A TRANSITIVE CLOSURE ALGORITHM
by
Paul W. Purdom

Computer Sciences Technical Report #33

July 1968

A TRANSITIVE CLOSURE ALGORITHM

Abstract

An algorithm is given for computing the transitive closure of a directed

2
Nln+a n for large n where a

graph in a time no greater than a)

1 1

and a2 are constants depending on the computer used to execute the algorithm,

n is the number of nodes in the graph and N. is the number of arcs (not

1
counting those arcs which are part of a cycle and not counting those arcs

which can be removed without changing the transitive closure). For graphs

where each arc is selected at random with probability p , the average time to

3 2
compute the transitive closure is no greater than min {al pn + az n,
1 2 =2 2 ,) s
'Z-al n p + a.2 n)} for large n . The algorithm will compute the transitive

2
closure of an undirected graph in a time no greater than a2 n for large n .

2
The method uses about n~ + n bits and 5n words of storage (where each

word can hold n + 2 values).

1. INTRODUCTION

The transitive closure T of a directed graph G is a directed graph
such that there is an arc in T going from node i to node j if and only
if there is a path in G going from node 1 tonode j . The transative
closure of a node i is the set of nodes on paths starting from node i .
For example the fransitive closure of node k in Figure 1 is the set of
nodes {g,l,j,k,h]). Itis often useful to specify a graph G with nodes
1,2,...,n byan n xn incidence matrix M with elements mij defined

by

m
ij false otherwise .

_ {true if G has an arc from node i to node j,
It has long been known that the incidence matrix M of a graph can be

used to compute the incidence matrix T of the transitive closure of the

graph with the equation

T = > Ml
I=i=n

where M and T are boolean matrices. It takes about n4 operations to
compute T this way. Warshall(l) has a method to compute the transitive
closure which takes between 1'1‘2 and n3 operations. His algorithm
to convert the incidence matrix M of a gr ph into the incidence matrix of
the transitive closure of G is equivalent to the following:

W1, For 1 =k = n do the remaining steps.

W2. Foreach i suchthat 1 £is<n and M[i, k] is true do step W3.

W3, For 1 =j=n set M[i,j] « M[i,j] OR M[k, il .

A method for computing transitive closure using lists is given by
2
Lars-Erik Thorelli(). His method, however, will in many cases take
4) , . 2
about n° operations if the transitive closure has about n arcs.
There are many algorithms which require the computing of transitive

(3) (4)

closure. The reader is referred to Weber and Wirth and Lynch for
some practical problems in the field of syntactic analysis where it is
necessary to find the transitive closure of a graph with one or two hundred
nodes.

The algorithm in this paper is designed for computing the transitive
closure of a graph with a moderately large number of nodes (the graph
should, however, fit in the computer storage; this requires about n'2 bits
of memory for a graph with n nodes). In section 2 it is shown that the
maximum running time for the algorithm is proportional to n3 , but there are
cases (such as sparse graphs where the number of arcs is no more than a
constant times the number of nodes, random graphs where each possible
arc is selected with fixed probability, and undirected graphs) when the
running time increases as n2 . In section 4 the method is compared with
Warshall's algorithm and cases are given where the method in this paper will
be faster for large graphs.

The concepts of path equivalence and partial ordering are particularly

important to understanding the algorithm. Two distinct nodes x and y are

path equivalent if there is both a path from x to y and a path from y to x .

Also each node is path equivalent toitself. For any pair of nodes x and

vy , there is a path from any node path equivalent to x to any node path
equivalent to y if and only if there is a path from x to y . In the following,
the term equivalent always means path equivalence. A directed graph is a
partial ordering if and only if the graph has no cycles. Thus if no pair of
distinct nodes in the graph are equivalent, the graph is a partial ordering.

If the graph is a partial ordering it is possible to find a consistent linear

(5)

ordering of the nodes This means that the nodes 1,2,...,n can be

renumbered as il’i

PUREEY in in such a way that if there is an arc from x

to y then iX precedes iy

The algorithm consists of four parts. The first part finds all the classes
of nodes which are equivalent and replaces each class by a single node. The
node for the classes are connected to each other according to whether or not
they contain nodes which are connected in the original graph. Figure 1
shows a graph, and figure 2 shows the results of replacing each class by a
node. Once each class is replaced by a single node the resulting graph is
a partial ordering. (If the cycles of length one are ignored). The second
part of the algorithm finds a linear ordering of the nodes consistent with the
partial ordering. Figure 2 shows the results of the ordering. The third
part computes the transitive closure of the graph of equivalence classes. It
computes the transitive closure for one node at a time starting with the last

node in the ordering and working back to the first., To form the transitive

closure of a node, =x, it takes each node with an arc from x and each
node in the transitive closure of the nodes with an arc from x . Itis
possible to compute the transitive closure this way because the ordering

of the nodes insures that the transitive clsoure of a node is computed be-
fore it is needed to compute the transitive closure for another node. Figure
3 shows the graph after the algorithm has computed the transitive closure
for nodes 7,6, 5,4, and 3. TFigure 4 shows that graph after the entire
transitive closure has been computed for the path equivalence classes.

The fourth part of the algorithm is quite simple. For a pair of nodes x and
y an arc is added from x to y if and only if x is in a class which has
an arc (in the transitive closure graph for the equivalence class) to the

class which contains vy .

2. THE ALGORITHM

This algorithm takes an n x n incidence matrix M for a directed
graph and converts it into the incidence matrix for the transitive closure

of the graph. An ALGOL procedure for the method is given in the appendix.

