 i’ n,i" n,i

. , X mX '
~f vectors satisfying .. itl "m,i = s(t,x ,u ) for i=0,-:-n-1,
h i’ " n,i n,i

2 € X(ti)’ U € U(ti), for i =0,+-+n. This method has proved useful

n, 3

in practice; under certain assumptions [6], the nonlinear programming
problem defin:d by the numerical approximation can be computed rapidly
by a variant of Newton's method. In this paper we are concerned not with

methods for computing Xn’ vun, but with whether or not the sequence X
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un, (or, more precisely, approximations to Xn’ un) converges in some sense
to a solution x,u to the original control problem.

We shall in Section 2 describe in general what criteria must be met for
there to be any hope of proving convergence. Then in Section 3, using the
point of view described in [ 1], we shall state the control problem as a
variational problem in Hilbert space, consider the programming problem as a
discretized variational problem in a finite dimensional space, and show
how the precise statements of the general criteria given in Section 2 allow
us to prove convergence in a weak sense and, in some conditions, in a
stronger sense. In Section 4 we discuss generally how one can determine
whnether the criteria of Section 3 are in fact met; Section 5 briefly applies

the ideas to linear problems, i.e., linear s(t, x, u).

2. FEASIBILITY OF NUMERICAL METHOD; DESCRIPTION OF RESULTS

In ’ozder for the numerical method to have a chance of success, a
rumber of obvious criteria must be met; these criteria will essentially be
~ufficient to guarantee convergence. Since the precise statements become
rother complex in Section 3, woe first pause to sec intuitively what is needed.
First, the nature of the sets X(t), U{t) must be revealed fully by
thelr nature at the discrete points ti; for example, if X(t) = {t} for irrational
t but X(t) = (- »,«w) for rational t, the numerical method using X(;li‘) would

never detect restrictions. Thus we need to assume that X(t), U(t) vary




nicely in the sense that given vectors X , U with x . e X(t), u_ . e U(t),
n n n, i i n, i i

there exist functions x,u with x(t) e X(t), u(t) € U(t) and x and u near
X and url in some sense. In the proof of convergence, it is necessary

to know that to x ,u_ as described and satisfying x_ .,, - %, < hs{t,x .
n n n, i+l n, i i’ n, 1

there corresponds x,u satisfying % < s(t, x, u), with the distances of x(t),
u(t) from X(t), U(t) being very small, and with x,u near X o u in some

sense; the point (x,u) will be called pn(xn, u This says that to feasible

n)'

points for the programming problem there are nearby almost feasible points
for the control problem. This assumption will guarantee in essence that X{t),
U(t) are well behaved.

Secondly we cannot hope to get an accurate solution unless there are
feasible points for the programming problem arbitrarily near the solution to

the control problem; this is not always the case as the following example

. 2
indicates. Solve x=u, t =£x=t +t 2tsus 3t, t € [0, 1], minimizing

1
2 2 2
f «“ +u_ dt. The solutionis x =1t , U= 2%, but there are no feasible points
~ 0

2
at all for the programming problem with constraints Xl © X, + hui, (ih)

<

2
% < (ih)

+ih, 2ih = u, = 3ih because X, = Uy = 0 implies %, = 0. In
i i 0 0 1

this example however it is clear that there exist points satisfying the equality
~cnstraints and which are very near to being in X(ti)’ U(ti); if the constraints
on the program are relaxed so as to allow such nearby points, we can prove

convergence. Thus we will assume that there is a mapping rn of the solution

%, u of the control problem onto points X ur1 which satisfy the discrete



equality constraint, lie very near the discrete sets X(ti), U(ti), and are
sufficiently near x,u .
In [6], the author actually treats inequality constraints of the form

X + hs(t,,x_ ., } and indicates that one can solve the

X , = ) s U ,
r, i+l n, i i’"n,i" n,i

problem under equality constraints by a penalty function approach; we con-
tinue with that approach in this paper.

