EXTENDING AND REFINING HIERARCHIES
OF COMPUTABLE FUNCTIONS

by

Robert L. Constable

Computer Sciences Technical Report #25

June 1968
PREFACE

In part I we extend the Cleave hierarchy of primitive recursive functions into the transfinately recursive functions. The extended hierarchy, E_α, is indexed by the ordinals $\alpha < \varepsilon_0$. For α^n Peter's n-fold recursive functions, $E_\alpha^n = \alpha^n$. Emphasis is placed on finding a hierarchy which can be interpreted in terms of computing theoretic concepts.

In part II we examine the low end of the hierarchy using a new type of machine especially suited for such investigations. The machine is called a rewind automaton. We examine computational complexity classes based on the number of rewinds required to compute a function.
ACKNOWLEDGEMENTS

I would like to thank Professors Stephen C. Kleene and Larry Travis for their part in this work. Professor Kleene has seen to it that I have had the time for the research and has given of his valuable time and advice to help me along. Professor Travis has listened to me, guided me, taught me and counseled me for three years on this and other projects. His criticisms and suggestions have done much to shape this work.

Finally I give hearty thanks to my wife, Carol, for her prodigious efforts in typing the manuscript and for her many sacrifices while the dissertation was being written.
NOTATION

A function is denoted by $f(\)$ when the arguments are not essential. When they are it is denoted by $\lambda x_1 \ldots x_n f(x_1, \ldots, x_n)$. The non-negative integers are denoted by \mathbb{N}, and elements of \mathbb{N}^n, called vectors, are usually denoted by X. The n is usually specified by writing $X \in \mathbb{N}^n$.

The letter π will always denote a program and π_f a program which computes the function $f(\)$.

For sets, write $A \subseteq B$ iff $A \subseteq B$ and $A \not\subseteq B$.

\mathcal{R} denotes the set of (total) recursive functions, and \mathcal{R}' denotes the partial recursive functions. \mathcal{F} denotes the set of all number theoretic functions. \mathcal{E} denotes the set of elementary functions.

For K a class of functions, $K^{[n]}$ denotes the n argument members of the class. Also write $f(X) \in K$ iff $\exists b(\) \in K^{[n]}$ such that $f(X) < b(X) \forall X \in \mathbb{N}^n$.

TABLE OF CONTENTS

PREFACE

ACKNOWLEDGEMENTS

NOTATION

PART I

Chapter 1 Introduction 1

Chapter 2 Random Access Stored Program Machines 16

Chapter 3 Grzegorczyk, Ritchie and Cleave Hierarchies 30

Chapter 4 The Ritchie-Cleave Hierarchy 49

Chapter 5 A New Ritchie-Cleave Hierarchy 63

Chapter 6 The Extended Ritchie-Cleave Hierarchy 74

Chapter 7 Comparison of Hierarchies 105

Chapter 8 Algorithmic Complexity 114

PART II

Chapter 9 Finite Automata 122

Chapter 10 Rewind Automata 133

Chapter 11 Low Level Complexity Classes 146

APPENDIX

A A Computing Procedure for $f_\alpha(\)$, $\alpha<\varepsilon_0$ 169

B Estimating $g_\alpha(\)$ 190

C Arithmetizing the RASP 206

BIBLIOGRAPHY 213
Chapter 1 Introduction

At present works on recursive function complexity fall into three major categories:

(A1) works by logicians on subrecursive hierarchies where extensive use is made of constructive ordinals, recursive function theory and the theory of recursive functionals,

(A2) work by logicians on sequences of formal theories and the functions provably recursive in them where extensive use is made of the constructive ordinals, various formalizations of parts of number theory and analysis, formalized transfinite induction, and Gödel's theorems on consistency and incompleteness,

(B) work by automata theorists on computational complexity where extensive use is made of automata, Turing machines and other mathematical machines such as iterative arrays, push-down store machines and generalized sequential machines,

(C) work by automata theorists on algorithmic complexity where extensive use is made of finite automata theory, semi-group theory and combinatorial analysis.

Work in category A is by far the oldest, dating back to Hilbert in 1925, while efforts in area B began in 1960 and have been flourishing vigorously ever since. Category C has its origins in 1956 but did not become directed sys-
tematically and explicitly to complexity problems until after 1963.

These categories have been for the most part unrelated, especially areas A and B with C. We are concerned with presenting all three areas from a unified viewpoint.

There are strong reasons for introducing a unified viewpoint at this time. First, once this viewpoint is stated, many implicit connections between the areas become apparent, and numerous interesting questions arise. Also each of these areas helps explain the phenomena of the other areas more deeply.

The viewpoint we adopt is computing theoretic. Rapid developments in the field of computers are causing the swift emergence of computer science. This new science is concerned with such activity as computer design, design and analysis of programming languages and programming systems, analysis of computations and algorithms, and construction of extremely complex programs. Study of these activities is leading to an abstract computer science already embracing such precise new notions as abstract machines and formal grammars. The concept of recursive function complexity seems destined to play a crucial role in the development of this abstract computer science, namely as part of a theory of computing. ¹

¹We emphasize the use of functions as central to the theory of computing rather than that of recognition problem or set as is customarily done in areas B and C.
The precise goals of a computing theory are being formed from real computing experience, but there already exist vague yet clearly interesting questions for such a theory. Among them are these.

Q1. Can we discover a class of functions which represents the functions which are "actually or practically computable" more faithfully than \(\mathcal{R} \) does? (For example, \(\mathcal{R}^1 \) is a candidate for such a class.)

Q2. Can we discover intrinsic computational and algorithmic properties of functions? (For example, is multiplication intrinsically harder to perform than addition? Are the multiplication algorithms always more difficult than those for addition? Is there a natural computational hierarchy of recursive functions?)

Q3. Can we define a quantitative notion of the size of a computation perhaps analogous to Shannon's notion of information?

Q4. Can we discover trade off relationships to balance the computational parameters of programs such as time and memory, time and reliability and so forth?

Q5. What relationships exist between structural properties of programs and properties of their computations? (For example, are there functions for which all short programs are inefficient?)

We will be able to state these and other questions more precisely as technical concepts accumulate. We will remain
concerned to some extent with Q1 - Q5 throughout our work. But the results of the first part of the thesis are better motivated by more precise considerations from mathematical logic and recursive function theory. These considerations occur among the branches of logic and recursion theory, which are least blessed with notational simplicity, elegant proofs, deep philosophical content and popularity. To mitigate against these characteristics we offer in Chapter 3 an extensive introduction to the technical work. In the same spirit we continue this introduction with some historical background on area A.

The study of subrecursive hierarchies has its antecedents in the 1888 work of Dedekind. The notion of a primitive recursive function appeared in his Was sind und was sollen die Zahlen. The schema of primitive recursion, though not so named, was presented as a natural generalization of the schemata for recursive definitions of addition and multiplication. A modern version of that schema is R1 below.

R1. (a) \(f(X,0) = g(X) \quad X \in \mathbb{N} \)
(b) \(f(X,n+1) = h(X,n,f(X,n)) \)

Here \(f(\) \) is defined from known functions \(g(\) \) and \(h(\) \) by primitive recursion. The primitive recursive functions were defined to be those obtained from 0, the successor function, and the projection functions \(\langle U^n_i(x_1,\ldots,x_n) = x_i \text{ for } i \leq n \rangle \), by composition and the schema of primitive recursion. We denote this class by \(\mathcal{R}_1 \).
In 1925 the schema of primitive recursion found itself in the limelight of a sweeping proposal by one of the century's most eminent mathematicians.

Hilbert in "Über das Unendliche" outlined his proposal for solving the continuum problem, the problem he placed first on his famous list of unsolved mathematical problems.\(^1\) He proposed a hierarchy of number theoretic functions \(\mathcal{F}_\alpha\) such that

1. \(\mathcal{F}_\alpha\) is countable for all \(\alpha < \omega_1\) (actual) and
2. \(\mathcal{F}_\alpha \subset \mathcal{F}_\beta\) if \(\alpha < \beta < \omega_1\) and
3. \(\bigcup_{\alpha < \omega_1} \mathcal{F}_\alpha = \mathcal{F}\) = all number theoretic functions.

Such a hierarchy would allow associating a unique countable ordinal with each \(f(\) \in \mathcal{F}\) thus proving the continuum hypothesis. Further Hilbert claimed that the processes of substitution and recursion (transfinite included) were sufficient to obtain any function of \(\mathcal{F}\). The claim was based on his proposed formalization of mathematics and his belief that all the recursions required could be subsumed under the ordinary schema \(\lambda 1\) if functional variables were allowed. Thus a large part of the continuum problem was intuitively reduced to examining primitive recursions with respect to functionals.

Essential to Hilbert's construction was the notion of

\(^1\)In 1963 P. Cohen proved that the Generalized Continuum Hypothesis was independent of the usual axioms of set theory, \(ZF + \neg C\) for example.
"type of a function". A function is of type 1 if it is a number theoretic function, it is of type 2 if it is a function of functions, i.e. assigns a number to a function. A function of type 3 assigns numbers to functions of functions and so on. A function is of limit type \(\alpha \) if it is a function which assigns numbers to sequences of functions \(f_n \) where \(f_n \) is of type \(\alpha_n \) for \(\alpha_n \) a fundamental sequence to \(\alpha \).

Hilbert could now define a hierarchy of number theoretic functions using 0, the successor function, substitution, and the schema R1 with functional variables. A function is said to be of degree \(\alpha \) if it can be defined using functionals of type \(\alpha \) but can not be defined with functionals of lower type.

For Hilbert's plan to succeed the hierarchy must be proper, i.e. there must be functions of degree \(\alpha \) which are not of degree \(\beta < \alpha \) for any \(\beta \). Ackermann produced an example in 1925 (published 1928) showing that at least for degrees 1 and 2 the hierarchy was proper. He indicated that his method would work to provide examples for all degrees \(n < \omega \).

Hilbert's bold plan was fraught with difficulties, and although it received little attention, the discovery by Ackermann which it spawned stimulated further activity in the classification of recursive functions. Ackermann had exhibited a function \(a(x,y,n) \) which was of 2nd degree but not of 1st. It also satisfied the following recursive equations

\[
(a) \quad a(x,y,0) = x+y
\]
(b) \(a(x, 0, n+1) = g(x, n) \)

(c) \(a(x, y+1, n+1) = a(x, a(x, y, n+1), n) \)

where \(g(x, n) = \begin{cases}
0 & \text{if } n=0 \\
1 & \text{if } n=1 \\
x & \text{if } n>1.
\end{cases} \)

These equations uniquely define a recursive function which
is not primitive recursive yet the equations do not involve
functionals. Also they do not follow schema R1 since the
recursion proceeds on two variables simultaneously. Ackerman's result implies that there is no way to reduce these
equations to the form R1 without introducing functional
variables.

In the late 1930's R. Péter studied recursion schemata
modeled after these equations. Such schemata were called
multiply recursive or n-fold recursive since the recursion
proceeds on more than one variable simultaneously. She
called an n-fold recursion "nested" if the values of the
function itself occurred for the recursion variables, e.g.
as in Ackermann's function. She showed that nested \((n+1)-\)
fold recursions could not be reduced to n-fold recursions.
But unnested n-fold recursions could be reduced all the way
down to 1-fold (primitive) recursion. Classes of functions
defined similarly to \(R^1 \) can be based on the notion of n-
fold recursion. Let \(R^n \) be the class of functions defined
from 0, the projection function \((U^n_i(\)) \), and the successor
function by composition and nested n-fold recursion. Péter
proved $\mathcal{A}^n \subset \mathcal{A}^{n+1}$ $n < \omega$. We call this the Péter subrecursive hierarchy. Péter further demonstrated that her \mathcal{A}^n were precisely the \mathcal{J}_n of Hilbert for $n < \omega$.¹

In 1953 Grzegorczyk constructed another hierarchy based on ideas in Ackermann's work. He used a sequence of functions $g_n(x,y)$ similar to Ackermann's $a(x,yn)$ to stratify \mathcal{A}^1 into an ω-sequence of classes \mathcal{E}^n where \mathcal{E}^n contains $g_n()$ and is closed under certain elementary operations. We discuss this hierarchy fully in Chapter 3.

In 1940 Ackermann introduced a notion of transfinite recursion, and in 1950 Péter was able to show that her n-fold recursive functions were precisely the ω^n-transfinite recursive functions with respect to standard well orderings of order type ω^n.

The notion of ordinal recursion seemed like the ideal means of studying hierarchies of recursive functions. To go beyond Péter's \mathcal{A}^n into \mathcal{A}^α for $\alpha < \omega$ might require only an α-recursive ordinal schema. The recursive functions could then be classified according to the ordinal level at which they could first be defined. Furthermore since Hilbert's hierarchy also extended into the transfinite the possibility existed of comparing an ordinal recursion hierarchy and the functional hierarchy. An ideal situation might have been that \mathcal{R} is obtained at level ω_1 (constructive) in

¹See Lacklan[31] for a modern, thorough account of \mathcal{A}^n.
both hierarchies, i.e. $\mathcal{R}_0^\omega = \mathcal{R}_0$ and that the hierarchies \mathcal{R}_α and \mathcal{R}_α continue through \mathcal{F} for higher type recursion schemas and higher level functionals as envisioned by Hilbert. However, this plan ran into a "stumbling block" discovered by Routledge and Myhill.

The problem begins with the fact that to define the ordinal recursion hierarchy, the ordinals must be represented in the integers. Suppose then for the ordinal α, $<_\alpha$ is a well-ordering on $\mathbb{N} \times \mathbb{N}$ of order type α. Say that $f(\)$ is defined from $g(\)$ and $h(\)$ by unnested ordinal recursion of order type α iff

(a) $f(x,0) = g(x)$
(b) $f(x,n) = h(x,n,f(x,t(x,n)))$
(c) $t(x,n) <_\alpha n$.

What Routledge and Myhill discovered is that for every recursive function $g(\)$, there is a recursive well ordering of type ω, $<_{\omega, g}$ such that $g(\)$ can be defined by ω-recursion using $<_{\omega, g}$. (In fact $<_{\omega, g}$ can be elementary.) Thus all recursive functions turn out to be ordinal recursive of order type ω. The reason Péter's hierarchy escapes this calamity is that she uses only certain standard well orderings of types ω^ω. Therefore in order to erect a proper ordinal recursive hierarchy, the notion of a standard well ordering must be clarified in general. This remains an open problem which has attracted many researchers yet has
rewarded none of them significantly.\footnote{See Tait[56] for recent work on this problem.}

In an attempt to circumvent this stumbling block, Kleene in 1958 proposed a new way of connecting ordinals with recursive functions. Of the two basic methods for extending classes of functions, diagonalization and majorization, Kleene chose diagonalization. First he fixed a standard enumeration procedure for the class of functions to be extended based on the fact that the class of functions from which the hierarchy begins is effectively generated by the application of certain operations to a finite set of initial functions. Thus given the class C, its single argument functions are enumerated in a standard manner by $e(x,y)$. Then $e(\)$ is adjoined to C as a new initial function to form a class C'. As a specific example, Kleene took C to be the class \mathcal{R}^1.

The above method provides the mechanism for stepping from a class indexed by α to that indexed by $\alpha+1$. Now given classes indexed by $\alpha_0, \alpha_1, \alpha_2, \ldots$ in a fundamental sequence to α, i.e. $\alpha = \lim \alpha_n$, the enumerating function $e_{\alpha_n}(\)$ can be combined into a new enumerating function $e_\alpha(\)$.

Kleene pointed out that this combining of enumerators must be done with care lest the stumbling block materialize here. Control of the enumerations is given by the Church-Kleene system of constructive ordinals. Recalling that in
this system if the limit ordinal α is represented by the
integer $\bar{\alpha} = 3 \cdot 5^f$, for f the Gödel number of $f(\)$, then the
fundamental sequence for α is represented by the integers
$f(n)$ for $n = 0, 1, 2, \ldots$. The new initial function for $C_{\bar{\alpha}}$ is
given by

$$e_{\bar{\alpha}}(x, y) = e_f((x)_1)((x)_0, y)$$

where the $(x)_i$ are the usual "exponent of i-th prime func-
tions" (see A.20 here).

For a hierarchy beginning with the class C_1 it was
found necessary to restrict the ordinal notations so that
fundamental sequences, e.g. $f(\)$ above, were only primitive
recursive. It was shown by a student of Kleene's Paul Axt[1]
that this subrecursive hierarchy was proper and was inde-
pendent of ordinal notations for $\alpha < \omega^2$. He also showed that
C^n was contained in the Kleene subrecursive hierarchy below
the level ω^{n-1}. In later work, [2], Axt showed that the
Grzegorczyk hierarchy for $n > 3$ could be obtained by the Kleene
procedure starting with the class C_4.

Although Axt showed that the Kleene subrecursive hier-
archy was proper and unique for $\alpha < \omega^2$, he discovered non-
uniqueness at ω^2. Feferman[12], in 1961 completed this
negative result by showing that, alas, the hierarchy col-
lapsed at ω^2. That is for every recursive function $f(\)$
there is an ordinal notation $\bar{\omega}_f$ for ω^2 such that $f(\) \in C_{\bar{\omega}_f}$.\footnote{In 1965 R. Fabian[11] attempted to stretch the Kleene hier-
archy by using a different initial function $C_{\bar{\omega}_f}$ for the}$
Recently J. Robbin[44] building on work by W. W. Tait[56] has shown what would happen if the problem of standard notations should be solved. By limiting himself to certain ordinal notations which logicians believe to be "standard", he has compared the Kleene hierarchy, the ordinal recursion hierarchy, the Péter hierarchy and the extended Grzegorczyk hierarchy, which he constructed and which will be discussed in detail later. It turns out that

$$\mathcal{R}^n = \bigcup_{\alpha<\omega}^n C_\alpha = \bigcup_{\alpha<\omega}^n \mathcal{E}^\alpha = O(<\alpha) \omega^n$$

for C_α the Kleene hierarchy classes ($C_0 = \mathcal{R}^1$), \mathcal{E}^α the extended Grzegorczyk hierarchy classes and $O(<\alpha)$ the functions ordinal recursive with respect to standard well orderings $<\alpha$.

If our results are viewed in this context, then what we have done is produce a fifth hierarchy, the Extended Ritchie-Cleave hierarchy, E_α, which extends beyond the others up to e_0 and relates to them by $\mathcal{R}^n = E_{\omega^n}$. Control of the hierarchy is basically in terms of computing theoretic concepts.

Thus after 43 years, the ideas in Hilbert's On the Infinite seem to be trapped. The method of functionals which

arche further by beginning lower down, with \mathcal{E} the elementary functions, and by further restricting the ordinal notation using elementary fundamental sequences. But all that is known is that Feferman's proof will not collapse the revised hierarchy.
he proposed has not developed beyond Péter's work. The multiple recursions which supercede them are limited by their syntactic dependancy to a hierarchy of type ω. The transfer of the burden to transfinite recursions runs into the stumbling block of standard notations for recursive ordinals. The attempt by Kleene to skirt this problem led to another form of it, this time appearing in his system of constructive ordinals. What remains is a whole crop of short hierarchies all closely related, each of which can probably be extended up to any well-understood ordinal $\alpha^{<\omega_1}$ (constructive) by some tedious ad hoc method. Recent results by Moschovakis[36], Feferman and Spector[13] shed some light on this discouraging situation.

Suppose \mathcal{N} is a formalism for the partial recursive functions, \mathcal{R}', and $g(\)$ is an arithmetization of \mathcal{N}. Let A be the set of integers corresponding to total functions, \mathcal{R}, under $g(\)$. Suppose further that A is hyperarithmetic.\(^1\)

Then for $a \in \mathcal{O}$ letting $|a|$ denote ordinal represented by a, there is no classification of \mathcal{R} into subsets \mathcal{R}_a such that

(a) $\bigcup_{a \in \mathcal{O}} \mathcal{R}_a = \mathcal{R}$

(b) $\bigcup_{|a|<\beta} \mathcal{R}_a \subset \mathcal{R}$ if $\beta^{<\omega_1}$

(c) the predicate "$a \in \mathcal{O}$ and $x \in A_a$" is Π^1_1.

If \mathcal{O} is replaced by a path P through \mathcal{O}, then there is still no classification satisfying (a) - (c) with P for \mathcal{O}.

\(^1\)We know in fact that A is in Σ^0_3 but not in Π^0_3 by Shoenfield [31].
The hierarchies considered above all violate condition (b) (Kleene, ordinal recursion) or condition (a) (Péter, Extended Grzegorczyk and Extended Ritchie-Cleave). Furthermore these hierarchies will not violate condition (c) under any reasonable extensions. Thus it appears that a kind of incompleteness phenomenon arises for subrecursive hierarchies which pretend to constructivity. This situation would apparently also preclude a solution to the problem of standard well orderings which would apply to the above hierarchies.

In the face of this phenomenon, one can now expect the following possibilities for subrecursive hierarchies:

1. There is some ordinal $\beta<\omega_1$ which is a "natural" closure ordinal for \mathcal{R} i.e. such that the subrecursive hierarchies are proper and satisfy (a) - (c) above for $\alpha<\beta$.

2. For every $\alpha<\omega_1$ there is a proper subrecursive hierarchy up to α which does not reach \mathcal{R} but which may possess other interesting properties such as relating nicely to other subrecursive hierarchies up to α (as for $\beta<\omega$ above), or extending the hierarchies for $\beta<\alpha$ in a natural manner or relating to functions definable in certain formal theories.

3. There is some subrecursive hierarchy which is proper, satisfies (a) and (b), fails at (c) (from above) but fails in an interesting manner, e.g. perhaps preserving constructivity for certain "small" ordinals.
Since the compelling hope of finding a proper subrecursive hierarchy satisfying (a) - (c) is thwarted, questions about the relationship among hierarchies and about their naturalness or their relationship to formal theories (e.g. via \(Z \)-provable recursion for axiomatic theory \(Z \)) or their applicability (e.g. to classifying decision problems) or their interpretation in terms of a theory of computing or a theory of constructivity become more attractive.

Therefore we can propose that the work we do here is also in pursuit of this brand of questions. Moreover, we claim that from the prospect of studying and managing very complex computations, a task often required in pursuing these questions, our development and use of the RASP computing system is advantageous. We turn next to a detailed consideration of the RASP machine.
Chapter 2 Random Access Stored Program Machines

A particular brand of RASP machine (Random Access Stored Program) is used to obtain the hierarchy results. The RASP class of machines was developed by Elgot & Robinson[45]. Such machines offer several advantages. They can easily simulate other types of machines, such as Turing machines, or register machines. They are among the best available abstract models of "actual" digital computers. Their organization allows for easy expression of complex computations.

2.1 A RASP is an ordered sextuple \(<A, B, b_0, K, F_1(), F_2()>\) where

(a) \(A\) is a set called the address set
(b) \(B\) is a set called the set of words
(c) \(b_0 \in B\) and is called the empty word
(d) \(K \subseteq B^A = \{ f() \mid f(): A \rightarrow B \}\)

\(K() \in B^A\) is called a content function and \(K\) is called the set of memory configurations.

(e) \(F_1() : KxAxB \rightarrow B^A\), \(F_1\) is called the next content functional

(f) \(F_2() : KxAxB \rightarrow A\), \(F_2\) is called the next control functional

Let \(\Sigma = KxA\), the pairs \(<k(), a>\) are called the states of the RASP. The functional \(F(k(), x, y) = \langle F_1(), F_2()\rangle\) then maps states and content into states, i.e. \(F() : \Sigma x B \rightarrow \Sigma\). If \(\sigma = <k(), a>\) then \(k()\) is content at \(\sigma\) and \(a\) is control
location at \(a \).

The intuitive interpretation is that \(A \) is a set of addresses of memory locations (registers) in the machine; each register can hold a word, i.e. element of \(B \). (\(b_0 \) corresponds to a blank.) The function \(k() \) gives an assignment of words to locations, thus \(k(a) \) is the word stored in location \(a \). Some words can be regarded as instructions to the machine. The location of the word controlling the machine when it is in state \(\sigma = \langle k(), a \rangle \) is given by \(a \). The functional \(F_1(k(), x, y) \) takes the content function \(k() \) and alters it depending on what that content is, on what the control location is and depending on some word, usually the word in \(k(x) \), for \(x \) the control location. \(F_2() \) determines a next control location depending on the memory, a control location and a word. These functionals contain the heart of the machine. They correspond roughly to transition tables for a Turing machine and circuitry of a digital computer. These functionals give "operational meaning" to the words of \(B \).

2.2 We now list some of the more important properties of RASP machines. If the subset \(K_f \) of \(B^A \) has finite support i.e. \(k() \in K_f \) \(\leftrightarrow \) \(k(x) = b_0 \) a.e. (on all but a finite subset of \(A \)), then we say that the RASP is finitely supported.

A sequence of states, \(\sigma_i = \langle k_i(), a_i \rangle \epsilon \Sigma \), \(i = 0, 1, 2, \ldots \) is called a computation of the RASP \(\langle A, B, b_0, K, F_1, F_2 \rangle \) iff
\(\sigma_{i+1} = F(\sigma_i, k_1(a, i)) \) \(\forall i \). If \(E = \{e_1, \ldots, e_n\} \subseteq A \) and if

\[
\text{comp}(\sigma_0) = \sigma_0, \sigma_1, \sigma_2, \sigma_3, \ldots
\]

then define \(\text{comp}_E(\sigma_0) = \text{comp}(\sigma_0) \) if \(a_i \notin E \) and \(\text{comp}_E(\sigma_0) = \sigma_0, \ldots, \sigma_n \) if \(a_n \in E \).

Given a fixed \(b \in B \), \(F(k(), x, b) \) defines a mapping from \(\Sigma \) into \(\Sigma \). Putting \(H_b(k(), x) = F(k(), x, b) \) we call \(H_b(\) \) an atomic instruction of the RASP \(\langle A, B, b_0, K, F_1, F_2 \rangle \). Any map (functional) \(H: \Sigma \rightarrow \Sigma \) is called an instruction. A word \(b \in B \) will be called active iff \(\exists \sigma \in \Sigma \) such that \(H_b(\sigma) \neq \sigma \) otherwise the word is called passive.

An instruction \(H_b(\) \) will be called finitely determined iff

(a) \(\forall a \ \exists n \exists x_1, \ldots, x_n \) such that \(F_1(k(), a, b) = F_1(k'(), a, b) \) if \(k(x_i) = k'(x_i) \ i = 1, 2, 3, \ldots, n \).

(b) \(\forall a \ \exists p \exists x_1, \ldots, x_p \) if \(F_2(k(), a, b) = k''() \),

then \(k(y) = k''(y) \) if \(y \neq x_i \ i = 1, 2, 3, \ldots, p \).

Condition (a) is just the usual statement of finite determination for \(F(\) \) a functional with individuals as values; condition (b) covers the case of functions as values.

If \(H_b(\) \) is finitely determined for every \(b \in B \), then we say that the RASP is finitely determined.

2.3 An instruction schema for a RASP \(P = \langle A, B, b_0, K, F_1, F_2 \rangle \) is a set of mappings from \(A^q \times B^m \) into \(\Sigma^\Sigma \), the set of instructions or equivalently it is a map from \(\Sigma \times A^q \times B^m \) into \(\Sigma \). We designate an instruction schema by \(\rho(\sigma, x_1, \ldots, x_q, y_1, \ldots, y_m) \). Fixing the parameters \(x_1, y_1 \) produces a member of \(\Sigma^\Sigma \) which may or may not be an atomic instruction, \(H_b \).

To make the proper connection with atomic instructions we
define a designated instruction schema as a pair \(\langle \rho, \mu \rangle \)
where \(\rho(\cdot) \) is an instruction schema and \(\mu \) is a 1-1 map from
\(A^q \times B^m \) into \(B^{<q, m>} \subseteq B \) such that
\[
\rho((a_1, \ldots, a_q, b_1, \ldots, b_m), s) = H_{\mu(a_1, \ldots, a_q, b_1, \ldots, b_m)}(s).
\]

The mapping \(\mu \) is just a way of assigning computer words
to instruction schemata, that is a way of representing the
schema internally.

A RASP \(P \) will be said to be generated by the set of
designated instruction schemata \(R = \{ s_1 \} \) where \(s_1 = \langle \rho_1, \mu_1 \rangle \),
with parameters \(y_1, \ldots, y_{q_1}, z_1, \ldots, z_{m_1}, q_1 \geq 0, m_1 \geq 0 \), if
exactly the active words of \(P \) belong to the union of all
\(B_{s_1} \) where \(B_{s_1} \) is the range of \(\mu_1 \).

2.4 We next consider the important notion of a program
for a RASP. Intuitively a program is a finite sequence of
instruction words stored in memory in machine language.
The address of the instruction at which the program begins
is called the entrance to the program and the addresses to
which the terminal instructions send control are exits from
the program. We also include in the program certain con-
stants needed in instructions (e.g. \(x+1 \) requires a "l" or
transfer "a" to __ requires an a). Thus a fairly general
formal definition of a program \(\pi \) is that \(\pi = \langle p, a_0, e_0, \ldots, e_m \rangle \) where \(p \) maps a finite subset of \(A \), denoted \(D_\pi \), into
\(\Sigma^* xB \) such that

(a) \(a_0 \in D_\pi \)
(b) \(p(a_0) \in \Sigma^\Sigma \)

(c) \(i \neq j \implies e_i \neq e_j \)

(d) \(e_i \in A-D_\pi \) \(i = 0, 1, \ldots, m \).

The set \(D_\pi \) is called the domain of \(\pi \). \(a_0 \) is called the entrance to \(\pi \). \(e_i \) are called the exits of \(\pi \). If \(p(a) \in \Sigma^\Sigma \), then \(p(a) \) is an instruction of \(\pi \); and if \(p(a) \in B \), then \(p(a) \) is called a parameter of \(\pi \) (or constant of \(\pi \)). We say that \(k() \) holds \(\pi \) iff

(a) \(\forall a \ a \in p^{-1}(\Sigma^\Sigma), \ H_k(a)() = p(a) \) and

(b) \(\forall a \ a \in p^{-1}(B), \ k(a) = p(a) \).

If \(k() \) holds \(\pi = <p,a_0,e_0,\ldots,e_m> \), then \(\text{comp}_E(k(),a_0) = <k_1(),a_1> \) is called a comp of \(\pi \) where \(E = \{e_0,\ldots,e_m\} \). A computation terminates if \(a_1 \in E \) and does not terminate otherwise.

2.5 Let \(f() : B^n \rightarrow B^m \), we define the notion of a program \(\pi \) for a RASP, \(P \), computing \(f() \). First let \(x_1,\ldots,x_n \) and \(y_1,\ldots,y_m \) be addresses. A program \(\pi = <p,a_0,e> \) is said to compute \(f \) at \(x_i \). \(\pi \) is said to compute \(f \) at \(x_i \) iff

(a) \(x_i \notin D_\pi \)

(b) If \(k() \) holds \(\pi \) and \(k(x_i) = c_i \), then letting

\[\sigma_i = <k_1(),a_i> \quad i = 0, 1, 2, \ldots, \] and \(C = <c_0,\ldots,c_n>_B^n \),

(i) if \(f(C) = C' \) then \(\text{comp}_E(\sigma_0) \) terminates for some \(n \) with \(k_n(y_1) = c'_1, C' = <c'_1,\ldots,c'_n>_B^m \),

(ii) if \(f(C) \) is not defined, then \(\text{comp}_E(\sigma_0) \) does not terminate.

Notice that if both \(k_1() \) and \(k_2() \) hold \(\pi \) and agree on \(x_i \)
and \(\text{comp}_{e}(k_1(\),a) \) terminates but \(\text{comp}_{e}(k_2(\),a) \) does not, then \(\pi \) does not compute any function at \(x_1 \) and any value locations \(y_1 \).

2.6 By the range of influence of a program \(\pi = <p,a_0,e_0,\ldots,e_m>, \text{RI}(\pi) \), we mean a set of addresses, \(\text{RI}(\pi) \subseteq A \), such that \(d \in \text{RI}(\pi) \) iff \(\exists k(\) \) such that \(k(\) \) holds \(\pi \) and \(\text{comp}_E(k(\),a_0) \) terminates in \((k_n(\),a_n) \) with \(k_n(d) \neq k(d) \) where \(E = \{e_0,\ldots,e_m\} \). In other words, the range of influence of \(\pi \) is the set of registers which do not have the same content at the end of the computation as they did at the beginning, no matter what happened in between. By range of action of program \(\pi \) in core \(k(\) \), \(\text{RA}(\pi,k(\)) \), we mean that \(\text{RA}(\pi,k(\)) \subseteq A \), such that \(s \in \text{RA}(\pi,k(\)) \), iff \(\text{comp}_E(k(\),a_0) = \sigma_1,\ldots,\sigma_n \) and \(k(\) \) holds \(\pi \), and \(k_i(s) \neq k_j(s) \) for some \(i,j \leq n \).

2.7 To say that a RASP \(P \) can compute a function, \(f: B^n \rightarrow B^m \), means intuitively that there is a program \(\pi \) and addresses \(x_1, y_1 \) such that \(\pi \) computes \(f \) at \(x_1, y_1 \). However we also want to express the notion that this program can be loaded anywhere in \(P \) and can be loaded together with other programs, that is by running one program \(\pi \), some memory of the machine is not altered. To say this precisely we pick any finite subset \(A_1 \) of \(A \) and ask that \(D_\pi \) be outside of \(A_1 \) (thus \(\pi \) can be loaded anywhere) and we pick a subset \(A_0 \subseteq A_1 \) and ask that \(\text{RI}(\pi) \) is disjoint from \(A_0 \), thus execution of \(\pi \) does not alter \(A_0 \). The formal definition follows.
2.8 A RASP P can compute a function $f : B^n \rightarrow B^m$ iff for every sequence $x_1, \ldots, x_n, y_1, \ldots, y_m$, a_0 of distinct elements of A and for all finite subsets A_0, A_1 of A such that $a_0 \notin A_1$ and $A_0 \subseteq A_1$, there exists a program $\pi = <p, a_0, e>$ satisfying:

(a) π computes f at $x_1, \ldots, x_n, y_1, \ldots, y_m$
(b) D_π is disjoint from $A_1 \cup \{x_1, \ldots, x_n, y_1, \ldots, y_m\}$
(c) if A_0 is disjoint from y_1, \ldots, y_m, then $RI(\pi)$ is disjoint from A_1.

2.9 Given an m-valued relation, $R(x_1, \ldots, x_n)$, defined on a subset of B (a 2-valued relation is called a predicate), a program $\pi = <p, a_0, e_1, \ldots, e_m>$ is said to compute $R(\)$ at data locations d_1, \ldots, d_n provided

(a) D_π is disjoint from d_1, \ldots, d_n
(b) If $k(\)$ holds π, $k(d_i) = x_i$ and $\sigma_i = <k_i(\), a_i>$ $i = 0, 1, \ldots$, then

(i) if $R(x_1, \ldots, x_n)$ is defined and has value

1 $\leq r \leq m$, then $\text{comp}_E(q_r)$ for $E = \{e_1, \ldots, e_m\}$ terminates in e_r.

(ii) if $R(x_1, \ldots, x_n)$ is undefined, then $\text{comp}_E(q_r)$ does not terminate.

A RASP P computes an m-valued relation $R(x_1, \ldots, x_t)$ iff there is a sequence x_1, \ldots, x_n, a_0, e_1, \ldots, e_m of distinct elements of A and for all finite subsets A_1 of A such that $a_0 \notin A_1$ there exists a program $\pi = <p, a_0, e_1, \ldots, e_m>$ satisfying:
(a) \(\pi \) computes \(R() \) at \(d_1, \ldots, d_n \)
(b) \(D_\pi \cap (A_1 \cup \{d_1, \ldots, d_n\}) = \phi \)
(c) \(RI(\pi) \cap A_1 = \phi \)

2.10 A program \(\pi \) is called fixed if whenever \(<\sigma_1, \sigma_2, \ldots, \sigma_n> \) is a terminating computation of \(\pi \), then \(k_1(), k_2(), \ldots, k_n() \) all agree on \(D_\pi \) where \(\sigma_i = <k_i(), a_i> \). A program \(\pi \) is called self-restoring iff whenever \(<\sigma_1, \sigma_2, \ldots, \sigma_n> \) is a terminating computation of \(\pi \), then \(k_1() \) and \(k_n() \) agree on \(D_\pi \). Equivalently \(\pi \) is self-restoring iff \(D_\pi \cap RI(\pi) = \phi \).

2.11 It is a fairly easy exercise to show that the following facts hold (see Elgot & Robinson[45]). Let \(P \) be a RASP

(a) If \(P \) computes \(f_1 \) and \(f_2 \) then \(P \) computes the composition of \(f_1 \) and \(f_2 \).
(b) If \(P \) computes the predicates \(R_1 \) and \(R_2 \) then it computes the predicates \(R_1 \land R_2, R_1 \lor R_2 \) and \(\neg R_1 \).
(c) Let \(ch_R() \) be the characteristic function of \(R \), then

(i) If \(P \) computes the identity function \(i: B \rightarrow B \), and \(P \) computes predicate \(R \), then \(P \) computes \(ch_R \).
(ii) If \(P \) computes \(eq() \) predicate and the function \(ch_R() \), then \(P \) computes \(R \).

2.13 We are now interested in defining more specific RASP's to be used as basic machines in the work below. These machines will be able to compute all recursive functions and will employ many features of real digital computers. For
\[M = \langle A, B, b_0, K, F_1, F_2 \rangle \] we will take

(a) \(A = B = N = 0, 1, 2, \ldots \)
(b) \(b_0 = 0 \)
(c) \(K = (N^N)_f \), the set of functions \(N \rightarrow N \) of finite support.