Part 1. Eliminate Cvcles

This part of the algorithm finds cycles in the graph, and each time it
finds a cycle, it replaces the cycle by a single node. The elimination of
cycles continues until the graph has no cycles. When this part is finished

each equivalence class has been replaced by a single node. The arrays

Next and Previous form a doubly linked list of nodes that remain in the

graph as nodes in the equivalence classes are removed. The array
Equivalent has a circular list for each node remaining in the graph. Each
circular list has the original nodes from one equivalence class. The

array Stack contains a list of the nodes on the path being investigated for
cycles. The array Onstack has the position in the stack for each node in the
stack and zero for each other node. The array New is used to indicate which
nodes have not yet been removed from the stack.

Step 1. (Initialize). For 1 = i = n set Equivalent [i]+« i, Next
[i-1]« i, Previous [i+ 1]« i, Onstack [i]« 0, and New [i]«
true. Set Next [n]+ 0, Previous [1]« 0, Previous [0]« n, top+ 0
and k« 0 .

Step 2. (Start tree). The paths leading from each node in the graph
will now be investigated for cycles, except that nodes which have already
been investigated will be skipped. Set k« Next[k]. If k=0 then go
to Step 10 (the start of Order Nodes). If New [k] is false then repeat this
step. Set i+ k.

Step 3. (Stack). Paths leading from node i will now be investigated
to find cycles. Node i will now be investigated to find cycles. Node 1
is put on the stack. Increase top by ! . Set Stack [top]« i, Onstack[1]

« top and j+ 0.

Step 4. (Next arc). Each arc leading from node i will now be
investigated unless it leads to part of the graph where all paths have
already been investigated. Set j+ Next[j]. If j =0 then go to
step 9 (Unstack). If i=3j, M[i, j] is false or New [j] is false
then repeat this step.

Step 5. (Check for cycles). If node j is already on the stack a
cycle has been found. Otherwise paths from node j must be investi-
gated. If Onstack [j] # 0 then go to step 6 (Remove cycle). Other-
wise set i+ j and go to step 3 (Stack).

Step 6. (Remove cycles). Node j and all nodes above it on the
stack form a cycle. All nodes except j are removed from the list of nodes
and set equivalent to j (along with any nodes equivalent to them). The
nodes removed from the list of nodes here are not used in the rest of the
algorithm except in step 7 and in the steps of part 4. For Onstack [j] <

c = top set b + Stack[c], Next [Previous [b]] «~ Next [b], Previous

[Next [b]] + Previous [b], and exchange Equivalent [j] « Equivalent
[b].

Step 7. (Combine). Arcs are now added to node j so that it will
have the same connections to the rest of the graph that the nodes in the
loop had. Node j will then be used to represent the entire equivalence
class. Set a+« 0, M[j, j] « true. Repeat the rest of this step until
a becomes zero again (test for zero each time a is changed). Set

a <« Next[a] . For all ¢ where Onstack [j]

< ¢ <= top if M[a, Stack (c)] is true, then set M[a, j] « true.

Also for all ¢ where Onstack[j] < ¢ = top if M[Stack[c],a] is
true, then set M[j, a]+« true.

Step 8. (Return). Now all nodes above j have been removed from the

stack. The investigation of paths from j is continued by taking care not
to skip any paths added in step 7. Set top+ Onstack [i], i+ j, and
j+« 0. Go to step 4 (next arc).

Step 9. (Unstack). All new paths from node i have now been
investigated and all nodes equivalent to i have been found. Node 1 is
now removed from the stack and the investigation of paths from nodes below
i on the stack is continued. Decrease top by !l . Set New/[1i] « false.
If top = 0 then go to step 2 (Start tree)., Otherwise set j « i, 1+« Stack [top],
and go to step 4 (Next arc.)

Notice that at steps 2 and 4 it is only necessary to investigate paths
involving two nodes which have not been on the stack and then removed.
Whenever a node is removed from the stack all paths from that node have
already been investigated for cycles. Therefore it is not necessary to

investigate paths involving nodes which have been removed from the stack.

Part 2. OQOrder Nodes.

Part 2 takes the graph of equivalences classes (produced by part 1),
which is a partial ordering, and finds a consistent linear ordering. The

lists Next and Previous are reordered so that if there is an arc from node i

to node j then i occurs before j on the Next list (and after j on the
Previous list). The method used is similar to the ones given by Kahn(6)
and by Knuth(5) .

Step 10. (Count Successors). The number of arcs leaving each node
is counted and stored in the array Count. Set j «— 0 . Repeat the rest
of this step until j = 0 again (test for zero each time j is changed).

Set j+ Next[j]. Set Count[j] « 0 and i<« 0. Repeat the rest of
the step until i =0 again. Set i+ Next[i]. If M[j, i] is true and
i # j then increase Count[j] by 1.

Step 11. (Start). Now i is set to the end of the list of nodes and
k 1is set to the end of the new list of nodes (the new list will be ordered).
Let i+~ 0 and ke« n+1.

Step 12. (Advance j). Let j « i.

Step 13. (Check for successors). Set i« Previous [i]. If i=0
then go to step 15 (Start processing queue). If Count [i] # 0 then go to
step 12 (Advance j).

Step 14, (Add to queue). Each node with no successors is added to

the new list and removed from the old. Set Previous [k]« i, Previous[j]«

Previous [i], Next[Previous[i]] «~ j, Next[i] <« k, k « i, and

i+ j. Gotostep 13 (Check for successors).
Step 15, (Start processing queue). The index i goes from front to

back on the new list of nodes. Each node which has an arc to node i and

has other arcs only to nodes which are after 1 on the new list of nodes

is now added to the back of the queue. Set i «+ n+ 1 and Previous [k]
~ 0. Repeat this step until i = 0 again. Set i + Previous[i]
and a « 0 . Repeat the rest of this step until a =0. Set b « a and
a « Previous[a]. If M[a, i] is true then reduce Count [a] by 1
and if Count[a] = 0 then set Previous[k] « a, Next[a]« k,

Previous [b] « Previous[a], Next[Previous[a]] « b, Previous[a]

«~ 0, k«a, and a « b .
Step 16. (Move list head). Set Next[0] « k, Previous [0] «

Previous [n + 1], and Next[Previous[n+ 1] « 0.