For a sequence of positive numbers arl converging to zero we will
X

Rl n
ol mitlyia b3 oorux nu )

n
inimi h s X , s U ) -
minimize X [S(ti_l n, i-1 n,l—l) n 0 n,i’ n,i

i=1

under ineguality constraints and with the sets X(ti)’ U(ti) slightly expanded;
the minimizing points will be shown to converge to a solution of the control
problem under equality constraints. We will indicate in general how one
might have mappings pn and I and, in the particular case of a linear
differential equation, observe what is sufficient to guarantee the existence of
such mappings.

For notational convenience, we restrict ourselves henceforth to scalar

1 . .

problems; that is, we assume that x and u are in E . The situation for

) k| )
» e E , ue€eE  is exactly the same except that some statements, such as

those regarding convexity of functions  s(t, x, u), must be taken to mean

componeantwise,




3. EXPLICIT ASSUMPTIONS; CONVERGENCE

Define the Hilbert space H = {(x,u); u e LZ(O,.L), X € LZ(O, 1), x is

absolutely continuous }; for V= (x,u) e } , let |[V|| .

i

1 |
.2 2 2
f x dt + f u dt + x(0) . Define the discretized space Jin
) \_'O

{(Xn’ un); *n T (Xn, 0T ¥y, n)’ “n T (un, o “n, n)}; tor Vn B (Xn’ un) € JJn’
2 n X . X - Z n
let [V || "=h 5 [-22 o, 1-l ]+ h = u ,Z +x 2% . We remark
n'n izl h -] o i n, 0

that weak convergence in }J is equivalent to weak convergence of the com-
. . . L N .

pontnts x and u in Lz(O, 1} and convergence of x(0) in E ; this implies,

by Ascoli's theorem [7], uniform convergence of x,i.e.,convergence in C[O0,1].

Next we define functionals £{(V), £ (V ), g (V ) as follows:
n' n n n

1 L n
f(V) = f c(t, x, u)dt; g(V).:f [s(t,x,u) =] dt; f (V)=h & cft,x ,u_ .}
Yo

X =X,
, u y-—m,i ni-l 7. it 5 assumed that

n

| 1
c(t, %, u) = 0. We seek to minimize f(V) over the set Ql = {(x,u); x(t) € X(t),

,i-1

u(t) € U(t) a.e., x < s(t,x,u)a.e.} with the additional constraint that
g(V) = 0, which implies x = s(t, x,u) a.e. We assume that we need only
consider V in some bounded subset (hence weakly compact) SB = {v;|v] = BJ
of }{ ; this would be true for example if the sets X(t), U(t) are bounded

above and below by functions in LZ(O’ 1) or if (V) satisfies \ lim (V) = o |
IV“ —p OO

We assume that Q = SBn Ql is weakly compact. Suppose f and g are



weakly lower semicontinuous functionals and thal for our control problem

i.e., f(x',u') <

there exists a solution v o= (x', u') e Q with g(v') = 0,

f(x,u) if (x,u) € Q' and g(x, u) = 0.
As indicated by the second remark of Section 2, we assume the existence
] 1 H
of a mapping L from }H into ‘Hn such that (xn,u n) = \/rl = rnV (recall

that V solves the control problem) satisfies  lim fn(V n) = £V,
Il =3 0
%o il S, o '
: “= = g(t,,x .,u_ .) and d — 0, where d_ = d(V ) =
h " n, i s 1 n n n

to U(ti)}. We

3

¥ ]
max {distance from x to X(t.), distance from u
n, i i n, i

2

X .l“X .
<B+d, dv)sd , n, it n,i <
n n h

0=i=n
then define the slightly enlarged feasible set for the programming problem

as Qn - {Vn - (Xn’ un); I Vn“ n n

s(t,,x ,u ).
(1’ n, i’ n,l)}

As indicated by the first remark of Section 2, we must assume the existence

of a mapping pn from Mn into } such that: if \/'n € Qrl and gn(Vn) - 0,

1 e i - = i - . = O, 3 =

then lim [fn(\/n) f(pnvn)] nl:Lm | [gn(vn) g(pn\/’n)l (yn Wn)
-— XD

s(t,y ,w )a.e., and e — 0 where e 2
n n n n

N o~y 0
<

pn\/ne H satisfies A
{distance of (pnxn)(t) from X(t), distance of (pnun)(t)