The functionals \(F_1, F_2 \) will be generated by certain designated instruction schemata. First consider the following informal instructions.

2.13 Let \(a \) be the control location at the time the instruction is reached and let \(a' \) be the next control location.

<table>
<thead>
<tr>
<th>Symbols for mapping (N^3 \rightarrow)</th>
<th>Informal description of state transition mappings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ADD((x,y,z)); (a' = a+1)</td>
<td>add (k(x)) to (k(y)) and store result in (z), go to (a+1) for next instruction</td>
</tr>
<tr>
<td>(2) SUB((x,y,z)); (a' = a+1)</td>
<td>subtract (k(y)) from (k(x)) and store the result in (z), go to (a+1) for next instruction</td>
</tr>
<tr>
<td>(3) MULT((x,y,z)); (a' = a+1)</td>
<td>multiply (k(x)) by (k(y)) and store result in (z), go to (a+1) for next instruction</td>
</tr>
<tr>
<td>(4) T((x,y)); (a' = a+1)</td>
<td>transfer (k(x)) to (y), go to (a+1) for next instruction</td>
</tr>
<tr>
<td>(5) C((x,y,z)); (a' = a+1)</td>
<td>if (k(x) = k(y)), then go to (z) for next instruction, otherwise go to (a+1)</td>
</tr>
</tbody>
</table>

We will abbreviate this set of instructions by \(\{+,-,x,T,C\} \) or by \(\Sigma_0 \). They each consist of two components, change of content component and change of control component. The change of content components of ADD, SUB, and MULT are
associated with certain functions $\mathbb{N}^2 \rightarrow \mathbb{N}$ in a natural manner. Conversely given any function $f: \mathbb{N}^n \rightarrow \mathbb{N}$, an instruction $F(x_1, \ldots, x_n, y)$ can be defined which puts $f(k(x_1), \ldots, k(x_n))$ into y and changes control according to some function $c(\)$ applied to a. Such an instruction will be called an arithmetic instruction, it will be denoted $\rho_f(x_1, \ldots, x_n, y)$.

2.14 We will now provide a designation, μ, for the instructions above. We indicate how this could also be done for any set of recursive arithmetic instructions. Providing a designation can be thought of as defining a machine language (simultaneously with construction of the machine), the language is the set of words in the range of μ, i.e. the instruction names.

First consider the set $\Sigma_0 = \{+,-,x,T,C\}$. Define operation codes for the instructions by letting $\overline{\text{ADD}} = 2$, $\overline{\text{SUB}} = 3$, $\overline{\text{MULT}} = 5$, $\overline{T} = 7$, $\overline{C} = 11$. Then define $\#(X, x, y, z) = 2^X \cdot 3^x \cdot 5^y \cdot 7^z$ for $X = \text{ADD}, \text{SUB}, \text{MULT}, T, C$. The range of $\#$ is precisely the set of active words. The designated instruction schemata are: $\langle X(x,y,z) \rangle$, $\langle \overline{X}, x, y, z \rangle$ for $X = \text{ADD}, \text{SUB}, \text{MULT}, T, C$.

We now define $M_1(\Sigma_0)$ as the RASP generated by the above five designated instruction schemata. We use $M_0(\Sigma_0)$ to denote $M_1(\Sigma_0)$ restricted so that all programs are fixed.

Given a set S of recursive functions, let $\Sigma_S =$
\{S \cup \{T(x, y, z), C(x, y, z)\}\}, then a corresponding set of designated instructions can be defined and used to generate a RASP $M_1(\Sigma_S)$ as follows. Let \mathcal{N} be an effective notation system for S with $\alpha: \mathcal{N} \to S$, e.g., using a Kleene type equation calculus, the names $n \in \mathcal{N}$ will be equations. Let $\beta: \mathcal{N} \to N$ be an effective arithmetization of \mathcal{N}. Given $f(\) \in S$ and given a change of control function $c(\)$, define the instruction schema for $f(\)$ as above. Select a unique branch of α inverse and denote α^{-1}, then $<\rho_f, \beta\alpha^{-1}(f)>$ will be a designated instruction schema for $f(\)$. $M_1(\Sigma_S)$ is the RASP generated by $<\rho_f, \beta\alpha^{-1}(f)>$ for $f(\) \in S$.

2.15 For a RASP of type $M_1(\Sigma_S)$ there is a natural way to present programs. Recall that a program π is an n-tuple whose first member, p, is a mapping of addresses to instructions and data. The map p can be presented as a table. Consider the case $M_1(\Sigma_0)$; a sample program is $\pi = <p(\), a, e>$ represented by

<table>
<thead>
<tr>
<th>argument (location)</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>C(0, 0, m); $a' = a+1$</td>
</tr>
<tr>
<td>m</td>
<td>T(d, v); $a' = a+1$</td>
</tr>
<tr>
<td>m+1</td>
<td>C(0, 0e); $a' = a+1$</td>
</tr>
<tr>
<td>e</td>
<td>--------------</td>
</tr>
</tbody>
</table>

Various informal versions of this will be used such as

<table>
<thead>
<tr>
<th>location</th>
<th>statement</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>C(0, 0, m)</td>
<td>if $k(0) = k(0)$, then go to m for next instruction</td>
</tr>
<tr>
<td>m</td>
<td>T(d, v)</td>
<td>otherwise go to $a+1$</td>
</tr>
</tbody>
</table>

transfer $k(d)$ to v, go to $m+1$ for instruction
We will also use some suggestive abbreviations such as

\[Y \leftarrow X \text{ for } T(x,y) \]

\[X = Y \implies Z \text{ for } C(x,y,z) \]

2.16 Given a function \(f(\cdot) : \mathbb{N}^p \rightarrow \mathbb{N} \) we denote by \(\pi_f \)
some program for computing \(f(\cdot) \) on either \(M_0(\Sigma_0) \) or \(M_1(\Sigma_S) \)
depending on the context (which will always be clear).

2.17 As we build up various programs we may want to use
them as "subprograms" in the construction of new programs.
Such a use of programs can be made very explicit by the
introduction of the instruction prefixes \(\text{SUB}, \text{RTN} \).

A program \(\pi_g \) is said to be used as an explicit subprogram
of \(\pi_f \) iff \(D_{\pi_g} \subseteq D_{\pi_f} \), every transfer of control from \(D_{\pi_g} \)
into \(D_{\pi_f} \) is to an instruction whose prefix is \(\text{SUB} \) and
every return from \(\pi_g \) to \(\pi_f \) is a return to an instruction
whose prefix is \(\text{RTN} \). We can thus think intuitively that the
subprogram \(\pi_g \) is bracketed in \(\pi_f \) by \(\text{SUB} \) and \(\text{RTN} \). Also it is
clear that given any program \(\pi_g \) it can be used in the role
of an explicit subprogram. Since we shall only refer to
subprograms when they are explicit, we drop the adjective.
It is also clear that prefixed instructions can be given new
operation codes and new designations in accordance with 2.14.

\[\pi_g = \langle p_g, a_g, E_g \rangle \] is an (explicit) subprogram of \(\pi_f = \langle p_f, a_f, E_f \rangle \) iff
(a) \(D_\pi \subseteq D_{\pi_f} \) and \(E_\pi \subseteq D_{\pi_f} \cup E_f \) and if \(e_i \in D_{\pi_f} \cap E_f \),
then \(k(e_i) = \text{RTNI} \) for \(I \) an instruction of \(\pi_f \).

(b) if \(p(a) \in D_{\pi_f} - D_{\pi_g} \) and control can transfer into
\(b \in D_{\pi_g} \) in \(D_{\pi_g} \) then that next control location \(b \) must
be \(a \in D_{\pi_g} \) and \(k(a) = \text{SUBI} \) for \(I \) an instruction of \(\pi_g \).

Given any program \(\pi_g = <p, a, E> \) it is clear how to prepare
it to be a subprogram of \(\pi_f \). First replace the instruction
\(k(a) \) by the instruction \(\text{SUBB} k(a) \) and then prefix all in-
stuctions of \(\pi_f \) occurring in \(E \) by \(\text{RTN} \).

2.18 A program \(\pi_f \) can generate its own subprograms by
setting up the appropriate code in memory during execution.

We say that program \(\pi_f \) generates a subprogram \(\pi_g \) at input \(X \)
iff given \(\sigma_0(X), \sigma_1(X), \ldots, \sigma_n(X), \ldots \) a computation of \(\pi_f \)
at \(X \) \(\exists k_n(\) \) such that \(k_n(\) \) holds \(\pi_g \) but \(k_0(\) \) does not, and
\(\pi_g \) is a subprogram of \(\pi_f \).

2.19 Before closing this account of RASP machines let us
point out some facts which help in lending perspective to
the hierarchy results. First notice that a RASP serves as a
model of a very wide range of computational devices. Be-
sides being a good abstract model for the behavior of a con-
ventional digital computer, a RASP can model computational
processes described by "problem oriented languages" or com-
putational processes carried out by hand. A RASP can also
be used to represent computations on classical Turing
machines, multi-tape Turing machines and various general-
izations of Turing machines (such as Cook's Bounded Activity Machine). Furthermore, there is a precise sense in which a RASP such as $M_1(\Sigma_0)$ can simulate machines similar to it such as the URM of Shepherdson and Sturgis. Moreover if the elements of A are taken to be ordinals, then various computation processes on the ordinals can be represented on a suitable RASP.

One of the primary purposes for which Elgot & Robinson introduced the RASP was to study the relationship between machine oriented languages (MOL) and problem oriented languages (POL). Since POL's are designed for the convenience of the human user whereas MOL's are severely constrained by machine requirements, one might regard POL as abbreviating "people oriented language". In their study Elgot & Robinson pose the fundamental problem, called by them the compiler problem, in terms of extending the machine language of a RASP P by activating certain passive words. They seek an algorithm which will operate on any program in an extension of the machine language for P and produce an equivalent program in machine language itself. We will see below that this notion of language (or machine) extension plays a significant role in complexity theory as well. Perhaps theoretical insights gained in the study of computer based complexity theory will be valuable in studies of programming languages.
Chapter 3 The Grzegorczyk, Ritchie and Cleave Hierarchies

In this chapter we present a proof-free account of the Grzegorczyk, Ritchie and Cleave subrecursive hierarchies. The chapter is intended to help motivate work in the rest of this paper. Before getting into these three subrecursive hierarchies, we define some characteristics of RASP computations and programs which are important for a complexity theory. These definitions will fix the relationship between the three subrecursive hierarchies and the RASP even before we get down to details.

For every partial recursive function \(\phi \colon \mathbb{N} \rightarrow \mathbb{N} \), there is a program \(\pi_\phi \) such that \(\pi_\phi \) computes \(\phi \) on \(M_1(\Sigma_0) \). This fact is proved in Elgot & Robinson for their machine \(P_0 \) which is easily seen to be a submachine of \(M_1(\Sigma_0) \) in the sense that all programs of \(P_0 \) are programs of \(M_1(\Sigma_0) \). The converse, that every program \(\pi \) on \(M_1(\Sigma_0) \) computes a partial recursive function, will be established in this paper (Appendix C).

We are interested only in total recursive functions. For every \(f(____) \in \mathcal{R} \) there are infinitely many programs, \(\pi_{f,1}, \pi_{f,2}, \pi_{f,3}, \ldots \) which compute \(f(____) \) on \(M_1(\Sigma_0) \). Certain properties of these programs are basic to complexity theory. Consider the following properties.

3.1 Computing parameters

(a) \(\sigma_f(X) = \text{number of atomic steps in computation} \)
of π_f with input $X \in \mathbb{N}^n$, i.e. if $\sigma_0(X), \sigma_1(X), \ldots, \sigma_n(X)$ is a computation of π_f at X then $\sigma_\pi_f(X) = n+1$.

(b) $\delta_\pi_f(X)$ = number of times the instruction $C()$ is executed in computation of π_f with input $X \in \mathbb{N}^n$.

(c) $\tau_\pi_f(X)$ = number of registers changed in computation of π_f with input $X \in \mathbb{N}^n$.

We say that $\sigma()$ measures **computing time**, that $\delta()$ measures **number of decisions** and that $\tau()$ measures **working space**. In general, functions which measure properties of a computation of π are called **measures on computation** or **computing parameters** of π. An abstract definition of these measures is given in Blum[3]. According to that definition $\sigma(), \delta()$ and $\tau()$ are **measures on computation**.

We write $\alpha f() < b()$ for any computing parameter $\alpha()$ iff there exists a program π_f such that $\alpha_\pi_f(X) < b(X)$ $X \in \mathbb{N}^n$. In this case $\alpha()$ is also called a computing parameter of $f()$.

There are other properties of programs π_f for $f()$ which are relevant to complexity theory and which are of an entirely different character than computing parameters. Informally these are

3.2 Algorithmic parameters

(a) $\ell(\pi_f)$ = number of primitive symbols in an encoding of π_f.

(b) $i(\pi_f)$ = number of $C()$ instructions in π_f.
(c) \(d(\pi_f) \) = depth of "nesting" of \(C(\) \) instructions in \(\pi_f \).

To define and develop properties of algorithmic parameters requires a formalized theory of programs. To move in this direction we have to describe our machine in terms of concrete objects, integers and finite sets of integers, instead of abstract objects, function spaces and functionals. This will be done in a later section. The classical development of Turing machines proceeds in terms of concrete objects and affords examples of algorithmic properties. In particular the state-symbol product is an example of an algorithmic property of machines (see Shannon[]). A basic result in this area is the existence of a universal Turing machine. This fact can be interpreted to mean that there is an upper bound to certain measures of algorithmic complexity, such as the number of \(C(\) \) instructions in a program.

Although there are some specific results on algorithmic complexity, there is yet no general theory for algorithmic complexity of recursive functions. For the special case of finite automata there is a new and developing theory of algorithmic complexity. This theory may suggest generalizations applicable to a wide class of recursive functions. We will consider this problem in more detail in Part II. Now we turn our attention to computational complexity and
present an informal account of the Grzegorczyk, Ritchie and Cleave subrecursive hierarchies.1

Grzegorczyk in [15] presented a subrecursive hierarchy, \(E^a \), for which \(\bigcup_{a=0}^{\infty} E^a = \mathcal{R}^1 \) = primitive recursive functions. His hierarchy classes were developed in terms of elementary operations applied to a sequence \(\lambda y g_n(x,y) \) of functions.

3.3 The elementary operations are given below.

(1) Operations of substitution

(a) If \(h(x_1, \ldots, x_{k-1}, y_1, \ldots, y_m, x_{k+1}, \ldots, x_n) = f(x_1, \ldots, x_{k-1}, g(y_1, \ldots, y_m, x_{k+1}, \ldots, x_n) \), then \(h(\) \) is said to be obtained from \(f(\) \) and \(g(\) \) by \textit{substitution} of \(g(\) \) in \(f(\) \).

(b) If \(h(x_1, \ldots, x_j, y, x_k, \ldots, x_n) = f(x_1, \ldots, x_j, y, y, \ldots, y, x_k, \ldots, x_n) \), then \(h(\) \) is said to be obtained from \(f(\) \) by \textit{identification of variables}.

(c) If \(h(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n) = f(x_1, \ldots, x_{k-1}, c, x_{k+1}, \ldots, x_n) \), then \(h(\) \) is said to be obtained from \(f(\) \) by \textit{substitution of a constant}.

Denote the operations of substitution by \(O_5 \).

(2) Operation of limited recursion.

If \(h(x, 0) = g(x) \), \(h(x, y+1) = f(x, y, h(x, y)) \) and \(h(x, y) \leq j(x, y) \), then \(h(x, y) \) is said to be defined from \(g(\) \), \(f(\) \) and \(j(\) \) by \textit{limited recursion}.

Denote the operations of limited recursion by \(\lim_{\leq j(\)} \).

1For recent literature on the topic of algorithmic complexity see Chaitin[5], Engler[10], Krohn & Rhodes[30], Hartmanis & Stearns[19], Ritchie & Meyer[34].
The functions $g_n(\)$ were defined by the equations

\[
\begin{align*}
g_0(x, y) &= y + 1 \\
g_1(x, y) &= x + y \\
g_2(x, y) &= (x + 1)(y + 1) \\
&\vdots \\
g_{n+1}(0, y) &= g_n(y + 1, y + 1) \\
g_{n+1}(x + 1, y) &= g_{n+1}(x, g_{n+1}(x, y))
\end{align*}
\]

where $g_0(\)$ and $g_1(\)$ are special cases.

The class \mathcal{E}^n was defined to be the least class containing $x + 1$, $U_1(x, y) = x$, $U_2(x, y) = y$, $g_n(\)$ as initial functions and closed under the operations of substitution and limited recursion. Grzegorczyk then showed that $\bigcup_{n=0}^{\infty} \mathcal{E}^n = \mathcal{A}^1$ and $\mathcal{E}^3 = \mathcal{E}$, the class of elementary functions of Kalmar-Csillag.

The class \mathcal{E}^0 of this hierarchy has the property that it is a basis for the class of recursively enumerable sets, that is if S is an r.e. set enumerated by the recursive function $f(\)$, ($S = \{ f(x) \mid x \in \mathbb{N} \}$), then there is a recursive function $g(\) \in \mathcal{E}^0$ such that $g(\)$ enumerates S.

The property of being a basis for the r.e. sets is an important property for a class of functions to possess. It is a measure of the richness of the class (see Smullyan[54], Kreider & Ritchie[27] for further information).

The class \mathcal{E}^3 of Kalmar-Csillag elementary functions (denoted often by K, here by \mathcal{E}) is quite noteworthy since
it is so basic to the theory of subrecursive structures. In his paper [15] Grzegorczyk offered several alternative definitions of \mathcal{E}. They are worth listing. First define

(3) Limited summation

If $h(x, y) = \Sigma_{i \leq y} f(x, i)$, then $h(\)$ is said to be defined from $f(\)$ by limited summation.

Denote the operation by $\Sigma_{\leq y}$.

(4) Limited multiplication

If $h(x, y) = \Pi_{i \leq y} f(x, i)$, then $h(\)$ is said to be defined from $f(\)$ by limited multiplication.

Denote the operation by $\Pi_{\leq y}$.

(5) Minimum operations

(a) Limited minimum. If

$$h(x, y) = \begin{cases} \mu z \leq y \text{ for which } f(x, z) = 0 \text{ if such a } z \text{ exists} \\ 0 \text{ otherwise,} \end{cases}$$

then $h(\)$ is said to be defined from $f(\)$ by the operation of limited minimum.

Denote this operation by $\text{min}_{\leq y}$.

(b) Minimum value. If $g(x, y) = \min_{x \leq y} f(x, y)$, then $h(\)$ is said to be defined from $f(\)$ by the operation of limited minimum value.

Denote this operation by $\text{Min}_{\leq y}$.

(6) Maximum operations

(a) Limited maximum. If
\[h(X, y) = \begin{cases}
\text{largest } z \leq y \text{ such that } f(X, y) = 0 \\
0 \text{ if no such } z \text{ exists}
\end{cases} \]

then \(h() \) is said to be defined by \textit{limited maximum} from \(f() \).
Denote this operation by \(\text{max}_{i \leq Y} \)

(b) Maximum value. If \(h(X, y) = \max_{i \leq Y} f(X, i) \) ("max"
here is applied to sets) then \(h() \) is said to be de-
defined by \textit{limited maximum value}.
Denote this by \(\text{Max}_{i \leq Y} \)

He then proves that the following definitions of \(E \) are
equivalent. Let \([f_1(), \ldots, f_n(); o_1, \ldots, o_p]\) denote the
least class containing \(f_i() \ i = 1, \ldots, n \) as initial func-
tions and closed under the operations \(o_i \ i = 1, \ldots, p \).

Definitions of \(E \):

(a) \([x+1, x+y, x \equiv y; o_s, \Sigma, \prod] \leq Y \leq Y\]

(b) \([x+1, x \equiv y, x^Y; o_s, \min] \leq Y\]

(c) \([x+1, x^Y; o_s, \lim (\text{limited recursion})] \leq Y\]

(d) \([x+1, x \equiv y, x \cdot y, x^Y; o_s, \Sigma] \leq Y\]

(e) \([x+1, x \equiv y, x \cdot y, x^Y; o_s, \prod] \leq Y\]

(f) \([x+1, x \equiv y, x \cdot y, x^Y; o_s, \max, \text{Max}] \leq Y \leq Y\]

(g) \([x+1, x \equiv y, x \cdot y, x^Y; o_s, \text{Min}] \leq Y\]
Kleene in IM p. 285 and Péter in [39] defined \mathcal{E} in a way equivalent to

$$(h) \ [x+1, x+y, x \cdot y, [x/y], 0_s, \Sigma_y, \Pi_y]$$

which is essentially the way Kalmar originally defined the class.

In the familiar way a class of predicates can be associated with \mathcal{E}. A predicate $P(X) \in \mathbb{N}^n$ is said to be elementary iff $\exists f() \in \mathcal{E}$ such that $P(X) \iff f(X) = 0 \ \forall X \in \mathbb{N}^n$. Grzegorczyk and Kleene show that the class of relations of \mathcal{E} is closed under

(i) operations of the propositional calculus ($\&$, \lor, $-$)

(ii) limited quantification ($\forall x \leq y$, $\exists x \leq y$).

The scope of the elementary functions and predicates becomes clear from the fact that all the examples of primitive recursive functions #1-21 of Kleene's IM (pp. 222-230) and all predicates used in arithmetizing his function calculus are elementary. Likewise in Davis [9] (pp. 58-62) all the functions and predicates used to arithmetize the theory of Turing machines are elementary. Thus the function $U()$ and predicates $T_n()$ of each book are elementary.

The intuitive conclusion is that almost all functions of practical use in logic are elementary. There are numerous other ways of lending intuitive significance to \mathcal{E}. Since \mathcal{E} is closed under the usual operations of arithmetic, it is customary to think of \mathcal{E} as representing the class of
functions which arise naturally in elementary number theory. However, to obtain functions beyond \mathcal{E} it is necessary only to allow iteration or primitive recursion as a new operation. In fact Péter shows (p. 84) that

$$[x=0, x+1, x^2, y, x, y, \text{sq}(x), \overline{\text{sq}}(x), [\sqrt{x}]; 0, \text{IT}_1] = \mathcal{A}^1$$

where IT_1 is the operation of iteration of unary functions.\(^1\)

e.g.

(7) Iteration

If $h(0) = 0, h(x+1) = f(f(x))$, then $h()$ is said to be defined by iteration\(_1\) from $f()$.

The Grzegorczyk hierarchy itself provides another example of how to move from \mathcal{E} to \mathcal{A}^1. We now return to continue a discussion of this hierarchy as preparation for the Ritchie and Cleave hierarchies.

In subsequent accounts of the Grzegorczyk hierarchy (e.g. Ritchie) the operations of substitution have been replaced by

(8) Composition

If $h(x) = f(g_1(x), \ldots, g_p(x)) \in \mathbb{N}^n$, then $h()$ is said to be obtained from $f()$ and $g_i()$ $i = 1, \ldots, p$ by composition.

(9) Explicit transformation

If $h(x_1, \ldots, x_n) = f(\alpha_1, \ldots, \alpha_k) \leq n$ where for each α_i

\[i = 1, \ldots, k \quad \alpha_i = x_j \quad j = 1, \ldots, n \quad \text{or} \quad \alpha_i = \text{a constant}, \]

\(^1\text{sq}(0) = 0; \text{sq}(n+1) = 1 \text{ and } \overline{\text{sq}}(0) = 1, \overline{\text{sq}}(n+1) = 0.\]
then $h(\)$ is said to be obtained from $f(\)$ by **explicit transformation**.\(^1\)

Thus \mathcal{E}^n can be defined as the least class containing the aforementioned initial functions and closed under composition, explicit transformation and limited recursion.

In general for $n \geq 3$, \mathcal{E}^n is the set of all functions **elementary in** $g_n(\)$ where "elementary in" is defined as follows.

A function $h(\)$ is said to be **elementary in** the functions $f_1(\), \ldots, f_n(\)$ iff $h(\)$ can be defined by a finite number of applications of composition, explicit transformation and limited recursion beginning with functions from

(a) $f_1(\), \ldots, f_n(\)$

(b) $x+1$

(c) $U^m_1(x_1, \ldots, x_m) = x_i \text{ for } 1 \leq i \leq m$.\(^2\)

If $h(\)$ is elementary in $f(\)$, we write $h(\) \leq_e f(\)$.

By the **elementary degree** containing $f(\)$ we mean $\{h(\) | h(\) \leq_e f(\) \text{ and } f(\) \leq_e h(\)\}$. Denoting the elementary degree of $f(\)$ by $\{f(\)\}_e$ and denoting the class of all functions elementary in $f(\)$ by $\mathcal{E}(f(\))$ we can then state $\mathcal{E}^n = \mathcal{E}(g_n(\))$ for $n \geq 3$ and if $f(\) \in \mathcal{E}^n$, then $\{f(\)\}_e \subseteq \mathcal{E}^n$ for $n \geq 3$.

Grzegorczyk's functions $g_n(\)$ can be clearly understood.

\(^1\)This definition is due to Smullyan[54] p. 21.

\(^2\)See Kleene IM p. 286 for an equivalent definition.
in terms of rate of growth and relative "size" in the structure \(<\mathcal{R}, \leq>\) where \(\leq\) is a partial order relation defined as
\[
\mathcal{f}(\) \leq \mathcal{g}(\) \iff \mathcal{f}(X) \leq \mathcal{g}(X) \text{ a.e. } X \in \mathbb{N}^n
\]
where a.e. (almost everywhere) means for all but finitely many \(X \in \mathbb{N}^n\).

Grzegorczyk shows that his \(\mathcal{g}_n(\)\) satisfy:

(1) \(\mathcal{g}_n(x, y) > y \ \forall n > 1 \ \forall x\)

(2) \(\mathcal{g}_{n+1}(x+y, y) > \mathcal{g}_{n+1}(x, y) \ \forall n \ \forall x \ \forall y\)

(3) \(\mathcal{g}_{n+1}(x, y+1) > \mathcal{g}_{n+1}(x, y) \ \forall n \ \forall x \ \forall y\)

(4) \(0 < i \leq n \implies \mathcal{g}_i(x, y) < \mathcal{g}_{n+1}(x, y) \ \forall x \ \forall y\)

So the \(\mathcal{g}_n(\)\) form a strictly ascending sequence of strictly increasing functions in \(<\mathcal{R}, \leq>\). We call the \(\mathcal{g}_n(\)\) backbone functions for the hierarchy, \(\mathcal{E}^n\). This terminology suggests not only the picture in terms of \(<\mathcal{R}, \leq>\) but also the fundamental role that these functions play in the construction of the hierarchy. Most of the essential properties of \(\mathcal{E}^n\) are proved using rate of growth arguments on the \(\mathcal{g}_n(\)\).

The functions \(\mathcal{g}_n(\)\) are closely related to the celebrated Ackermann function (see Kleene[24] p. 271 or Péter[39] p. 106) which Ackermann produced as one of the first examples of an effectively calculable function which was not primitive recursive. Ritchie in [43] has shown that functions \(\lambda xy \mathcal{g}_n(x, y)\) which are essentially like Ackermann's suffice to obtain the Grzegorczyk hierarchy.
For the purposes of a computational complexity theory the Grzegorczyk hierarchy suffers from the defect of arbitrariness. There seems to be no good intuitive reason for selecting the backbone $g_n()$. Perhaps because of this the Grzegorczyk hierarchy (which we denote hereafter as GH) did not serve as a catalyst to the now burgeoning theory of computational complexity. A hierarchy which did help spark the activity in this area was the Ritchie hierarchy developed in [42].

Ritchie addressed himself to one of the fundamental problems in the foundations of recursion theory, namely to describe a natural subclass of recursive functions which was more constructive than \mathcal{R} itself. As we mentioned in the introduction, the difficulty with \mathcal{R} is that although every element in \mathcal{R} is a constructive object, the class \mathcal{R} itself is not. Thus while we may prove that given a program $\pi_f()$, for every input X there exists a number y such that π_f computes $f(X)$ in less than y steps, the proof may not tell us how actually to find such a y. If the method of proof is open to doubt, say by an intuitionist or a finitist, then there is doubt about whether $f()$ is in \mathcal{R}.\(^1\) Without having a bound on y there is no way directly to test whether $f(X)$ is indeed defined at X. To some logicians with constructivist tendencies this situation is troublesome. They

\(^1\)See Heyting[23] and Kreisel[29] for a more detailed discussion.
want a "safer" class of recursive functions. It is inter-
esting that such a philosophical demand has now become
associated with a more practical demand for a narrower class
of recursive functions. In the expository articles of
Cobham[7], McCarthy[32], and others, it is shown that a
good theory of computation is required to support and advance
the exploding field of computer science. Basic to such a
theory will be a class or classes of recursive functions
which correspond in various ways to the vaguely conceived
class of "practically" computable functions. Thus from this
computer science direction came a group of researchers led
by Hartmanis and Stearns to join with the group of logicians
who had been working on such problems as ordinal recursion,
provably recursive functions, independence results in
recursive arithmetic, transfinite progression of theories,
the theory of constructive ordinals and the theory of sub-
recursive hierarchies. Ritchie's work is ideal middle
ground. Its technical features relate directly to computing
theory via automata and Turing machines whereas its content-
ties in directly with the philosophical problem of construc-
tivity.

What Ritchie did is this. He took as his basic class,
F, those functions computable by a finite automaton. For
every \(f(\) \in F \), \(f(x) \) can be computed with time bound \(y = \max x + c \). From the viewpoint of computing theory the
choice of \(F \) is also judicious because the finite automaton is a concept basic to study of computer components.

To generate his hierarchy Ritchie uses a Turing machine with a single tape infinite in one direction. He defines \(a(M)_f(X) \) as the amount of tape used in the computation of \(f(\) \) at \(X \) on a Turing machine \(M \). The \(a(M)_f(X) \) can be thought of as the maximum length of the tapes appearing in the instantaneous descriptions of the computation. Writing \(f(\) \leq_S S \) iff \(\exists b(\) \in S \) such that \(f(X) \leq b(X) \ \forall X \in \mathbb{N}^n \), the Ritchie hierarchy is now defined as follows:

1. \(F_0 = F \)
2. \(F_{n+1} = \{ f(\) \mid \exists M \ a(M)_f(\) < F_n \} \)

Ritchie calls the functions in \(F_\omega = \bigcup_{i=0}^{\omega} F_i \) the predictably computable functions. The terminology captures the idea that for \(f(\) \in F_\omega \) the amount of tape used to compute \(f(\) \) can be predicted from functions of a lower level (thus of lower complexity). The class \(F_\omega \) has a very appealing constructive structure. \(F_\omega \) are "secure" because at each stage they can be secured in terms of the previous stage. That is, if a person believes that all functions of \(F_n \) are "constructive", then he ought to believe equally well that those of the class \(F_{n+1} \) are.

Ritchie proves that \(F_\omega = \mathcal{E} \). This is a new and interesting characterization of the class of Kalmar-Csillák elementary functions. However, this result immediately
raises the question of extending the hierarchy. It is known that \(E \) is only \(E^3 \) in the GH. Why then does \(\mathcal{F}_\omega \) stop at \(E^3 \)? What feature of \(E^4 \) keeps it from being included among the predictably computable functions? Can the hierarchy be extended while preserving most of its constructive features? Can the hierarchy be extended while preserving its high relevance for computability theory, in particular toward computational complexity theory? Cleave has given interesting answers to these questions.

To extend the Ritchie hierarchy (RH), Cleave first changes to a more sophisticated machine, the URM of Shepherdson & Sturgis. Instead of measuring "space used" in the computation, he measures the number of binary decisions made during a computation of program \(\pi_f \).

Let \(C \) be the class of constant functions and let \(E(\Sigma) \) be the set of URM-computable functions with set of basic instructions \(\Sigma \); this is essentially the same as \(\mathbb{M}_1(\Sigma) \). Now define

\[
\Sigma = \{ +, x, \delta \}
\]

where

\[
\delta(x, y) = \begin{cases}
1 & \text{if } x = y \\
0 & \text{otherwise.}
\end{cases}
\]

(This set is essentially like our \(\Sigma_0 \).) Then a Ritchie type hierarchy is defined

1. \(E +1 = E(\Sigma)_{+1} = C \)
2. \(E_{i+1} = E(\Sigma)_{i+1} = \{ f() \mid \delta f() \leq E(\Sigma)_{i} \} \)
(3) \(E_\omega = \bigcup_{i=0}^{\omega} E_1 \)

Cleave shows that \(E_\omega = F_\omega \) and that the classes \(E_1 \) have properties similar to those of \(F_1 \). Cleave now extends the Ritchie hierarchy by taking

(4) \(E_{\omega \cdot a+1} = E(E_{\omega \cdot a})_1 \)

That is, at the limit steps, \(\omega \cdot a \) he takes all previously obtained functions as new primitive instructions for his computer, and then he continues with the Ritchie process. This technique relies on the use of a machine which can accept infinitely many primitive instructions. Such a device is a kind of super computer. However, we can interpret Cleave's results in another way. At the limit step, \(\omega \cdot a \), we can imagine that the method of "telling time" (measuring computation steps) is changed so that whenever a program \(\pi_f \) computing a function \(f() \in E_{\omega \cdot a} \) appears as a subprogram in a larger program, then the steps used in computing \(\pi_f \) are counted as only a single step. This interpretation might be called the primitive subprogram interpretation as opposed to the super computer interpretation because programs of \(E_{\omega \cdot a} \) are regarded as primitive instructions of the machine as far as counting running time of programs.

The Cleave hierarchy generating process works well as an extension of the Ritchie process. Cleave shows the following

1. \(E_{\omega \cdot a} = \mathcal{E}^{a+2} \), thus \(E_\omega = F_\omega = \mathcal{E} = \mathcal{E}^3 \)

2. \(\alpha < \beta < \omega^2 \implies E_\alpha \subset E_\beta \)
(3) $E^2_\omega = \mathcal{R}^1 = \text{primitive recursive functions.}$

So not only does Cleave extend RH using computing theoretic methods, but he obtains a refined GH as a byproduct. The classes E^2_ω preserve some of the constructive character of F_ω, and the theory is quite relevant to questions of computational complexity. Furthermore, Cleave has provided intuitive content to the GH and has revealed certain properties of \mathcal{R}^1 that help explain its fundamental role in recursion theory. But again, the question of extension arises.

Péter has constructed a very rich and powerful hierarchy of recursive functions, $\mathcal{R}^1 \subset \mathcal{R}^2 \subset \mathcal{R}^3 \subset \ldots \subset \mathcal{R}^n \ldots$ called the multiply recursive functions. This hierarchy is based on a syntactical description of recursion equations, and it is not immediately clear how such a hierarchy is related to those based on computational complexity.\(^1\) Since $E^2_\omega = \mathcal{R}^1$ we can ask questions about the Cleave hierarchy and the Péter hierarchy analogous to those asked about the Ritchie and the Grzegorczyk hierarchies. In fact, the work of Robbin shows the Péter hierarchy to be an extension of the GH (called Extended Grzegorczyk Hierarchy, EGH), thus the analogy is quite exact. Can the Cleave hierarchy be extended to include the EGH? In what sense are the elements

\(^1\)Robbin has recently clarified this relationship in terms of Hartmanis & Stearns complexity classes, and at this writing it seems that Dennis Ritchie is also working on this relationship (expected Ph.D. thesis).
of $\mathcal{A}^\omega \ni \omega^2$ less constructive than those of $E_\omega \ni \omega^2$? Can the Cleave hierarchy be extended while preserving most of its constructive features? Can the hierarchy be extended in terms of purely computer theoretic concepts? What is the next natural stopping point (closure ordinal) for this Ritchie-Cleave type hierarchy?

As a starting point to the investigation of these questions let us examine why the Cleave hierarchy closes off at ω^2. What we show is that $E_{\omega^2+1} = E_{\omega^2}$. By definition

$$E_{\omega^2+1} = E(E_{\omega^2})_0 \text{ and } E_{\omega^2} = \bigcup_{\alpha < \omega^2} E_\alpha.$$ If π is a program with instructions from E_{ω^2}, then since programs contain only a finite number of instructions, say $h_1(_), \ldots, h_p(_)$, we can find an n such that $h_i(_)$ is in $E_{\omega \cdot n}$, $i = 1, \ldots, p$. Now to say $f(_)$ is in $E(E_{\omega^2})_1$ means there is an E_{ω^2} program, π_1, computing $f(_)$ with a bound $g(_)$ is in $E(E_{\omega^2})_0$. Since $g(_)$ is in $E(E_{\omega^2})_0$, there is a program π_2 computing $g(_)$ whose instructions all come from $E_{\omega \cdot n_2}$ for some n_2, so $g(_)$ is in $E(E_{\omega \cdot n_2})$. Choose n_1 so that the instructions of π_1 are in $E_{\omega \cdot n_1}$. Then if $m = \max\{n_1, n_2\}$, $f(_) \in E_{\omega \cdot m} \subseteq E_{\omega^2}$.

From the above argument it is apparent that an essential reason for the hierarchy's collapse at ω^2 is that programs for URM contain only a fixed and finite number of instructions. What happens if programs can reflexively change
their own instructions or contain infinitely many instructions? The stored programs of actual computers can alter
themselves in the course of their own computations. For
programs with such a capability it is clear that the above
argument will not work to collapse the hierarchy. Will
other arguments work or will self-modifying programs extend
the hierarchy?