Part 3. Transitive Closure

Part 3 computes the transitive closure for the graph of equivalence
classes starting with the last node on the new list of nodes (produced in
Part 2). At all times the transitive closure will be available for the nodes
after the one being worked on since each node has arcs connecting it only
to nodes which occur after it on the list. Therefore the transitive closure
of a node k can be computed by taking the union of k and the transitive
closures of all nodes i for which there is an arc from k to i.
Step 17. (Initialize). Set k to the end of the list of nodes. Set k+ 0.
Step 18. (Next node). Move Kk one place closer to the front of the
list of nodes and make a copy of the list of nodes after k. Set k<« Previous [k]
If k = 0 then go to step 22 (the start of Output). Set i+ k and j« k.

Repeatedly set Nextl[j]+« Next[j] and j « Next[j] until j=0.

10

Step 19. (Test for arc). Find the next node i on the list such that
there is an arc from node k tonode i . Set i « Nextl [i]. If i =0 then
go to step 18 (Next node). If M[k, i] is false then repeat this step. Set
iei.

Step 20. (Test for in node closure). Find the next node j on the list
such that j 1is in the transitive closure of i . Set 0ldj « j and j « Nexti[j].
If j =0 then go to step 19 (Test for arc). If M[i, j] is false then repeat
this step.

Step 21. (Add to closure). Add an arc from k to j to the transitive
closure matrix and remove j from the list Nextl so that we don't make
additional tests for k connected to j in the transitive closure. Set M[k, j]

« true, Nextl[oldj]« Nextl[j], and j « oldj. Go to step 20 (Test for node

in closure).

Part 4. Qutput
The transitive closure of the graph of equivalence classes (computed in
Part 3) is now expanded to give the transitive closure of the original graph.
For each pair of equivalence classes 1 and j where there is an arc from i
to j in the transitive closure an arc is added to the transitive closure for each
pair of nodes a and b where a is equivalent to i and b is equivalent to j .
Step 22, (Begin). Set i « 0.,
Step 23. (New i). Set i « Next[i]. If 1i=0 then the algorithm
is finished and M contains the incidence matrix for the transitive closure of

the original graph. Set j « 0.

Ll

Step 24. (New j). Set j « Next[j]. If j =0 then go to step 23
(New i), If M[i, j] is false repeat this step. Set a <« 1.

Step 25. (More a). Set a + Equivalent[a] and b« ji.

Step 26. (New b). Set b « Equivalent [b]. Set M[a,b] « true.
If b=j then go to step 27 (New a). Repeat this step.

Step 27. (New a), If a = i then go to step 24 (New j). Go to step 25

(More a).

3., Performance of the Algorithm

Now the time and space required to run the algorithm will be analyzed.
It is assumed that the algorithm is run on a computer with a random access
storage large enough to hold the algorithm and its data. It is also assumed
that each of the basic operations found in the steps of the algorithm can be
done in a constant amount of time or (where upper limits are being discussed)
that there is a constant upper limit for the time required for each basic operation.
The analysis will be in terms of n (the number of nodes), N (the number
of arcs), and m (the number of equivalence classes). The values of N and
m are limited by 0= N =< n2 and 0 = m = n, For a graph selected at

2 ‘
random from the 20 possible graphs the expected value of N is nZ/Z. The

log n+ c¢n for

(N o)

author does not know the expected value of m . With Nc =

some constant ¢, the probability that m(n, NC) # 1 has the limit
=2c 2
lim Pim(n, N) #Z1) = e © for a graph selected at random from the KI
N~ © c 7) C
possible graphs with n nodes and Nc edges.

12

The number of times each step and each part of a step is done will now
be considered. The loop in step 20 will be considered in more detail than
the other parts of steps since for some graphs it is done much more often
(by a factor of n) than the other steps. For many steps only an upper limit
on the number of times the step is done will be given. In several cases,
smaller upper limits exist than the ones given here. The results of the next
four paragraphs are summarized in table 1.

Step 1 is done once. The operations in its loop are done n times.
Step 2 is done m + 1 times. It is done once for each node (including the
fake node zero which is used to mark the end of the list) that is not removed
from the list of nodes. It is not done for any node removed from the list of
nodes because the bottom node on the stack can not be removed from the list
of nodes (see step 6) and a node can be stacked only once (see steps 2, 4, and
5). Step 3 is done n times since each node is stacked one time (see steps 2, 4,
and 5). If the value of j was not reset at step 8, then step 4 would be done
between n(m + 1) and n(n + 1) times. Each time j is reset, step 4 may be
done an addition i times where i is the number of nodes on the list of nodes
at the time. Therefore, the maximum of times step 4 can be done is

nn+)+ 2 1 = %‘[n(3n+l) -m(m - 1)] .
m<iz=n-1

Step 5 is done at least 2m times less than step 4 since it is not done for
j=1i orfor j =0 and each of these conditions happens for at least m values of

1 .
i. Thus step 5 is done no more than Y [3n(n - 1) - m{m - 1)] times. Each time

13

step 8 or 9 time is done, at least one node is removed from the stack.
Therefore, together they are done at most n times (step 8 and 9 are the
only places where a node may be removed from the stack). Step 6 and 7 are
done the same number of times as step 8. Each time the operations in the
loop of step 6 are done, a node is removed from the stack (at step 8). Thus
the number of times the algorithm does either the steps in the loop at step 6
or step 9 is n . Each time step 7 is done, its outer loop will be done once
for each node on the list of nodes. Each time the outer loop is done, the inner
loop is done the same number of times as the loop in step 6 was done when
step 6 was last done. Both the inner and outer loops will be done a maximum
number of times if a single node isg removed each time step 8 is done. In
this case the loops are done m<lei = ;_ [n(n + 1) -m(m + 1)] times.