3

o]
e}
A
—+
1A

—

from U(t) ), and | pnvn“ = B+e . Finally we define the slightly enlarged

feasible set for our control problem as o = {V = (x,u); vl =B+ e

a(V) = e X < s(t,x,u) a.e.]




o ,
Th 3.1 Let £, g, f, , Q, , s T, I
eorem e g n gn Q Qn Q rn pn be as described

above. Let a > 0 converge to 0 . For each n let Wn nearly minimize

gn(Vn) + a_ fn (Vn) over Qn in the sense that 9, (Wn) + a fn (Wn) <

£ a +g (V)Y+a f (V) forall V.e Q with ¢ — 0. Then all weak
n n n' n nn n n n n

limit points W of ann, at least one of which exists, solve the optimal
control problem, i.e., if W= (x,u), then % =s(t,x,u)a.e., WeQ,
and f(W) = f(V) forall Ve Q with g(V) =0 . |

Proof: First consider the auxiliary sequence Yn € Qn < H satisfying
g(Yn) + anf(Yn) < g(Y) + € for all ¥ in Qn; this sequence exists. Recalling
that g(v') = 0, we have 0= g(Y )= g(Y ) +a f(Y )= g(v') + anf(v') e

which implies that g(Yn) + anf(Yn) converges to zero. Now g(Yn) +

y | < W flp W = W )+ W . 6 =
“n (Yn) g(pn n) * “n (pn n) * “n gn( n) anfn( n) ¥ n ¥ n

1 1 [ f
glrVYy+a fl(rvy+ea +&e +6 7 gV)y+a (V) + +ea +90
Jn( n ) n n( n ) nn n n g(v) n (V') T‘n nn n
‘where T]n and «‘Jn, as defined by the inequalities, converge to zoro because
of the assumptions on r and p_ . Theretore W +a f(p W converges
O ssump N P gl n) IRALcI N ges
to zero.

By the boundedness of Qn, weak limit points W of ann exist and

clearly must lie in Q since Q 1is weakly closed; thus 0 = g(W) = lim
N —s ©

inf g(ann) =0, so g(W)= 0, thatis, if W =(x,u), % =s(t,x,u)a.e.

Thus W is a candidate for solving the control problem; we only need show

that f(W) < £§(V ).



We h 0= V') = < < ~
e have gn(rn ) g (W )=sg (Wn) + an fn(Wn) < gn(rnv ) +

a f(r V')+a e =g (W)Y+a f (¢ \/")+a € which implies, from the
n nn n n n n nnn n n

fourth and sixth terms in the inequalities, that fn(Wn) < fn(rnv') +

E - Then f(W) = lim inf f(an y = lim inf fn(W } £ lim inf

N — o n— © n N - «©

[fn(rnvl) + En] = f(V'). Since f(W) = f(V') and V' solves the control
problem so must W . Q.E.D.

Simply stated, the above theorem shows that if one nearly solves a
penalty function form of the programming problem over a slightly enlarged
feasible set, then the minimizing points yield an arbitrarily accurate sol.ution
to the original control problem with the differential equality constraint. We have
only shown of course that weak limit points solve the problem; if the solution
\/l is unique then clearly pn Wn weakly converges to it. In some cases,
for instance if the functional f is uniformly convex, this implies convergence

in norm in }{[3, 4]; nonetheless, weak convergence here is such that P X,

converges in C[0,1], a strong condition.

1. THE EXISTENCL OF rn, p
n

ol Q, weak lower semicontinuity of f and ¢, and, most importantly,
the existence of mappings T and pn as described; the most troublesome
assumptions are those on I‘n and prl .

First we examine the other assumptions. In [6], in order to prove that

the numerical method for minimizing g _ + a f works, it was assumed that
n




s(t, x,u) and c(t, x,u) were convex jointly in x and u; itis a simple
matter to show, under that assumption and the additional one that sX(t, X, u},
su(t, X, U), cx(t, X, U), cu(t, ¥, 1) exist and are in LZ(O’ 1) for (x,u} €M,
that f, g, and Q satisfy their needed assumptions.