One of the features of RASPs (in contrast to URMs) is
their capability of using self-modifying programs. We
propose to study the Cleave hierarchy on such machines.
First we will present the Cleave hierarchy in detail on
a RASP using only fixed programs. Our approach is different
from Cleave's. We give the proofs in terms of $\sigma(\)$ rather
than $\delta(\)$ and we proceed directly to the hierarchy results
whereas Cleave also presents results relating his machine
to simultaneous recursions. It is not possible to simply
carry over Cleave's results on simultaneous recursions to
RASPs. Approximating such results would require developing
some elaborate applications of recursive functionals. In
place of this we use an arithmetization of $M_1(\Sigma_0)$.
Chapter 4 The Ritchie-Cleave Hierarchy

The subrecursive hierarchy which is presented below will be called the Ritchie-Cleave Hierarchy (RCH) rather than the Cleave Hierarchy because the role of Ritchie’s ideas is so central. (From a technical point of view it might be called the Ritchie-Grzegorczyk-Cleave Hierarchy since many of the proof techniques come from Grzegorczyk as well as Ritchie. However, to keep the computing theoretic character of the hierarchy distinguished we stick with the term Ritchie-Cleave Hierarchy.)

4.1 Basic to the technical results about the RCH are the notions of a normal set of functions and of a normal element for a set of functions.

1. A function \(f() \) is said to majorize a class of functions \(S \) iff \(\forall g() \in S \exists p \in N \) such that \(g(X) < f(p)(\max X) \quad X \in N^n \).

For \(S \) a set of functions let \(S_u = S \cup \{ U^n_i() \} \) where for \(1 \leq i \leq n \)
\(U^n_i(x_1, \ldots, x_n) = x_i \) and let \(S_u^* \) be the closure of \(S_u \) under composition. Then

2. \(S \) is a normal set of functions and \(f() \) a normal element for \(S \) iff

 (a) \(f() \in S_u^* \)

 (b) \(f() \) is strictly increasing

 (c) \(f() \) majorizes \(S_u^* \).

3. A function \(\lambda x f(x) \) dominates the one argument
functions of a class S iff $\forall h(\) \in S \exists m$ such that $h(x) < f(x)$ $x > m$.

4. A set of instructions $\Sigma = A U \{ T(), C() \}$ where A is a set of arithmetic instructions is called normal iff the associated set of arithmetic functions is normal. A set of programs, P, is called normal iff the set of functions computed by members of P is normal. For example the basic instruction set $\Sigma = \{ +, -, \times, T(), C() \}$ is normal with normal element $f_0(x) = (x+1)^2$.

The usefulness of the notion of normality derives from the fact that most of the arguments which establish the basic hierarchy properties are rate of growth type arguments. It is convenient to handle monotonic functions in such arguments, and it is necessary to have closure under composition. Moreover it is useful to be able to treat a single function, the normal element, when examining the growth behavior of a set of instructions. Thus a normal set of instructions is roughly one which has a largest instruction in some sense.

4.2 Before defining the BCH we need the notion of σ_p-computing time for P a set of programs.

1. $\sigma_p(\pi_\tau(x)) = \text{number of atomic steps relative to } P$ in the computation of π_τ on $M(\Sigma_0)$ where a single step relative to P is either the execution of a program of P occurring as a subprogram in π_τ or the execution of a single instruction of Σ_0 not occurring in such a subprogram.
2. A subprogram \(\pi_g \) of \(P \) occurring in a program \(\pi \) is called primitive with respect to \(P \). Such terminology indicates that \(\pi_g \) acts as an instruction when counting \(\sigma_P \)-computing time.

3. For convenience in defining the RCH we first define the map \(*a \). If \(P \) is a set of programs, then
\[
P^{*a} = \{ f() | \pi_f \in P \}
\]
Given a set \(R \supseteq S \) we also define the inverse type of map, \(a^* \). Let
\[
S^{a^*} = \{ \pi_f | f() \in S \}
\]

4. For \(P \) a set of programs put \(L(P)_{i=1} = C = \{ \text{constants} \} \) and put
\[
L(P)_{i=1} = \{ \pi_f | \sigma_P \pi_f() < (L(P)_{i=1})^a \}
\]
Then define
(a) \(L_0 = E_0 \)
(b) \(L_{ib} = L(L_{ib}) \)
(c) \(L_{ib+1} = \bigcup_{i=0} L_{ib} \)

Now set \(E_{ib} = (L_{ib})^a \), \(E_b = (L_b)^a \). The classes \(E_{ib} \) correspond to \(E_{\omega \cdot b \cdot i} \) of Cleave. For the RCH it turns out that \(E_{b,0} = E_b \), but this is not the case for the new hierarchy, \(\overline{E}_b \), defined in Chapter 6. The classes \(E_b \) with the single index are the classes of primary interest since they are the most invariant classes of the theory. The refined classes \(E_{b,1} \) are quite dependent on the exact computation parameters chosen (e.g., \(\delta vs \sigma \)) and on the initial set \(\Sigma_0 \) of instructions.

We will now prove the following theorems about RCH. For convenience in these theorems we shall use the notation \(\sigma_a \) in place of \(\sigma_Lg \).
4.7 Hierarchy Theorem

(a) \(E_{a, i} \subset E_{a, i + 1} \)
(b) \(E_a \) is normal with a normal element \(f_a(\) \) for \(a > 0 \)
(c) \(a < b < \omega \) implies \(E_a \subset E_b \).

4.12 Actual Time Theorem

If \(a < \omega \) and \(g(\) \in E_{a, i} \), then \(\sigma g(\) < E_{a, i} \).

4.13 Comparison of Hierarchies Theorem

\(E_a = \mathcal{E}^{a+2} \).

These theorems are proved with the help of the following.

4.5 Main Lemma

Let \(f_a(\) \) be a normal element for \(E_a \) and define

\[
F_{a, 0}(n, y) = f_a(n)(y)
\]

\[
F_{a, M+1}(n, y) = f_a(F_{a, M}(n, y))(y).
\]

Then (a) for each \(M, n \lambda y F_{a, M}(n, y) \in E_{a, M} \)
(b) for each \(M \lambda y F_{a, M}(n, y) \in E_{a, M+1} \)
(c) for all \(g(\) \in E_{a, M} \) \(\exists m \) such that

\(g(\) < F_{a, M}(m, \text{max } X) \)

(d) for each \(M \lambda x F_{a, M}(n, x) \in E_{a, M+1} \) and dominates

the one argument functions of \(E_{a, M} \).

Proof. Part (a) By definition \(F_{a, 0}(n, y) = f_a(n)(y) \), and

\(f_a(\) \) is normal for \(E_a \). Since \(f_a(\) \in (E_a)^n \) it follows

that \(\sigma f_a(y) = \text{constant} \). To compute \(f_a(n)(y) \) a standard

iteration block (see 4.5) is set up with control parameter

\(n \) which is fixed and may be stored as a program constant.

Thus computing \(\lambda y F_{a, 0}(n, y) \) requires only \(c \cdot n - 1 \) steps for

fixed \(n \) which means \(\lambda y F_{a, 0}(n, y) \in E_{a, 0} \). For purposes of

the inductive argument we also notice \(\forall d \exists p \) such that
Continuing now by induction assume the result for M and for simplicity use $F_M()$ for $F_{a,M}()$. Then by definition

$$\lambda yF_{M+1}(n,y) = \lambda yF_M(n,Y)(y).$$

To compute $\lambda yF_{M+1}(n,Y)$ a standard iteration block is set up with $F_M(n,y)$ as controlling parameter. By the induction hypothesis this parameter can be computed in less than $\lambda yF_M(n,y)$ steps for $y > p$. Using the methods of the case $M = 0$ it is known that

$$\sigma_a \lambda yF_{M+1}(n,y) < (c+1)\cdot F_M(n,y) \quad y < p.$$

Letting S_n be the number of steps needed to compute for $y < p$ we have

$$\sigma_a \lambda yF_{M+1}(n,y) < (c+1)\cdot F_{M+1}(n,y) + S_n \forall y.$$ \[\overset{\text{q.e.d. part (a)}}{\text{4.6 Lemma } \forall a \forall M \quad E_{a,M} \text{ is closed under addition and multiplication.}} \]

The proof of 4.6 is by induction on M. Returning to 4.5 we consider the next part.

Part (b) Again $F_0(n,y)$ is computed by setting up a standard iteration block. But now the control parameter n is input. As in part (a) we have

$$\sigma_a F_0(n,y) < c\cdot n \forall y.$$

Putting $b(n,y) = c\cdot n$ we clearly have $b() \in E_{a,0}$ so by definition $F_0() = E_{a,1}$. For future induction notice that

$$\exists c \quad \sigma_a F_0(n,y) < c\cdot F_0(n,y) \text{ since } F_a(n)(y) > n \text{ by definition of normality in 4.1.}$$

For induction assume $\lambda yF_M(n,y) \in E_{a,M}$. Arguing as above $\exists d \quad \sigma_a F_M(n,y) < d\cdot F_M(n,y)$ and $\sigma_a F_{M+1}(n,y) < $
< (d+c) \cdot F_M(n,y) \forall n \forall y \text{ so that by 4.6 and the induction hypothesis } F_{M+1}(\) \in E_{a,M+2}. \text{ To verify the remaining condition notice } F_M(n,y) < F_{M+1}(n,y) \text{ since } F_{M+1}(n,y) = f_a(P_M(n,y))(y) > F_M(n,y) \text{ by 4.1, 2. (b), q.e.d. part (b).}

Part (c) To say \(g(\) \in E_{a,0} \) implies that \(\exists \pi_g \) in which the instructions or primitive subprograms, say \(h_1(\), \ldots, h_2(\) \) (using function notation for the subprograms as well as the instructions) all come from \(E_a \) and for which the \(\sigma_a \)-computing time is a constant, \(c \). Since \(f_a(\) \) is normal for \(E_a, \exists m_i, h_i(Y) < f_a(m_i)(\max Y) Y \in N^m_i i = 1, \ldots, p. \) Let \(m = \max m_i \) and let the input to \(\pi_g \) be \(X \in N^x \). Suppose the maximum constant of \(\pi_g \) is \(d \). Then on the first step of the computation the maximum value accessible to \(\pi_g \) will be \(f_a(m)(\max\{X,d\}) \). Therefore after \(s \) steps the maximum value accessible to \(\pi_g \) will be \(f_a(m,s)(\max\{X,d\}) \). If \(\sigma_a \pi_g(X) = c \forall X \), then

**

\[g(X) < f_a(m,c)(\max X,d) X \in N^x. \]

Let \(q \) be the largest value of \(f_a(m,c)(\max\{X,d\}) \) for all \(X \) such that \(\max\{X,d\} = d \). Then since \(f_a(n)(y) > n \), an \(e \) can be chosen such that \(f_a(e)(y) > q \) for all \(y \). Thus putting \(b = \max\{m,c\} + e \) it follows that

\[g(X) < f_a(m,c + e)(\max X) = F_0(b,\max X) \forall X. \]

For induction assume the result for \(D_{a,M} \), take \(g(\) \in E_{a,M+1} \). Proceeding exactly as above to line **, notice that \(\sigma_a \pi_g(X) < b(X) \in E_{a,M} \forall X \in N^x \).

Applying the induction hypothesis to \(b(\) \) it follows that
\[\exists \overline{m} \ s.t. \ g(X) < F_M(\overline{m}, \max X). \]

Using the inequality in line ** yields
\[g(X) < f_a(m \cdot F_M(\overline{m}, \max X))(\max \{X, d\}) \]

and as before
\[\exists \epsilon \ g(X) < f_a(m \cdot F_M(\overline{m}, \max X) + \epsilon)(\max X) \]

Since \(E_{a,M} \) is closed under summation, \(m \cdot F_M(\overline{m}, \max X) + \epsilon \in E_M \)

and so using the induction hypothesis again we have
\[m \cdot F_M(\overline{m}, \max X) + \epsilon < F_M(b, \max X). \]

Thus since \(\lambda yf_a(n)(y) \) is increasing in both arguments,
\[g(X) < f_a(F_M(b, \max X))(\max X) = F_{M+1}(b, \max X) \quad X \in N^p, \]

q.e.d. part (c)

Part (d) For each \(M \lambda xxP_M(x,x) \in E_{a,M+1} \) and dominates the one argument functions of \(E_{a,M} \). To compute \(\lambda xxP_M(x,x) \) use the program for \(\lambda nyF_M(n,y) \) plus an instruction to use the input as iteration parameter. Now use part (b). The fact that \(\lambda xxP_M(x,x) \) dominates \(E_{a,M} \) follows immediately from part (c).

q.e.d. Main Lemma

4.7 Hierarchy theorem

(a) \(E_{a,1} \subset E_{a,1+1} \)

(b) \(E_a \) is normal with a normal element
\[f_a(\) \in E_a \] for \(a > 0 \)

(c) \(a < b \) implies \(E_a \subset E_b \).

Proof. Part (a) We show \(F_1(x,x) \) is contained in \(E_{1+1} \)

but not in \(E_1 \). Containment is just 4.5 part (d), and non-

containment follows immediately from the definition of dominance.
Part (b) $E_\mathbf{a}$ is normal with normal element $f_\mathbf{a}(\)$ and for $\mathbf{a} > 0$ $f_\mathbf{a}(\) \in E_\mathbf{a}$. Recall that $f_0(\)$ is normal for E_0.

Define $f_{\mathbf{a}+1}(\)$ from $f_{\mathbf{a}}(\)$ by the condition $f_{\mathbf{a}+1}(x) = f_{\mathbf{a}}(x)(x)$. We have produced normal elements for E_0 (see 4.1). These cover the above result for the case $\mathbf{a} = 0$. Continue by induction and assume $f_{\mathbf{a}}(\)$ is normal for $E_\mathbf{a}$. Then notice

$$f_{\mathbf{a}+1}(x) = f_{\mathbf{a}}(x)(x) = f_{\mathbf{a},0}(x,x) \in E_{\mathbf{a},1}.$$

So $f_{\mathbf{a}+1}(\) \in E_{\mathbf{a}+1} = \bigcup_{i=0}^{\infty} E_{\mathbf{a},i}$. To complete the definition of normality $f_{\mathbf{a}+1}(\)$ must be strictly increasing and must majorize $E_{\mathbf{a}+1}$; since $E_{\mathbf{a}+1} = (E_{\mathbf{a}+1})^*$ for $\mathbf{a} > 0$ by 4.8 below.

That $f_{\mathbf{a}+1}(\)$ is strictly increasing is proved in 6.23. To show that $f_{\mathbf{a}+1}(\)$ majorizes $E_{\mathbf{a}+1}$ we must show that $g(\) \in E_{\mathbf{a},1}$ implies $\exists \mathbf{n} g(\) < f_{\mathbf{a}}^{(\mathbf{n})}(\text{max } X) \ X \in N^\mathbf{r}$.

But by 4.6 part (b) it is sufficient to show

$$\forall \mathbf{M} \ \forall \mathbf{n} \ \exists \mathbf{m} \ F_{\mathbf{a},\mathbf{M}}(\mathbf{n},\mathbf{x}) < f_{\mathbf{a}+1}^{(\mathbf{m})}(\mathbf{x}) \ \forall \mathbf{x}.$$

Since $f_{\mathbf{a}}^{(\mathbf{n})}(\mathbf{x}) > \mathbf{n} \ \forall \mathbf{x} \ \forall \mathbf{n}$ it follows that

$$F_{\mathbf{a},0}(\mathbf{n},\mathbf{x}) \leq F_{\mathbf{a},\mathbf{n}+1}(1,\mathbf{x})$$

that is

$$F_{\mathbf{a},0}(\mathbf{n},\mathbf{x}) = f_{\mathbf{a}}^{(\mathbf{n})}(\mathbf{x}) \leq f_{\mathbf{a}}^{(\mathbf{...f_a(x)}(\mathbf{x}))}(\mathbf{x})^{\mathbf{n}+1}$$

So by induction on \mathbf{M}

$$F_{\mathbf{a},\mathbf{M}}(\mathbf{n},\mathbf{x}) \leq F_{\mathbf{a},\mathbf{M}+\mathbf{1}}(1,\mathbf{x}) .$$

Also

$$F_{\mathbf{a},\mathbf{m}}(1,\mathbf{x}) < f_{\mathbf{a}+1}^{(\mathbf{m}+1)}(\mathbf{x})$$

by induction on \mathbf{m}, e.g.,

$$F_{\mathbf{a},0}(1,\mathbf{x}) = f_{\mathbf{a}}(\mathbf{x})$$

and

$$F_{1}(1,\mathbf{x}) = f_{\mathbf{a}}^{(f_{\mathbf{a}}(\mathbf{x}))(\mathbf{x})} < f_{\mathbf{a}}^{(f_{\mathbf{a}}(\mathbf{x}))(f_{\mathbf{a}}(\mathbf{x})} = f_{\mathbf{a}+1}(f_{\mathbf{a}}(\mathbf{x})) < f_{\mathbf{a}+1}(\mathbf{x}) , \text{ etc.}.$$
Hence \(F_{a, M}(t, x) < F_{a, M+1}(l, x) < f_{a+1}^{(M+m+2)}(x) \),
q.e.d. part (b)

Part (c) \(a < b \) implies \(E_a \subseteq E_b \). Consider \(b = a+1 \) and let \(f_{a+1}() \) be a normal element for \(E_{a+1} \), then \(f_{a+1}() \) belongs to \(E_{a+1} \). Suppose \(f_{a+1}() \in E_a \), then there is a \(d \) such that \(f_{a+1}(x) < f_a^{(d)}(x) \) and for \(x = d \) a contradiction results.
q.e.d. part (c)

4.8 Composition Theorem

Let \(f() \in E_{a, M}^{[n]} \), and \(g_i() \in E_{a, J}^{[m]} \) for \(1 \leq i \leq n \). Then
\[h(X) = f(g_1(X), \ldots, g_n(X)) \] implies \(h() \in E_{a, M+J}^{[m]} \).

Proof. To compute \(h() \) first compute each of the \(g_i() \) at \(X \). This requires \(S_1(X) = \sum_{i=1}^{n} \sigma_a g_i(X) \) steps. If \(J = 0 \), then \(\sigma_a g_i() = c_i \) so \(S_1(X) = s_1 = \sum_{i=1}^{n} c_i \). If \(J > 0 \), then \(\sigma_a g_i(X) \in E_{a, J-1} \) and \(S_1() \in E_{a, J-1} \) (lemma 4.6). To finish the computation requires \(\sigma_a f(g_1(X), \ldots, g_n(X)) = S_2() \) steps.
If \(M = 0 \), then \(S_2(X) = s_2 \). So either \(\sigma_a h() = s_1 + s_2 \) in which case \(h() \in E_{a, 0} \) or \(\sigma_a h() \in E_{a, J} \) giving the result for \(M = 0, J > 0 \).

If \(M > 0 \), then \(3b \ \sigma_a f(g_1(X), \ldots, g_n(X)) < \)
\(< F_{a, M-1}(b, \max g_i(X)) \) and \(g_i(X) < F_{a, J}(m_i, \max X) \) so taking \(m = \max m_i \) it follows that
\[\sigma_a f(g_1(X), \ldots, g_n(X)) < F_{a, M-1}(b, F_{a, J}(m, \max X)). \]
Now by the lemma 4.9 below we conclude
\[\sigma_a f(g_1(X), \ldots, g_n(X)) < F_{a, M+J-1}(d, \max X) \] for some \(d \). Thus \(h() \in E_{a, M+J} \) by definition. q.e.d.
4.9 Lemma. \(\forall M \forall J \forall x F_M(n, F_J(m, x)) < F_{M+J}(p, x) \forall x \)

Proof. We can either prove this directly using a tedious inductive and combinatorial argument or we can appeal to Cleave's paper in the following manner. Since \(\lambda x F_M(n, x) \in E_M \) and \(\lambda x F_J(m, x) \in E_J \) where \(E_J \) denotes Cleave's hierarchy, then using his proposition on composition (Corollary 4 p. 342), \(\lambda x F_M(n, F_J(m, x)) \in E_{M+J} \). So by his Lemma 4 p. 342

\[\exists p F_N(n, F_J(m, x)) < F_{M+J}(p, x) \forall x \]

q.e.d.

4.10 Limited Recursion Theorem.

If \(a < \omega \), \(h(\) \in E_{a,s+1}^{[n+2]} \), \(g(\) \in E_{a,r}^{[n]} \) and there exists a function \(k(\) \in E_{a,t}^{[n+1]} \) such that

\[f(X, 0) = g(X) \]

\[f(X, y+1) = h(X, y, f(\ldots, y)) \]

\[f(X, y) < k(X, y) \quad X \in N^n \quad y \in N. \]

Then

\[f(\) \in E_{a,s+\max(t,r)+1}^{[n+1]} \]

Proof. To compute \(f(X, y) \) start with \(f(X, 0) \) and compute \(f(X, 1), f(X, 2), \ldots, f(X, y) \). This involves computing \(g(X) \) and computing \(h(X, 0, g(X)), h(X, 1, g(X, 1)), \ldots, h(X, y, f(X, y)) \).

The total number of \(\sigma_a \) steps is thus

\[S(X, y) = \sum_{i=0}^{y} h(X, i, f(X, i)) + \sigma f(X) \]
Since $h(\) \in E_{a,s}$, $k(\) \in E_{a,t}$ and $g(\) \in E_{a,r}$ this can be estimated by

$$
\sum_{i=0}^{y} F_s(b_1, \max X, i, F_{\max\{t, r\}}(b_2, \max\{X, i\})) + F_{r-1}(b_3, X)
$$

and since $\max\{X, i\} < F_{\max\{t, r\}}(d, \max\{X, i\})$ and $\max\{X, i\} < \max\{X, y\}$

$$S(X, y) < y \cdot F_s(b_1, F_{\max\{t, r\}}(b_2, \max\{X, y\})) + F_{r-1}(b_3, X).$$

Now to handle $y \cdot F(\)$ consider the following argument,

$$y \cdot z < f_a(c)(\max\{y, z\})$$

since x is in Σ_0. So that for $z = F_a(m, q(y))$ where $q(y) > y$ it follows that for some e

$$y \cdot F_a, i(m, q(y)) < f_a(c)(F_a, i(m, q(y)) < F_a, i(m+e, q(y))$$

Applying this to $*$,

$$S(X, y) < F_{s+\max\{t, r\}}(d, \max\{X, y\}) + F_{r-1}(b, X).$$

So

$$f(\) \in E_{a, s+\max\{t, r\}+1}$$

q.e.d.

4.11 Notice, the methods of this proof also give us that for $r > 0$, $E_{a, r}$ is closed under limited summation and limited multiplication, i.e., if $f(X, i) \in E_{a, r}$ and $S(X, y) = \sum_{i<y} f(X, i)$ and $P(X, y) = \prod_{i<y} f(X, i)$, then $S(\), P(\) \in E_{a, r}$.

4.12 Actual Time Theorem.

If $a \in \omega$ and if $g(\) \in E_{a, i}$ then $\sigma g(\) < E_{a, i}$.

Proof. We proceed by induction on a and i.
Consider the case \(a=0 \) for all \(i \). If \(a=0 \), then \(\sigma_a = \sigma \) so the result is in fact stronger than stated, namely \(g(\cdot) \in E_{0,i-1} \).

For induction assume the result for \(a \). For induction on \(i \), consider \(g(\cdot) \in E_{a,0} \). Then there is a \(\pi_g \) so that \(\sigma_ag(x) < c \quad x \in N^n \). Suppose \(\pi_g \) uses instructions \(h_1(\cdot), \ldots, h_p(\cdot) \) \(\in E_a \), then by the induction hypothesis \(\sigma_{h_i}(\cdot) < E_a \) so
\[
\sigma_{h_i}(x) < f_{a}^{(s_i)}(\max x) \quad x \in N^n
\]
and also
\[
h_i(x) < f_{a}^{(v_i)}(\max x) \quad x \in N^n.
\]
Putting \(m = \max\{s_i, v_i\} \), then after \(c \sigma_a \)-steps,
\[
\sigma_g(x) \leq f_a^{(m)}(\max X) + f_a^{(m)}(f_a^{(m)}(\max X))
\]
\[
+ \cdots + f_a^{(m)}(f_a^{(m)c})(\max X) \quad x \in N^n.
\]
Applying a simple estimate to this sum yields
* \(\sigma_g(x) \leq c f_a^{(m)}(f_a^{(m)c})(\max x) \quad x \in N^n \).

With these facts the next line follows immediately from line * and from closure of \(E_{a,0} \) under addition (using 4.5 part (iii)).

\[
\sigma_g(x) < c f_a^{(m+c+n)}(\max x) < f_a^{(m)}(\max x) \quad x \in N^n
\]
for \(\bar{m} > m \). So \(g(\cdot) \in E_{a,0} \).

Continuing the induction on \(i \), assume the result for \(i = M \) and suppose \(g(\cdot) \in E_{a,M+1} \). Thus \(\sigma_ag(x) < b(x) \in E_{a,M} \)
\(\forall x \in N^n \). Proceeding as in \(i=0 \) case to line * and putting
\(b(X) \) in for \(c \) we get

\[
\sigma g(X) < b(X) \cdot f_a^{(m)}(m \cdot b(X))(\max X)) \quad X \in \mathbb{N}.
\]

Now noticing that \(\exists c \in b(X) < f_M(e, \max X) \) (by 4.5 part (iii)) and applying the methods of \(i=0 \) case again, we have

\[
(1.4.5.6) \quad \sigma g(X) < f_M(e, \max X) \cdot f_a^{(m \cdot f_M(e, \max X) + d)}(\max X).
\]

Picking \(\bar{e} \) such that \(m \cdot f_M(e, \max X) + d < f_M(\bar{e}, \max X) \) and noting that

\[
(f_M(\bar{e}, \max X)) \quad f_a^{(\max X)} = f^{(m + 1)}(\bar{e}, \max X),
\]

it follows that

\[
\sigma g(X) < f_M(e, \max X) \cdot f^{(m + 1)}(\bar{e}, \max X).
\]

So since \(E_{a, M+1} \) is closed under multiplication there exists \(d \) such that

\[
\sigma g(X) = f^{(m + 1)}(d, \max X) \quad X \in \mathbb{N}.
\]

So \(g(X) < E_{a, M+1} \), which completes the induction on \(i \), and

since \(E_{a+1} = \bigcup_{i=0}^{\omega} E_{a, i} \), the result holds for \(E_{a+1} \).

q.e.d.

4.13 Comparison of Hierarchies

(a) Let \(E_{a, M}^{\omega} \) denote Cleave's hierarchy classes (in terms of \(\delta \)). Then \(\forall a, M \Diamond E_{a, M} = E_{a, M}^{\omega} \).

(b) Let \(\mathcal{E}_n \) be Grzegorczyk's hierarchy classes. Then

\[E_a = E_{a}^{\omega} = E_{a+\omega} \quad a < \omega. \]

Proof. First \(\delta a g(X) \leq \sigma a g(X) \) \(\forall X \). Since a RASP, \(M_0 \), can fully simulate a URM (as discussed in Chapter 2), it follows that \(E_{a, M}^{\omega} \subseteq E_{a, M} \). On the other hand, given a fixed
program for computing $g(\)$, $\exists n \sigma_a g(X) \leq n \cdot \delta_a g(X)$ $\forall X$, and since $E_{a,M}$ is closed under addition for all a, $M \preceq \omega$, the containment, $E_{a,M}^e \supseteq E_{a,M}$, holds.

Finally (b) follows from (a) and the results of Cleave.

q.e.d.

Note: We will demonstrate these results in an alternative manner in Chapter 6.
Chapter 5 A New Ritchie-Cleave Hierarchy

5.1 Our extension of the Ritchie-Cleave Hierarchy relies on a definition of program modification over an infinite set of instructions, or alternatively (and equivalently) on the notion of regarding subprograms of a program introduced by the program itself as primitive subprograms, those whose execution time is counted as a single step regardless of the actual number of steps required. The question confronting us is how to define these notions so that the hierarchy generated using them is interesting. There are several applicable criteria determining interest:

Q1. How far into the class \mathcal{R} does the hierarchy extend?

Q2. How does the hierarchy relate to other known hierarchies (in particular the Péter hierarchy and the Kleene subrecursive hierarchy)?

Q3. How natural is the hierarchy (how independent of arbitrary choices, whether of ordinal notations, sequences of functions or operations on functions)?

Q4. Can the hierarchy be described easily in terms of computing theoretic concepts or concepts from logic?

Suppose we allow a main program to generate any subprogram of level E_α^ν as primitive at input X. Then it is possible to construct a program π which generates primitive subprograms only over E^ν_1 and yet can compute any recursive
function within an elementary bound on E_1-computing time, i.e. on the time measured by counting execution of primitive subprograms over E_1 as single steps. Thus E_2 would already be R.

5.2 Considering the above argument more precisely define the notion σ_S-computing time for S a set of programs.

$\sigma_S \pi_f (X) =$ number of steps relative to S used in computing π_f at input X where execution of any of the following is regarded as a single modified step:

program of S occurring as a subprogram in π_f,

program of S generated as a primitive subprogram in π_f,

an instruction of Σ_0 not occurring in either of the above.

5.3 Suppose that every $\pi_g \in L_1$ is allowed as a possible primitive subprogram at input X. Then consider any arbitrary $f(\) \in R$ and π_f computing $f(\)$. Define $g_n(X) = f(x)$ if $x \leq n$, 0 otherwise and define the sequence of programs $\pi_{g_n}(\) \in L_1$ by the program schema for $N = n$ where output of π_{f} is placed in Y.

\begin{align*}
(1) & \quad X < N \implies (2) \\
& \quad Y \leftarrow 0 \\
& \quad C(X, X, 3) \\
(2) & \quad \boxed{\pi_f} \\
(3) & \quad \text{exit}
\end{align*}

Thus π_{g_n} with entrance 1 and exit 3 computes $g_n(\)$ at X.

with value at Y. Each program π_{gn} has the same segment π_f which does most of the work. It is thus easily possible to construct a main program π which given input x first generates π_{gx} and then executes it for the value x. All that is required is that π contain some program constant which is an encoding of the schema described above. It then decodes and loads the program inserting the input value x in N.

Such a program can generate π_{gn} in a constant number of steps, say c, and execute it as primitive in one step. Thus in $c + 1$ steps relative to E_1 the function $f(\)$ can be computed. So clearly $f(\) \in E_1, 0 \subseteq E_2$.

It is not surprising that the above unrestricted method of selecting primitive subroutines breaks down because it is not in the spirit of the previous hierarchy processes, Ritchie and Cleave. Those processes were carefully controlled from below whereas generation of subprograms as used above is not. What is needed is a stronger connection between the hierarchical structure on E_ω and the use of program modification over E_ω to generate primitive subprograms. In looking for this stronger connection, the example given above can be looked at from two viewpoints.

From the vantage point of computational complexity the difficulty is that we have allowed the main program π to list members of L_1 "too fast". From the vantage point of algorithmic complexity the difficulty is that the π_{gn} are
"improper programs". They are not purely L_1 programs because they involve subprograms like π_f which may come from a "higher language".

In Chapter 8 we will consider the algorithmic complexity viewpoint. We will see there that by selecting a subset of L_1 and restricting ourselves to programs from this subset, it becomes possible to define parameters of algorithmic complexity, $\ell(\cdot)$ for "length" and $d(\cdot)$ for "depth" and to define the class of primitive programs allowed at input X to be those whose algorithmic parameters are bounded by functions in E_1. With such a restriction the hierarchy does not collapse at E_2. However, a more general restriction can be described in terms of computational complexity.

5.4 Intuitively an interesting restriction on the generation of primitive subprograms would be that the speed at which primitive subprograms are generated is bounded by a previously obtained function. In other words, a function $t(\cdot)$ already obtained in the hierarchy is used to predict the index i of $E_{a,1}$ to which the subprogram π_g being generated belongs.

To be precise about the position of a subprogram π_g in L_a we can use the normal elements. We know that

* if $g(\) \in E_a$, then $\exists \pi_g$ such that $\sigma g(x) < r_a^p(\text{max } x)$.

The constant p has the property that $g(\) \in L_{a-1,i}$ for some $i \leq p$.
Thus one precise way of controlling the position of sub-
programs in E_a is to control the p in line *. The speed at
which primitive subprograms are generated can be taken as
the rate of growth of p with respect to input.

5.5 Let π_f be a program which generates subprograms π_g
and suppose at input X to π the subprograms generated are
denoted by $\pi_{i_X} = 1, 2, 3, \ldots, n_X$. Also let Y denote the in-
put to any subprogram, thus for each i_X, Y may be different,
but for notational simplicity we avoid writing Y_{i_X}. We then
say that a subprogram π_{i_X} can be generated as primitive in π_f
over L_a at input X iff $\pi_{i_X} \in L_a$ and $\exists t(\) \forall X \forall Y$
\[\sigma_{i_X}(Y) < t_a(t(X))(\max Y) \& t(\) \in E_a. \]

It is significant that this condition must be stated in
terms of the $t_a(\)$ rather than solely in terms of the
hierarchy class indices, a.i. We will see in Chapter 8
how this condition relates to algorithmic complexity. We
will discuss its intuitive significance more fully in
Chapter 6. At this point we wish to examine how the RCH
behaves when primitive subprograms are generated as above.

5.6 Recalling definition 5.2 of $\bar{\sigma}_p$-computing time and
definition 4.2 of the *a map we define for a set of programs
P
\[\bar{L}(P)_{-1} = C = \text{constants} , \text{ and} \]
\[\bar{L}(P)_1 = \{ \pi_f \mid \bar{\sigma}_p \pi_f(\) < (\bar{L}(P)_{-1})^{*a} \}. \]
Also define

(i) \(\overline{L}_0 = \Sigma_0 \)

(ii) \(\overline{L}_{b, i} = \overline{L}(\overline{L}_b)_i \)

(iii) \(\overline{L}_{b+1} = \bigcup_{i=0}^{\infty} \overline{L}_{b, i} \)

Put \(\overline{E}_{b, i} = (\overline{L}_{b, i})^{\ast_a} \), \(\overline{E}_b = (\overline{L}_b)^{\ast_a} \). The class \(\overline{E}_b \) form the new Ritchie-Cleave Hierarchy. Notice, we will often write \(\sigma_a \)-computing time for \(\sigma_{\overline{L}_a} \)-computing time.

In this chapter we wish to compare the \(\overline{E}_{b, i} \) with the \(E_{b, i} \) and in the next chapter we wish to extend the \(\overline{E}_a \) beyond \(\omega \).

Comparison of the hierarchy classes is easy once we have the main lemma for the \(\overline{E}_{b, i} \). We turn to this lemma after the preliminary lemma 5.7.

We shall establish the convention that the notation \(\overline{E}_a \), \(\overline{L}_a \), \(\overline{\sigma}_a \) will be used for the new RCH only when there is some possibility of confusing the new RCH with the old, i.e. with \(E_a \), \(L_a \), \(\sigma_a \). Most often we shall simply use \(E_a \), \(L_a \), \(\sigma_a \) for the new RCH. The remaining theorems all apply to the new RCH as defined above.

5.7 Lemma. If \(\pi_h(\) \) can be generated as primitive over \(E_a \) at \(X \), then \(\exists s(\) \in E_a \) such that

\[
\forall Y \in N^m, X \in N^n, \quad h(Y) < f_a(s(X))(\text{max } Y).
\]

Proof. By definition 5.5

\[
\sigma \pi_h(Y) < f_a(t(X))(\text{max } Y).
\]

Since the instructions for computing \(\pi_h(\) \) come from \(\Sigma_0 \)
which has normal element \(f_0(\) \), the methods of 4.5 Main Lemma part (c) can be applied to conclude that for \(S \) computing steps needed to determine \(h(Y) \)
\[
h(Y) < f_0^{(S + d)}(\max Y).
\]
If \(a = 0 \), then \(h(\) \) is a basic instruction, and the result is immediate. For \(a > 1 \)
\[
f_0^{(y)}(y) < f_a(y) \quad \forall y
\]
so that
\[
h(Y) < f_a(f_a(t(X) + e)(\max Y)) = f_a(s(X))(\max Y)
\]
where \(s(X) = t(X) + e + 1 \in E_a \) (because \(t(\) \in E_a \) by definition).

q.e.d.

5.8 Main Lemma.

Let \(f_a(\) \) be normal for \(E_a \) and define

\[
F_{a,0}(n,y) = f_a(n)(y)
\]

\[
F_{a,M+1}(n,y) = f_a(F_a(n,y))(y)
\]

Then (a) for each \(M, n \lambda y F_{a,M+1}(n,y) \in E_{a,M} \)

(b) for each \(M \lambda n y F_{a,M}(n,y) \in E_{a,M} \)

(c) for all \(g(\) \in E_{a,M} \exists m \text{ such that } X \in N^n \)

\[
g(X) < F_{a,M+1}(m,\max X)
\]

(d) for each \(M, \lambda x x F_{a,M}(x,x) \in E_{a,M} \) and dominates \(E_{a,M-1} \).