Step 10 is done once. If the outer loop is done m + | times (once for
each node (including zero) on the list of nodes). The inner loop is done m + 1
times (once for each node including zero) for each time the outer loop is done
except for last time. Thus the inner loop is done m(m+1) times. Step 1l is done
once. For each of the m+1 nodes on the list (including node zero) either
step 12 or step 14 is done. Also step 13 is done the same number of times. Step
15 is done once. The outer loop is done once for each of the m + I nodes
(including node zero). The inner loop is entered m times and each time it

is done at most i + 1 times where i is the number of nodes (including zero)

on the old list of nodes). Thus the inner loop is done at most b3 i+ 1
l=i=m

14

2
[m™ + 3m] times. Each time the second part of step 15 is done a node

N =

igs transferred from the old list to the new list. At least one node is transferred
in step 4. Thus the second if-part of step 15 plus step 14 are done at most
m times. Step 16 is done once.

Step 17 is done once. Step 18 is done m+ 1 times and the operations in

S

its loop are done by i = = [m(m+1)] times. Step 19 is done bX i=
I=i<m l=i=m

i
5 [m(m+1)] times. Step 20 entered from step 19 no more times than step 19

is done. Also if Nl is the number of arcs in the original graph not counting
the arcs in cycles and not counting the arcs which can be removed without

c hanging the transitive closure, then step 20 is entered from step 19 no more
than Nl times. Step 20 is done at most m+1 times each time it is entered
from step 19. Also it is done at most once for each value of j,i, and k such
that 0=sj < i<\ks m, Thus it is done at most min <f/Nl(rr1+ 1), > z

1 3 5 - 0<k=m 0O=i=sk-1
i= g[m' -m~] » times. For the graph with nodes 1,2, ...,n where each node

/
-

from 1 to n/3 has an arc to each node from n/3 + 1 to n (and where there
are no other arcs) step 20 will be done “2% nz(n+ 1) times. The author does
not know if there are graphs which take more time. If the graph is selected by
taking each of the possible n2 arcs in the graph independently with probability

31 2 -2
p then step 20 is done no more than min {pn~, > [n"p

-2
-np]J} times on the
3.
average. It can be done an average of no more than pn~ times because the
2 s .
graph has an average of pn~ arcs and it is done no more than n times each

time it is entered. To see the second part of the limit notice that to find whether

there is a path from the k-th node in the linear ordering to the j-th node

15

(where k < j) the algorithm at step 20 tests each node 1 where k < i < j
and where there is an arc from k to c . It starts with the smallest and
continues until it finds a path from i to j or until all such i have been
tested. The probability that b wvalues of i (where b = j -k - 2) are

investigated as

IA

¢
A

o

P(a = Db)

H

P (there is no path from ia to j for 1

and there is a path from ib to j)

< P (there is no arc from ié1 to j for 1 = a < b).
The probability of no arc from ial to j is independent of the probability of
no arc from ia2 to j if ial # iaz . The probability of no arc from ia to

j is no more than 1 - p if ia > j even though the original nodes have been
. . b-1
combined into equivalence classes and reordered. Therefore P(a=b) = (1 -p) .

The expected number of searches to try to connect k to j is limited by

-1 -2
Es)s = (l-p' i=p°.

Iisw

The range of the sum was permitted to go to infinity because all the terms in

the sum are positive. Step 20 is done for at most n{n-1) pairs of k and

1 2 =2 -2
j . Thus the loop is done at most > [n""p ~ -np

times. If the graph is
undirected so that if there is an arc from i to j then there is also an arc
from j to i then the graph of equivalence classes has no arcs and step 20
is not done at all. Of course, if one wishes an algorithm to just find the
connectivity of undirected graphs, then they can use parts one and four of
this algorithm by themselves. Step 21 is done only when an arc is added to

1
the transitive closure. Thus it is done at most 5 m(m - 1) times.

16

Step 22 is done once. Step 23 is done m + 1 time (once for each
equivalence class (including zero)). Step 24 is done m + | time (once
for each equivalence class (including zero)) each of the m times it is
entered from step 23. Step 25 is done once for each combination of the
n + 1 nodes (including zero) and the m equivalence classes. Step 26
is done once for each combination of the n + 1 nodes (including zero) and
the n nodes, Step 27 is done the same number of times as step 25.

The maximum time for the entire algorithm can be expressed as

. .
a min {(m + 1)N_, "ng} + by a,n m
1’ 6 T
0=i, j=2

where a is the time required to do the loop in step 20 and aij is the sum

]

of the times required to do all the steps with the factor n' m’ in the formula

for limit on the number of times the step is done (weighting each time in the

]

sum by the coefficient of nl m° in the formula). The limit for the average

1 .3 1 2 =2
time is the same with min {(m + 1)N, gna] replaced by min {pn’, >nop }.
2
The algorithm requires n bits for storing the M array. Storing linear

arrays requires 5n words (for words which can hold numbers from 0 to n + 1)

assuming the Nextl and Count arrays shares space with Stack or Onstack) and

n bits. The rest of the program requires a constant amount of storage.