Let us see how one might define an operator rn . Suppose VI = (x, u)

satisfies % = s(t,x,u) a.e.; suppose one knows, as is sometimes the case

[4,5], that u is continuous. Define x ,u_ as follows: u . = ult)),

n n n, i i
‘ = hs(t , O Y, = 0); , i Xi
Xn, (41 Xn, ; + hs( i Xn, i un’ l) Xn, 0 x(0); clearly X is an approximation
to x(t) by Euler's method and it can be shown [2] that lxn T x(ti)l =

Oh + w(h)), where w(h) = max|s(t, %, u(t)) - s(t™, x, u(t™) )| for

e
b

it - t*l <h, 0=st, t“<1, and x in a certain bounded set. Moreover,

2 1/2

1f xe C[0,1], then lxn,i - X(ti)[ = Oth) and we could take dn = h
for constructing ro - The condition that fn(rnV')—-» f(\/l) would follow, for
example, from continuity of c¢(t, x,u). Unfortunately it is not always the
case that u(t) and hence s(t, x,u(t) ) will be continuous. Often, however,
u(n) is piecewise continuous with a finite number of discontinuities all of

which are finite jumps. By a modification of the argument in [2], itis

- x(t,)] = Ol +W(h) ) where w(h) has the

possible to show that |x_ .
n, 1 1

same definition as before except that t and t* are required to lie in the
same interval of continuity for u(t). Without an actual estimate for wih),
~riever, the number dn and hence the set Qn is unknown: if u(t) is known
i, be piecewise constant, then w(h) could be estimated. We do not know

how to guarantee the existence of r, or estimate oln in other situations.



10

The mapping prl is somewhat more difficult. Given X o d with
Xn, i+ = Xn,i + hs(ti, Xn, i un’ i) -h bn, P bn,i > 0, with h igl bn, i~ 0,
one could define P Y. as the piecewise linear interpolant of u s bn(t)
as the piecewise linear interpolant of b ot and pnxn as the solution of
X = os(t, X, pnun) - bn(t). Again X is the numerical solution by Euler's
method for this equation. One needs to know that x(t) and xn are very
close uniformly in u and dn; even then, one needs to know that X(t)
changes smoothly enough that X(ti) near X(ti) for all 1 will imply =x(t)
near X(t) for all t, and similarly for u, U. This will be true for example
if X(t) (and also U(t) ) has the form X(t) = {x; m(f)< x = M(t))}, where m
and M are piecewise continuous having a finite number of discontinuities,
all of jump type; values of + « are allowed for m and M . It is under-
stood that the grid (tO, . -tn) should be modified so as to include for all
1 the finite number of points of discontinuity of the functions m, M defining
X(t) (and U(t) ). In addition one needs that f(pn\/n) and fn(vn)’ g(pnvn)

and g (Vn) are near each other: in the next Section we indicate a condition
n

under which this occurs.
5, LINEAR PROBLEMS

Suppose that s(t, x, u) = A(t) x + B(t) u + C(t) with A, B, and C continuous .
As remarked above, if the u corresponding to the solution V' is continuous

2 .
and if x € C7[0,1], then I, exists and we can expand our constraint sets




/Z, "

X(ti) and U(ti) by hl and be sure of containing rn\/ . I X(1) and

U(t) are as described in the preceding section, then by a straightforward
argument, one can show that the mapping pn also described in the preceding
Section satisfies the needed assumptions if ¢ satisfies the conditions

[c(tl,xl,u) - ot 0 - clt,, %, 0)| with

%, w] = (a4 b [u]®) fot),x

c(t, X, 0) continuous in (t x). This requirement is used to show that

’

[fn(\/n) - f(pn\/n)l—» 0; the fact that pnvn and V_ are uniformly close

follows from the natures of s{(t, x,u) and of X(t), U(t).
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