Proof. (For simplicity we use \(F_N(\) \) for \(F_{a,N}(\) \) when no confusion is possible.)
Part (a) In this case \(\lambda yF_1(n,y) = f_a^{(n)}(y) \). A subprogram \(h_1(\) \) can be generated as primitive if

\[
(f_a^{(d)}(\max X)) \quad h_1(X) < f_a^{(d)}(\max X). \quad \text{One subprogram which satisfies this condition is the standard program for } \lambda yF_1(n,y).
\]

This fact is verified in Appendix B. Thus a program for computing \(\lambda yF_{a,1}(n,y) \) would first generate the program for \(\lambda yF_{a,1}(n,y) \) and then execute it. To generate such a subprogram only requires determining the iteration parameter for \(f_a(\) \). That parameter is \(f_a^{(d)}(\max X) \) which can be computed using \(f_a^{(d)}(\) \) and \(\max(\) \) as fixed primitive subprograms (both are in \(E_a, a > 0 \); if \(a = 0 \), both can be computed in a constant number of steps). Thus total \(\sigma_a \)-computing time for \(\lambda yF_1(n,y) \) is a constant.

For induction assume the result for \(M \). Recall

\[
F_{M+1}(n,y) = f_a^{(F_M(n,y))} (y).
\]

Notice that \(\lambda yF_{M+1}(n,y) \) could be computed in \(F_M(n,y) \) steps from a fixed program if the value \(F_M(n,y) \) were known. By using \(f_a(\) \) as a primitive subprogram. But \(\lambda yF_M(n,y) \) can be computed with a bound in \(E_{a,M-2} \), so since \(E_{a,M-2} \leq E_{a,M-1} \), \(\lambda yF_M(n,y) \in E_{a,M-1} \) and \(E_{a,M} \) is closed under addition

\[
\sigma_a \lambda yF_{M+1}(n,y) < E_{a,M-1},
\]

thus \(\lambda yF_{M+1}(n,y) \in E_{a,M} \).

\[q.e.d. \]
Part (b) \(\lambda y \in P(n, y) = f_a^{(n)}(x) \) can be computed in one step using \(\lambda y \in f_a^{(n)}(y) \) as an instruction. Since by Appendix B \(\exists \pi f_a(\) \) such that

\[
\sigma_a^{(n)}(x) < f_a^{(d)}(\max\{n, x\}) (\max\{n, x\}) \quad \forall n \forall x,
\]

\(f_a^{(n)}(\) \) can be generated as primitive. This can be done in a constant number of steps (store program schema for iteration as a constant, insert \(n \) as iteration parameter). Thus

\[
\sigma_a \lambda y \in P(n, y) = c
\]

so \(\lambda y \in P(n, y) \in E_{a, 0} \).

For induction assume \(\lambda y \in F_M(n, y) \in E_{a, M} \) and consider

\[
F_{M+1}(n, y) = f_a(F_M(n, y)) (y).
\]

Knowing \(F_M(n, y) \), \(F_{M+1}(n, y) \) can be computed with a fixed program in \(c \cdot F_M(n, y) \) steps. Thus by the induction hypothesis

\[
\sigma_a F_{M+1}(n, y) = \sigma_a F_M(n, y) + c \cdot F_M(n, y) < E_{a, M}.
\]

So \(\lambda y \in F_{M+1}(n, y) \in E_{a, M+1} \).

q.e.d.

Part (c) Let \(\pi g \) compute \(g \) so that \(\sigma_a g(\) = c \) and suppose \(h_1(\), ..., h_p(\) \) are the instructions and fixed primitive subprograms of \(\pi g \). Let \(p \) be the maximum program constant.

In addition to the fixed subprograms \(h_1(\), \pi g \) may generate other primitive subprograms \(k_1(\) \), but by lemma 5.7 they must satisfy

\[
(k(d)(\max X)) < f_a^{(d)}(\max Y) \quad X \in N^1.
\]
Since \(f_a() \) is normal for \(E_a \) we also have

\[h(Y) < f_a^{(m_1)}(\max \{ X \}) \quad Y \in N_1. \]

Let \(n = \max m_1 \), then by methods of 4.5 part (c) after \(s \) steps

\[((f_a^{(d)}(\max X) + n), s)(\max\{X, p\}). \]

For \(\sigma_a \mathcal{E}(X) \) this can be reduced by methods of 4.5 to

\[(f_a^{(m)}(\max X)) \]

\[g(X) < f_a^{(m)}(\max X) = F_1(m, \max X). \]

For induction we assume \(\sigma_a \mathcal{E}(X) < F_M(e, \max X) \). Proceeding exactly as above to line * and taking \(s = F_M(d, \max X) \) the result is

\[((f_a^{(d)}(\max X) + n), F_M(d, \max X)) \]

\[g(X) < f_a^{(d)}(\max X) = F_M(e, \max X), \]

For induction we assume \(\sigma_a \mathcal{E}(X) < F_M(e, \max X) \). Proceeding exactly as above to line * and taking \(s = F_M(d, \max X) \) the result is

\[((f_a^{(d)}(\max X) + n), F_M(e, \max X)) \]

\[g(X) < f_a^{(d)}(\max X) = F_M(d, \max X) \]

Now since \(E_{a+1} \) is closed under addition and multiplication the case \(M = 0 \) methods yield the result

\[F_M(m, \max X)) \]

\[g(X) < f_a^{(m)}(\max X) = F_M(e, \max X) \quad X \in N^R. \]

q.e.d.

Part (d) This follows immediately from (b) and (c).

q.e.d. Main Lemma

Having established the Main Lemma in terms of the same functions, \(F_{a,M}() \), as used in the Main Lemma 4.5 we can carry over the results 4.7 - 4.10 with no effort. We thus have:

5.9 (New) Hierarchy Theorem

(a) \(E_{a+1} \subseteq E_{a+1, 0} \)
(b) $E_{a,i} \subseteq E_{a,i+1}$

(c) $f_a(\)$ are normal for E_a

(d) $a < b \implies E_a \subseteq E_b$

5.10 Composition Theorem

Let $F() \in E_{a,n}^m$, $g_i() \in E_{a,j}$ for $1 \leq i \leq n$. Then

$$h(X) = f(g_1(X), \ldots, g_n(X))$$

implies

$$h() \in E_{a,m+1}^{n+1} X \in N^m.$$

5.11 Limited Recursion Theorem

If $h() \in E_{a,n+2}$ and $g() \in E_{a,n}$ and there exists a function $k() \in E_{a,n+1}$ such that

$$f(X,0) = g(X)$$

$$f(X,y+1) = g(X,y,f(X,y))$$

$$f(X,y) \leq k(X,y) X \in N^n y \in N.$$

Then $f() \in E_{a,s+m+1}^{n+1}$.

We can also prove an actual time theorem for the new RCH.

5.12 Actual Time Theorem

If $g() \in E_{a,i}$, then $\sigma g() \in E_{a,i}$.

The details of this proof are given for a more general case in Chapter 6, namely in theorem 6.35.
Chapter 6 The Extended Ritchie-Cleave Hierarchy

Following our plan to investigate the possibility of basing an extension of the Ritchie-Cleave hierarchy on the concept of program self-modification, we turn now to finding adequate restrictions on the generation of primitive subprograms over E_{ω} in particular and over E_{α} in general. Example 5.3 shows the difficulties that must be avoided, but the solution of Chapter 5 is not available since E_{ω} does not contain a normal element (if it did, the hierarchy would not collapse at E_{ω}, c.f. Main Lemma 5.8). However, we can attempt to implement the idea which motivated our previous restrictions. That is, we want to use E_{α} to control which programs of L_{α} will be generated as primitive subprograms in programs constructed at level $\alpha+1$.

Pursuing the analogy with Ritchie, we want a function $b(\) \in E_{\omega}$ to control the hierarchy class $E_{b(\)}$ from which primitive subprograms of a main program can be chosen for input X. But we require more than restriction to E_{ω} as we have already seen. Thus by analogy with what we did before, we want to select a normal element from E_{α}, say $f_{a}(\) a<\omega$, and we want a $t(\)$ to control iteration of $f_{a}(\)$. We could then allow π_{g} to be generated as a primitive subprogram in π at input X if

$$6.1 \quad \sigma_{g}(Y) < f_{b(X)}(\text{max } Y).$$

Such a method depends on being able to choose $f_{a}(\)$ from E_{α}.
in a manner which is both uniform and controlled by E_ω.

One way to make the notion of a "uniform E_ω selection procedure" precise would be to ask that the procedure be a functional, $F(\)$, associated with E_ω. $F(\)$ would be required to map normal elements of E_n into normal elements of E_{n+1} and it would be associated with E_ω in the sense that $F(g(\),X)$ would be "E_ω computable in $g(\)$".\(^1\) We would then be required to show that such functionals existed. (They do.)

A simpler technique which avoids explicit use of functionals would be to first use a standard functional of the above type to select a standard sequence of normal elements

\[f_{n+1}(x) = F(f_n(\),x) \]

starting with $f_0(\)$ normal for E_0. Then define a class of admissible transformations of the standard sequence $f_n(\)$ where the transformations were controlled by E_ω.

This approach has its analogy in other branches of mathematics. An example from geometry would be the definition of a tensor product or a differential form. One can either give the definition invarientially (independent of coordinate systems) or one can pick a standard coordinate system and a group of transformations and then give the definition on

\(^1\)Relative computability with respect to the hierarchy classes is considered in Chapter 7. A stronger condition on $F(\)$ which is more in line with what we actually do is that $F(\)$ also be E_ω bounded, that is the number of steps used in computing $F(\)$, $\sigma F(\)$, satisfies

\[\exists t(\) \forall g(\) \sigma F(g(\),X) < t(\max X) \in E_\omega. \]
the particular system, showing it is preserved under the transformations.

A standard functional is suggested by the Hierarchy Theorem 4.7. It is shown that if \(f_n(\cdot) \) is normal for \(E_n \), then \(f_{n+1}(\cdot) \) is normal for \(E_{n+1} \) where

\[
f_{n+1}(x) = f_n(x)(x).
\]

Thus define \(F(g(\cdot), x) = g(x)(x) \) so that choosing \(f_0(\cdot) \in (\Sigma_0^*)^* \), we can generate a

6.4 **standard sequence of normal elements (s.s.n.e.)**

\[f_0(\cdot), f_1(\cdot), \ldots, f_n(\cdot), \ldots \]

To determine an appropriate class of transformations associated with \(\mathcal{E}_a \) and an s.s.n.e. for \(E_a \), we observe that given any normal element for \(E_a \), say \(h_a(\cdot) \), there is a constant \(c_a \) such that

\[
h_a(x) < f_a(x).
\]

Thus since \(f_a(\cdot) \) is used in 6.1 only to provide a bound, we can represent the effect of choosing any arbitrary sequence \(h_a(\cdot) \) of normal elements by finding a function \(s(a) \) such that

\[
h_a(x) < f_a(s(a))(x).
\]

The degree of arbitrariness of \(h_a(\cdot) \) is reflected in \(\lambda s(a) \). Thus to control the choice of \(h_a(\cdot) \) we need only control \(s(\cdot) \). The obvious requirement is that \(s(\cdot) \in E_a \). Thus given an s.s.n.e. for \(E_a \), say \(f_n(\cdot) \), the suggested condition 6.1 becomes

\[
6.7 \quad \sigma \pi g(Y) < f_b(s(b(X)) + t(X))(\max Y).
\]

Since \(E_\omega \) is closed under composition and summation, it is
sufficient to require only \(\exists t(), b() \in E_\omega \) such that
\[
6.8 \quad \sigma_g(Y) < f^{(t(X))}_{b(X)}(\operatorname{max} Y).
\]

In terms of the analogy with coordinate systems and transformations, 6.1 is a reasonably natural statement of our intuitive condition on primitive subprograms. Pursuing this analogy, the question arises of whether a completely coordinate free statement of condition 6.1 is possible, i.e. whether we can avoid any reference to standard sequences of normal elements. The import of this question can be seen by recalling the relationship between the Cleave and the Grzegorczyk hierarchies. As we discussed in Chapter 3, the Cleave hierarchy provides an invariant significance to the Grzegorczyk hierarchy in terms of computing theoretic concepts. The question now is whether there is a similar way to avoid explicit use of the \(f_n() \) in defining the ERCH. We shall see below that this question has two parts. Can we eliminate reference to the normal elements? Can we eliminate reference to standard sequences? We answer both questions affirmatively, the first in Chapter 7 and the second in Chapter 8.

Let us now consider extending 6.1 to \(E_\alpha \) for \(\alpha > \omega \). The problem is to define the notion of an s.s.n.e. for \(E_\alpha \). By analogy with the \(\omega \) case, the obvious definition is that we take a fundamental sequence \(\beta_n \) for \(\alpha \), i.e. write \(\beta_n \rightarrow \alpha \) if \(\beta_n \) is a sequence of ordinals whose limit is \(\alpha \). Define a \(\beta_n \)-sequence of normal elements for \(E_\alpha \) as that sequence
generated by some normal element \(f_0(\) \) applying iteration and diagonalization. That is,

6.10 (a) \(f_{\alpha+1}(x) = f_\alpha(x) \) and
(b) \(f_\alpha(x) = f_{\beta_x}(x) \) for \(\alpha \) a limit ordinal.

The generalization of 6.1 then becomes

6.11 \(\sigma_{\pi_g}(Y) < f_{\beta_b}(X)^{\max Y} \) for \(t(\), b(\) \in E_\alpha \)

where \(\beta_x \rightarrow \alpha \).

However, if the concept of an s.s.n.e. is to retain its intuitive significance, we must restrict \(\alpha \) to the constructive ordinals and must require the fundamental sequences to be effective. The following example illustrates what can happen if the fundamental sequences are not controlled.

6.12 Let \(h(\) \) be an arbitrary element of \(\mathcal{R} \) and let \(g(\) \) be a strictly increasing member of \(\mathcal{R} \) such that for some \(\pi_n \)

\(\sigma_{\pi_n}(x) < g(x) \ \forall x. \)

Then \(g(n) \rightarrow \alpha \) so \(f_{g(n)}(\) \) is a sequence of normal elements, and since \(f_n(x) > n \) for all normal elements (see 6.17) it follows that

\(f_{g(x)}(x) > g(x), \)

thus if \(f_g(\)(\) \) were allowed in condition 6.11, then taking \(t(x) = 1 \) and \(b(x) = x, \pi_n(\) \) could be introduced as a primitive subprogram.

In light of the above example, we must introduce some further standardization. In particular we must define the notion of a standard fundamental sequence in a manner con-
sistent with the motivation behind condition 6.1. That is, how can we give invariant significance to such a definition?

We recall from Chapter 1 that the matter of standard fundamental sequences was crucial to the basic subrecursive hierarchies, e.g. ordinal recursion, Extended Grzegorczyk, and the Kleene subrecursive hierarchy. Cleave avoids the problem in his hierarchy because he does not use the ordinals in an essential way. They serve only to index his generation process. We shall proceed in a like manner, but for several reasons which will become clear later, we present the extension first in terms of ordinals and a standard fundamental sequence. It is to this task that we now turn. Then in Chapter 7 we consider a justification for these sequences.

6.13 We define fundamental sequences for \(\alpha < \omega_0 \); this can be done in a very straightforward manner. Define \(\alpha_n = \text{fundamental sequence for } \alpha \) as follows. First put \(\alpha \) in its normal form to the base \(\omega \) (see Sierpinski[53] p. 323) so

\[
\alpha = \omega^{\beta_1} a_1 + \ldots + \omega^{\beta_n} a_n \quad \text{where } \beta_1 > \beta_2 > \ldots > \beta_n, \ a_i \in \mathbb{N} - 0.
\]

This normal form is unique.

(a) if \(\alpha = \beta + \gamma \), then \(\alpha_n = \beta + \gamma_n \)

(b) if \(\alpha = \beta \cdot n \), then \(\alpha_n = \beta \cdot (n-1) + \beta_n \)

(c) if \(\alpha = \omega^\beta \), then we consider two subcases:

(i) if \(\beta \) is a limit ordinal, then \(\alpha_n = \omega^n \)

(ii) if \(\beta \) is a successor ordinal, then \(\alpha_n = \omega^{(\beta-1)} n \) (recall \(\omega^0 = 1 \)).
We will usually write \(\alpha_n \rightarrow \alpha \). Thus, for example, \(n \rightarrow \omega \),
\(\omega^2 + n \rightarrow \omega^2 + \omega \), \(\omega \cdot n \rightarrow \omega^2 \), \(\omega^n \rightarrow \omega^\omega \), \(\omega^\omega \cdot n \rightarrow \omega^\omega \), etc.

6.14 Given any function \(\lambda x h(x) \) we define the standard sequence of functions generated from \(h() \) as follows. Let \(\alpha < \varepsilon_0 \)

(a) \(h_0(x) = h(x) \)

(b) \(h_{\alpha+1}(x) = h_\alpha(x) \)

(c) \(h_\alpha(x) = h_{\chi_\alpha}(x) \) if \(\alpha \) is a limit ordinal.

We can extend this sequence of functions beyond \(\varepsilon_0 \) if we have a method of choosing standard fundamental sequences. Whenever we have something we want to call a standard fundamental sequence for all ordinals \(\alpha < \beta \), then we can define s.s. derived from \(h() \) for \(\alpha < \beta \).

6.15 Recall the definition of a normal element for \(\Sigma \) in the Cleave hierarchy. We will say that \(f_n() \) is normal for \(E_n \). If \(f() \) is a normal function for \(\Sigma_0 = \{+, -, \times, \text{T.C.} \} \) we call any standard sequence generated from \(f() \) a standard sequence of normal elements (s.s.n.e.). The reason for this wording is that \(f_\alpha() \) are normal elements for the \(E_\alpha \) of the Extended Cleave-Ritchie Hierarchy (ERCH). We show this fact in 6.31.

6.16 Given ordinals \(\alpha \) and \(\beta \) in base \(\omega \) representation we say that \(\alpha + \beta \) is canonical if \(\alpha + \beta \) is the base \(\omega \) representation of the sum. For example \(\omega^2 + \omega \) is canonical but \(\omega + \omega^2 \) is not. We now state and prove some basic facts about the \(f_\alpha() \).
6.17 \(f_\alpha(x) > x \ \forall x \ \forall \alpha. \)

6.18 If \(0 < \beta < \alpha \) and \(\alpha + \beta \) is canonical, then \(f_\alpha(x) < f_{\alpha + \beta}(x) \) \(x > 0 \) and \(f_\alpha(x) \leq f_{\alpha + \beta}(x) \ \forall x. \)

6.19 If \(\gamma_1^+ + \beta \) and \(\gamma_2^+ + \beta \) are canonical and \(f_{\gamma_1}(x) < f_{\gamma_2}(x) \)
\(x > M, \) then \(f_{\gamma_1^+ + \beta}(x) < f_{\gamma_2^+ + \beta}(x) \) \(x > M. \)

6.20 \(\alpha > 0 \) implies \(f_0(x) < f_\alpha(x) \) \(x > 0 \) and \(f_0(x) < f_\alpha(x) \) \(\forall x. \)

6.21 If \(\alpha + \beta \) is canonical, then \(f_\beta(x) < f_{\alpha + \beta}(x) \) \(x > 0. \)

6.22 If \(\alpha \) is a limit ordinal \(< \varepsilon_0 \) and \(\alpha_n \rightarrow \alpha, \)
then \(f_{\alpha_n}(x) < f_{\alpha_{n+1}}(x) \) \(x > 1. \)

6.23 \(f_\alpha(x) \) is strictly increasing for \(\alpha < \varepsilon_0 \) \(x > 1. \)

6.24 If \(m(\alpha) = \) the maximum of the integers in the base \(\omega \) representation of \(\alpha, \)
then \(\alpha < \beta \) implies \(f_\alpha(x) < f_\beta(x) \)
\(\forall x > m(\alpha). \)

6.25 For \(\alpha < \beta < \varepsilon_0 \) let \(m_c(\alpha) = \) the maximum coefficient in the base \(\omega \) representation of \(\alpha, \)
then \(f_\alpha(x) < f_\beta(x) \)
\(\forall x > m_c(\alpha). \)

We now turn to the proofs of these statements.

6.17 \(f_\alpha(x) > x \ \forall x \ \forall \alpha. \)

Proof. To say \(f_0(\) \) is normal means that it is strictly increasing. Clearly no strictly increasing function can satisfy \(f(x) < x \) for any \(x, \) thus we already know \(f_0(x) \geq x \ \forall x. \) Suppose \(f_0(x_0) = x_0, \) then \(f_0(y) = y \ \forall y \leq x_0 \) and \(f_0^{(m)}(y) = y \ \forall m \ \forall y \leq x_0, \) but this is impossible since \(f_0(\ \) \) is normal for \(\{+, -, x, \} \) and taking \(\lambda xg(x) = 2x \) there must
exist \(m \) such that \(2x < f_0^{(m)}(x) \) \(\forall x \). Thus \(f_0(x) > x \) for all \(x \). We now show that \(f_\alpha(x) > x \) \(\forall x \ \forall \alpha \). We proceed by induction having established the proposition for \(\alpha = 0 \). Suppose the result for \(\alpha \), we then show that \(f_\alpha^{(m)}(x) > x \) \(\forall x \ \forall m \). To this end, assume \(f_\alpha^{(m)}(x) > x \) \(\forall x \). Then
\[
f_\alpha^{(m+1)}(x) = f_\alpha(f_\alpha^{(m)}(x)) > f_\alpha^{(m)}(x) > x
\]
by induction hypothesis on \(m \) and on \(\alpha \). So
\[
f_\alpha^{(m+1)}(x) = f_\alpha^{(m)}(x) > x \ \forall x.
\]
Now suppose \(\alpha \) is a limit ordinal with \(\alpha_n \rightarrow \alpha \), then since \(\alpha_n < \alpha \) we have by the induction hypothesis that \(f_\alpha^{(m)}(x) > x \).
So
\[
f_\alpha(x) = f_\alpha^{(m)}(x) > x \ \forall x.
\]
q.e.d.

Notice that this result does not depend on any particular choice of fundamental sequence nor on any bound on \(\alpha \).

6.18 If \(0 < \beta < \alpha \) and if \(\alpha + \beta \) is canonical, then \(f_\alpha(x) < f_{\alpha+\beta}(x) \) \(x > 0 \) and \(f_\alpha(x) \leq f_{\alpha+\beta}(x) \) \(\forall x \).

Proof. By induction on \(\alpha \) and \(\beta \).

1. Suppose \(\alpha \) is a successor ordinal, then for \(\alpha + \beta \) to be canonical, \(\beta \) must be an integer. Consider \(\beta = 1 \), by definition
\[
f_{\alpha+1}(x) = f_\alpha(x)
\]
and we notice since \(f_\alpha(x) > x \)
\[
f_\alpha^{(m)}(x) > f_\alpha(x) \ \forall x
\]
\[
(f_\alpha(f_\alpha(x))) > f_\alpha(x)
\]
so
\[f_{\alpha}^{(m)}(x) > f_{\alpha}^{(m-1)}(x) > \ldots > f_{\alpha}(x) \quad \forall x. \]

Thus
\[f_{\alpha}(x) < f_{\alpha + 1}(x) \quad \forall x. \]

Now taking \(\alpha + 1 \) for \(\alpha \)
\[f_{\alpha}(x) < f_{\alpha + 1}(x) < f_{\alpha + 2}(x) < \ldots < f_{\alpha + \beta}(x) \quad \forall x. \]

So we have the result for \(\beta \).

2. Suppose \(\alpha \) is a limit ordinal, for induction on \(\beta \) assume result for \(\beta \) then we show result for \(\beta = 1 \) and for \(\beta + 1 \) exactly as above taking \(\alpha \) and \(\alpha + \beta \) respectively as \(\alpha \) in 1.

Assume now that \(\beta \) is a limit ordinal, \(\beta \rightarrow \beta \). By induction hypothesis
\[f_{\alpha}(x) < f_{\alpha + \beta}(x) \quad \forall x \text{ if } \beta > 0. \]

So
\[f_{\alpha}(x) < f_{\alpha + \beta}(x) = f_{\alpha + \beta}(x) \text{ if } \beta \geq 0. \]

We need that \(\alpha + \beta \) is canonical to conclude that \(\alpha + \beta \rightarrow \alpha + \beta \).

We observe that if \(x > 0 \) then \(\beta_x > 0 \) for all fundamental sequences for \(\alpha < 0 \). If \(\beta = 0 \), then we get the \(\leq \) result.

q.e.d.

6.19 If \(\gamma_1 + \beta \) and \(\gamma_2 + \beta \) are canonical and \(f_{\gamma_1}(x) < f_{\gamma_2}(x) \quad \forall x > M \), then \(f_{\gamma_1 + \beta}(x) < f_{\gamma_2 + \beta}(x) \quad x > M \geq 0. \)

Proof. We are merely starting the standard sequences with two different bases. The proof is by induction on \(\beta \).

Suppose
\[f_{\gamma_1 + \beta}(x) < f_{\gamma_2 + \beta}(x) \quad \forall x > M \]
then we show
\[f_{\gamma_1+\beta}(x) < f_{\gamma_2+\beta}(x) \quad \forall m \quad \forall x > M. \]

For \(m = 1 \) the result is clear. But also
\[f_{\gamma_1+\beta}(f_{\gamma_1+\beta}(x)) < f_{\gamma_2+\beta}(f_{\gamma_1+\beta}(x)) < f_{\gamma_2+\beta}(f_{\gamma_2+\beta}(x)) \]
\[\forall x > M \]

which follows by induction hypothesis on \(\beta \), assuming
\(f_{\gamma_2+\beta}() \) is strictly increasing, and by induction hypothesis on \(m \) (since \(f_{\gamma_1}(x) > x \quad \forall x \) we can assume strict increasing for \(x>1 \) as we have in 6.21). Thus the result.

Suppose now that \(\beta \) is a limit ordinal, \(\beta_n \rightarrow \beta \). Then
\[f_{\gamma_1+\beta_n}(x) < f_{\gamma_1+\beta_n}(x) \quad x > M. \]

But
\[f_{\gamma_1+\beta}(x) = f_{\gamma_1+\beta}(x) < f_{\gamma_2+\beta}(x) = f_{\gamma_2+\beta}(x) \quad x > M. \]

We use that \(\gamma_1+\beta \) and \(\gamma_2+\beta \) are canonical in this last step to obtain the proper fundamental sequences.

q.e.d.

Notice we have proved this statement under the assumption that 6.21 holds for \(\gamma_1, \gamma_2 \). This causes a technical difficulty with 0 which accounts for the hypothesis \(x > M \). It also causes us to be careful in the proof of 6.21 that we do not use this statement for ordinals \(\gamma_1, \gamma_2 \) for which \(f_{\gamma_1}() \), \(f_{\gamma_2}() \) have not already been shown to be increasing.

q.e.d.
6.20 If \(\alpha > 0 \) then \(f_0(x) < f_\alpha(x) \) \(x > 0 \) and \(f_0(x) \leq f_\alpha(x) \) \(\forall x \).

Proof. First consider \(\alpha = 1 \). Notice by induction

\[
f_0(x) < f_0^{(m)}(x).
\]

In particular \(m = 1 \) is clear and

\[
f_0(x) < f_0(f_0^{(m)}(x))
\]

since

\[
f_0^{(m)}(x) > x \quad \forall x \quad \forall m \text{ (see 3.2)}
\]

and \(f_0(\) \) is strictly increasing.

Thus

\[
f_0(x) < f_0^{(m+1)}(x)
\]

hence

\[
f_0(x) < f_0^{(x)}(x) = f_1(x) \quad x > 0.
\]

Now suppose result holds for \(\alpha \), to know

\[
f_0(x) < f_{\alpha+1}(x)
\]

we notice from 6.18

\[
f_0(x) < f_\alpha(x) < f_{\alpha+1}(x) \quad x > 0.
\]

Suppose \(\alpha \) is a limit ordinal, \(\alpha_n \rightarrow \alpha \), then again as in above

\[
f_0(x) < f_{\alpha_n}(x) \quad x > 0
\]

\[
f_0(x) < f_{\alpha_x}(x) = f_{\alpha}(x) \quad x > 0.
\]

q.e.d.

6.21 Corollary. If \(\alpha + \beta \) is canonical, then \(f_\beta(x) < f_{\alpha+\beta}(x) \) \(x > 0 \).

Proof. Take \(\gamma_1 = 0 \), \(\gamma_2 = \alpha \), \(M = 0 \) in 6.19.
6.22 If \(\alpha \) is a limit ordinal and \(\alpha_n \rightarrow \alpha \), then \(f_{\alpha_n} (x) < f_{\alpha_{n+1}} (x) \) \(x > 1 \), \(\alpha < \varepsilon_0 \).

Proof. To prove this we proceed by offering a tedious analysis of the form of the terms \(\alpha_n \) in a fundamental sequence. We see from our definition of fundamental sequence that every term \(\alpha_n \) is of the form

\[
\gamma_1^{\omega_n}, \ldots, \gamma_2^{\omega_n}, \ldots.
\]

or

\[
\gamma_1^{\omega_n}, \gamma_2^{\omega_n}, \ldots.
\]

For example, in \(\omega^2 \cdot n \) we have \(\gamma_1 = \gamma_2 = 0 \) and \(p = 0 \); in \(\omega^3 \cdot 2 + \omega^2 \cdot n \), \(\gamma_1 = \gamma_2 = \omega \cdot 2, \) \(p = 2 \); in \(\omega^4 + \omega^2 \cdot 3 \cdot n \), \(\gamma_1 = \omega^\omega, \) \(\gamma_2 = \gamma_t = \omega^4 \cdot 2, \) \(p = 3 \).
First we analyse terms where \(\gamma_1 = \gamma_t \), e.g. \(\gamma + \omega^p \cdot n \). We wish to show

\[
f_{\gamma + \omega^p \cdot n} (x) < f_{\gamma + \omega^p \cdot n + 1} (x) \text{ for } x > 1.
\]

By definition

\[
f_{\gamma + \omega^p \cdot n + 1} (x) = f_{\gamma + \omega^p \cdot n + \omega^p \cdot l \cdot x + 1 \ldots + \omega \cdot x} (x)
\]

We notice that for \(x > 0 \)

\[
\gamma + \omega^p \cdot n < \gamma + \omega^p \cdot n + \omega^p - 1 \cdot x + 1 \ldots + x.
\]

So we can apply 6.18 to conclude
\[f_{\gamma+\omega \cdot n} (x) < f_{\gamma+\omega \cdot n+1} (x) \quad x > 0. \]

We must now examine the more complex case where \(t > 1 \).

First consider a simple example, \(\alpha = \omega^2 \), \(\alpha_n = \omega^\alpha \cdot n \).

To show

\[f_{\alpha \cdot n} (x) < f_{\alpha \cdot n+1} (x) \quad x > 1 \]

consider

\[f_{\alpha \cdot n+1} (x) = f_{\alpha \cdot n+x} (x) = f_{\alpha \cdot n+x-1} (x) \]

which is turn is equal to \(f_\theta (x) \) where \(\theta = \omega^\alpha \cdot n \cdot x-1 \cdot \omega \cdot x-1 \cdot \omega^\alpha \cdot n+1 \cdot x-1 \cdot \omega^\alpha \cdot n \cdot x-1 \cdot \omega^\alpha \cdot x \).

We observe that for \(x > 0 \) we have

\[f_{\alpha \cdot n+1} (x) = f_{\beta \cdot x+\alpha \cdot n} (x) \quad \beta_x > 0 \text{ if } x > 1 \]

and furthermore \(\beta_x > \omega^\alpha \cdot n \) for \(x > 1 \). Thus by 6.18

\[f_{\alpha \cdot n} (x) < f_{\beta \cdot x+\alpha \cdot n} (x) = f_{\alpha \cdot n+1} (x) \quad x > 1. \]

We want to show for \(t > 1 \) and \(x > 1 \) \(\exists \beta_x \) such that if

\[\gamma_{t+\alpha \cdot n+1} \]

\[\delta_{n+1} = \gamma_{1+\omega} \]

and

\[\gamma_{t+\alpha \cdot n} \]

\[\delta_n = \gamma_{1+\omega} \]

then

\[f_{\delta_{n+1}} (x) < f_{\beta_x+\delta_n} (x) \]

for \(\beta_x > \delta_n \).
First we examine the case

\[f_{\gamma_2^{+\omega^p \cdot n + 1}} \gamma_2^{+\omega} \]

Observe that

\[f_{\gamma_2^{+\omega^p \cdot n + \omega^{p-1}} \cdot x} \gamma_1^{+\omega} \]

is equal to

\[f_{\gamma_2^{+\omega^p \cdot n + \omega^{p-1}} \cdot x - 1 + \ldots + \omega \cdot x - 1 + x} \gamma_1^{+\omega} \]

which is equal to

\[f_{\gamma_2^{+\omega^p \cdot n + \omega^{p-1}} \cdot x - 1 + \ldots + \omega \cdot x - 1 + x - 1} \cdot x \gamma_1^{+\omega} \]

which for

\[\delta_1 = \gamma_2^{+\omega^p \cdot n + \ldots + x - 1} \]
\[\delta_2 = \gamma_2^{+\omega^p \cdot n + \ldots + x - 2} \]
\[\lambda = \gamma_2^{+\omega^p \cdot n + \ldots + \omega \cdot x - 1} \]

is equal to

\[f_{\gamma_1^{+\delta_1} \cdot x - 1 + \delta_2 \cdot x - 1 + \ldots + \lambda \cdot x} (x) \]

which is equal to

\[f_{\gamma_1^{+\beta} \cdot x} \gamma_2^{+\omega^p \cdot n} \gamma_1^{+\omega} \gamma_2^{+\omega} \ldots + \omega \gamma_2^{+\omega^p \cdot n} \]

where

\[\beta_x = \gamma_2^{+\omega^p \cdot n + \ldots + x - 1} \cdot x - 1 + \omega \cdot x - 1 + \ldots + \omega \cdot x - 1 \]
At each step we apply the rule for obtaining the fundamental sequence, and we observe that the term $\gamma_{2+\omega}.n$ appears as a summand. So we have

$$f_{\gamma_2+\omega.n}(x) < f_{\gamma_2+\omega.n}(x) \quad x > 1$$

by the principles of 6.18. So finally the left hand side of the above is less than

$$f_{\gamma_{2+\omega.n+1}}(x) \quad x > 1$$

as was to be shown.

We must now observe that these same principles apply to give the result for any t. If we put

$$\theta_n = \gamma_{t+\omega.n+1}$$

and

$$\theta'_n = \gamma_{t+\omega.n}$$

and if $f_{\theta_n}(x) = f_{\theta'_n}(x)$, then β_x contains a term of the form $\gamma_{t+\omega.n+\ldots+x-1}$ as a summand. The reduction of $f_a(x)$ at the γ_{t-1} level will result in a term of the form

$$\gamma_{t+\omega.n}$$
where β_x^2 contains a summand of the form
\[\gamma_{t+\omega} \cdot n+1 \ldots +x-1 \]
\[\cdot x-1 \ldots +x-1 \]
This will happen because in reducing
\[\gamma_{t+\omega} \cdot n \]
\[\cdot \gamma_{t-1+\omega} \cdot n \]
terms of the form $\omega \cdot x$ will appear for each term α in the exponent of ω and for each term obtainable by a decrement of the integers in the proper order. Since β_x contains a term of the form
\[\cdot \gamma_{t+\omega} \cdot n+1 \ldots +x-1 \]
the term $\gamma_{t+\omega} \cdot n$ will occur as a result of decrement of the integers (first the coefficient gets reduced to 1, then the summands get reduced to 0). Thus
\[\gamma_{t+\omega} \cdot n \]
\[\cdot \gamma_{t-1+\omega} \cdot n \]
will appear. Noting that
\[\gamma_{t+\omega} \cdot n \]
\[\cdot \gamma_{t-1+\omega} \cdot n = \gamma_{t-1+\omega} \cdot \omega \cdot x \]
gives the result as claimed.

We can now obtain this result for all t by an induction on t and the forms presented. This leaves the case with terms of the form
\[\gamma_{t-1+\omega} \cdot n \]
\[\cdot \gamma_{t-1+\omega} \cdot n \]
\[\cdot \gamma_{2+\omega} \ldots \gamma_{t-1+\omega} \cdot n \]
\[\gamma_1 + \omega \]
This case proceeds in an entirely similar manner to the last.

6.23 Corollary. If \(1 < x < y\), then \(f^\alpha(x) < f^\alpha(y)\). Also if \(x < y\), then \(f^\alpha(x) < f^\alpha(y)\) \(x < y\). In each case \(\alpha < \varepsilon_0\).

Proof. By induction on \(\alpha\). Suppose the result holds for \(\alpha\). Recall that \(f^{\alpha+1}(x) = f^\alpha(x)\) and let \(x < y\). The induction hypothesis gives \(f^\alpha(X) < f^\alpha(Y)\). We get \(f^\alpha(m)(x) < f^\alpha(m)(y)\) for all \(m\) by induction on \(m\). Using the induction hypothesis and the fact that \(f^\alpha(___)\) is strictly increasing it follows that
\[
f^{(m+1)}(x) = f^\alpha(f^\alpha(m)(x)) < f^\alpha(f^\alpha(m)(y)) = f^{(m+1)}(y).
\]
Applying this to the definition of \(f^{\alpha+1}(___)\) we get
\[
f^{\alpha+1}(x) = f^\alpha(x)(x) < f^\alpha(y)(y) = f^{\alpha+1}(y).
\]
For the limit case, \(f^\alpha(___)\) with \(\alpha_n \to \alpha\) we must show
\[
f^\alpha_0(0) < f^\alpha_1(1) < f^\alpha_2(2) < \ldots < f^\alpha_n(n) < \ldots
\]
But this follows directly from 6.22.

q.e.d.