17

4, Comparison with Warshall's Algorithm

Warshall's algorithm is much simpler. It always takes less space
although this is usually not important for graphs with a large number of nodes
since the ratio of the space requirements for the two methods approaches one
as the number of nodes increases. The time required for Warhsall's algorithm
can be expressed as 3, + a, n + a, n‘2 + a3 n Ni with N < Ni < Nt where
the a's are constants, n is the number of nodes, N is the number of arcs
in the original graph, and Nt is the number of arcs in the transitive closure.
Since the steps in Warshall's algorithm which are done nZ tfimes or less are
much simpler than those steps for the algorithm in this paper, Warshall's
algorithm should always be faster for graphs with a small number of nodes and
for graphs where Ni is not larger than n by a large factor.

The maximum time required by the algorithm in this paper to compute
the transitive closure of a graph with n nodes is less on most computers
than the maximum time for Warshall's algorithm, The inner loop of Warshall's
algorithm can be done n3 times whereas the innerloop of this algorithm
can be done no more than 1/6 n3 times. The innerloop of Warshall's algorithm
consists of incrementing an index, testing the index against a limit, and storing
in an array element the result of the OR of two array elements (the algorithm
can be modified by replacing the OR and store with a test and store)., Step 20
of the algorithm in this paper consists of taking the next element from a list,

checking for the end of the lists, and testing an array element. The operations

in each loop will take about the same amount of time on most computers.

18

For any set of graphs where the number of arcs increases faster than

the number of nodes the time for Warshall's algorithm will increase faster than
n2 . Thus for graphs where each possible edge is selected randomly with fixed
probability p (or with a probability p(n) which depends on the number of
nodes where nlir’rzo np(n) = «) the algorithm in this paper will be faster than
Warshall's algorithm if the graph has enough nodes. Table 2 presents the
time required for running each algorithm on the Burroughs 5500 computer with
randomly selected graphs (these tests were done with no other programs running
on the computer so that the time the multiprogramming system spends switching
between jobs would not have a significant effect on the running times). Tests
were done both with graphs where each arc was selected at random with fixed
probability and with graphs where there were no arc from node i to node j if
i > j butfor i = j each possible arc was selected at random with fixed proba-
bility. This second set of graphs were included to show how the algorithm in
this paper performs on graphs which do not have a large number of path equi-
valence classes. Runs were made with various probabilities and numbers of
nodes to show cases where each algorithm was faster. The reader is warned
that the time either algorithm takes for a random graph may not be related to
the time the algorithm will take for the problems he is interested in.

The author suspects that the algorithm in the paper will be faster than
Warshall's algorithm for nearly all sets of graphs where the transitive closure

2
has close to n~ arcs providing the graph is one which the algorithm in the

2
paper can do in a time proportional to n (and providing n is large enough).

19
The algorithm in this paper, however, definitely is not faster in all such cases
since Warshall's algorithm, for example, will be faster for a graph which has arcs
from each node to the last node and arcs from the last node to each node and no
other arcs.
Consider now the time Warshall's algorithm takes to compute the transitive
closure for a graph whose nodes have been numbered at random. Also suppose
the number of ordered pairs of nodes connected by a path of length
k or less, N, . is greater than a k/ﬁ; for k s/Z_FI—t‘ where a is constant
for the set of graphs being considered and Nt is the number of arcs in the
transitive closure of the graph being considered. Let Mk [i,i] be the i,j
element of the M matrix during the k-th execution of the outer loop in
Warshall's algorithm, For the graphs being considered
P (I\/Ik [i,k])z P (i connected to k by a route through nodes less than k)
7
0 <1 <| /2N
>\
Lo
0<4c< [\/'ZTtJ

n
P (4 + 1 = length of shortest path from i to k)(ﬁ)/ ({>

v

"
n

the sum can be simplified as follows:

R

2

o+
o 3 s A
N e~

20

T omeL DA

0=<|/2N] 0=t <|/2N |
a ()
0<&<L/_'

(o) ()

n-[\/_Z_I_\I:j<isn
[(h) -G)] AR)
(DR EDIRO

The expected number of times the inner loop of Warshall's algorithm will be done

]

i

TRRER Y { SORCIT:DING

l<ks<n 1 <k=sn

((nH-[*/El—\I;

> avN, = ot L Kk~ W 2N
t l<k<n n+l-k n
\ k
\ /
NESH n+l n+l k
R kT 7l S | [VEN]
=K=n ([\/Z_N_tj) SK:
. n+tl
(since -k < n+l for L =k = n)
Il - v2
= (nt+l) lnn - (nt+l) nt L Ny |

V2N, | + 1

21

If for a set of graphs Nt(n) = n2 (In n)—2+€ for € > 0 then

2
lim n
n—o T (n)
w

=0 where T (n)
w

is the expected time for Warshall's algorithm to compute the transitive closure
of a graph from the set with n nodes where the nodes have been numbered at

random.

It would be nice if one could now show that there is an o such that
Nk z aky Nt for k =/ ZNt for all graphs. The author believes that this is

true for a = %,/2 , but he has not been able to find a proof. It is obvious that
(1) (1)

if the graph consists of several unconnected parts and if Nk z o Nt for

each part i then Nk = a\/ﬁ; for the graph since 7 Aft(i) 2\/;*Nt(i) . If

i i
the graph consists of one path equivalence class then each node is connected to
at least one node by a path of length one, to two nodes by a path of length one
or two, and so up to a path whose length is equal to the number of points. Thus
for the equivalence class N, = k \/—N—t7_2_ for k S/ZI—\I—;. Also if the graph con-
sists of a single chain where each node has one successor and one predecessor
except the first node has only a successor and the last has only predecessor
then Nk z k \/T\I_t72_ for k s\/.Z‘I\T; . Furthermore if one has a rooted tree with all the
arcs pointing either toward or away from the root such that N, 2 k /T\I?Z— for
k s\/fN_t., and one removes an arc to a terminal node from a node of distance
b from the root and repiaces itwith an arc to the terminal node from a node of

distance c from the root where ¢ <b then the new tree has

22

Nk for k<c+1l
Nk'z Nk+c+1—kforc+lsk.<_b+l
Nk-a+b for a+ 1~k

One can easily show then that Nk’ 2 k \/T\I.;ﬁ . This is all of the cases for
which the author has been able to prove the conjecture for a = %;\/_2_ . There are
several more unimportant cases where the conjecture can be proved for smaller
values of @ .

To summarize, the following results were found for graphs which have a
large enough number of nodes n (see table 2 to see how large n should be in
some cases). (1) For most computers the maximum time for Warshall's algorithm
will be about 6 times the maximum time of the algorithm in this paper if the
algorithms are used to compute the transitive closure of each graph with n nodes.
(2) The algorithm in this paper will be faster than Warshall's algorithm for a
graph selected at random where each arc has been selected with probability p(n)
if lim np(n) = » . In particular, if p(n) is a constant, the time for Warshall's

N 0

algorithm will increase as n3 whereas the time for the algorithm in this paper
will increase as n2 . (3) Warshall's algorithm takes an amount of time that
increases faster than n2 to compute the transitive closure of graphs from a set
with the nodes numbered at random for which the number of arcs in the transitive
closure Nt increases faster than (n/ln n)2 provided that the number of pairs of
nodes connected by a path of length k or less is at least ak\th for fixed @
and for k= \/”ZNt' Such graphs include rooted threes and undirected graphs.
There are many such graphs, for example rooted trees and undirected graphs,

. , 2
where the algorithm in the paper can compute the transitive closure in time n

23

5, Variations on the Algorithm

Many details of the algorithm have been selected to make it easier to
understand. Others have been selected arbitrarily. Now possible variations
of the algorithm which some readers may wish to consider will be suggested.

It is possible to combine together the first three parts. Combining
together parts 2 and 3 is quite easy. KnuthS) gives th= basic idea needed
for combining parts | and 2 together.

If the elements in the matrix M are rearranged in part 2 (and restored
after part 3), then indexing can be used in place of the Next and Previous lists.
The Nextl list can also be eliminated. One then will have an algorithm where
the loop in step 20 will be quite similar to the inner loop in Warshall's algorithm
but will be done only _16— as often. The resulting algorithm will not be as fast
for randomly selected graphs.

On many computers it is possible to QR together two computer words
at once. For such computers step 20 can be modified to treat many values of
j at once. (This is often done in programs for Warshall's algorithm). To do
this one would wish to reorder the matrix M in part 2 .

There are often many linear orderings consistent with a partial ordering.
Perhaps there is an ordering algorithm more suitable than the one used for
part 2 of this algorithm.

If a copy of the Count array produced at step 10 is saved, then near the
bottom of step 19 one could add the substep, if Count[i] = 0, then repeat

this step.

24

2
If one uses n_ words for storing the matrix M then it is possible
to make further use of list processing techniques. See KnuthS) for an

example of how this can be used in part 2 of the algorithm.

Acknowledgments

The author wishes to thank Stephen Stigler for his helpful discussion
of some of the statistical results. He wishes to thank the University of
Wisconsin Research Committee and the University of Wisconsin Computing

Center for providing computing time for this work.

Step (substep)

25

Table 1

Number of times (max)

Step (substep)

1

1 (loop)
2

4
5

6+ 9
6 (loop) + 9

7T+9

7 (outer loop)

7 (inter loop)

8 +9

10

10 (outer loop)
10 (inter loop)
11

12+ 14

13

1

o

+1

3

2
[3n2+n~m +m]

NN -

[an + n—mz— 3m]

s}

2
[n +n—m2—m]

“[n2+n-—m2—m]

m+ 1

2
m +m

m+ 1

m+ 1

15

15 (outer loop)

15 (inter loop)

15 (2% if-part)+14
16

17

18
18 (loop)

19

20

20 [average]

20 [undirected]
21
22
23
24
25
26

27

Number of times {(max)

1

m+ 1

1.2

2[m + 3m]

m

1

1

m+ 1

1

> [m® + m]

1

-é-[m2+m]
1 :

min {*‘6— [m3 —mz],

Nlm+N1}

. 31, 2 2 -2
min {pn,-z-[np -np])
0
1 2
5 [n’ - m]

1
m+ 1

2
m -+ m
nm+m
nZ
nm-+m

An upper limit (not always sharp) is given for the number of times the algorithm
does each step, each group of steps (indicated by step numbers connected by a plus

sign, or part of a step (indicated by giving the part in parenthesis).

For the loop in

step 20 an upper limit for the number of times an upper limit for the average number

of times, and the number of times for an undirected graph is given.