6.24 Let \(m(\alpha) = \text{maximum integer appearing in the base}\)
\(\omega\) representation of \(\alpha\). If \(\alpha < \beta\) and \(m(\alpha) = m\), then
\(f^\alpha(x) < f^\beta(x)\) for all \(x \geq m+1\).

Proof. By induction on \(\beta\). For \(\beta = 0\) there is nothing to prove. Suppose the result holds for \(\beta\), then since
\(f^\beta(x) < f^{\beta+1}(x)\) \(x > 0\), the result holds for \(\beta+1\).

Suppose \(\beta\) is a limit ordinal, \(\beta_n \to \beta\). If \(\alpha < \beta\), then
\(\alpha < \beta_n\) for some \(n\). So \(f^\alpha(x) < f^\beta(n)\) for \(x > m+1\).
If we now had \(n \leq m+1\) we could say
\[f_\alpha(x) < f_\beta(x) \quad x > m+1 \]

and we would be finished. All we need is that for each \(\alpha < \beta \) we can find \(n \) such that \(\alpha < \beta_n \) for \(n \leq m(\alpha)+1 \). Call such fundamental sequences admissible for the representation defining \(m(\cdot) \). We now show that all fundamental sequences for \(\beta < \varepsilon_0 \) are admissible. Consider \(\beta < \omega^\omega \). Say

\[\beta = \omega^{n_1} b_1 \omega^{n_2} b_2 \ldots \omega^{n_s} b_s \]

and given \(\alpha < \beta \) (\(b_s \neq 0 \)) where

\[\alpha = \omega^{m_1} a_1 \ldots \omega^{m_p} a_p \]

let \(m(\alpha) = m \) for \(\alpha \) and \(\beta \) in unique base \(\omega \) representation.

Let \(\omega^{n_1} b_1 \) be the first term in \(\beta \) such that

\[\omega^{m_1} a_1 < \omega^{n_1} b_1. \]

Then if \(i \neq s \), clearly \(\alpha < \beta_n \) \(\forall x \). Thus we need only consider the case of \(\beta = \omega^n b \) and \(\alpha = \omega^m a \) with \(\alpha < \beta \). If \(m < n \) and \(b > 1 \) then clearly \(\alpha < \beta_x \) \(\forall x \). Thus we need only consider \(\omega^m a < \omega^n \). If \(m+1 < n \), then again \(\alpha < \beta_x \) \(\forall x \). So consider \(\omega^m a < \omega^{m+1} \). Then \(\beta_x = \omega^m x \) so that \(\omega^m a < \beta_x \) if \(x > m(\alpha) \geq a \). So if \(x > m(\alpha)+1 \) the result follows.

We handle \(\beta \geq \omega^\omega \) in levels according to the power of \(\omega \).

\(\omega^n \) for \(n < \omega \) is of level 0, \(\omega^\omega \) of level 1, and if \(\beta \) is of level \(n \) then \(\omega^\beta \) is of level \(n+1 \). At level \(n+1 \) are those \(\beta \) of the form \(\omega^{n_1} b_1 \ldots \omega^{n_s} b_s \) where \(b_1 \) are of level \(n \).

Since level 0 ordinals are the \(\beta \)'s \(< \omega^\omega \), we have proved the result for level 0. Now assume it for level \(n \). Let
\[\exists t() \forall X \forall Y \sigma^n_{tX}(Y) < \alpha(t(X))(\max Y) \]

and

\[t(), b() \in E_\alpha. \]

6.27 Definition 5.2 can now be extended to \(\alpha \geq \omega \). We write \(\sigma_\alpha \) for \(\sigma_{t^\alpha} \) of 5.2.

A hierarchy can now be defined as in 5.6 by taking \(\alpha \) for \(b \) in conditions (b) and (c) and adding

(d) \(\bar{L}_\alpha = \bigcup_{\beta < \alpha} \bar{L}_\beta \) if \(\alpha \) is a limit ordinal.

However in this hierarchy \(\bar{L}_\omega \) is not normal so that the main lemma does not hold. What we need at limit ordinals is the following modification.

6.28 \(\mathcal{D}(\bar{L}_\alpha) = \begin{cases} \bar{L}(\bar{L}_\alpha)_0 & \text{if } \alpha \text{ is a limit ordinal} \\ \bar{L}_\alpha & \text{otherwise} \end{cases} \)

6.29 We present the ERCH for \(\alpha < \varepsilon_0 \).

(a) \(\bar{L}_0 = \Sigma_0 \)

(b) \(\bar{L}_{\alpha+1} = \bar{L}(\mathcal{D}(\bar{L}_\alpha))_1 \)

(c) \(\bar{L}_\alpha = \bigcup_{i=0}^{\alpha} \bar{L}_{\alpha i} \)

(d) \(\bar{L}_\alpha = \bigcup_{\beta < \alpha} \bar{L}_\beta \) if \(\alpha \) is a limit ordinal

Also put \(\bar{E}_\alpha_{,i} = (\bar{L}_{\alpha_{,i}})^* \), \(\bar{E}_\alpha = (\bar{L}_\alpha)^* \) and \(\mathcal{D}(\bar{E}_\alpha) = \mathcal{D}(\bar{L}_\alpha)^* \).

As in Chapter 5 we will delete the bar and use \(E_\alpha, L_\alpha \) to denote the hierarchy classes when no confusion with RCH is possible. Before we can assert that the hierarchy is well defined we must show that \(\mathcal{D}(E_\alpha) \) is normal for all \(\alpha < \varepsilon_0 \).

Relying heavily on the properties 6.13 - 6.25 of the \(f_\alpha() \) we show that the ERCH is well defined (6.31) and we
\[\beta = \omega_{b_1}^{\beta_1} \cdot \omega_{b_2}^{\beta_2} \cdot \ldots \cdot \omega_{b_s}^{\beta_s} \]
\[\alpha = \omega_{a_1}^{\alpha_1} \cdot \omega_{a_2}^{\alpha_2} \cdot \ldots \cdot \omega_{a_p}^{\alpha_p} \]
and again check for the first terms which determine the ordering. Given
\[\omega_{a_1}^{\alpha_1}, b_1 < \omega_{b_1}^{\beta_1} \cdot b_1, \]
if \(\alpha_1 + 1 < \beta_1 \) and \(b_1 > 1 \) then \(\alpha < \beta_n \) \(\forall n. \)
If \(\alpha_1 + 1 < \beta_1 \) and \(b_1 = 1 \) then, if \(\beta_1 \) is a successor ordinal we have \(\alpha < \beta_n \) \(\forall n. \) If \(\beta_1 \) is a limit ordinal, then using the induction hypothesis on levels, \(\alpha_i < \beta_i \), we know
\[\beta_n = \omega_{a_1}^{\alpha_1} \cdot n. \]
So \(\alpha_i < \beta_i \) for \(n > m(\alpha_1) \). Thus since \(m(\alpha) \geq m(\alpha_1) \), we have \(\alpha < \beta_n \) \(n > m(\alpha). \)
If \(\beta_1 = \alpha_1 + 1 \), then \(b_1 > a_1 \) implies \(\alpha < \beta_n \) \(\forall n. \)
If \(b_1 = 1 \), then \(\beta_n = \omega_{a_1}^{\alpha_1} \cdot n \), and for \(n > m(\alpha) > a_1 \) we have \(\alpha < \beta_n \).
q.e.d.

6.25 The proof occurred as a special case of the proof of 6.24.

6.26 We now present the precise definitions for the ERCH. Let \(\pi_\pi \) be a program which generates subprograms \(\pi_g \) and suppose at input \(X \) to \(\pi_\pi \) the subprograms generated are denoted by \(\pi_{1_X}^{i_X} = 1, 2, \ldots, n_X \). Also let \(Y \) denote the input to any subprogram, thus for each \(i_X \) \(Y \) may be different but for notational simplicity we avoid writing \(Y_{1_X} \). We then say that a subprogram \(\pi_{1_X} \) can be generated as primitive in \(\pi \) over \(1 \) at \(X \) iff
exhibit its main features in parallel to those of RCH.

First appears a lemma giving us control over the value of functions in $\mathcal{J}(E_\alpha)$.

6.30 Lemma. If $g(\) \in \mathcal{J}(E_\alpha)$, then $\exists t_2(\), b_2(\) \in E_\alpha$ such that

$$g(X) < f_{a,b_2}^{(t_2(X))} \ (\max X)$$

To say that $g(\) \in \mathcal{J}(E_\alpha)$ is to say there is a program such that $a_\alpha \pi_g(X) < c$. Let $h_1(\), \ldots, h_p(\)$ be the fixed subprograms and instructions of π_g. They must come from L_α, thus there exist v_i and n_i such that

$$h_i(Y) < f_{a,v_i}^{(n_i)} (\max Y) \ Y \in N_1$$

If $h_j(\)$ is generated as primitive, then $\exists t(\), b(\)$ such that

$$h_j(Y) < f_{a,b}^{(t(X))} (Y) = S(X,Y) \ Y \in N_j.$$

The subprogram $h_j(\)$ is composed of instructions from Σ_0 so that after S steps at input Y

$$h_j(Y) < f_0^{(S)} (\max Y).$$

Thus from the above

$$h_j(Y) < f_0^{(S)} (\max Y),$$

and since $a_b(X) + 1 < 0$

$$f_0^{(t(X))} (\max Y) < f_{a,b(X)}^{(a_b(X) + 1)} (\max Y)$$
\[< f_\alpha(t(X)+1) \text{ (max } Y), \]
\[\alpha(b(X)+1) \]

Now take \(M = \max n_i \) and \(V = \max v_i \), then

\[h_1(Y) < f_\alpha(t(X)+V+1) \text{ (max } Y) \quad Y \in N \quad X \in N^n. \]

Thus after \(c \cdot \sigma_\alpha \)-steps the maximum value which can be produced is

\[f_\alpha(d \cdot (t(X)+V+1)) \text{ (max } X) \quad \text{for } d > c \text{ depending on the program constants.} \]

So taking \(t_2(X) = d \cdot (t(X)+V+1) \) and \(b_2(X) = b(X)+M+1 \) we have the result.

q.e.d. lemma

6.31 Theorem. \(\mathcal{D}(E_\alpha) \) is a normal set of functions and if \(f_\alpha(\) \) is an s.s.n.e. for \(E_\alpha \), then \(f_\alpha(\) \) is a normal element for \(\mathcal{D}(E_\alpha) \).

Proof. We must show the following:

1. any s.s.n.e., \(f_\alpha(\) \), belongs to \(\mathcal{D}(E_\alpha)^u \)
2. \(f_\alpha(\) \) is strictly increasing
3. any s.s.n.e., \(f_\alpha(\) \), majorizes \(\mathcal{D}(E_\alpha)^* \).

(1) We in fact show that \(f_\alpha(\) \in \mathcal{D}(E_\alpha) \). This work is quite involved and has consequently been relegated to Appendices A and B. It enters the proof here as

6.32 Lemma. \(f_\alpha(\) \in \mathcal{D}(E_\alpha) \quad \forall \alpha \quad 0 < \alpha < \varepsilon. \)

For \(\alpha \) a non-limit ordinal greater than 0, the proof will be covered by the Main Lemma as it is for \(\alpha \leq \varepsilon. \) We are interested only in the case that \(\alpha \) is a limit ordinal. Then
\(\mathcal{D}(E_\alpha) = E(E_\alpha)_0 \). To show \(f_\alpha(\) \in E(E_\alpha)_0 \) we must show that there exists a program \(\pi_{f_\alpha} \) such that

\[
\sigma_{\alpha}^{\pi_{f_\alpha}}(x) < c \quad x \in N.
\]

By definition \(f_\alpha(x) = f_{\alpha_x}(x) \) for \(\alpha_x \rightarrow \alpha \) so an obvious way to compute \(f_\alpha(\) \) would be to introduce \(\pi_{f_{\alpha_x}}(\) \in L_{\alpha_x} \) as a primitive subroutine. This could only be done if

\[
\exists t(\), b(\) \in E_\alpha \text{ such that }
\]

\[
\sigma_{\alpha_x}^{\pi_{f_{\alpha_x}}}(y) < f(t(x))(y) \quad \forall y \quad \forall x \in N
\]

and if there were a program \(\pi_M \) which satisfied

(a) \(\sigma_{\alpha}^{\pi_M}(x) < c \)

(b) \(\pi_M(x) \) generates \(\pi_{f_\alpha} \) as a subprogram.

In Appendix A we present a computing procedure for \(f_\alpha(\) \) and we exhibit a \(\pi_M \), which satisfies (a) and (b). It in fact satisfies (a') \(\pi_M \in L_2 \). We also prove *.

Returning to the proof of 6.31 we consider case (2).

\(f_\alpha(\) \) is strictly increasing is known from 6.23.

(3) We consider the following subcases:

(a) \(g(\) \in E_\alpha \)

(b) \(g(\) \in \mathcal{D}(E_\alpha) \)

(c) \(g(\) \in \mathcal{D}(E_\alpha)^* \)

(a) If \(g(\) \in E_\alpha \) consider the case for \(\alpha \) a successor, then \(g(\) \in \bigcup_{i=0}^{E_{\alpha-1,i}} E_{\alpha-1,i} \) by induction hypothesis, \(f_{\alpha-1}(\) \) is normal for \(E_{\alpha-1} \) and by the Main Lemma \(\exists M \)
\[g(X) < F_{\alpha-1, M}(e, \max X) \quad X \in \mathbb{N}^n. \]

Then by the arguments of the Hierarchy Theorem 4.7
\[g(X) < F_{\alpha-1, M}(e, X) < f_{\alpha}^{(M+R)}(\max X). \]

So \(f_{\alpha}(\) \) majorizes \(E_{\alpha} \). If \(g(\) \in E_{\alpha} \) and \(\alpha_n \rightarrow \alpha \), then by induction hypothesis \(f_{\alpha_n}(\) \) majorizes \(E_{\alpha_n} \). If \(g(\) \in E_{\alpha} = \bigcup E_{\alpha_n} \), then for some \(n \) \(g(\) \in E_{\alpha_n} \). So \(g(X) < f_{\alpha_n}^{(d)}(\max X) < f_{\alpha_n}^{(\max X)} \) if \(\max X > d \). Thus if \(\max X > \max\{n+1, d\} \), then
\[g(X) < f_{\alpha_n+1}^{(\max X)} < f_{\alpha}^{(\max X)}. \]

So \(\exists V \) such that \(g(X) < f_{\alpha}^{(V)}(\max X) \).

(b) To show \(g(\) \in \mathcal{D}(E_{\alpha}) \) notice first \(E_{\alpha} \subseteq \mathcal{D}(E_{\alpha}) \). We have considered \(g(\) \in E_{\alpha} \), thus we are only interested in those \(g(\)'s \) defined by programs using program modification over \(E_{\alpha} \). For this result we need only estimate the maximum value of functions computed by such programs with a constant bound on \(\sigma_{\alpha} \).

First determine a bound on \(g(\) \). If \(g(\) \in \mathcal{D}(E_{\alpha}) \) then by 6.30 there is an \(f_{\alpha}(\) \) such that
\[g(X) < f_{\alpha_b(X)}^{(t(X))}(\max X) \quad X \in \mathbb{N}^n, \]
with \(t(\), b(\) \in E_{\alpha} \). So since \(E_{\alpha} = \bigcup E_{\alpha_n} \), for some \(n_2, n_1 \)
\[t(\) \in E_{\alpha_{n_2}}, b(\) \in E_{\alpha_{n_1}} \quad \text{and} \quad t(X) < f_{\alpha_{n_1}}^{(e_1)}(\max X), b(X) < f_{\alpha_{n_2}}^{(e_2)}(\max X). \]

Now taking \(e = \max\{e_1, e_2\}, m = \max\{n_1, n_2\} \) we get
\((f(e)^{\text{max } X}) \cdot c\)

\[g(X) < f_{\alpha_m}(e)^{\text{max } X}, \quad X \in \mathbb{N}^n. \]

And since \(f_{\alpha_m}(e)(y) \cdot c < f_{\alpha_m}(\bar{e})(y) - \bar{e} > e,\)

we have

\[g(X) < f_{\alpha_m}(\bar{e})^{\text{max } X}, \]

\[< f_{\alpha_m}(\bar{e} + 1)^{\text{max } X}, \]

\[< f_{\alpha_m}(\bar{e})^{\text{max } X}, \quad X \in \mathbb{N}^n. \]

We now want to show that for any \(f_{\alpha'}(\)\), not just \(f_{\alpha}(\)\), we can bound \(g(\)\). To do this we need only compare \(f_{\alpha}(\)\) and \(f_{\alpha'}(\)\). The following lemma handles this task.

6.32 Lemma. If \(f_{\alpha}(\)\) and \(f_{\alpha'}(\)\) are two s.s.n.e.'s for \(E_{\alpha}, \alpha < \epsilon_0\), then

\[\exists m \forall x \forall \alpha 0 < \alpha < \epsilon_0 f_{\alpha'}(x) < f_{\alpha}(x + m). \]

Proof. For \(\alpha = 0\), by definition of normality

\[f_0(x) < f_0^{(m)}(x) \quad \forall x \]

so that
\[f_1(x) = f_0^x(x) < f_0^{(x+m)}(x) \ll f_0^{(x+m)}(x+m). \]

So

\[f_1(x) < f_1(x+m). \]

For transfinite induction assume

\[f_\alpha^x(x) < f_\alpha(x+m) \]

Then simply as above

\[f_{\alpha+1}^x(x) = f_\alpha^x(x) < f_\alpha(x+m) \ll f_\alpha^{(x+m)}(x+m) \]

\[= f_{\alpha+1}^{(x+m)} \]

For the limit case assume

\[f_\alpha^x(x) < f_\alpha(x+m). \]

Then since

\[f_\alpha(x+m) < f_\alpha(x+m+p) \quad p > 0 \quad \text{(by 6.22)}, \]

we have

\[f_\alpha^x(x) = f_\alpha^x (x) < f_\alpha^x (x+m) \ll f_\alpha^x(x+m). \]

Thus

\[f_\alpha^x(x) < f_\alpha(x+m). \]

q.e.d. Lemma

Having established that \(\mathcal{S}(E_\alpha) \) is normal with normal elements \(f_\alpha(\quad) \), we can apply the Main Lemma 5.8 to conclude the following for all \(\alpha < \varepsilon_0 \).

6.33

(a) \(E_\alpha \subseteq E_\alpha, 0 \)

(b) \(E_{\alpha+1} \subseteq E_{\alpha+1, 0} \)

(c) \(E_{\alpha, i} \subseteq E_{\alpha, i+1} \)
(d) $E_\alpha \subseteq E_{\alpha+1}$

(e) E_α is closed under composition

(f) E_α is closed under limited recursion

Notice, we can also establish that $E_\alpha \subseteq \mathcal{S}(E_\alpha) \subseteq E_{\alpha,0}$ since $f_\alpha(\)$ majorizes E_α.

Using the above we then easily conclude

$$6.34 \ \alpha < \beta < \varepsilon_0 \implies E_\alpha \subseteq E_\beta$$

Proof. For transfinite induction on β, suppose $\alpha < \beta \implies E_\alpha \subseteq E_\beta$ then since $E_\beta \subseteq E_{\beta+1}$ by (d) above the result holds for $\beta+1$. If $\beta_n \rightarrow \beta$ and the result holds for all $\beta' < \beta$, then $\alpha < \beta \implies \exists \ n \ \alpha < \beta_n$ and so $E_\alpha \subseteq E_{\beta_n}$ and clearly $E_{\beta_n} \subseteq E_\beta$ since $E_\beta \subseteq \bigcup E_{\beta_n}$, so $E_\alpha \subseteq E_\beta$.

q.e.d.

To finish this section we want to prove the actual time theorem for $\alpha \ll \varepsilon_0$, thus complete the parallel treatment of RCH and ERCH.

6.35 Actual Time Theorem

If $g(\) \in E_{\alpha,i}$ then $\sigma g(\) \subset E_{\alpha,i}$.

Proof.

(1) Case $\alpha = 0$ for all i. Here $g(\) \in E_{\alpha,i}$ implies $g(\) \subset E_{\alpha,1-i}$ $\forall i$ by definition.

(2) Case for successor ordinals. For induction assume the result for $E_{\alpha,i} \ \forall i$. Let $g(\) \in E_{\alpha+1,0}$, then by definition $\sigma_{\alpha+1} g(\) \subset c$ which means $\exists \pi_c$ such that $\sigma_{\alpha+1} \pi_c (\) \subset c$. Let $h_1(\), \ldots, h_p(\)$ be the fixed instructions in π_c.
Since \(h_1(i) \in E_{\alpha+1} = \bigcup_{i=0}^{\alpha, j} E_{\alpha, i} \) we have by induction hypothesis

\[h_1(Y) < E_{\alpha, j}. \]

Thus by definition of normality

\[h_1(Y) < f_{\alpha+1} (\max Y) \quad Y \in N^1 \quad i = 1, \ldots, p. \]

and

\[h_1(Y) < f_{\alpha+1} (\max Y) \quad Y \in N^1 \quad i = 1, \ldots, p. \]

If \(h(\) \) is generated as primitive in \(\pi_g \) at \(x \) then by definition \(\exists t(\) \) such that

\[\sigma h(Y) < f_{\alpha+1} (\max Y) \quad X \in N^h \quad Y \in N^1 \quad t_1(\) \in E_{\alpha+1} \]

and by lemma 6.30 \(\exists t_2(\) \) such that

\[h(X) < f_{\alpha+1} (\max Y). \]

Since \(t_1(\) \in E_{\alpha+1} \), it follows by Main Lemma, that \(\exists e_1, e_2 \)

\[t_1(X) < f_{\alpha+1} (\max X) \]

\[t_2(X) < f_{\alpha+1} (\max X). \]

So after \(S \) steps in the execution of \(\pi_g(\) \), putting \(m = \max \{ e_1, e_2, v_1, s_1 \} \) the maximum number of actual steps is given by

\[\sigma \pi_g(X) < f_{\alpha+1} (\max X) + \]
(f_{\alpha+1}(\max X) \cdot S) + f_{\alpha+1}(\max X)
and as before

\sigma_{\alpha}g(X) < S \cdot f_{\alpha+1}(\max X).

For S = c a constant the right hand side is in E_{\alpha,0}. Now assume g() \in E_{\alpha,1}, then by definition

\sigma_{\alpha}g() \in E_{\alpha,1}.

So by the Main Lemma \exists e such that

\sigma_{\alpha}g(X) < F_1(e, \max X) \quad X \in N^1.

Applying the same analysis as above up to line * and putting

S = F_1(e, \max X) yields

\sigma_{\alpha}g(X) < F_1(e, \max X) \cdot f_{\alpha+1}(\max X)

which is

< F_{\alpha+1}(p, \max X) \in E_{\alpha,1}.

(3) Case for limit ordinals. Assume for induction that

the result holds for all \beta < \alpha. Let \alpha_n \rightarrow \alpha with f_{\alpha_n} ()

s.s.n.e. for E_{\alpha}. Let g() \in E_{\alpha,0} with \pi_{\alpha} computing g()

such that \sigma_{\alpha}g() < constant, c. Suppose as above that

h_1() i = 1, ..., p are fixed instructions. Then by definition

h_1() \in \mathcal{D}(E_{\alpha}) so that by definition of \mathcal{D}(E_{\alpha}) and by

lemma 6.30 respectively \exists s_{1, \alpha}, v_1
\[\sigma h_1(Y) < f_\alpha^{(s_1)}(\max Y) \quad Y \in N_1 \]

\[h_1(Y) < f_\alpha^{(v_1)}(\max Y) \quad Y \in N_1. \]

Furthermore, if \(h_j(\) \) is generated as primitive over \(\mathcal{S}(E_\alpha) \), then by definition

\[\sigma h_j(Y) < f_\alpha^{(t_1(X))}(\max Y) \quad t_1(\) \in E_\alpha \]

and by lemma 6.30

\[h_j(Y) < f_\alpha^{(t_2(X))}(\max Y) \quad X \in N^n \quad Y \in N_1 \quad t_2(\) \in E_\alpha. \]

We are now in the situation for case (2) and can proceed exactly as before.
Chapter 7 Comparison of Hierarchies

In the first part of this chapter we consider the relationship between the ERCH and the other subrecursive hierarchies. In the second part we show how the choice of the s.s.n.e.'s can be made to depend rather naturally on a notion of relative computability with respect to the hierarchy classes.

The main theorem for the first part is:

7.1 Theorem.

(a) \(E^{\alpha+1} = E^{(1+\alpha)+1} \quad -1 \leq \alpha \leq 0 \)

(b) \(\bigcup_{\alpha \in \omega} C_\alpha = 0(\omega^\omega) = \bigcup_{\alpha \in \omega} E^\alpha = R^n = E^n \).

Here the \(C_\alpha, C_0 = R^1 \), are the classes of the Kleene subrecursive hierarchy, \(0(\omega) \) are the unnested \(\alpha \)-recursive functions, \(E^\alpha \) are the classes of Robbin's Extended Grzeegorczyk Hierarchy, \(R^n \) are Péter's \(n \)-fold recursive functions and \(E^\alpha \) are the classes of the ERCH.

For \(\alpha \in \omega \) in part (a), the result is essentially Cleave's theorem 3, the theorem we promised in Chapter 4. We prove 7.1 by establishing (a) and then citing Robbin[44] for (b).

Most of the real work in proving this theorem is done in the Actual Time Theorem 6.35 and in 7.2.

7.2 Normal Form Theorem.

There exist predicates \(T^S_m() \) elementary in \(S = \{ h_1(), \ldots, h_n() \} \) and there exists an elementary function \(U() \) such
that if \(g() : \mathbb{N}^n \to \mathbb{N} \) and \(g() \) is \(\mathcal{M}_1(\Sigma_0) \) computable, then

\[\exists e \text{ such that} \]

\((a) \quad g(X) = \bigcup_{\mu y} T_{n+2}^S(e, X, y) \quad \forall X \in \mathbb{N}^n, \)

\((b) \quad \text{if } g() \text{ is } \mathcal{M}_1(\Sigma_0) \text{ computable by program } \pi_g() \text{ and } h() \text{ is such that } \sigma_{\pi_g}(X) < h(X) \quad \forall X \in \mathbb{N}^n, \text{ then } \exists b() \in \mathcal{E}(h()) \text{ such that } g(X) = \bigcup_{\mu y \leq b(X)} T(e, X, y) \) so that \(g() \in \mathcal{E}(h()) \).

\((c) \quad \text{if } g() \in \mathcal{E}_\alpha, \text{ then } g() \in \mathcal{E}(f_\alpha()) \) for any normalization element \(f_\alpha() \) for \(\mathcal{B}(E_\alpha) \).

This theorem is proved in Appendix C. What we must do here is show 7.3 and 7.4.

7.3 Lemma. If \(W_0(x) = 2^x \), \(W_{\alpha+1}(x) = W_\alpha(x)(1) \), and \(W_\alpha(x) = W_\alpha(x) \) for \(\alpha \) a limit ordinal with \(\alpha \to \alpha \), then

\[W_{\alpha+1}() \in \mathcal{E}(E_{\alpha+1}) \text{ and } W_\alpha() \in \mathcal{B}(E_\alpha) \quad \alpha < \varepsilon_0. \]

7.4 Lemma. For all \(\alpha, -1 \leq \alpha < \varepsilon_0 \), there is a \(b() \in \mathcal{E} \) and \(\exists m \) such that \(f_{(\alpha+1)}(x) < W_{\alpha+1}(m)(b(x)) \forall x. \)

With these two lemmata we can easily prove 7.1 (a) as follows. First to show \(\mathcal{E}_{\alpha+1} \supseteq \mathcal{E}(W_{\alpha+1}()) \subseteq E_{(\alpha+1)} \) we observe that by 6.33 \(\mathcal{E}_\beta \) is closed under composition, explicit transformation and limited recursion for all \(\beta \). Thus since

\[W_{\alpha+1}() \in \mathcal{E}(E_{\alpha+1}) \text{ by Lemma 7.3, it follows from the definition of } \mathcal{E}(W_\alpha()), 3. \text{ that } \mathcal{E}_{\alpha+1} \subseteq E_{(\alpha+1)}. \]

Conversely, \(E_{(\alpha+1)} \subseteq \mathcal{B}(W_{\alpha+1}()) \) for \(-1 \leq \alpha < \varepsilon_0 \) because by the Normal Form Theorem, \(g() \in E_{(\alpha+1)} \) implies \(g() \in \mathcal{E}(h()) \) where \(h() \) is any function such that \(\exists \pi_g, \sigma_{\pi_g}(X) < \)}
h(X) ∀X and by the Actual Time Theorem 6.35 and Lemma 7.4 we have
\(\sigma g(X) < f_{1+\alpha+1}(\max X) = h(X) \in E_{\alpha+1}() \). Thus the burden is to prove the lemma.

Proof of 7.3. First define \(W_{-1}(x) = 2 \cdot x \), then \(W_{-1}(1) = 2^x = W_0(x) \). We notice that \(W_{-1}() \in E_0 \) since multiplication is a basic operation. Now proceeding as in Appendix A we can compute \(W_\alpha() \) according to a slight modification of the procedure outlined there. We need only show that for this procedure, say \(\pi_{W_\alpha}() \), we have

\[\sigma W_{\alpha+1}(x) < f_{1+\alpha+1}(x) \quad t() \in E_\alpha \]

and

\[W_{\beta}(x) < f_{\beta}(x) \quad t(), b() \in E_\beta. \]

But since the procedure for the \(W_\alpha() \) takes less steps than the procedure for \(f_{1+\alpha+1}() \), the result follows by the methods of Appendix B.

Proof of 7.4. First we notice that every \(f_{\alpha}() \) is elementary. We can see this quickly by noticing \(\sigma f_{\alpha}() \in E_0 \subseteq E \), so by 7.2 part (c) \(f_{\alpha}() \in E \).

Next we observe that if \(\lambda x g() \in E \), then \(\exists m \) such that \(g(x) < W_0^{(m)}(x) \). This is another tedious result, but fortunately it has essentially been demonstrated by Ritchie[42] where he shows

\[g() \in E \] implies \(\exists n g(x) < W_0^{(n)}(k \cdot x + k) \forall x \]

and since \(k \cdot x + k < W_0^{(k)}(x) \), we have \(g(x) < W_0^{(n+k)}(x) \). So \(m = n+k \). Thus \(\exists m f_{\alpha}(x) < W_0^{(m)}(x) \forall x \), and since
\(w_0^{(n-1)}(x) \in \mathcal{C} \) we have the result for \(\alpha = -1 \). Now since
\[w_0^{(m)}(x) < w_0^{(m+x)}(1) \quad \forall x \] we can continue by induction to show
\[f_2(x) = f_1(x)(x) < w_0^{(m+x)}(x) < w_0^{(m+2x)}(1) = w_1(2x+m). \]

Further it follows that
\[w_1(x)(2x+m) < w_1(4x+m)(1) \]
since \(w_1(x) > 2x+m \quad \forall x > m \). So that
\begin{align*}
 w_1(x)(2x+1) &= w_1(2w(2w(\ldots)+m)+m) \\
 &= w_1(w_1(w_1(\ldots)))) \\
 &< w_1(4x+m) \quad \forall x > m
\end{align*}

since \(w_1(2x+m) < w_1(2x+m)(1) \).

Thus
\[f_3(x) = f_2(x)(x) < w_1(x)(2x+m) < w_1(4x+m)(1) = w_2(4x+m). \]

We can continue in this manner knowing that \(w_1(x) > \omega n \cdot x+m \quad \forall x > \max\{n,m\} \) to conclude
\[f_{n+1}(x) < w_n(2n \cdot x+m). \]

Thus
\[f_\omega(x) = f_\omega(x) < f_{\omega+1}(x) < \omega(x(2x^2+m)). \]

Since
\[w_\omega(x) > 2x^2+m \quad \forall x > m-1 \]
we even have
\[f_\omega(x) < w_\omega(m)(x). \]

Using induction and extending the above techniques it is thus clear that for each \(\alpha \in \mathcal{C} \) we will have
\(f(1+\alpha+1(x) < \omega_{\alpha+1}(x) \)

as desired. For details see the method of Appendix B.

7.5 In this section we will examine a relativized version of the ERCH. The goal is to show the hierarchy in a more abstract light and to point out how the standard fundamental sequences for \(\alpha < \varepsilon_0 \) can be explained in terms of the hierarchy. We do not eliminate reference to normal elements altogether, but we show that the standard sequences can be defined in terms of the hierarchy process.

The extended Ritchie-Cleave hierarchy process can be relativized to any set of basic instructions \(\Sigma \). However, if \(\Sigma \) is not normal, then the methods of proof used in Chapters 4-6 are no longer applicable, and it is not known how such relativized hierarchies behave in general. Let \(E_\alpha(___) \) denote the relativized hierarchy up to \(\alpha \) and call it the class of functions \(E_\alpha \) computable in \(\Sigma \). We are interested in \(E_\alpha(f_\beta(___)) \) for \(f_\beta(___) \) a normal element. In this special case, the relativized hierarchy can be treated like the ERCH itself.

We first notice that although \(E_\alpha n = \mathcal{R}^n n = 0,1,\ldots \) \((\mathcal{R}^0 = \mathcal{E})\), the notion of "\(E_\alpha n \) computable in" is not the same as the notion "\(\mathcal{R}^n \) recursive in". For example, \(\mathcal{E}(f_1(___)) = \mathcal{E} \) whereas \(E_1(f_1(___)) = E_2 \). Moreover, the notion of RASP relative computability allows \(\Sigma \) to be infinite, raising the possibility of using program modification over a highly non-constructive set \(\Sigma \). No analogue to this con-
dition occurs in ordinary recursion theory. It is probably an interesting task to attempt defining "E_α recursive in" for $\alpha=\omega^\omega$.

Next we abstract from the ERCH process the following notion.

7.6 An E_δ-extending sequence from E_γ is a sequence of unary recursive functions, $g_1(_)$, such that

(a) $g_1(_)$ \not\in E_\gamma$
(b) $g_{n+1}(_)$ \not\in E_\delta^n = E_\delta(g_n(_))$
(c) $E_\delta^1 \supset E_\gamma$
(d) $E_\delta^{n+1} \supset E_\delta^n$.

If the $g_1(_)$ are normal elements generated from the same $f_0(_)$, then the sequence is called a normal E_δ-extending sequence from E_γ.

We say that the E_δ-extending sequence from E_γ, $g_1(_)$, reaches the class E_β iff E_β is the least hierarchy class containing $\bigcup_{i=1} E_\delta^i$.

7.7 Given a pair of hierarchy classes $<A,B>$ define the ordering $<A,B> < <A',B'>$ iff $B' \supset B$ or if $B' = B$ then $A' \supset A$. For E_α define the minimal pair $<E_\gamma,E_\delta>$ for E_α to be the \prec-least pair such that every normal E_δ-extending sequence from E_γ reaches E_α. Call E_δ the basic class for E_α.

7.8 If E_α has a minimal pair $<E_\gamma,E_\delta>$, then define $E_\alpha \cap_1 E_\delta$ as the least hierarchy class containing $\bigcap E_\delta(g_n(_))$ for all normal E_δ-extending sequences $g_n(_)$ from E_γ.
If E_{α_n} exists it is called the s.s.h.c for E_{α}; clearly it is unique. We will prove that the α_n of E_{α_n} constitute the standard fundamental sequence for α. Thus the s.s.h.c. can be used to select the s.s.n.e. This method will allow generation of the hierarchy up to E_{ω^ω}. The class E_{ω^ω} does not possess a basic class, but there exists for it a sequence of basic classes $E_{\omega^n} = B_n$. This sequence can be used to define the s.s.n.e. for the extension of E_{ω^ω}, namely using the correspondence $\omega^\alpha \rightarrow \alpha$, the standard fundamental sequence for E_{ω} defined by s.s.h.c. determines a fundamental sequence for ω^ω.

We show that in general every E_{α} for $\alpha \leq \varepsilon_0$ possesses either a basic class or a sequence of basic classes. In each case the basic classes determine a s.s.h.c. which can be used to define the s.s.n.e.

First we prove the following basic relationship between the ERCH and the notion of E_{α} computability.

7.9 Theorem. For all $\alpha \geq 1$ $E_{\alpha}(f_{\beta}(\)) = E_{\beta+\alpha}$.

Proof by induction on α. We claim $E_{\alpha}(f_{\beta}(\)) = E_{\beta+\alpha} = \mathcal{C}(f_{\beta+1}(\))$. Let $\Sigma_{\beta} = \Sigma_0 \cup \{f_{\beta}\}$, then Σ_{β} is normal with $f_{\beta}(\)$ as normal element. Taking $f_{\beta}(\)$ as a new instruction we can define $f_{\beta+1}(\)$ just as it is defined using $f_{\beta}(\)$ as a primitive subprogram. Since Σ_{β} is normal, the methods of Chapter 6 imply that $E_{\alpha}(f_{\beta}(\))$ is closed under composition, explicit transformation and limited recursion. Thus we get
$\mathcal{E}(f_{\beta+1}(\)) \subseteq E_1(\ f_{\beta}(\))$. On the other hand, whenever $f_{\beta}(\)$ is used in a program as a primitive instruction, it can be replaced by a subprogram for $f_{\beta}(\)$ which by the Hierarchy Theorem can be generated as primitive at level β of ERCH. So $E_1(\ f_{\beta}(\)) \subseteq E_{\beta+1}$.