in terms of

n -

the number of nodes, m

The formulas are

- the number of equivalence classes, which are

not part of cycles and which can not be removed without changing the

transitive closure, N

1

of an arc,

- the number of arcs, and p

- the probability

26

Table 2
Number of Nodes
Method Probability 10 20 30 40 50 60
1 76 257 607
Warshall .5 9.2(0.9) |73.0(2.6) [251,2(3.6) |606 a
8 68 246 605
7 12 23 37
Paper .5 5.8(0.6) |11.9(0.3) | 21,9(0.7) | 35.5(0.9)
5 11 21 34
8 62 233 516
Warshall .2 4.,4(1,6) [53.2(4.9) |204.3(17.7)|495.5 Db
3 46 179 480
9 12 22 36
Paper .2 6.4(1,1) |11,5(0.5) 21.5(0.,7) | 34.4(1.4)
5 11 20 32
3 40 147 426
Warshall | .1 1.9(0.6) |25.4(9.2) |114.5(21.6)[347.2(55.2)
1 12 80 250
9 16 23 37
Paper .1 7.3(0.8) [13.0(1.8) | 21,7(0.8) | 33.5(2.1)
6 11 21 30
3 15 61 165
'Warshall .05 1.5(0.9) 8.5!2.7) 32.6(11,5)[113,6(36.8)
0 6 22 67
0 18 36 46 64 75
Paper .05 7.1(1,1) |17,2(0.8) 31.9(4.7) | 40,3(4.2) |52.6(4.7) |73 D
6 16 23 35 47 71
6 37 125 291
‘Warshall BHifi s 4,5(0,7) |34.8(2.0) |119,3(3.4) [279.5(6.5)
4 32 113 270
0 21 42 70
Paper 5ifi<j 8.1(0.7) [20.5(0.5) | 41.1(0.6) | 69.6(0.5)
7 20 40 69
3 23 84 224
'‘Warshall L2 if 1= 2,1(0,.6) {18.0(3.7) 77.2(7.4) [183,8(24.0)
1 12 64 148
8 19 39 65
Paper L2 if i < 7.5(0,5) {18.6(0.5) 37.8(0,6) 64.,1(1.0)
7 18 37 62

27

Table 2 (continued)

Number of Nodes
Method Probability 10 20 30 40 50 60
2 12 50 129
‘Warshall difi =g 1,2(0.4) 8.7(2.4) 34.8(9.3) | 82.6(21,2)
1 5 21 59
8 18 36 61
Paper Jifi o= 7.2(0,4) |17,3(0,7) 34,5(1.,1) 58.7(1.5)
7 16 33 56
2 6 19 45
Warshall | .05 ifi<j| 1,0(0.5) | 4.5(1.0) | 15,2(3.1) | 33.0(7.6)
0 3 9 24
9 17 33 55
Paper 05if i <j| 7.0(0.8) |16,2(0.,6) 32,0(1,1) | 53,7(1.1)
6 15 30 52

a) Results for 3 graphs
b) Results for 4 graphs

The table shows the amount of processor time (in 1,/60ths of a second) required
by each method to run on the Burroughs 5500 computer. The graphs were selected
at random with each arc (from node i to node j) subject to the probability and
condition (if any) shown in the probability column. The two methods, however,

did their calculations on the same graphs. In each case ten graphs were tried
unless a footnote indicates otherwise. The top and bottom lines for each method
give the maximum and minimum times the method took for the cases (usually ten
cases). The middle line gives the average time and the\/;l-—%i- times the observed
standard deviation where n is the number of graphs which were tested. Since the
clock measured time in 1/60ths of a second, the timing process contributed at
least 0.4 to the standard deviation. The version of Warshall's algorithm used
stored one matrix element per word. If the matrix had been packed Warshall's
algorithm would have been faster by a factor of [f{ _1n, where [x] is the smallest

integer greater than or equal to x .

28

Figure 1. A directed graph with 12 nodes and 18 arcs. Arcs which connect
pairs of nodes in the same path equivalence class are shown as dark
arrows. Arcs which connect pairs of nodes in different equivalence

classes and arcs which connect nodes to themselves are shown as

light arrows.

Figure 2.

29

The graph from Figure 1 after the path equivalence classes have
been replaced by single nodes. Part | of the algorithm combines
those nodes which are members of the same path equivalence class
into a single node. Thﬁs nodes b, ¢, d, and e are now represented
as a single node as are nodes j, k, and 1. Part 2 of the algorithm
finds a linear ordering of the nodes such that if there is an arc from
one node to another, the second node has a higher number than the
first. The linear ordering found by the algorithm is shown by the

numbers in each node.

30

Figure 3. The graph being processed by part 3 of the algorithm. The dark nodes
have been processed. The dark arcs form the transitive closure of the
processed nodes. The algorithm is ready to compute the transitive
closure for node 2 now that it has computed the transitive closure
for all nodes after 2 in the linear ordering. The transitive closure
for node 2 consists of all nodes to which there is an arc from node 2

(4, 5, and 6) and all nodes in their transitive closure (6 and 7).

Figure 4.

DI

The transitive closure of the graph of path equivalence classes.
Part 3 of the algorithm produces the transitive closure of the
graph in which each equivalence class is represented by a single
node. This transitive closure is used by part 4 of the algorithm
to generate the transitive closure of the original graph by
connecting the nodes in each equivalence class to each node

in those equivalence classes to which their equivalence class

is connected. The transitive closure of the original graph is not
shown because of the large number of arcs in the transitive

closure graph (71 arcs).

32

Appendix
procedure TRANSCLOSURE (m, n); value n; integer n; boolean array m;

comment Since the paper has extensive comments, the only comments
given here are those to show the start of each step and part of the
algorithm;

begin

integer array next [0 :n + 1]; previous [0:n +], equivalent [1 :

comment Part L;

begin

integer array stack [l : n], onstack [l : n];

boolean array new [l : n];

integer i, k, top, j, b, ¢, temp, a;
comment Step 1;

for i:=1 gstep !l until n do

begin
equivalent [i] :=1i;
next [i =1] :=1;
previous [i + 1] :=1i;
onstack [i] := 0;

new [i] := true;

Prehainet

end ;

next[n] :=0;
previous [1] := 0;
previous [0] :=n;
top := 0;

k:=0;

comment Step 2;