By induction using the above and the equations

$$E_{\alpha+1}(f_{\beta}(\)) = \bigcup_{i=0}^{\infty} E_{\alpha+1}(f_{\beta}(\)) = \bigcup_{i=0}^{\infty} E_{\beta+\alpha+1}$$

$$E_{\alpha}(f_{\beta}) = \bigcup_{\gamma<\alpha} E_{\gamma}(f_{\beta}(\)) = \bigcup_{\gamma<\alpha} E_{\beta+\gamma} = E_{\beta+\alpha}$$

the theorem follows.

q.e.d.

The main theorems are

7.10 Theorem. The basic classes are $E_{\beta}^{\alpha} \beta<\varepsilon_0$.

7.11 Theorem. For every α a limit ordinal $<\varepsilon_0$, E_{α} either

(a) has a basic class or

(b) is limit of a sequence of basic classes.

In each case the basic classes determine the s.s.h.c. E_{α_n} and the s.s.n.e. $f_{\alpha_n}(\)$ for E_{α}.

To state theorem 7.11 in more detail, let $\alpha = \omega^{\beta_1} a_1 + \omega^{\beta_2} a_2 + \ldots + \omega^{\beta_s} a_s$ be the base ω decomposition of α with $a_{\alpha} \neq 0$. For brevity write $\alpha = \gamma + \omega^{\beta} a$ (so $\beta = \beta_s$, $a = a_s$, $\gamma = \alpha - \omega^{\beta} a$). The term $\omega^{\beta} a$ determines the case (a) or (b). If $a>1$ then

(a) holds with E_{ω}^{β} as basic class and $<E_{\gamma}^{\omega} E_{\omega}^{\beta} a$ as minimal
pair. If $a=1$ and β is a successor ordinal, then case (a) holds with basic class $E^{\omega \beta -1}_{\omega}$ minimal pair $<E^{\gamma}_{\omega}, E^{\omega \beta -1}_{\omega}>$. If $a=1$ and β is a limit ordinal, then case (b) holds with $E^{\omega \beta}_{\omega n}$ as the sequence of basic classes. These theorems are proved by a simple application of Theorem 7.9 and the definitions.
Chapter 8 Algorithmic Complexity

The class \(\mathcal{L}(E_\alpha) = \{ \pi_f \mid f(\) \in E_\alpha \} \) is quite badly behaved. It is not r.e. Programs may have arbitrarily long running time. They may display exceedingly complex and inefficient program structure and some programs may be for all practical purposes unrecognizable as elements of \(E_\alpha \). Thus \(\mathcal{L}(E_\alpha) \) is a bad notation system for \(E_\alpha \).

\(L_\alpha \) is a better system but it too has drawbacks. In particular the program structure for \(\pi_f \in L_\alpha \) may involve essential use of subprograms \(\pi_g \) belonging to higher languages, \(L_\beta, \beta > \alpha \). Such was the case with example 5.3 of page 64 (Chapter 5). Furthermore for certain programs of \(L_\alpha \) it may be virtually impossible to prove that they halt for each input (i.e. are total).

For \(L_\omega \) we know there are subsystems, \(L'_\omega \) which are well behaved, namely those arising as direct translations of the Péter formalism. The \(L_\omega \) has some particularly simple subsystems. It is interesting that among these systems are those possessing measures of algorithmic complexity which lead naturally to a new way of stating the condition on program modification over \(E_\omega \). Using such languages it becomes possible to state the extension condition for \(E_\omega \) in terms of the time it takes to "process certain program descriptions".

What we can prove is that for certain languages for \(E_\omega, L_\omega \), there are measures of algorithmic complexity, \(d(\) \), \(l(\) \), such that
\[\pi g() \in Ls_\omega \]

implies
\[\sigma g(X) < f_d(\pi g)_{(\max X)}. \]

Moreover \(\ell() \) and \(d() \) can be used to define the concept of program modification over \(Ls_\omega \). The basic fact is

8.1 The programs \(\pi g_{i X} \) for \(i = 1, 2, \ldots, n_X \) for \(X \in \mathbb{N}^n \)

can be generated as primitive in \(\pi \) over \(Ls_\omega \) iff

\[\pi g_{i X} \in Ls_\omega \text{ and } \exists t(), b() \in E_\omega \text{ such that } \forall X \in \mathbb{N}^n \]

i) \[\ell(\pi g_{i X}) < t(X) \]

ii) \[d(\pi g_{i X}) < b(X) \]

and \(\exists \pi' \in L_\omega \) which generates \(\pi g_{i X} \) at \(X \).

Thus by using the special language \(Ls_\omega \) and the notion of algorithmic complexity we can avoid explicit reference to the \(f_n() \) in defining conditions on program modification.

The special language \(Ls_\omega \) we originally used was obtained from Kleene's calculating system for primitive recursion. This system was chosen because S. McCleary in a 1967 paper had already analysed the computation bounds in this system in terms of a measure of algorithmic complexity, (number of R's in a computation expression.)

In the Kleene system if
\[f(X, 0) = g(X) \]

and \[f(X, y+1) = h(X, y, f(X, y)) \]

then a standard way to compute \(f(X, y_\omega) \) is to set up a loop which computes \(g(X), h(X, 0, g(X)), h(X, 1, h(X, 0, g(X))), h(X, 2, h(X, 1, (hX, 0, g(X)))), \), until \(y \) reaches \(y_\omega \). In
general, we pick a uniform method of translating recursion schemata into programs and we use only programs in this manner. Thus by restricting ourselves to programs which can do only this type of looping along with compositions, we get a system adequate for \(A^1 \) and easy to analyse with respect to computation bounds. This original procedure was somewhat ad hoc. Since then Meyer & Ritchie have published a paper which allows a much neater treatment of this idea. Using the new Meyer-Ritchie results not only affords a more elegant treatment, but it affords a simpler treatment because they use bounding functions, \(b_n(\) \) very similar to our \(f_n(\) \) whereas tedious effort is involved in showing that McCleary's bounds are compatible with our \(f_n(\) \). Thus instead of basing our observations on McCleary's work with Kleene's system as originally planned, we base it on the system of loop programs of Meyer & Ritchie.

Loop programs are defined as certain finite sequences of the basic instructions (1) \(X \leftarrow Y \) (2) \(X \leftarrow X+1 \) (3) \(X \leftarrow 0 \) (4) LOOP \(X \) and (5) END. The instructions (4) and (5) always come in pairs of the form LOOP \(X \), \(P \), END where \(P \) is some loop program. The meaning is that the program segment \(P \) will be repeated \(x \) times where \(x \) is the content of register \(X \). Thus for example LOOP \(X \), \(X \leftarrow X+1 \), END will double the contents of \(X \). The execution of LOOP \(X \) places the contents of \(X \) into a special register which is used to control the loop. The end statement can be regarded
as a test and decrement of this special register (performed just prior to execution of P). The set of loop programs is denoted Loop.

We may translate these loop programs into RASP programs in a uniform manner regarding them as higher level languages which are compiled as RASP programs before being run. The translation is clear. The instructions (1) - (3) can be directly translated (by fixing a 0 register for each program). Given the loop instructions LOOP X, P, END, they are translated into the RASP statements

\[
\begin{align*}
X_{L} & \leftarrow X \\
n & C(X_{L}, 0,) \\
X_{L} & \leftarrow X_{L} - 1 \\
P & C(0, 0, n) \\
m & \\
\end{align*}
\]

where SL, n and m are chosen not to conflict with other registers.

Loop programs will compute functions in the same manner as general RASP programs, i.e. input locations and value locations are specified in core. We need only discuss loop programs which compute functions. Following Meyer & Ritchie we define Loop_n = the set of all loop programs in which LOOP instructions are nested to depth of at most n. Re-called Loop^*_n = \{f() | \pi_f \in Loop_n\} it can be proved 8.2 Theorem Loop^*_n = E_{n+1} = E_{n-1} n \geq 2

(see Meyer & Ritchie). This allows us to assert that if f() \in E_n, then \exists \pi_f \in Loop_{n+1} \cap L_n.
Now define these measures of algorithmic complexity on loop programs.

8.3 \(d(\pi) = \) maximum depth of nesting of loops, \(\pi \in \text{Loop} \)
\(l(\pi) = \) length of the program, \(\pi \in \text{Loop} \).

The running time, \(\sigma(\pi) \), of a loop program \(\pi \) will simply be the running time of the corresponding RASP program. For \(\mathcal{W}_n(\cdot) \) as defined in Chapter 7, Ritchie & Meyer prove

8.4 Theorem. If \(\pi_f \in \text{Loop} \) and \(d(\pi) = n \), then \(\exists p \leq 6 \cdot l(\pi) \)
\(\sigma_{\pi_f}(X) < \mathcal{W}_n(p)(\max X) \).

We have shown in 7.4 that \(\exists q \forall n \forall x \mathcal{W}_n(x) < f_{n+1}(x) \). Thus we can say \(\pi_f \in \text{Loop} \) implies

\[\sigma_{\pi_f}(X) < f_{\frac{6 \cdot l(\pi) + q}{d(\pi) + 1}}(\max X) \forall X. \]

In terms of algorithmic complexity the condition on program modification over \(L_{S_\omega} \) becomes

8.5 The programs \(\pi_{g_{i_x}} \in L_{S_\omega}, i_x = 1, 2, \ldots, n_x \) are \(x \in \mathbb{N} \)

\(\mathcal{N} \) can be generated as primitive in \(\pi \) over \(L_{S_\omega} \) iff \(\exists t(\cdot), \)
\(b(\cdot) \in E_\omega \) such that \(\forall X \in \mathbb{N} \)

(i) \(l(\pi_{g_{i_x}}) < t(X) \)

(ii) \(d(\pi_{g_{i_x}}) < b(X) \)

and \(\exists \pi \in L_{S_\omega} \) which generates \(\pi_{g_{i_x}} \) at input \(X \).

The if part follows from the preceding remarks. For the only if part, suppose \(\sigma_{\pi_f}(\cdot) \) are generated as primitive; then
\[\sigma_{f_{i_X}}^*(x) < f_b(t(x))(\text{max } Y) \]

so \(f() \in \mathcal{O}(f_b(x))() = E_b(x) \) so by theorem 8.2 above,

\[\pi_{f_{i_X}} \in \text{Loop}_b(x). \] Thus \(d(\pi_{f_{i_X}}) \leq b(x) \). Also by taking \(t'(x) \)

\[= \max\{\ell(\pi_{f_{i_X}}), i_X = 1, 2, \ldots, n_X\}\] we have \(\ell(\pi_{f_{i_X}}) \leq t'(x) \) and \(t'() \in E_\omega \) because a program \(\pi \in \text{Ls}_\omega \) must generate the \(\pi_{f_{i_X}} \).

Thus \(n_X \) can be computed in \(E_\omega \). The significance of this observation is simply that the RCH can be extended without reference to normal elements.

These observations can be pursued in two interesting directions. First they lead to consideration of hierarchies of languages starting with Loop which will allow the entire ERCH to be generated on the basis of algorithmic complexity conditions rather than normal elements. The resulting language is type theoretic, being based on nesting of diagonalization and looping.

The other main direction involves the attempt to find a general description of the class of languages or measures of algorithmic complexity which behave as do the loop programs or the direct translations of primitive recursion. We have seen some properties that are crucial for these "natural languages" in example 5.3 of Chapter 5. We would like an abstract characterization of such languages for the classes \(E_\omega \).
We shall not pursue either of these paths into algorithmic complexity but shall follow a third path in this direction. We are interested in directing our results toward a level of investigation more relevant to a practical theory of complexity. This means we shall limit ourselves to functions within E_m.
PART II
Chapter 9 Finite Automata and RASP Machines

9.1 The ERCH emphasizes only one dimension of function complexity. We picture the ordinals as measuring the height of a function along this dimension. Another dimension, breadth, is measured by the complexity of the elementary operations which define $E_{\alpha+1}$ from $f_{\alpha+1}(\)$ or equivalently is measured by the structural (algorithmic) complexity of the programs used at each level.

The breadth of the ERCH has been fixed at \mathcal{E} (in the sense of theorem 7.1), so in order to study this dimension we shall look more closely at \mathcal{E}'s role in ERCH. One of the first questions is whether a simpler class \mathcal{B} of operations would generate a hierarchy B_{α} compatible with E_{α}, i.e., for each $E_{\alpha} \supseteq \mathcal{B} \supseteq \alpha$ such that $B_{\beta} = E_{\alpha}$. The goal would be to find an extremely simple \mathcal{B} which sufficed. The simplest basis would probably be the finite automaton operations. But it is easy to see that they are not adequate, being in a sense much too narrow.

To pursue this problem we have decided to examine computations within \mathcal{E} with respect to the simplest operations, finite automaton operations. We shall attempt to build up to an adequate class \mathcal{B} starting with this simple basis.

From a practical point of view we recognize that most functions of interest in normal computing probably occur within the class $E_1(\mathcal{E})$, certainly within $E_\omega(\mathcal{R}^1)$. Thus
our subsequent investigations can be construed as an effort to better understand the "practically computable functions."

9.2 The first step in this new direction is to define the class of finite automaton computable functions in terms of the RASP computing system. At this level of complexity research it is usually necessary to specify an encoding of \(\mathbb{N} \) in terms of a finite alphabet, \(A = \{a_0, \ldots, a_p\} \). Given alphabet \(A \), let \(A^* \) denote the set of all finite sequences of elements of \(A \). We use a binary encoding of \(\mathbb{N} \) based on the alphabet \(\{0, 1, B\} \) where \(B \) is a special symbol read as "blank."\(^1\)

9.3 We distinguish between a **binary encoding** (bc) and a **unique binary encoding** (ubc). By a ubc of \(n \in \mathbb{N} \) we mean the binary numeral for \(n \) preceded by a finite sequence of blanks, e.g. a ubc of 4 is BB100. By a bc of \(n \) we mean a member of \(\{0, 1, B\}^* \) such that the removal of all B's and those 0's which are not preceded (left to right) by a 1 results in the binary numeral for \(n \). Thus BB1B0B0B0B is a bc of 4 and so is 0B00B100. If \(X \in \{0, 1, B\}^* \), let \(|X| \) denote the length of \(X \), e.g. \(|10B1| = 4 \).

9.4 We next define a special type of RASP. Let \(A = \{a_1, \ldots, a_p\} \) and

\[
F = <\mathbb{N}, \mathbb{N} \cup A, B, K, F_1(), F_2()>
\]

where \(K = (\mathbb{N} \cup A)^\mathbb{N} \) and \(F_1() \), \(F_2() \) are generated by

This alphabet is standard in Turing machine Theory, see Myhill[38], Shepherdson & Sturgis[50], Ritchie[42] and Hermes[22], but not in automata theory where \(\{0, 1\} \) is used, see Moore[35], Rabin & Scott[35].
specific instructions to be given below. The registers, addressed by \(N \), hold either integers or the symbols of \(A \). When the registers hold only elements of \(A \) they are regarded as cells. The cells will hold the data while the other registers will hold instructions or will serve special purposes. The following instructions are used to define the particular RASPs of interest here. Let \(d(\) : N \overset{1-1}{\rightarrow} N \), \(\overline{d}(\) : N \rightarrow N \) such that \(\overline{d}(d(x)) = x \) and \(d(x) > x \) \(\forall x \) and let \(a \in A \). Also let \(\text{ctl}(\) : N \rightarrow N \) such that \(\text{ctl}(x) > x \) and if \(\text{ctl}(x) \neq d(x) \), then for all \(n \ \text{ctl}(n)(x) \neq d(n)(x) \).

1. \(\text{W}(s, a) \)

Write the symbol \(a \) in the register whose address is stored in \(s \in N \), then put \(d(k(s)) \) in \(s \) and if the current control address is \(e \), go to \(\text{ctl}(e) \) for the next instruction.

2. \(\overline{\text{W}}(s, a) \)

Same as above except \(\overline{d}(k(s)) \) is stored in \(s \).

3. \(\text{C}(s; a_0, b_0; a_1, b_1; \ldots; a_p, b_p) \)

If the content of the cell \(k(s) \) is \(a_i \) then go to location \(b_i \) for the next instruction.

4. \(s \leftarrow "b" \)

Store the integer \(b \) in register \(s \).

The address \(s \) is called the Storage Address Register (STAR). It holds the address of the cell to be operated on by the instructions. The instructions are said to use STAR, \(s \). The functions \(d(\) \) and \(\overline{d}(\) \) control changes in STAR and
are called locator functions. These functions must be chosen so that there is room in the RASP memory for the program and the STAR. For example,

\[d(x) = x + 2 \]
\[\overline{d}(x) = x \div 2 \]

or

\[d(x) = x \cdot p \quad p \text{ prime} \]
\[d(x) = \lfloor x/p \rfloor \]

are possible. The control function \(\text{ctl}() \) must be made compatible with the locators, e.g. take \(\text{ctl}(x) = d(x) \) in the above.

9.5 A program \(\pi \) on a RASP \(F \) with locator functions \(d() \) and \(\overline{d}() \) is said to process \(X \in A^* \) at \(s \) iff

(a) \(s, d(s), d(d(s)), \ldots, d^{(m)}(s) \) hold \(X \) when \(\pi \) begins, where \(m = |X| \) and

(b) \(d^{(n)}(s) \) is disjoint from the domain of \(\pi \) for all \(n \in N \).

9.6 A Turing program on \(F \) is a finite sequence \(I_0, I_1, \ldots, I_n \) of instructions such that

(a) \(I_0 \) is \(s \leftarrow "b" \)

(b) \(I_i, i > 0 \) are either conditional or write instructions each of which uses the same STAR, \(s \).

9.7 A finite automaton (f.a.) program on \(F \) is a Turing program such that

(b') \(I_i, i > 0 \) are either conditional or write instructions each of which uses the same STAR, \(s \), and the same locator function \(d() \), i.e. no f.a. program
contains both W and \overline{W} instructions.

9.8 A RASP F with an f.a. program we shall call a finite automaton. A state diagram (graph) can be derived from a flow chart for an f.a. program. First observe that flow charts can be made uniform if successive conditionals are compressed (since they are redundant), and successive write operations are considered to have implied conditionals between them. In this form the flow chart for the case $A = \{0, 1, B\}$ can be represented with blocks of the type

```
1
\(\overline{W_2}\) ← ¬B

0
\(\overline{W_1}\)

\(W_3\)
```

and an initial block of the form $a \leftarrow b$ where \rightarrow represents a conditional and W a write statement. To form a flow chart, the blocks are connected in obvious fashion, outward arrows go to the in terminal of some \rightarrow.

For terminating conditions, outward arrows are absent.

9.9 A state diagram can be derived from the flow chart by letting conditionals, represented now by \bigcirc's, correspond to states and writing $1/u_s$ to mean that
when the symbol being tested by conditional s_1 is i, then u is written and control is transferred to conditional s_2. The initial block is simply represented by an arrow into a state symbol. Thus

becomes

The states are called the states of π and the set of them is written S_π. The following is a complete state diagram.

9.10 A transition function $\delta_\pi(\alpha, y)$ is defined for a program as follows. $\delta_\pi(\alpha, s_1) = s_j$ iff there is a connection \rightarrow between s_1 and s_j in the state diagram ($\alpha \in A$). An output function $\lambda_\pi(\alpha, x)$ is defined so that $\lambda_\pi(\alpha, x) = \beta$ iff
there is a connection \(\rightarrow \) from state \(x \) in the state diagram. A **machine table** of \(\pi \) is defined to be the set of quadruples \(\langle \lambda_\pi(\alpha, s), \delta_\pi(\alpha, s), \alpha, s \rangle \) for all \(\alpha \in A \) and all \(s \in S_\pi \). We determine the initial state in the transition table by assigning it the least value among the addresses \((N) \) assigned to conditionals.

9.11 The usual definition of a finite automaton over \(A \) with initial state, \(s_0 \), is a quintuple

\[
Q = \langle S, s_0, A, \delta, \lambda \rangle
\]

where \(S \) is a set of states, \(s_0 \in S \) is the initial state, \(A \) a finite alphabet, \(\delta \) a map from \(A \times S \) into \(S \) called the **transition function** and \(\lambda \) a map from \(A \times S \) into \(A \) called the **output function**. The machine table for \(Q \) is defined as above taking \(\delta \) for \(\delta_\pi \) and \(\lambda \) for \(\lambda_\pi \).

9.12 Given the finite automaton \(Q \) over \(A \) there is a RASP

\[
QR = \langle N, N \cup A, a_0, K, F_1, F_2 \rangle
\]

with an f.a. program \(\pi_Q \) such that the machine table of \(\pi_Q \) is isomorphic to that \(Q \). Thus the study of RASPs of type \(F \) with f.a. programs includes the study of the usual finite automata. Among the concepts we need from automata theory is the notion of a **state machine**. This is a finite automaton with no output function \(\lambda(\) \).

9.13 There are two quasi-physical models of finite automata commonly in use. One we call the **tape model**, the other the **channel model**. For the tape model imagine a tape infinite on the left end composed of squares over which a
control head moves from right to left one square on each step. The head starts at the right most square and is allowed to write a symbol of A in the square under scan on each step. The head stops moving upon completion of its work. This is the model Ritchie [42] employs.

For the channel model imagine a black box having input terminals \(x_1, \ldots, x_n \) and output terminals \(y_1, \ldots, y_n \) and having a single exterior on-off light. The box is fed symbols on its input terminals and may or may not produce output symbols on terminals \(y_1 \). For the case \(A = \{0, 1, B\} \) we say as long as the box is receiving 0 or 1 symbols it remains on, but after receiving only B symbols it may go into an off state (light goes off).

The stop states in each model correspond to those states \(s \) for which \(\lambda(\alpha, s) = \beta \) and \(\delta(\alpha, s) = s \) \(\alpha \in A \).

9.14 Considering automata over \(\{0, 1, B\} \), the channel model provides the imagery for the definition of forced and autonomous response. When a finite automaton is responding to input pulses (0 and 1) its output is said to be its forced response. When the pulses cease (only B's are input) any remaining machine response is called autonomous. In the tape model, if \(Q \) is processing a string \(X \in A^* \) which is the ucb of \(n \in N \), then the autonomous response begins when the control head reaches the first B of the terminal string of blanks.

9.15 We wish to use our finite automata to compute
functions \(f(\cdot) : \mathbb{N}^n \rightarrow \mathbb{N} \). We need conventions for the input of multiple argument functions. Given an \(n \)-tuple \(\langle x_1, \ldots, x_n \rangle \in \mathbb{N}^n \) and letting \(\overline{x}_1 \) denote the binary numeral of \(x_1 \) we consider the following input formats.

(a) series format: \(\overline{x}_n \overline{B} \overline{x}_{n-1} \overline{B} \ldots \overline{B} \overline{x}_1 \), for example \(\langle 101, 100 \rangle \) is 101B100 in series format.

(b) mesh parallel format: \(m_p m_{p-1} \ldots m_1 \) where the \(m_i \) are defined by the rule: the first \(n \) digits, \(m_n, \ldots, m_1 \) are the rightmost digit of \(\overline{x}_1 \) in the order \(\overline{x}_n, \ldots, \overline{x}_1 \), the next \(n \) digits are the second digit of \(\overline{x}_1 \) in order (if for some \(i \) \(\overline{x}_i \) is exhausted then 0 is taken as the second digit), etc. For example \(\langle 101, 100 \rangle \) is 110010 in mesh parallel format or more generally \(\langle d_3 d_2 d_1, e_4 e_3 e_2 e_1 \rangle \) is \(e_4 d_3 e_3 d_2 e_2 d_1 e_1 \) and \(\langle e_4 e_3 e_2 e_1, d_3 d_2 d_1 \rangle \) is \(e_4 0 e_3 d_3 e_2 d_2 e_1 d_1 \).

(c) parallel format: for this format we need the alphabet \(\{0, 1, B\}^n \) where the elements are written in column form, e.g., \(\begin{pmatrix} 0 \\ 1 \\ \vdots \\ B \end{pmatrix} \), then

\[
\begin{pmatrix}
(d_1, p) \\
(d_2, p) \\
\vdots \\
(d_n, p)
\end{pmatrix}
\begin{pmatrix}
(d_1, p-1) \\
(d_2, p-1) \\
\vdots \\
(d_n, p-1)
\end{pmatrix}
\cdots
\begin{pmatrix}
(d_1, 1) \\
(d_2, 1) \\
\vdots \\
(d_n, 1)
\end{pmatrix}
\]

is the parallel format where \(p = \max |\overline{x}_1| \) and
\(d_1, p \ d_1, p-1 \ldots \ d_1, 1\) are the digits 0 0 \ldots 0 \(\overline{x_1}\) where there
are \(p - |x_1|\) 0's. For example \(<101, 100>\) is 100 101
and \(<d_3 \ d_2 \ d_1, e_4 \ e_3 \ e_2 \ e_1>\) is \(e_4 \ e_3 \ e_2 \ e_1\).

0 \ d_3 \ d_2 \ d_1

We shall primarily use the mesh parallel format. This allows us to consider only finite automata over \(\{0, 1, B\}\) and gives canonical mappings \(N^n \rightarrow N\) so that attention can be restricted to single argument functions.

9.15 We define the class FA, finite automaton computable functions over \(\{0, 1, B\}\) to be the class of all functions \(f(\) : N^n \rightarrow N\) such that \(\exists q\) and \(\exists\) an f.a. program \(\pi_f\) on \(F\) which started with \(<x_1, \ldots, x_n>\) in mesh parallel format, beginning at \(a\), will produce the bc of \(f(x_1, \ldots, x_n)\) in locations \(a\) through \(d^{(m)}(a)\) for all \(m > q\).

Other definitions of the f.a. computable functions over \(\{0, 1, B\}\) differ slightly from ours. For example, Ritchie uses parallel input format and requires the output in ubc. Most automata theorists use a channel model with parallel format over the alphabet \(\{0, 1\}\) and output is a member of \(\{0, 1\}^*\).

Our class FA is slightly broader than either of these usual classes. Nevertheless, the important basic theorems on finite automata continue to hold for FA. Among these results we shall need the following.
9.17 Theorem. If \(f(\) \in PA \), then \(\exists K \in N \) such that
\[|f(x)| \leq |x| + K \quad \forall x \in N. \]
For a proof see Ritchie[42] p. 164.

9.18 Theorem. Let \(F \) be a finite automaton on \(\{0,1,B\} \) with \(|F| = n \) = number of states of \(F \), then if \(F \) has a 1 output, there is an input sequence \(x, |x| \leq n \) which causes that output.
For a proof see Rabin & Scott[35] p. 75.

In closing this chapter we should point out that the RASP computing system is able to subsume the numerous machine models in current use such as multi-tape Turing machines, push down stack automata, Post machines, multi-tape finite automata and so on. The technique of defining these machines is similar to that used above in defining Turing programs and finite automata programs. The unifying treatment given the class of extant machines in Scott[49] could just as well be given using the RASP system.
Chapter 10 Rewind Automata

10.1 Finite automata are the stuff of genuine computers. For the computer designer they are good mathematical models. But for the computer scientist they are not adequate because they fail to provide a natural model of computing; for instance, even the function $x \cdot y$ is not f.a. computable. What the computer scientist seeks is a generalization of finite automaton computability. This generalization should permit all recursive functions of practical importance to be computable.

Previously we approached the same problem from the viewpoint of Turing machines when we asked for a subclass of the Turing computable functions which is more realistic. That was an approach "from the outside". Now we are looking for a similar kind of class, i.e. the practically computable functions, but we approach the problem "from the inside" by seeking a generalization of finite automaton computability. From this perspective we stress the relationship to finite automata whereas from the previous perspective we demanded only a vague type of constructivity.

There already exist generalizations of finite automata, Turing machines, push down stack machines, and others. But there is little transfer of concepts from these machines to finite automata and conversely. The notion of an iterative array is another generalization of finite automata which is
more related to automata theory in technique and concepts, but these devices do not lend themselves to a theory of practical computability.

In looking for a way to extend finite automata to more general computing devices we are led to consider various compositions of automata. Hartmanis & Sterns[19] define two types of composition, series and parallel. But these concepts do not lead outside the class FA. We introduce below a type of composition which does go beyond FA, viz. input controlled composition.

10.2 Let \(C = \langle S, S_0, A_m, \delta_0(\cdot) \rangle \) be a state machine over \(A_m = \{a_0, \ldots, a_m\} \) with \(S_0 = \{s_0, 1, s_0, 2, \ldots, s_0, n_0\} \). Let \(F_1 = \langle S_1, s_1, 1, \{0, 1, B\}, \delta_1(\cdot), \lambda_1(\cdot) \rangle \) \(i = 1, \ldots, q \leq n_0 \) be a sequence of finite automata over \(\{0, 1, B\} \) having states \(S_1 = \{s_1, 1, s_1, 2, \ldots, s_1, n_1\} \).

Consider an assignment \(\theta \) which is a pair of maps, a total map \(f_1(\cdot) : S_0 \xrightarrow{\text{Def}} \bigcup_{i=1}^{q} \{s_1, 1\} \) and a partial map \(f_2(\cdot) : (\bigcup_{i=1}^{q} \{s_1, 1\}) \rightarrow A_m \). That is, \(f_1(\cdot) \) assigns to each state of \(C \) the initial state of some \(F_1 \) and \(f_2(\cdot) \) assigns non-initial states of the \(F_1 \) to the alphabet of \(C \). For certain states \(f_2(\cdot) \) may be undefined. The \(F_i, C \) and \(\theta \) will be used to define a composite machine denoted \(C_\theta(F_1, \ldots, F_q) \) and called an automatic composite of \(C, F_1 \).

10.3 To precisely define the \(f(\cdot) - C \) composite machine of \(F_1 \), let \(F = \langle S_0, A_m, \bigcup S_1, f_1(s_0, 1), \{0, 1, B\}, \delta_p(\cdot) \rangle \).
\(\lambda_p(\cdot, \theta) \) where \(S_0 \) is the set of control states, \(A_m \) is the control alphabet, \(\bigcup S_1 \) is the set of component states, \(f_1(s_0, 1) \) is the initial state, \(\{0, 1, B\} \) is the working alphabet, \(\delta_p(\cdot) \) is the transition function, \(\lambda_p(\cdot) \) is the output function and \(\theta \) is the assignment. \(P \) is called the

C automatic composite of \(F_1 \). The \(F_i \) are called the component machines and \(C \) is called the control machine. The transition and output functions of the composite machine \(P \) satisfy the following where \(\delta_i(\cdot) \), \(\lambda_i(\cdot) \) are the corresponding functions of the component machines and state machine, \(i = 0, 1, \ldots, q \). If \(f_2(s_i, j) \) is undefined then

\[
\delta_p(\alpha, s_i, j) = \delta_i(\alpha, s_i, j) \quad \text{and} \quad \lambda_p(\alpha, s_i, j) = \lambda_i(\alpha, s_i, j)
\]

and if \(f_2(s_i, j) \) is defined

\[
\delta_p(\alpha, s_i, j) = f_1(\delta_0(f_2(s_i, j), f_1^{-1}(s_i, l))) \quad \text{and} \quad \lambda_p(\alpha, s_i, j) = \lambda_i(\alpha, s_i, j).
\]

10.4 The product machine operates as follows; if \(F_{1l} \)

is the machine assigned to the start state, \(s_0, 1 \), of \(C \) then \(F_{1l} \) begins processing the input \(x \), if during processing \(F_{1l} \) goes into a state \(s_{i1} \) which is assigned to a letter \(a_j \) of \(A_m \), then processing by \(F_{1l} \) terminates and the tape is sent to the machine assigned to \(\delta_0(a_j, s_0, 1) \) (say \(\delta_0(a_j, s_0, 1) = s_0, 2 \) and \(f_1(s_0, 2) = s_{i2}, 1 \)) then \(F_{12} \) starts processing the tape (starting at the left edge) until it goes into a state.
which is assigned to a letter a_k of A_m then processing by F_{i_2} terminates and $\delta_0(a_k, s_{0, 2})$ determines the next component which will process the tape. This process continues until the control machine goes into its stop state and the machine assigned to this stop state halts. The process is undefined at x if C or the component machines used never go into a stop state when given x or the machine F_{i_1} assigned to some control state reached given x, never goes into a state for which $f_2(\)$ is defined.

10.5 The notion of a computation of P can be made precise as follows. Define a configuration to be a triple $<t, s, q>$ where t is an element of $\{0, 1, B\}^\ast$, $s \in \cup S_i ; i = 1, \ldots, n$, $q \in \mathbb{N}$, $0 < q < |t|$. Call t the tape in P, s the current state of P and q the number of the scanned square of t. Next define a yield relation, \rightarrow, between configurations.

$$<a_m a_{m-1} \cdots a_1, s, q> \rightarrow <b_m, b_{m-1} \cdots b_1, s', q'>$$

if and only if

(a) $b_1 = a_1 \ \forall i \leq m$ and $i \neq q$ and $\delta_p(a_q, s) = s'$,

(b) $\lambda_p(a_q, s) = b_q$ and

(b) if $f_2(s)$ is defined, then $q' = 1$, $m' = m$ and

(c) if $f_2(s)$ is undefined, then $q' = q+1$ and if $q = m$, then $m' = m+1$ and $b_m = B$, otherwise $m' = m$.

Using the above tape model the product automaton can be thought of as an automaton on a one way tape which not only moves along the tape square by square in one direction (as a finite automaton) but which can also move in the opposite
direction from any tape square to the end of the tape in a single step. A suggestive description is that during processing the tape moves along under the head and can be rewound at any moment. This leads to calling the machine a rewind automaton.

10.6 Below is an example of a rewind automaton which computes the difference $x - y$. This function is clearly not f.a. computable since there is no way to determine whether $x \geq y$ before the subtraction must be started. The machine below performs the subtraction in two passes; the first determines whether $x \geq y$ while the second either subtracts ($x \geq y$) or prints out 0 ($x < y$). The component machines are F_1, f_2, and F_3, the control machine is C.

\[F_1: \text{tests } x \geq y \]
F_2: subtraction

F_3: 0 output

C: control

The assignment θ is

\[
\begin{align*}
 f_1() & = f_2() \\
 s_0 1 & \rightarrow s_1 1 \\
 s_0 2 & \rightarrow s_2 1 \\
 s_0 3 & \rightarrow s_3 1 \\
 x & \rightarrow a_1 \\
 y & \rightarrow a_2.
\end{align*}
\]

10.7 We can make the definition of a rewind automata more general by defining a machine $\langle S, R, A, s_0, \delta(), \lambda() \rangle$ where S and R are sets of states, $S \cap R = \emptyset$, A an alphabet, s_0 an initial state, $\delta()$ a transition function and $\lambda()$ an
output function such that $\delta(\) : A \times S \cup R \rightarrow S$ and $\lambda(\) : A \times S \cup R \rightarrow A$, and $\delta(\alpha, r) = \delta(\beta, r)$ $\forall \alpha, \beta$ for $r \in R$.

A configuration is defined as before and the yield relation is defined as follows.

$$<a_m a_{m-1} \ldots a_1, s, q> \rightarrow <b_m b_{m-1} \ldots b_1, s', q'>$$

if and only if

(i) $b_i = a_i$ $\forall i \leq m$ and $i \neq q$ and $\delta(a_q, s) = s'$

and

and

(ii) if $s \in S$, then $q' = q + 1$ and if $q = m$ then $m' = m + 1$ and $b_m = B$ otherwise $m' = m$

and

(iii) if $s \in R$, then $q' = 1$, $m' = m$.

10.8 Using this more general definition of a rewind automaton the C_θ composite machine can be interpreted as a canonical form for rewind automata. Given a C_θ composite machine of F_i it is clear how to define a rewind automaton, namely let $R = \{s_i j \mid j \neq i$ and $f_2(s_i j)$ is defined$\}$ and take $\delta_p(\), \lambda_p(\)$ as $\delta(\), \lambda(\)$.

10.9 Conversely, given a rewind automaton, F, there is a unique control automaton C and canonical form for F.

Namely, let the states following rewind states be denoted $s_2 1$, $s_3 1$, ..., $s_q 1$ and let $s_0 1$ be the initial state of F. Consider the $s_i 1$ as initial states and define a finite automaton F_i for each as follows.
(i) \(s_1 L \in S_1 \) and if for \(s \in S_1 \) and \(s \notin R \), then \(\delta(\alpha, s) = s' \), \(s' \in S_1 \).

(ii) if \(s \in S_1 \) and \(s \notin R \), then \(\delta_1(\alpha, s) = \delta(\alpha, s) \), but if \(s \in R \), then \(\delta_1(\alpha, s) = s \).

(iii) if \(s \in S_1 \) and \(s \notin R \), then \(\lambda_1(\alpha, s) = \lambda(\alpha, s) \), but if \(s \in R \), then \(\lambda_1(\alpha, s) = \alpha \).

To define the control machine pick an alphabet \(A \) such that \(|A| = |R| \) and for each \(r \in R \) assign \(a_r \in A \). Then \(C = <\{s_1 L\}, A, \delta_0(\quad) \rangle \) where \(\delta_0(a_r, s_1 L) = s_1 L \) iff \((\alpha, r) = s_1 L \).

10.10 We can require further uniformity in the canonical form by stipulating that if \(f_2(s_1 j) \) is defined, then

\[\delta_1(\alpha, s_1 j) = s_1 j \]

and by stipulating that for stop states \(\lambda_1(\alpha, s_1 j) = \alpha \). We can also require that no component automaton go into a rewind state until after its forced response. Without loss of generality we shall consider only \(C_0 \) composite machines of the restricted type.

10.11 In terms of the RASP computing system a rewind automaton can be presented by defining a rewind program \(\pi \) to be a finite sequence of instructions \(\leftarrow \) "b", \(C(a;) \), \(W(a, \quad) \) beginning with \(a \leftarrow \) "b". That is \(\pi \) is like an f.a. program except unrestricted use of the \(a \leftarrow \) "b" instruction, which initializes STAR, is allowed.

10.12 Another interpretation of rewind automata as a RASP computing system results from taking FA along with the
class FA_n of finite automaton n-valued relations and the conditionals on these relations as basic instructions on a RASP which uses one register, a, for computing and the others to hold the program. (If $R()$ is an n-valued f.a. relation with values $0, 1, \ldots, n-1$, then $C(a; 0, b_0; 1, b_1; \ldots; n-1, b_{n-1})$ means "if $R(k(a))$ has value m $(0 \leq m \leq n-1)$ then go to statement b_m" and is the conditional on $R()$.)

10.13 The rewind automaton is a very natural result of an attempt to pursue the question we raised in the last chapter, how to refine the Ritchie hierarchy of elementary functions. Ritchie's original definition of his hierarchy contains a "discontinuity". He begins with the class F_0 of f.a. functions and then jumps to the class F_1 by allowing his machine to operate as a full Turing machine, i.e. move in both directions. It seems "natural" from the viewpoint of finite automata to define $F_{n+1} = \text{set of all rewind automaton computable functions whose computations require an amount of tape bounded by a function in } F_n$.

It is easy to show that the resulting rewind automaton based hierarchy still reaches precisely E at the limit ω. Thus the work which follows can be construed as an investigation of refinements of a version of the Ritchie hierarchy.

10.14 To begin these investigations we define the following parameters on computation
(1) $\tau \pi(x) =$ maximum number of tape squares used in the computation of π at input x.

(2) $\sigma \pi(x) =$ number of steps used in the computation of π at x.

(3) $\rho \pi(x) =$ number of rewinds in the computation of π at x.

10.15 We are primarily concerned with the parameters τ and ρ and we define the classes

$$L(t(\), r(\)) = \{\pi_f \mid \tau \pi_f(x) < t(x) \& \rho \pi_f(x) < r(x)\}$$

$$A(t(\), r(\)) = \{f(\) \mid \exists \pi_f \in L(t(\), r(\))\}.$$

Notice that because of our input format these classes include multiple argument functions when $t(\)$ and $r(\)$ are only single argument functions, i.e. the same string of symbols can be treated as either a single numeral or as a uniquely decodable merger of n separate numerals.

10.16 Employing a rough analogy with geometry we can speak of co-ordinatizing a subset S of R using tape and rewind parameters. By selecting a principal axis in each of the partially ordered sets of tape and rewind bounds we have something analogous to co-ordinate axes for which we can then seek some appropriate scale. It turns out that a scale based on $\log_2(\)$ is very natural and convenient (as we shall see later). The diagram below illustrates these ideas.
A natural question suggested by the diagram is

Q1: How are the functions distributed in this plane, e.g. is there a function which is in \(A < \log()^2 \), \(\log()^2 > \) but not in \(A < \log(), \log() > \) or more generally in \(A < t(), r() > \) but not in \(A < t'(()), r'() > \)?

Questions of the type Q1 are in general difficult to answer for close values of \(t() \), \(t'() \) or \(r() \), \(r'() \). Another difficult type of question is

Q2: Given a function \(f() \) what are bounds on \(t() \) and \(r() \) such that \(f() \) is \(A < t(), r() > \), e.g. is multiplication in \(A < \log(xy) + 1, \log(x)^2 > \)?

Another question suggested by this context is

Q3: Is there a \(t-r \) tradeoff relationship between tape and rewind parameters, i.e. if \(f() \) is \(A < t(), r() > \) do there exist \(t'(()) < t() \) and \(r'(()) > r() \) such that \(f() \) is \(A < t'(), r'() > \)?
Another basic question is

Q4: How do various known classes such as E^i_n, relate to $A<\alpha(\)$, $b(\)$? An especially interesting case is the location of a basis for the recursively enumerable sets. (A set of recursive functions, B, is called a basis for the r.e. sets iff every r.e. set is enumerated by some $f(\) \in B$.)

Questions Q1 - Q3 are all closely related. They are similar to questions considered in the papers of Hartmanis & Stearns[17], Rabin[41], and Cook[3]. Such questions are crucial to the problem of deciding when a given function can be computed under specified conditions. Such problems must be solved in order to yield the most basic evidence for a theory of computational complexity. For example, knowing under what conditions multiplication is harder to perform than addition is central to any complexity theory. Unfortunately such results are hard to come by. At this stage of our knowledge we are apparently forced to examine specific computing systems and in particular the "low level" computations of these systems in great detail in order to produce the required evidence. Such work requires a kind of combinatorial analysis which is tedious and difficult.

10.17 In attempting to develop new techniques for such problems, one is led in many directions. We are especially interested in those directions which lead toward automata theory. Since the problem of relating intrinsic function
properties, such as rate of growth or speed of oscillation, to properties of computations, such as number of steps or volume of memory, is apparently central to answering the questions raised above, the following technique recommends itself.

Technique 1. Given a property \(P() \) of f.a. functions, discover how \(P() \) behaves under increasing rewinds.

We will illustrate this technique below, but our main effort in the next chapter will be to give answers to special cases of Q1 and give an answer to Q4 as it pertains to a basis for r.e. sets. We use the later result to shed light on the main question of the previous chapter, is there a smaller basis for the ERCH than \(\mathcal{E} \)?
Chapter 11 Low Level Complexity Classes

Rewind automata are well suited for the investigation of complexity at low levels of the hierarchy. In this chapter we prove some fundamental facts about $A(\omega, t(\), r())$. When we are only concerned about rewind behavior, we let $A(r()) = \bigcup_{t(\) \in Q} A(t(\), r())$. The basic theorems are given below.

11.1 Theorem. $A(n) = A(1)$ for $n > 0$.

11.2 Theorem. If $\forall c \exists n$ such that $b(x) < \log \log (x)/c$ for all $x \geq n$, then $A(b(\)) = A(1)$.

11.3 $A(\omega \log (\), \log (\))$ contains a basis for the r.e. sets.

The theorems are all proved by generalizing the techniques of finite automata theory. Theorems 1 and 2 offer a start on $Q1$ of Chapter 10 by giving a complete description of the rewind axis below $\log \log (\)$. Theorem 5 answers $Q4$. Numerous other results locating known classes $A(t(\), b(\))$ can be obtained in a routine manner, but they are not needed.

11.4 For $f(\): \mathbb{N} \rightarrow \mathbb{N}$ a value $f(x)$ will be called singular iff there are infinitely many $n \in \mathbb{N}$ such that $f(n) = f(x)$. n is called a singular argument of $f(\)$.

11.5 Define the lower derivative, $f^0(\)$, of $f(\)$ as follows. Let y_1, y_2, \ldots be the non-singular values of $f(\)$ in their natural ordering. Define x_1 as the largest x such that $f(x) = y_1$. Then put $f^0(x_1) = \min f(x_j) \ x_j \geq x_1$. If
$x_1 < x < x_{1+1}$, then $f^0(x) = f(x_{1+1})$. The lower derivative is well defined iff $f^0(\)$ is total, i.e. infinitely many y_1's exist.

An equivalent definition of $f^0(\)$ is that it is formed by taking the slowest growing monotone subsequence of $f(\)$'s non-singular values and filling it in with the largest step function. Notice, $f^0(x) \leq f(x) \ \forall x$ and $f^0(x)$ is monotone increasing. Also notice that $f^0(\)$ is not recursive (uniformly) in $f(\)$ nor necessarily recursive if $f(\)$ is. We call $f^0(\)$ the minimum rate of growth function for $f(\)$.

Another way to see $f^0(\)$ is to consider the usual partial ordering of functions, $f(\) \leq_{a.e.} g(\)$ iff $f(x) \leq g(x)$ for all but finitely many points. Put $f(\) \leq_{n.s.} g(\)$ iff $f(x) \leq g(x)$ a.e. on non-singular points.

We can then characterize $f^0(\)$ by the following.

11.6 Proposition. If $m(\)$ is monotone increasing and $m(\) \leq_{n.s.} f(\)$, then $m(\) \leq f^0(\) \leq_{n.s.} f(\)$, i.e. $f^0(\)$ is the greatest monotone function below $f(\)$.

Let $[y]$ denote the greatest integer less than y. We now wish to prove

11.7 Theorem. Suppose $f(\) \in FA$ and $f^0(\)$ is defined, then $\exists L$ such that $f^0(x) > [x^{1/L}]^2 \ \forall x$.

The theorem follows from the lemma. Recall that for $x \in \{0,1,B\}^*$, $|x|$ denotes the length of x.

11.8 Lemma. Let $f(\) \in FA$, then there is an L such that for all x if $f(x)$ is non-singular, then $|\overline{f(x)}| > |x|/L$.
where \(\overline{f(x)} \) is the binary numeral of \(f(x) \).

Assuming for the moment that the lemma holds, let us derive the theorem. We ask for the minimum possible value that \(f(\) \) could have while satisfying \(|\overline{f(x)}| > |x|/L \). Such a value occurs when the digits of \(\overline{f(x)} \) are 0's except for the last. So mapping each \(x \) to its minimum possible value means \(x \rightarrow 2^\lceil |x|/L \rceil \). Put \(L(x) = 2^\lceil |x|/L \rceil \).

Now compare \(L(x) \) with \(\lceil x^{1/L} \rceil \). Notice \(\lceil x^{1/L} \rceil \) is monotone increasing. For \(x \)'s of the form \(2^k \), we have \(|2^k| = k+1 \), and \(\lceil (2^k)^{1/L} \rceil = \lceil 2^{k/L} \rceil \). Compare \(2^{\lfloor k/L \rfloor} \) with \(2^{k/L} \). Suppose \(k/L = a + b/L \), so that \(\lfloor k/L \rfloor = a \) and \(2^{k/L} = 2^a \cdot 2^{b/L} \). Since \(b/L < 1 \) we get \(2^{k/L} < 2^{a+1} = 2^{\lfloor k/L \rfloor + 1} \). Since \(\lfloor x \rfloor \leq x \) we have \(\lceil 2^{k/L} \rceil \leq 2^{\lfloor k/L \rfloor + 1} \). So \(\lceil 2^{k/L} \rceil /2 \leq 2^{\lfloor k/L \rfloor} \). Next,

\[
L(2^k) = 2^{\lfloor k+1/L \rfloor} \geq \lceil 2^{k+1/L} \rceil /2
\]

by taking \(k+1 \) for \(k \) above.

We now claim \(L(x) \geq \lceil x^{1/L} \rceil /2 \ \forall x \) because for \(2^k < x < 2^{k+1} \) we know \(L(2^k) \leq L(x) \leq L(2^{k+1}) \) and \(\lceil 2^{k/L} \rceil \leq \lceil x^{1/L} \rceil \leq \lceil 2^{k+1/L} \rceil \). So

\[
\lceil x^{1/L} \rceil /2 \leq \lceil 2^{k+1/L} \rceil /2 \leq L(2^k) \leq L(x) \ \forall x
\]

by *.

Hence we now have \(f(x) \geq_{\text{n.s.}} L(x) \geq \lceil x^{1/L} \rceil /2 \ \forall x \). But since \(L(\) \) is a monotone function lying below \(f(\) \), we know by Proposition 11.6 that \(L(\) < f^0(\) \leq_{\text{n.s.}} f(\) \).

q.e.d.

11.9 We now prove 11.8. \(|\overline{f(x)}| \geq |x|/L \) for \(f(x) \) non-
singular, \(f(\cdot) \in \mathcal{FA}. \)

Suppose finite automaton \(F \) with \(N \) states computes \(f(\cdot) \). Given any input \(x_1 \), partition it into disjoint sections of length \(L > N \) (starting from the right). If on every segment there is a 1 output or if on every segment which is followed by a segment with a 1 output, there is a 0 or a 1 output, then the result clearly holds. We consider now the remaining case.

What we show is that if a segment not followed by a 1 produces all 0's or B's as output or if a segment which is followed by a 1 produces all B's as output, then \(f(x_1) \) is singular. Consider the later case. Let the digits of the input segment which has produced all B's be denoted by \(x_L x_{L-1} \ldots x_2 x_1 \). Record beneath each digit the state \(s_i \) of \(F \) when it receives the input digit \(x_i \), e.g.,

\[
\begin{array}{ccc}
 x_L & x_{L-1} & \ldots & x_2 & x_1 \\
 s_i & s_i & \ldots & s_2 & s_1 \\
\end{array}
\]

Since \(L > N \), two of these states must be identical, say \(s_{i_p} = s_{i_{p+q}} \). Let \(w_1, w_2, \ldots, w_q \) be the digits between \(x_{i_p} \) and \(x_{i_{p+q}} \). Let \(w \) denote the entire sequence \(w_q w_{q-1} \ldots w_1 \).

Let \(y = x_{L} \ldots x_{i_p} \) and \(z = x_{i_p} \ldots x_1 \) and define

\[
\begin{align*}
x_1 &= y w z \\
x_2 &= y w w z \\
x_3 &= y w w w z \\
\ldots
\end{align*}
\]
Observe that \(f(x_1) = f(x_2) \) \(i = 1, 2, 3, \ldots \) since the output on \(w \) is all \(B \)'s and since \(F \) is in state \(s_{1p+q+1} \) when it starts \(y \) for each \(x_i \). Thus \(f(x_1) \) is singular which is a contradiction.

In the case when the segment is not followed by a \(L \), the \(0 \)'s count as blanks in determining the value of \(f(x_1) \) so the same argument applies.

\[\text{q.e.d.} \]

11.10 A class \(S \) of functions is said to have a minimum rate of growth, \(m() \), iff \(f() \in S \) implies \(f^0() \geq_{a.e.} m() \) whenever \(f^0() \) exists. What we have shown is that \(FA \) has a minimum rate of growth. That is, since \(\log(x) \leq_{a.e.} x^{1/L} \), \(\log() \) is a lower bound on the growth rate in \(FA \).

11.11 We now ask how \(f^0() \) behaves as the number of rewinds increases. We will prove that the only classes \(A< t(), b() > \) which possess a minimum rate of growth are \(A< t(), 0 > = FA \) and \(A< t(), 1 > \) ("1 rewinds"). In each case \(t() \) to \(\log() + c \). This result shows that minimum rate of growth unlike maximum rate of growth can not be used to characterize \(A< t(), b() > \).

11.12 If we attempt to directly generalize the method of Theorem 11.7 to the case of multiple rewinds, we encounter the following difficulty. The input sequences \(x_1, y w z, y w w z, \ldots \) which were used to produce the singular value in the \(FA \) case may not produce a singular value in the rewind case. The response of the automaton can
depend on future digits as well as past digits since it may
survey the input before processing it. There is however a
way to reduce this problem to the case of finite automata.
The method illustrates one of the nice features of rewind
automata, their close connection with finite automata.

11.13 We first introduce the notion of a path automaton.
Suppose that the rewind automaton \(F \) in canonical form is
composed of the component automata \(F_1, \ldots, F_p \). If \(F \) is de-

defined at the input \(x \) (computation terminates), then \(x \) is
processed by a finite sequence of finite automata \(F_{i_1}, F_{i_2},
\ldots, F_{i_n} \) (\(n \) depending on \(x \)) where \(F_{i_j} \) processes the out-
put of \(F_{i_{j-1}} \) and \(F_{i_1} \) processes \(x \) itself. This sequence of
automata can be put together to define a single finite autom-
aton, \(P \), called a path automaton which processes \(x \) so that
the output of \(P(x) \) is identical to the output \(F(x) \). We
define \(P \) precisely next.

\[
P = <s_1, x, s_1, \ldots, s_n, \{0, 1, B\}, \delta_p(\cdot), \lambda_p(\cdot)>
\]

Let \(R = \) rewind states of \(F \), then

\[
\lambda_p(\alpha, <s_1, \ldots, s_n>) = \gamma
\]

and

\[
\delta_p(\alpha, <s_1, \ldots, s_n>) = <s_i', \ldots, s_n'>
\]

iff

\[
(\delta_{i_1}(\alpha, s_1) = s_1' \& \lambda_{i_1}(\alpha, s_1) = \beta_1) \& \n
(\delta_{i_2}(\beta_1, s_2) = s_2' \& \lambda_{i_2}(\beta_1, s_2) = \beta_2) \& \n
\ldots
\]
\((\delta_n(\beta_{n-1}, s_n) = s_n' \& \lambda_n(\beta_{n-1}, s_n) = \gamma) \)

Recall in the canonical form \(\delta(\alpha, s) = s \) and \(\lambda(\alpha, s) = \alpha \)
if \(s \in R \).

11.14 To illustrate the notion of a path automaton consider the simple rewind automaton \(F \) given by

Consider the path automaton \(F_1F_2 \). It begins as follows.
11.15 We now consider a generalization of Theorem 11.7 to the case of multiple rewinds. Suppose \(f(\cdot) \in A_{<t(\cdot),1>\cdot} \) and is computed by \(F \), say \(|F| = N \). If \(P_1, P_2, \ldots, P_q \) are the path automata of \(F \), then \(|P_i| \leq N^2 \) \(i = 1, \ldots, q \). Arguing as in Theorem 11.7 we suppose that for some input \(x \) with \(|x| > N^2 \) the output sequence contains \(N^2 \) or more consecutive \(B \)'s. Then the technique of Theorem 11.7 can be applied to the path automaton \(P \) which processes \(x \). We need only guarantee that the state cycle produced in \(P \) can actually be realized by \(F \).

This will happen if the rewind behavior is not altered by repeating the tape segments, \(w \), which produce the state cycle. But during the state cycle in \(P \) no component can go into a rewind state, \(r_{ij} \). This is because once it goes into such a state it remains in that state until the pass is completed. In the canonical form the pass is not repeated until after the forced response. Thus the component state would remain \(r_{ij} \), and it would thus be impossible for a state cycle in \(P \) to occur. Thus a rewind state \(r_{ij} \) can occur as a component state in a state cycle of \(P \) only if it occurs in the first state of the cycle which means that the rewind behavior has been determined before the state cycle.

It now follows that the segments \(w \) can be repeated without changing the rewind behavior. Thus the inputs \(x_1, ywz, \)
y w w z, y w w w z, ... are all processed by P since rewind state behavior controls selection of the component automata. Hence we conclude

$$|f(x)| \geq |x|/N^2$$

if x is non-singular. We state this result formally.

11.16 Theorem. If $f() \in A< t(), 1>$, then $\exists L$ such that $f^0() > [x^{1/L}]$.

The above argument clearly generalizes to $b()$ rewinds so that we can conclude more.

11.17 Theorem. If $f() \in A< t(), b()>$, then $\exists N$ such that $|f_N(x)| \geq |x|/N^b(x)$.

But now unless $b(x) < \log \log (x) \Rightarrow n$ the statement is meaningless since $|x|/N^{\log \log (x)} < 1$ and clearly for all $g()$ $|g(x)| > 1 \forall x$. We can in fact show that the above result is applicable to only a narrow class of functions. Namely if $\forall c \exists m$ such that for $x > m$

$$b(x) < \log \log (x)/c,$$

then $A(b(x)) = A(n)$. Thus the range of application is somewhere between $\log \log ()$ and $\log \log ()/c$. We will prove this fact in 11.21. First we prove a result that allows a further reduction.

11.1 Theorem. $A(n) = A(1), n > 0$.

11.18 The theorem asserts that a bounded number of rewinds provides no more power than a single rewind. Moreover we can arrange the computation so that the first pass is merely a recognition pass, i.e. no writing is done on
that pass. This result offers an interesting contrast with Hartmanis[20]. He shows that for Turing machine complexity classes based on tape reversals, \(n+1 \) tape reversals gives more functions than \(n \) reversals.

The idea of the proof is that if \(f() \) is computed by \(F \) which requires at most \(n \) re-winds regardless of input, then it is possible to list all path automata of \(F \) and build a new machine \(F' \) which uses its first pass to decide which path automaton is applied and its second pass to actually apply that automaton. The only fact to be proved carefully is that \(F' \) can select the path automaton in one pass.

The intuitive argument is that given \(F \) it is known which component automaton is applied first, say \(F_{i_1} \). As \(F' \) passes over the tape the first time it simultaneously computes with each path automaton and keeps track of the states of all path machines that it is running, say it keeps a table of current states in the path automata \(P_1, \ldots, P_q \). When the first pass component \(F_{i_1} \) goes into a re-wind state, then \(F' \) knows what the second pass component is, say \(F_{i_2} \) and can then eliminate from consideration certain of the \(P_i \) those not having \(F_{i_2} \) as their second component. It keeps track of this elimination by marking its table of states with 0's. \(F' \) continues along the tape until \(F_{i_2} \) re-winds unless it already has in which case this fact is recognizable from the state
of \(P_i \) (the second component will be in a rewind state). In either case after a finite number of steps (possibly 0) \(F' \) will know the third pass component, \(P_{i3} \), and can eliminate more table entries. This process continues until one of the path automata remaining under consideration, say \(P_{i0} \), stops. Then \(F' \) rewinds and processes the tape using \(P_{i0} \). The fact that all this can be done by a finite automaton follows because the table for keeping track of the \(P_i \) is finite which in turn follows since the number of rewinds is bounded.

11.19 To be more precise about the above arguments let \(P_1, \ldots, P_q \) be the path automata and \(F_1, \ldots, F_p \) be the component automata of \(F \). Construct a sequence, \(L \), whose elements are states of the \(P_i \), integers \(k \leq n \) and integers \(c \leq p \). The integer \(k \) keeps track of passes over the tape while \(c \) keeps track of which component of \(F \) is used on that pass. The states \(S_i \) \(i=1, \ldots, p \) are assumed to be disjoint. The states of \(P_i \) are denoted \(<e_{i,1}, e_{i,2}, \ldots, e_{i,t}>\) for \(t \leq n \) where each \(e_{i,j} \in S_{k_j} \). Where \(k_j \) depends on the order of the components \(P_i \) in the path.

11.20 The sequence \(L \) is \(<s_1, j, s_2, j, \ldots, s_q, j, k, c>\) where \(s_i, j \) is a state of \(P_i \). The initial state \(L_1 \) will be \(<s_1, l, \ldots, s_q, l, l_1>\) where \(s_1, l \) are the initial states of \(P_i \) and \(l_1 \) is the first pass component of \(F \). We can define transition and output functions \(\delta_F(\cdot, L) \), \(\lambda_F(\cdot, L) \). The "usual" transition will be \(\delta_F(a, L) = L' = <s_1', j, \ldots, s_q', j, k', c'> \)
where $s_i', j = \delta_{P_1} (s_i, j), \ k = k' and c = c$. And the output on the first pass of F' is $\lambda_{P_1} (s_i, L) = \alpha$. But, whenever F rewinds this usual transition is interrupted and certain states s_i, j are set to be zero (and remain zero).

The first rewind is detected when for some i, $s_i, j = <e_{i, 1}, e_{i, 2}, \ldots, e_{i, t_1}>$ and $e_{i, 1}$ goes into a rewind state, i.e. $e_{i, 1} \in R$. When this happens the next component, F_{i_2}, can be found from the control component for F. Then $c = i_2$ and $k' = k + 1$. Also all path automata which do not have F_{i_2} as a second component are eliminated, i.e. if $\delta_{P_1} (s_i, j) = s_{i, j}$ = $<e_{i, 1}, \ldots, e_{i, t_1}>$ and $e_{i_2} \notin F_{i_2}$, then $s_i', j = 0$. Once the i-th component of L is set to 0, it remains 0, i.e. if $s_i, j = 0$ then $s_i', j = 0$ for all L.

This transition for L to L' continues as described above until a stop state is reached in the remaining path automata, those not represented by 0 in L. Then F' rewinds and applies that automaton to the tape.

q.e.d.

Pursuing the line of questioning implicit in the last theorem we wonder for what value of $r()$ will new functions appear in $A(r())$. We can use the methods of studying minimum growth to obtain the following interesting result.

11.2 Theorem. If $\forall c \forall n \exists m$ such that $n < \loglog(x) < \loglog(x)/c \forall x > m$, then $A(b()) = A(1)$.
11.21 Suppose $f() \in A(b())$ and is computed by F. Let $|F| = 2^n$ (n a real number). Pick $d > 2^n$ and m such that $b(x) < \log \log (x)/d \quad \forall x > m$. In order for the hypothesis to hold for d, there must exist an $x > m$ such that F rewinds less than $b(x)$ times for all $y < x$ and $b(x)$ times at x. Let x have digits $x_n x_{n-1} \ldots x_1$. If F rewinds at most $b(x)$ times, then the largest number of states in the path automaton P followed by x is less than $|F|^\log \log (x)/d = |F|^\log (n)/d < 2^n \cdot \log (n)/d \leq n^{1/2}$. So $|P| < n^{1/2}$.

Thus while processing x, P must go into a state loop of length $L \leq |P| < n$ during the forced response. Since the loop occurs in P (rather than only in component automata) there is an input y with $|y| < |x|$ which is processed by P and which avoids at least one passage through this loop (using inverse of process in Theorem 11.7).

Moreover we know that removing the loop preserves the rewind behavior because no component machine can go into a rewind state during one of these loops. It must do so either before or after because a rewind is represented by the appearance of a rewind state as a component in a state of P. Such a component can not change until the first pass on x and y. But this means that F must rewind $b(x)$ times at y although $|y| < |x|$. This contradiction means that F can not rewind $b(x)$ times for $b(x)$ satisfying the hypothesis.
But if \(f() \in A(b()) \) this means \(f() \) must be computed within \(n \) rewinds. By Theorem 11.1 we have the result.

q.e.d.

11.22 We conclude with 11.3 showing that once \(\log() \)
rewinds are used there is enough computing power to produce
a basis for the r.e. sets. We also point out that a certain especially interesting class of rewind automata can be used to produce a basis.

For this result we need an arithmetization of a classical
theory of one-way tape Turing machines. Ritchie's[42] version
is adequate and fortunately comes already arithmetized. We
alter his presentation inessentially by using mesh parallel
input rather than series input. It is a simple exercise to
construct a Turing machine which will unscramble the mesh
input to produce a series input. We also modify his arith-
metization by using configurations \(<t,s> \) where \(t \) is a number
representing the tape of the Turing machine along with the
cell being scanned and where \(s \) is the current state of the
Turing machine.

11.23 What we shall do is show that a rewind automaton
can be built to recognize the "T-predicate",

\[
T(e,x,y) \iff e \text{ is the number of a Turing machine with }
\text{input } x \text{ and } y \text{ is the number of a computation of } e \text{ at } x.
\]

The rewind automaton will recognize \(T() \) in \(A<\log(),\log()> \). Then we show that the function \(U() \) of the normal
form theorem can be computed in \(A<\log(), O> \). These facts
will allow us to enumerate any r.e. set in $A^{\log(\cdot)}, \log(\cdot)$.

11.24 As a by-product of this effort we obtain the result that rewind automata compute all partial recursive functions (the converse is trivial since a Turing machine can directly simulate a rewind automaton). The result follows by simply building a rewind automaton which given input x successively produces $e \times y$ on its tape for $y = 0, 1, 2, \ldots$ and then checks $T(e, x, y)$. If the predicate holds, $U(e \times y)$ is output, if not $e \times (y+1)$ is produced, $T(e, x, y+1)$ checked and the process repeated.

11.25 Preliminary to our basis result are some coding conventions, similar to those of Ritchie[42]. A Turing machine over $\{0, 1, B\}$ is a set of quintuples

<output, next state, direction, input, present state>,

where the directions are L (left), R (right), S (no move). Inputs and outputs are members of $\{0, 1, B\}^*$. The states s_1, s_2, \ldots are represented by sequences of 0's assigned as follows.

- s_1 to 0 0 0 0 0
- s_2 to 0 0 0 0 0 0
- s_3 to 0 0 0 0 0 0 0
- \vdots
- s_n to $\underbrace{0 0 0 0 0 \ldots 0}_{4 \text{ to } n}$
- \vdots

This leaves 0, 0 0, 0 0 0, 0 0 0 0 available as special
markers in appropriate contexts. For the alphabet we make the assignment
l to l
0 to l l
B to l l l.
Directions are
L to l
R to l l
S to l l l.
Quintuples are represented as strings
output-state direction 0 input-state.
For example, <B, s_2, R, l, s_1> is represented by
l l l 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0. The representation
has a unique decomposition from right to left.
If q_1, q_2, ..., q_n are quintuples, then the set of quintuples is represented by
\overline{q}_n 0 \overline{q}_{n-1} 0 ... 0 \overline{q}_1 where \overline{q}_i represent the quintuples. Again the sequence has a unique
right to left decomposition as a sequence of quintuples.
We also observe that the resulting representation is a bi-
nary numeral.
We next describe the binary representation of tapes as part of a representation of configurations (Ritchie calls them instantaneous descriptions). We use 0 as a tape spacer and also as a special marker to mark the square which is exactly one square to the right of the square being scanned (unless that square is the rightmost). The tape
segment \textbf{1B011B10} is represented by
1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1. A configuration
consists of \langle \text{tape, state} \rangle with 0 again being used as a
separator. Thus if \(t \) is the above tape then \(\langle t, s_2 \rangle \) is
represented by \(\overline{t} 0 \overline{s}_2 \), i.e.
\[1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0. \]

Since exactly three and exactly four consecutive 0's
do not occur in any representation given above, we can use
0 0 0 and 0 0 0 0 as markers between configurations. Thus
if \(K_1, K_2, \ldots, K_n \) is a sequence of configurations, then
\[\overline{K}_n 0 0 0 0 \overline{K}_{n-1} 0 0 0 \ldots 0 0 0 \overline{K}_1 \]
represents the sequence
where \(\overline{K}_1 \) represent the \(K_1 \). The sequence 0 0 0 0 is used to
separate off the last item in the sequence of configurations.

It is clear what it means for a sequence of configurations
to represent a computation, for details on this see Ritchie
[42].

11.26 Computing \(T(e, x, y) \) involves two basic procedures.

1. Checking state transitions: if \(K_1 = \langle t_1, s_1 \rangle \), then
given the computation \(K_n', K_{n-1}', \ldots, K_1 \) it must be verified
that \(\delta_e(\alpha, s_1) = s_{i+1} \) for \(\alpha \) the scanned value on \(t_1 \).

2. Checking tape transitions: it must be verified that
if \(\lambda_e(\alpha, s_1) = \beta \) and \(\mu(\alpha, s_1) = \gamma \) (where \(\gamma \) is R, L or S),
then \(t_{i+1} \)'s head marker is in the right place (e.g. one
left if \(\gamma = L \)) and \(\overline{\gamma} \) immediately follows the marker.

The basic task for 1. is to locate the proper quadruple
in the encoding of the sequence of quadruples represented
by \(e \). This is a linear "table look up" procedure. Once
the quadruple is located it is possible to check the next state against the next configuration state symbol by symbol.

The basic task for procedure 2, is simply to compare the tape representations symbol by symbol using the relative locations of the special markers to determine whether the head moved right, left, neither or invalidly (e.g., if the special marker appears first on the tape t_{i+1} and in the next square on t_i then the head moved one right). Also procedure 2, must locate the scanned symbol of t_i, say p_1, and communicate it to procedure 1. (a task performed on one pass over t_i).

The work is done by careful use of blanks as markers using internal memory to distinguish the various uses of the blanks. Recall that e, x, y are stored in mesh parallel format so that the tape appears as

$$\begin{array}{cccccccccccccc}
\hline
Y_i & x_i & e_i & Y_j & x_j & e_j & Y_k & x_k & e_k & Y_l & x_l & e_l \\
\hline
\end{array}$$

But it is best thought of as a parallel input in the form

\[
e
\]

\[
x
\]

\[
y
\]

In more detail, if $y = \overline{K}_n 0 0 0 0 \overline{K}_{n-1} 0 0 0 \ldots 0 0 0 \overline{K}_1$, $e = \overline{q}_m 0 \overline{q}_{m-1} 0 \ldots 0 \overline{q}_1$ and $x = x_i x_{i-1} \ldots x_1$ where $q_1 = <\beta_1, b_1, \gamma_1, a_1, a_1>$ and $\overline{K}_i = <t_i, s_i>$, then the tape is best thought of as
11.27 Procedure 1, in detail involves these steps.

(a) On the first pass put a B in the first digit of s_1 and in the first digit of each a_i. The a_i are determined by their appearance in the squares $j \cdot n + 1$ in a specified order, i.e. that given by $q_m 0 \ldots 0 \overline{q}_1$. So it is possible to tell when the 1st digit of an a_i begins. Rewind after encountering a B following an appearance of $0 0 0 0 0$ in the configuration, y, positions, e.g. $j \cdot n$ for $n = 1, 2, \ldots$.

(b) On subsequent passes replace the B of s_1 with a 0 and move the B one left if next symbol is 0. Also replace B of a_i with 0 and if next symbol is part of the state representation, then write B. If not, then no B appears which will indicate that $a_i \neq s_1$.

(c) On the pass when the end of s_1 is recognized (by spotting a 1 in next position), a check is made of all quintuples of e still candidates for the one beginning $\ldots p_1 s_1$. Those beginning with s_1 (only three) can be spotted on this pass and marked with a B following the B placed by step (b). After placing this marker B the machine continues over the tape to see if $a_i = p_1$ (the scanned symbol of t_1). Another B marker is placed after a_i to indicate the correct quintuple, $<\beta_1, b_1, y, p_1, s_1>$. The direction symbol, y, and the output, β_1, are remembered internally to be
used in conjunction with process 2.

(d) All B's except that following the double B are replaced with their 0's and the first digit of the next configuration state, s_{i+1}, is made blank. The B in the correct quintuple is advanced one and a check is made for the end of the state. If the end is detected, then $s_{i+1} = b_1$ is checked. If it is false, then the computation terminates with a no result. If it is true, then step 3 is executed. If the end is not detected, then the leading digit of s_{i+1} remains B and a second B is used as in (a) for a comparison marker with b_1 and the digit by digit comparison continues.

(e) When $s_{i+1} = b_1$ is determined, the marks of e are all removed and the machine returns to s_{i+1}, whose location is determined by B, and starts process (a) with s_{i+1} for s_1.

11.28 Simultaneous with the above state transition process a tape comparison process is run. For the initial configuration a check is made to see that x is recorded on the tape. On subsequent tapes a check is made that the right symbol is written and the right move made. The detailed steps are below.

(a) The initial configuration tape, t_1, must be checked to see that it contains exactly x. This is done by making a symbol by symbol comparison ($\log(t_1)$ rewinds) until t_1 is exhausted. Blanks are used for markers as in process 1. The end of t_1 is indicated by 0 0 0. Then a check is made to see if remaining x digits are all 0 (requiring one pass).
where \(c_1 x \) is the \(i \)-th argument of a three mesh parallel decomposition of \(x \).

The function \(g() \) can be computed by first defining a machine which stores \(a \) and \(e \) internally and computes

\[
T(c_3 x, c_2 x, c_1 x) \land c_3 x = e.
\]

The computation of the predicate requires less than \(\log(x) \) re-winds (in fact \(\log(c_1 x)+1 \)) according to the above procedure. Next the machine either computes \(U(x) \) or a each of which require only one pass over the tape. Thus \(g() \in A<\log(), \log()> \). But \(g() \) enumerates precisely \(S \) because if \(z \in S \) then \(\exists x_1 \) such that \(f(x_1) = z \) and \(\exists e \exists x \) such that \(c_3 x = e, c_2 x = x_1 \land T(c_3 x, c_2 x, c_1 x) \).

Thus \(g(x) = U(x) = f(x_1) + z \in S \).

\[\text{q.e.d.}\]
Appendix A Computing Procedure for $f_\alpha(\) \alpha<\varepsilon_0$

The computing procedure given here is designed to be intelligible and general rather than efficient. It is designed to be applicable to s.s.n.e.'s defined for $\alpha<\beta$ where β is a constructive ordinal satisfying some additional conditions (not made precise here) which intuitively correspond to the existence of very effective notation systems for β. (The first strongly critical number, (Schütte[48]), is probably an example of such a β.)

The procedure can be seen clearly if it is first presented in terms of a RASP having ordinals as addresses. After presenting the procedure on such a machine, we will convert it to a procedure on our basic machine $M_1(\Sigma_0)$ by picking a notation system for a segment of ω_1 which includes ε_0.

A.1 The special RASP, OM, has a memory which is made up of blocks. The blocks come in pairs and are addressed by an ordinal and an ordered pair of integers. Thus

$$A_{OM} = \langle \alpha, n, m \rangle \quad \alpha<\varepsilon_0, \, n \in \mathbb{N}, \, m \in \mathbb{N}.$$

The contents of OM come from N, i.e. $B_{OM} = N$.

The idea behind this memory organization is that the registers $\langle \alpha, _. . \rangle$ will hold the program $\pi_{f_\alpha}(\)$, the first column for the instructions, the second for data and work space. A program $\pi_{f_\alpha}(\)$ operates on input x as follows.

A.2 (1) If α is a successor ordinal, say $\beta+n$, then π_{f_α}
successively
\[f^\beta(x), f^\beta(x), \ldots, f^\beta(x). \]

(2) If \(\alpha \) is a limit ordinal, then \(\pi^\alpha_\alpha \) uses \(\alpha \) and the input \(x \) to compute \(\alpha_x \). If \(\alpha_x \) is a successor ordinal, then \(\pi^\alpha_\alpha \) proceeds as in (b). Otherwise

(a) \(\pi^\alpha_\alpha \) loads a copy of \(\pi^\alpha_\alpha \) into \(\alpha_x \) (the instruction in \(\alpha_x \), \(x \) the data in \(\alpha_x \), \(x \)) and gives \(\pi^\alpha_\alpha \) instructions to return its value (and control) back to \(\pi^\alpha_\alpha \). Thus \(\pi^\alpha_\alpha \) having assured itself it will regain control, turns over to \(\pi^\alpha_\alpha \) the input \(x \) and control of the machine.