33

starttree:
k := next [k] ;
if k =0 then go to order ;
if —/ new [k] then go to startiree ;
im=k;
comment Step 3 ;

stack i:
top :=top + 1 ;
stack [top] :=1i;
onstack [i] := top ;
ji=0;

comment Step 4 ;

nextarc:
j := next [j] ;
if j = 0 then go to unstack ;
ifi=j v Ty m[ij] yy—1new [j] thengo to nextarc ;

comment Step 5 ;

if onstack [j] # 0 then go to removecycle;
=733

go to stack i;

comment Step 6 ;

removecycle: for ¢ := onstack [j] + 1 step ! until top do

begin
b := stack [c] ;
next [previous [b]] := next [b] ;
previous [next[b]] := previous [b];
temp := equivalent [j] ;
equivalent [j] := equivalent [b]

equivalent [b] := temp ;

[}
oo}

.
1

34

comment Step 7 ;

a:=0;

m [,] := true:
combine 1:

a := next [a] ;

if a = 0 then go to return;
o

—h

r ¢ := onstack [j]+ 1 step 1 until top do
begin
b := stack [c] ;
if m[a,b] then
begin
m[a, j] := true ;
go to combine 2;
end ;
end ;

combine?:

for ¢ := onstack [j] + 1 step 1 until top do

begin
b := stack [c] ;
if m[b,a] then

o
®
-
}‘;

m[j,a] := true;
go to combinel;
end ;
end ;
go to combinel;
comment Step 8 ;
return:

top := onstack [j] ;

i i
j = 0

go to nextarc ;

35

comment Step 9;
unstack:
top :=top ~ 1;

new [i] := false;

if top = 0 then go to starttree;

j o= 1

i stack [top];
go to nextarc;
end of Part 1 ;

comment Part 2 ;

order:

begin
integer array count [1 : n} ;
integer j, i, k, a, b;
comment Step 10 ;
o= 05

countl :
j = next [j];
if j = 0 then go to start
count [j] := 0 ;
i = 0;

count2
i := next [i] ;
if i = 0 then go to countl;
if m[j,i]A i #j then count[j] := count[j] + 1;
go to count2 ;
comment Step 1 ;

start:
i = 0y
k := n+1;

comment Step 12 ;
advancej :
joi= 1

comment Step 13 ;

36

checksuccessors ;
i := previous [i] ;
if i = 0 then go to startqueue ;

if count [i] # 0 then go to advance j ;
comment Step 14 ;

previous [k] := i

previous [j] := previous [i] ;

next [previous [i]] := j;

next [i] := k;

go to checksuccessors ;

comment Step 15 ;
startqueue :

i := n+1;

previous [k] := 0;
process 1 :

i := previous [i] ;

if i = 0 then go to outorder ;
a = 0;
process:
b := a;
a := previous [a] ;

if a = 0 then go to processl ;
if m[a,i] then
begin
count [a] := count [a] - L;
if count [a] = 0 then
begin_
previous [k] := a;

next [a] := k;

37

previous [b] := previous [a] ;
next [previous [a]] := b:

previous [a] := 0;

k := a;
a := b:
end ;

end ;
go to process 2 ;
comment Step 16
outorder :
next [0] := k;
previous [0] := previous [n + 1] ;
next [previous [n + 1]] := 0;
end of Part 2 ;
comment Part 3 ;
transitiveclosure:
begin
integer k, i, j, oldj;

integer array next 1 [0 : n] ;

comment Step 17;

k = 0;

comment Step 18;
nextnode:

k := previous [k] ;

if k = 0 then go to output ;

e

k;
joi= kg
nextnode 1 :

if j = 0 then go to testarc ;
next 1 [j] := next [j];
jo:= mext [j];

38

go to nextnode 1 ;
comment Step 19 ;

testarc:

if i =0 then go to nextnode ;

if = m[k,i] then go to testarc;

Nt
.
I
-
~

comment Step 20 ;
testclosure :
oldj := j;
j = nextl [j]:
if j = 0 then go to testarc;
if—m[i, j] then go to testclosure ;
comment Step 21 ;
m[k, j] := true;
nextl [oldj] := nextl [j]:
j = oldj;
go to testclosure ;
end of Part 3 ;

comment Part 4 ;

output:
begin
integer i, j, a, b;
comment Step 22 ;
i = 0;
comment Step 23 ;
newi:

i := next [i];
if i = 0 then go to endalgorithm;
j o= 03

comment Step 24 ;

39

j := next [j];

if j = 0 then go to newi ;
if —m[i,j] then go to new; ;
a := i;
comment Step 25 ;

morea:

a := equivalent [a] ;

b = j;

comment Step 26 ;
newb:

b := equivalent [b] ;

m[a, b] := true;
if b =j then go to newa ;
go to newb ;
comment Step 27 ;

newa:

if

[o})

=i then go to newj ;
go to morea ;
end of Part 4 ;
endalgorithm:

end of TRANSCLOSURE;

40

References

1. Warshall, Stephen, "A Theorem on Boolean Matrices", JACM 9,
(1962) 11-12.

2. Thorelli, Lars-Erik, "An Algorithm for Computing All Paths in a Graph",
BIT 6, (1966) 347-349,

3. Wirth, Niklaus and Weber, Helmut, "EULER: A Generalization of
ALGOL, and its Formal Definition", CACM 9, 13-25 and 89-99.

4, Lynch, W. C., "Ambiguities in BNF Languages" thesis, Univ. of
Wisconsin, 1963 and "A High-Speed Parsing Algorithm for ICOR
Grammars", 1968, Report No. 1097, Computing Center, Case Western
Reserve University.

5. Knuth, Donald, "The Art of Computer Programming", Vol. 1, Addison-
Wesley, Reading, Mass., 1968, pp. 258-268.

6. Kahn, A. B., "Topological Sorting of Large Networks", CACM 5,
(1962) 558-562,

7. Palasti, I., "On the Strong Connectedness of Directed Random Graphs",
Studia Scientiarum Mathematicarum Hungarica 1 (1966) 205-214,