(b) For \(\alpha_x \) a successor, \(\pi^\alpha_\alpha \) loads in locations \(\alpha_x \), \(\ldots, \), \(\alpha_x \), \(\ldots, \) subprograms which perform the iterations of step (1). Then \(\pi^\alpha_\alpha \) loads \(\pi^\beta_\beta \) in \(\beta \), where \(\beta \) is the limit ordinal \(\alpha_x \). It also instructs \(\pi^\alpha_\alpha \) to return its value (and control) to \(\pi^\alpha_\alpha \) and then sends the input \(x \) and control to \(\pi^\alpha_\alpha \).

This method of computing \(f^\alpha() \) follows the definition of \(f^\alpha() \) quite closely as we will see below. The procedure is wasteful of space because it reproduces entire programs (in step (2)) which are nearly exact copies of itself. Thus during the course of the computation of \(f^\alpha() \), the core is highly populated with subprograms most of which are almost
exactly the same. Such a situation indicates that a procedure must be available to compress these copies and save considerably on space. Indeed there is, but the cost of this space saving is that the computation is harder to visualize and harder to analyse. (Furthermore, since a space saving compression seems possible without drastically altering the time bounds, the program presented here can be thought of as an instructional version of a good one which also works.)

An example will help clarify the computing procedure. First recall the definition of the \(f_\alpha(\cdot) \).

A.3 Rule I (Iteration). If \(\alpha = \beta + 1 \), then \(f_\alpha(x) = f_\beta(f_\beta(x)) \).

Rule II (Diagonalization). If \(\alpha \) is a limit ordinal and \(\alpha_n \) is its standard fundamental sequence, then \(f_\alpha(x) = f_{\alpha_n}(x) \).

Notice an appropriate choice for \(f_0(\cdot) \) is \(\lambda x(x+1)^2 \).

A.4 Now compare the computation of \(f_{\omega^2 \cdot 2}^{(4)} \) by hand (using an informal equation calculus) and by the program \(\pi_f^{(4)} \) on OM. Since \(\omega^2 + \omega \cdot n \rightarrow \omega^2 \cdot 2 \) as \(n \rightarrow \omega \), Rule I yields the equation

\[
f_{\omega^2 \cdot 2}^{(4)} = f_{\omega^2 + \omega \cdot 4}^{(4)}.
\]

The program \(\pi_f^{(4)} \) with input 4 will apply step (2). Thus it will compute \(\omega^2 + \omega \cdot 4 \). Load the program \(\pi_f^{(4)} \) into
\(\omega^2 + \omega \cdot 4\), give that program the value 4 and turn control over to it. Since \(\omega^2 + \omega \cdot 3+\omega \rightarrow \omega^2 + \omega \cdot 4\), Rule II yields the equation
\[
f_{\omega^2 + \omega \cdot 4}(4) = f_{\omega^2 + \omega \cdot 3+4}(4)
\]
and Rule II yields
\[
f_{\omega^2 + \omega \cdot 3+4}(4) = f^{(4)}_{\omega^2 + \omega \cdot 3+3}(4).
\]

At this point in the computation by hand it is expedient to begin working on \(f_{\omega^2 + \omega \cdot 3+3}(4)\) without fooling with reductions of the type
\[
f^{(4)}_{\omega^2 + \omega \cdot 3+3} = f_{\omega^2 + \omega \cdot 3+3}(f^{(3)}_{\omega^2 + \omega \cdot 3+3}(4)).
\]
Thus the next equation, by Rule I, is
\[
f_{\omega^2 + \omega \cdot 3+3}(4) = f^{(4)}_{\omega^2 + \omega \cdot 3+2}(4).
\]
Then
\[
f_{\omega^2 + \omega \cdot 3+2}(4) = f^{(4)}_{\omega^2 + \omega \cdot 3+1}(4)
\]
and
\[
f_{\omega^2 + \omega \cdot 3+2}(4) = f^{(4)}_{\omega^2 + \omega \cdot 2}(4).
\]
Then application of Rule II yields
\[
f_{\omega^2 + \omega \cdot 3}(4) = f^{(4)}_{\omega^2 + \omega \cdot 2+4}(4).
\]

Corresponding to these steps, the program \(\pi_{\omega^2 + \omega \cdot 4}\) applies step (2b) and loads iteration subprograms at locations \(\omega^2 + \omega + \omega \cdot 3+4, \ldots, \omega^2 + \omega \cdot 3+1\). The iteration subprograms are linked
up so that they send data and control back and forth properly (see page 175). At location $\omega^2+\omega$.3 it loads $\pi^f_{\omega^2+\omega}.3$.

Then control is turned over to subprogram $\pi^f_{\omega^2+\omega}.3+4$ which passes control through $\pi^f_{\omega^2+\omega}.3+1$ to $\pi^f_{\omega^2+\omega}.3$. These program steps are seen to be quite similar to the hand steps. The reason the $\pi^f_{\omega^2+\omega}.4$ behaves differently than the other limit program, $\pi^f_{\omega^2+\omega}.2$, is that loading all iteration subprograms at once will allow us to use simple techniques in estimating running time for the iteration subprograms.

The computation of $f^{(4)}_{\omega^2+\omega}.2$ now continues

\[
\begin{align*}
 f^{(4)}_{\omega^2+\omega}.2+4 &= f^{(4)}_{\omega^2+\omega}.2+3 \\
 \vdots & \quad \vdots \\
 f^{(4)}_{\omega^2+\omega.2} &= f^{(4)}_{\omega^2+\omega.4} \\
 f^{(4)}_{\omega^2+\omega+4} &= f^{(4)}_{\omega^2+\omega+3} \\
 \vdots & \quad \vdots \\
 f^{(4)}_{\omega+\omega} &= f^{(4)}_{\omega+4} \\
 f^{(4)}_{\omega+4} &= f^{(4)}_{\omega+3} \\
 \vdots & \quad \vdots \\
 f^{(4)}_{\omega} &= f^{(4)}_{\omega+4} \\
 f^{(4)}_{\omega+4} &= f^{(4)}_{\omega+3} \quad \vdots \\
 f^{(4)}_{\omega} &= f^{(4)}_{\omega+4} \quad \vdots
\end{align*}
\]
\[f_0(4) = \quad \]

A value can be computed at \(f_0(4) \) and the "long journey" back up through the equations begins. The journey is "long" because for every step up, we must repeat the entire procedure below again. In the machine computation the trip back up to \(\pi_{f_0} \) is controlled by the programs which have been located in memory on the "downward trip". Thus, for example, \(\pi_{f_0} \), having computed \(f_0(4) = y_4 \), the value \(y_4 \) is taken by the iteration subprogram in location 1 and sent back to \(\pi_{f_0} \). This is done four times producing \(f_0^{(4)}(4) \) which is sent by the iteration subprogram in location 2 back to the iteration subprogram still in location 1.

\subsection*{A.5}
Let us now describe the computing procedure on OM in more detail. First look at an \textbf{iteration subprogram}. This program will compute \(g(x)(x) \) if a program for \(g(\) \) is linked to it properly.

<a, 1, 1>	1	HOLD \leftarrow HOLD + 1
<a, 2, 1>	2	IF INPUT = 0, GO TO 8
<a, 3, 1>	3	HOLD \leftarrow INPUT
<a, 4, 1>	4	LINKgIN \leftarrow HOLD
<a, 5, 1>	5	GO TO LINKgCTL
<a, 6, 1>	6	INPUT \leftarrow INPUT - 1
<a, 7, 1>	7	GO TO 2
<a, 8, 1>	8	OUTPUT \leftarrow HOLD
<a, 9, 1>	9	GO TO EXIT

This program will be located at some registers \(<a, n, 1>\), \(n = 1, \ldots, 9 \). The word LINKgIN will refer to some register
<β, l, n> while LINKgCTL will refer to some register <β, m, l>. We also allow that EXIT may refer to some <γ, n, l> in which case OUTPUT will refer to <γ, l, m>.

With the above conventions we can use the format B(β, α, γ) to indicate the above program where α is the location of the program, β is the location of the program for g(), and γ is the location of the upward exit which may either be another program or a stop condition. We also say b is the location of the downward link and c is the location of the upward link. Using the notion of an iteration subprogram we can describe the computation of π^f_α on OM in detail. We consider the following.

A.6 (1) If α = β+n, then π^f_α consists of a program π^f_β and iteration subprograms linked as follows:

B(STOP, α, γ_1) B(α, γ_1, γ_2) B(γ_1, γ_2, γ_3) ... B(γ_{n-3}, γ_{n-2}, β) π^f_β

(2) If α is a limit ordinal, then among the program constants of π^f_α is an identification constant, referred to in the program by ID, which is α. If the input to π^f_α is x ∈ N, then π^f_α operates as follows:

(a) compute the ordinal α_ₓ (described as computing the downward link),
(b) test whether α_ₓ is a successor ordinal, if it is go to step f, otherwise,
(c) load a copy of this program in α_ₓ and store α_ₓ
as the identification constant of that program, store α as the upward exit,
(d) transfer the input, x, to the input of π_α^f,
(e) transfer control to π_α^f,
(f) load the iteration subprograms $B(\alpha, \alpha, \alpha - 1), \ldots$ $B(\beta + 2, \beta + 1, \beta)$ where β is the largest limit ordinal $< \alpha$ (\(\beta = \alpha - x\)),$
(g) load a copy of this program in β and store β as the identification constant, store $\beta + 1$ as the upward exit,
(h) go to step (d).

We now take up the task of implementing this computing procedure on a mere RASP of the type M. To accomplish this we must represent the triples $<\alpha, n, m>$ for $\alpha < \varepsilon_0$ by integers. This entails representing the ordinals $\alpha < \varepsilon_0$. Moreover we need an effective and manageable system of ordinal notation. To keep the system manageable we are led away from maximal systems such as Kleene's $\mathcal{O}(S_j)$ and led to systems such as Takeuti's[57] or Schütte's[48]. We choose the system given in Schütte since it meets our requirements. It is readily available in both English and German and is a frequently studied system. We denote this system by \mathcal{S}. To describe it we need the following notation.

A.7 Let p_0 denote the prime number 2 and p_n denote the n-th odd prime number. If $a \neq 0$, put $(a)_{p_i} = \text{exponent of } p_i$
in the prime factorization of \(a \). Now define the relation \(\leq_s \) (\(a \nleq_s b \) denotes the negation of \(a \leq_s b \)) inductively as follows: \(a \leq_s b \) iff at least one of the conditions below is true.

1. \(a = 0 \) and \(b = 0 \)
2. \(b \neq 0 \) and \(a \leq_s (b)_p \) for at least one \(i \)
3. \(a \neq 0, b \neq 0 \) and \((a)_p \leq_s (b)_p \) for all \(i \)
4. \(a \neq 0, b \neq 0 \) and there are numbers \(m \leq n \) such that
 a. \((a)_p = 0 \) for all \(i < m \neq 0 \)
 b. \((a)_m \leq_s b \)
 c. \(b \nleq_s (a)_j \) for all \(j, m < j < n \)
 d. \((b)_n \leq_s (a)_n \)
 e. \((a)_k \leq_s (b)_k \) for all \(k > n \).

It is easy to show that \(\geq_s \) is a reflexive total ordering and therefore that \(a \equiv b \) iff \(a \leq_s b \) and \(b \leq_s a \) is an equivalence relation on \(N \). An irreflexive ordering, \(<_s \), is defined as; \(a \leq_s b \) iff \(b \nleq_s a \).

In the familiar manner the integers can now be associated with ordinals, and we say that \(a \) represents a **finite ordinal** or a **transfinite ordinal** (with respect to \(<_s \)) according as \(a <_s 3 \) or \(3 \leq_s a \).

A.8 By a **path in \(\mathcal{L} \)** we mean a set \(P \subseteq N \) such that

a. \(P \) is well ordered by \(<_s \).

b. If \(a < P \) and \(b \leq_s a \), then \(\exists b' < P \) such that \(b' \equiv b \).
Thus a path provides a unique set of notations for some initial segment of ordinals. We shall be interested in a path for e_0.

We can define addition on the ordinals using the following auxiliary functions

\[
\text{tw}(a) = \begin{cases}
 a_0 & \text{if } 2^{a_0} a_1 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\text{th}(a) = \begin{cases}
 a_1 & \text{if } a = 2^{a_0} a_1 \\
 a & \text{otherwise}
\end{cases}
\]

A.10 Now define

\[
a \oplus b = \begin{cases}
 b & \text{if } a = 0 \\
 2(\text{tw}(a) \oplus b) \cdot 3(\text{th}(a)) & \text{otherwise}.
\end{cases}
\]

Since $\text{tw}(a) < a$ the definition is recursive and $\lambda a b (a \oplus b)$ is computable.

It is easy to show, see Schütte[48] p. 284, that if a represents α then 3^a represents ω^α. This allows us to use Cantor's normal form, i.e. for any $a=0$ there exist c_1, \ldots, c_m ($m \geq 1$) such that

\[
a \equiv 3^{c_1} \oplus \ldots \oplus 3^{c_m} \quad c_m \leq c_{m-1} \leq \ldots \leq c_1
\]

where the c_i are unique mod \equiv. The c_i are also computable for $a \neq 0$ so that we can give a computable definition of multiplication of ordinals as follows.

A.12 (1) $a \times b = 0$ if $a=0$ or $b=0$.

(2) $a \times 1 = a$ if $a \neq 0$.

(3) If $c_m \leq \ldots \leq c_1$ ($m \geq 1$) and $e \neq 0$, then
\[3^1 \oplus \ldots \oplus 3^m \times 3^e \oplus 3^1 \oplus e. \]

(4) If \(a \neq 0 \) and \(e_n \leq_s \ldots \leq_s e_1 \) (\(n > 1 \)), then
\[a \times (3^1 \oplus \ldots \oplus 3^e) = (a \times 3)^{e_1} \oplus \ldots \oplus (a \times 3)^{e_n}. \]

(5) If \(a \equiv_c c \) and \(b \equiv_d d \), then \(a \times b \equiv_c c \times d \).

Using +, x and the condition A.11 it is easy to pick out a path in \(\mathcal{E} \) for \(\varepsilon_0 \). Namely using \(3 \) for \(\omega \) we just perform the operations used to define the ordinals \(\varepsilon_0 \). To facilitate a quick familiarity with \(\mathcal{E} \) and with the path for \(\varepsilon_0 \), we list examples from \(\varepsilon_0 \). We first present some functions which are useful in manipulating and representing these ordinals.

A.13 Let \(p(x, y) = 2^x \cdot 3^y \), \(p(z)(x, y) = z \) iterations of \(p(x, y) \) in the first argument, e.g., \(p^{(0)}(x, y) = x \), \(p^{(2)}(x, y) = p(p(x, y), y) \). Let \(\exp_a(y) = a^y \) for \(a, y \in \mathbb{N} \). Then \(\exp_a(x)(y) \) is the \(x \)-fold iteration of \(\exp_a(y) \), e.g., \(\exp_a^{(0)}(y) = y \), \(\exp_a^{(3)}(y) = a^{a^y} \).

A.14

<table>
<thead>
<tr>
<th>Ordinal</th>
<th>Integer representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1, 2</td>
<td>0, 1, 2</td>
</tr>
<tr>
<td>3</td>
<td>(2^3)</td>
</tr>
<tr>
<td>(n)</td>
<td>(\exp_2^{(n-1)}(1))</td>
</tr>
<tr>
<td>(\omega + 1)</td>
<td>(2 \cdot 3)</td>
</tr>
<tr>
<td>(\omega + n)</td>
<td>(p(\exp_2^{(n)}(1), 1))</td>
</tr>
<tr>
<td>(\omega \cdot 2)</td>
<td>(2^3 \cdot 3)</td>
</tr>
<tr>
<td>(\omega \cdot n)</td>
<td>(p(n-1)(3, 1))</td>
</tr>
</tbody>
</table>
\[\omega^2 \quad \omega^2 \\
\omega^{\omega} \quad p(a-1)(\exp_3(\exp^{(n-1)}(1)), \exp^{(n-1)}(1)) \\
\omega_{a+m} \quad p(a)(\exp_2^{(m)}(1), \exp_2^{(n-1)}(1)) \\
\omega^\omega \quad \omega^3 \\
\text{One final example,} \\
\omega^\omega \cdot a_1 + \omega_1 \cdot a_2 + m \\
is represented by \\
(a_1 - 1)(a_2) \quad (\exp_2^{(m)}(1), \exp_2^{(n_1 - 1)}(1), 3)) \\
\exp_3(p^{(a_1 - 1)}(p^{(a_2)}(\exp_2^{(m)}(1), \exp_2^{(n_1 - 1)}(1), 3))) \\
\text{It is convenient to represent the ordinals } \alpha < \varepsilon_0 \text{ in terms of the functions } \exp_2^{(n)}(1), \exp_3^{(n)}(1) \text{ and } p^{(n)}(1). \text{ To be somewhat precise about this we define a } \textbf{term} \text{ } A \text{ as follows.} \\
A.15 \ (1) \text{ If } n \in \mathbb{N}, \text{ then } \exp_2^{(n)}(1), \exp_3^{(n)}(1) \text{ and } 0 \text{ are terms.} \\
\ (2) \text{ If } n \in \mathbb{N} \text{ and if } A \text{ and } B \text{ are terms} \neq 0, \text{ then } \exp_2^{(n)}(A) \text{ and } p^{(n)}(A, B) \text{ are terms.} \\
\text{We can now prove A.16.} \\
A.16 \text{ If } \alpha < \varepsilon_0, \text{ then } \alpha \text{ is represented by a term and the unique decomposition of } \alpha \text{ to the base } \omega \text{ is represented by a unique term, } t_\alpha, \text{ referred to as the } \textbf{term representing } \alpha. \\
A.17 \text{ Conversely, every term represents an ordinal } \alpha < \varepsilon_0. \\
\text{We prove only A.16 since we never have occasion to use A.17. First we notice that every } n \in \mathbb{N} \text{ is represented by a}
term; 0 represents 0, \(\exp_2^0(1) \) represents 1, \(\exp_2^1(1) \) represents 2. In general \(\exp_2^{(n-1)}(1) \) represents \(n \). These are defined to be the unique terms representing \(n \). The unique term for \(\omega \) is 3. Inductively, if \(t_\alpha \) is the unique term for \(\alpha \), then \(3^{\alpha} = \exp_3^{(\alpha)} \) is made the unique term for \(\omega^{\alpha} \). That it represents \(\omega^{\alpha} \) was proved in Schütte[48]. Now we show that if \(n > 1 \), then \(p_{(n-1)}(\exp_3(t_\alpha), t_\alpha) \) represents \(\omega^{\alpha} \cdot n \). It will be designated as the unique term for that ordinal. Proceed by induction on \(n \). If \(n = 2 \), then
\[
p_{(1)}(\exp_3(t_\alpha), t_\alpha) = 2^{3^{\alpha}} \cdot 3^{\alpha}
\]
but
\[
3^{\alpha} \cdot 3^{\alpha} = 2^{3^{\alpha}} \cdot 3^{\alpha}.
\]
Now suppose the result for \(n \). We claim that \(p_{(n)}(\exp_3(t_\alpha), t_\alpha) \) represents \(\omega^{\alpha} \cdot n+1 \). By the induction hypothesis
\[
p_{(n-1)}(\exp_3(t_\alpha), t_\alpha) = 3^{\alpha} \cdot \ldots \cdot 3^{\alpha}
\]
(associativity is shown in Schütte[48]). But
\[
p(p_{(n-1)}(\exp_3(t_\alpha), t_\alpha), t_\alpha) = p_{(n-1)}(\exp_3(t_\alpha), t_\alpha) \cdot 3^{\alpha}
\]
by definition of \(\cdot \), and is also equal to
\[
(3^{\alpha} \cdot \ldots \cdot 3^{\alpha}) \cdot 3^{\alpha}
\]
by the induction hypothesis.

Finally we claim that if \(t_\alpha \) uniquely represents \(\alpha \) and \(3^{t_\beta} \) uniquely represents \(\omega^{\beta} \), and \(\alpha < \omega^{\beta} \), then \(p_{(n)}(t_\alpha, t_\beta) \) represents \(\omega^{\beta \cdot n + \alpha} \). Proceed by induction on \(n \). For \(n = 1 \), \(\omega^{\beta + \alpha} \)

is represented by $3^\beta \odot t_\alpha = 2^\alpha 3^\beta = p(t_\alpha, t_\beta)$. Notice that this is
$$p^{(0)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha = p(t_\alpha, t_\beta).$$
Suppose for induction that
$$\omega^\beta \cdot n + 1 + \alpha$$
is represented by
$$p^{(n)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha = p^{(n+1)}(t_\alpha, t_\beta).$$
Then by the above result on a unique representation for ω^β
and by definition of \odot,
$$p^{(n+2)}(\exp_3(t_\beta), t_\beta) \in p^{(n+2)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha, t_\beta$$
and
$$p^{(n+2)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha \text{ represents } \omega^\beta \cdot n + 1 + \alpha.$$
By definition of \odot
$$p^{(n+2)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha = p(p^{(n+1)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha, t_\beta).$$
So by the induction hypothesis
$$p^{(n+1)}(\exp_3(t_\beta), t_\beta) \odot t_\alpha = p(p^{(n+1)}(t_\alpha, t_\beta)$$
$$= p^{(n+2)}(t_\alpha, t_\beta).$$
Combining the above cases we can conclude that if $\alpha < \varepsilon_0$
then there is a unique term t_α corresponding to α. This is
because α can be represented uniquely to the base ω as
$$\omega^\beta_1 a_1 + \ldots + \omega^\beta_n a_n$$
where $a_i \in \mathbb{N}$, $\beta_1 < \varepsilon_0$ and $\beta_i < \beta_j$ if $i < j$.
And using induction on the level of β_i (ω is of level 1, ω^ω of level 2 and ω raised to the ωn times is of level n, an ordinal whose unique base ω decomposition contains a
summand of level n is of level n) and applying the above
definition of unique terms on \(\alpha \) from right to left produces a unique term for \(\alpha \).

q.e.d.

A.18 Given a term \(t_\alpha \) we define the depth of \(t_\alpha \), \(n \), as the number of \(\exp_3 \), \(\exp_2 \) and \(p \)'s occurring in \(t_\alpha \).

A.19 For this representation of ordinals \(\alpha \leq \varepsilon_0 \) write \(\bar{\alpha} \) to denote the unique integer representing \(\alpha \). Using \(\bar{\alpha} \) we can map the addresses of OM into \(N \) in a simple manner. Namely the triple \(\langle \alpha, n, m \rangle \) is represented by \(\bar{\alpha} \cdot 5^n \cdot 7^m \). Since for \(\alpha \leq \varepsilon_0 \), \(\bar{\alpha} \) does not contain a 5 or a 7, this representation is unique.

Our task now is to implement the computation process on \(M_1(\Sigma_0) \) using the above representation of addresses. The only steps which require work are those involved in computing the fundamental sequences and the loading addresses.

A.20 We handle this task using the functions \(p() \), \(\exp_\alpha() \), \(()_2 \) and \(()_3 \). We use \(()_p() (n) \) to denote \(n \) iterations of \(p_1 \).

Thus \((x)_2(0) = x \), \((x)_2(1) \) = exponent of 2 in prime factorization of \(x \), \((x)_2(2) = ((x)_2)_2 \). Notice that in this notation \(\exp_2^{(n)}(x)_2(n) = x \).

The functions \(()_2 \) and \(()_3 \) are sufficient to break down any \(\bar{\alpha} \) for \(\alpha \leq \varepsilon_0 \) into its component parts. To build a routine which computes \(\bar{\alpha}_x \) it is only necessary to apply the functions \(()_2 \), \(()_3 \) in the proper order to break down \(\alpha \) according to
the definition A.15. Then build a routine to compute the
term determining the fundamental sequence. Finally apply
\(p(\) \) and \(\exp_\alpha(\) \) to build back up to \(\bar{\alpha}_x \). The only bother-
some part is keeping the "logic" of the breakdown straight.
A detailed program is given covering this part of the com-
puting procedure. Before presenting that program we offer
an example of how it works.

A.21 Suppose the identification constant is \(\alpha = \omega^3 2 + \omega^2 2 \).
Then
\[
\bar{\alpha} = 2^2 3^2 3^2 3^2 2^2
\]
which is equal to
\[
p(2)(p(\exp_3(1), \exp_2(1)), \exp_2^{(2)}(1)) = t_\alpha.
\]
The program \(\pi_\alpha \) recognizes \(\alpha \) to be a sum. It locates the
first summand (from left to right) which is \(\omega^3 2 \) and it
stores the sequence \(2^2, 2, p \) on a list (denoted LST). The
sequence will guide the program in building up \(\alpha_x \). The
program again recognizes a sum and records \(2, 1, p \) on LST.
Finally the program recognizes the critical term, \(\omega \). It
then forms \(\exp_2^{(x)}(1) \), stores this in \(L \) and begins the pro-
cess of building \(\alpha_x \) using the list
\[
LST = 2^2, 2, p, 2, 1, p
\]
and
\[
L = \exp_2^{(x)}(1)
\]
as a guide. The \(p \) indicates that the next term to be built
is \(p \) (next sequence value, first from next sequence value).
e.g. \(p(1,2) \) or \(p(2,2^2) \) in the above.

The details of the program for computing the downward link are given below. We do not however give the details of the copying routines, steps (c), (f) and (g) of A.6, because they are quite straightforward. (To copy the main program we merely write a routine which goes through the instructions of the program itself and loads the same operation code with appropriately changed addresses into the new program location. To load the \(B(\) \) subprograms the program can use a schema for \(B(\) \) which it has stored as data.)
A.22 Program for determining downward link.

Decide whether limit or sum

\[Y \leftarrow \text{ID} \]

START

\[(Y)_2 = 0 \implies \text{LO} \quad \text{Is } Y \text{ of form } \omega^a? \text{ Yes, go to limit, LO.} \]

\[(Y)_3 = 0 \implies \text{(Pr)} \quad \text{If not a limit, then go to sums and products case.} \]

\[A \leftarrow \omega Y \]

GO TO SP1

Logic for limit case

LO

\[a = 0 \]

\[A \leftarrow \omega (Y)_3 \]

\[(A)_2 = 0 \implies \text{L20} \quad \text{Initialize counter} \]

\[(A)_3 = 0 \implies \text{(Lf)} \quad \text{Reduce } Y \text{ by } \omega\text{-power, i.e. take } \log_\omega() \]

\[\text{Increment counter} \]

\[\text{See if reduction is still a limit} \]

\[\text{If not an } \omega\text{-limit, check for integer limit exponent, i.e. } \omega^n \]

\[\text{Exit} \]

\[\text{LST} \leftarrow a \]

\[\text{LST} \leftarrow \text{"e"} \]

GO TO SP1

\[\log_\omega() \]

L20

\[(A)_2 = 0 \implies \text{L30} \quad \text{Check for form } \omega^1 \]

\[A \leftarrow \omega (A)_3 \quad \text{Execute } \log_\omega() \]

GO TO Li1

\[\omega^a \text{ form, this sets up } \omega^0 \]

L30

\[a \leftarrow a - 1 \quad \text{If } a=0 \text{ do not record } a \text{ or } e \]

\[a = 0 \implies \text{L35} \quad \text{Record information on iterations of } \log \]

\[\text{LST} \leftarrow a \]

\[\text{LST} \leftarrow \text{"e"} \]

\[\text{L} \leftarrow \omega^0 \]

Load "fund seq" in L for RETURN
GO TO RETURN
L<---x
GO TO RETURN
Set up \(a^n \cdot x_0\)

Lf
\[
a <- a - 1
a = 0 \implies Lf5
\]
LST <- a
LST <- e

Lf5
LST <- \((A)_2\)
LST <- x - l
LST <- P
L <- 3
GO TO RETURN

Logic for sums and products case

SP1
\[
a = 1
W <- (A)_3
B <- (A)_2
\]

SP4
\[
(B)_3 = W \implies \text{prod}
(B)_3 = 0 \implies (Pf)
\]

Load information on terms of sum
(sp)
LST <- W
LST <- a
LST <- "P"
Y <- B
GO TO START

Iteration loop for products
(prod)
\[
(B)_2 = 0 \implies (PP)
a <- a = 1
B <- (B)_2
GO TO SP4\]
Pure product information loading

\[(PP) \quad LST \leftarrow w\]
\[\quad LST \leftarrow a\]
\[\quad LST \leftarrow "P"\]
\[\quad \bar{y} \leftarrow B\]
GO TO START

Special exit for ordinals of type \(\omega^{\alpha+n}\)

\[(pf) \quad LST \leftarrow w\]
\[\quad LST \leftarrow a\]
\[\quad LST \leftarrow P\]
\[\quad LST \leftarrow (B)_2\]
\[\quad SPL \leftarrow "1"\]
GO TO RETURN

Logic for return

RETURN \(LST = P \implies (P)\)
\(LST = e \implies (L)\)
\(LST = 0 \implies \text{(end)}\)

Reassembling sums and products

\(P\) \hspace{1cm} \ldots \text{\ldots decrements the list}\n\[a \leftarrow LST\]
\[L \leftarrow p(a)(L,LST)\]
GO TO RETURN

Reassembling powers

\(L\)
\[SPL = 1 \implies (SPL)\]
\[a \leftarrow LST\]
\[L \leftarrow \exp_3(a)(L)\]
GO TO RETURN

Encorporate term determining the fundamental sequence.

\(SPL\) \hspace{1cm} \ldots
SPL ← 0
\((x_0) \)
L ← p \((3^L, L) \)
a ← LST - 1
L ← exp(a)(L)

GO TO RETURN

(end)

Program exit
Appendix B Estimating $\sigma_{\alpha}(\)$.

B.1 $\forall \alpha \exists T(\) \exists B(\) \forall x \forall n$ if α is a limit ordinal and $\alpha < \varepsilon_0$, then

(a) $\sigma f_{\alpha_n}(x) < f_{\alpha_n}^{(T(n))}(x) \& T(\) \in E_{\alpha}$,

(b) $\sigma f_{\alpha}(x) < f_{\alpha_B(x)}^{(T(\))}(x) \& T(\) \in E_{\alpha} \& B(\) \in E_{\alpha}$.

We actually prove a stronger statement, namely that $B(\)$ can be chosen as

$$B(\) = \begin{cases} x & \text{if } \alpha > \omega \\ x+2 & \text{if } \alpha = \omega \end{cases}$$

and that $T(\)$ and $T(\)$ can be chosen in E_2 if $\alpha > \omega$. We recall from 6.31 step 3 part (b) that (b) above implies $\exists C$

(c) $\sigma f_{\alpha}(x) < f_{\alpha}^{(C)}(x)$.

The proof of B.1 is based on the idea that the steps in the computation of $f_{\alpha}(\)$ according to the method of Appendix A can be classified into two categories. First there are the steps associated with carrying out the actual iterations and diagonalizations. Second there are the steps associated with generating subprograms, i.e. steps which involve calculating the downward links, modifying the loading instructions, and loading the subprograms. The second category of steps is said to constitute the overhead computing. According to the computation procedure overhead computing occurs only at limit ordinals. In terms of that procedure, the function, $L_\alpha(x) =$ number of overhead computing steps of
level \(\alpha \) (for \(\alpha \) a limit ordinal), is precisely defined if we agree to regard all steps up to and including transfer of control from \(\pi_{\alpha} \) to \(\pi_{\alpha}^x \) as overhead steps.

In terms of counting \(\sigma_\alpha \), the overhead steps are those used to generate \(\pi_\alpha \). By establishing B.1 we are showing that \(\pi_{\alpha} \) can be generated as primitive at level \(\alpha \) in the hierarchy. For simplicity in the work below we will use the notation \(\sigma_\alpha(\) \) in place of \(\sigma_{\pi_{\alpha}}(\) \).

We notice immediately that

\[B.2 \quad \sigma_\alpha(x) = L_\alpha(x) + \sigma_\alpha^x(x). \]

A useful notion for the proof of B.1 is that of the total overhead computing time, \(\sigma_0 \), for \(f_\alpha(\) \) which is defined inductively as follows

\[B.3 \quad \sigma_0 f_0(x) = 0 \quad \forall x \]

\[\sigma_0 f_{\alpha+1}(x) = \sigma_0 f_\alpha(x) \quad \forall x \]

If \(x \rightarrow \alpha \), then \(\sigma_0 f_\alpha(x) = L_\alpha(x) + \sigma_0 f_\alpha^x(x) \).

Now define

\[B.4 \quad \sigma_1 f_\alpha(x) = \sigma_\alpha(x) - \sigma_0 f_\alpha(x). \]

We then have

\[B.5 \quad \sigma_\alpha(x) = \sigma_0 f_\alpha(x) + \sigma_1 f_\alpha(x) \]

and at limit ordinals by B.5 and B.2

\[B.6 \quad \sigma_\alpha(x) = L_\alpha(x) + \sigma_0 f_\alpha^x(x) + \sigma_1 f_\alpha^x(x). \]

Equation B.6 is the basis of the proof procedures for B.1.
Functions \(s_\alpha(\) \) and \(t_\alpha(\) \) will be found such that

B.7 For \(\forall x \ \forall n \ \forall \alpha \) if \(\alpha \) is a limit ordinal < \(\varepsilon_0 \), then

\[
\begin{align*}
(a) & \quad \sigma f_{\alpha_n}(x) < f_{\alpha_n}(x) \quad t_\alpha(\) \in E_2 \\
(b) & \quad \sigma_0 f_{\alpha_n}(x) < f_{\alpha_n}(x) \quad s_\alpha(\) \in E_2
\end{align*}
\]

and a constant \(L_\alpha \) will be found such that

\[
(c) \quad L_\alpha(x) = f_{\alpha_B(x)}(x).
\]

Then by B.5, B.6 and B.7 we have \(T_\alpha(x) = s_\alpha(x) + t_\alpha(x) + a \) and \(\overline{T}_\alpha(x) = T_\alpha(x) + (a + L_\alpha) \) we have

B.8 For \(\forall x \ \forall n \ \forall \alpha \), if \(\alpha \) is a limit ordinal < \(\varepsilon_0 \),

\[
\begin{align*}
(a) & \quad \sigma f_{\alpha_n}(x) < f_{\alpha_n}(x) + f_{\alpha_n}(x) < f_{\alpha_n}(x) \\
(b) & \quad \sigma f_{\alpha}(x) < f_{\alpha_B(x)}(x) \quad \overline{T}_\alpha(\) \in E_2.
\end{align*}
\]

Thus showing B.7 will complete the proof of B.1.

In what follows we show B.7 (a) then B.7 (b) and in the course of showing (b) we get (c). The techniques in the proofs involve only simple bounding procedures. We could find much better estimates for \(\sigma_0 \) and \(\sigma_1 \), but that would involve even more tedious and unattractive work. We do not offer completely formal inductive proofs at every point in the analysis, but it is clear how the formal proof would go.

First we define some important constants, \(a, p, c_1, c_0 \), whose denotation remains fixed throughout this appendix.
Since \(x+y \in \Sigma_0 \), the definition of \(f_0(__) \) implies \(\exists a \) such that

\[
B.9 \quad x+y < f_0^{(a)}(\max\{x, y\}) \quad \forall x, y,
\]
also since \(x \cdot y \cdot z \in \Sigma_0^* \), \(\exists p \) such that \(p > a \) and

\[
B.10 \quad x \cdot y \cdot z < f_0^{(p+1)}(\max\{x, y, z\})
\]

Let \(c_1 \) be the number of lines in a \(\text{B}(__) \) iteration subprogram (\(c_1 = 8 \) in Appendix A) and given \(f_0(__) \) pick \(c_0 \) such that

\[
B.11 \quad c_0 > \max\{c_1, a, \sigma f_0(__)\}
\]

Notice then

\[
f_0(x) \ll f_0^{(c_0)}(x) \quad \forall x \text{ for some } c_0 \leq c_0,
\]

since \(f_0(y)(0) > y \).

According to the computation procedure described in Appendix A

\[
B.12 \quad \sigma f_1(x) = \sigma f_0(x) + c_1 \cdot \sigma f_0(f_0(x)) + \ldots + c_1 \cdot \sigma f_0(f_0^{(x-1)}(x))
\]

\[
< c_1 \cdot (x-1) \cdot f_0^{(c_0+x-1)}(x).
\]

Recalling the definition of \(p \) and noticing \(f_0^{(c_0+x-1)}(x) > c_1 \cdot (x-1) \) it follows from \(B.12 \) that

\[
\sigma f_1(x) \ll f_0^{(c_0+p)}(x) \ll f_1^{(c_0+p)}(x).
\]

These are simple estimates which could be much improved if it were necessary (e.g., since \(f_1(y)(0) > f_1(y) \gg f_0(y) \), \(c_0 \) could be reduced eventually to 1 for some \(f_n(__) n \ll c_0 \).

Continuing

\[
B.13 \quad \sigma f_2(x) = \sigma f_1(x) + \ldots + c_1 \cdot \sigma f_1(f_1^{(x-1)}(x))
\]
\[
\sigma_1 f_2(x) \ll f_1(x) < f_1(x),
\]
and as before
\[
\sigma_1 f_2(x) \ll f_1(x) < f_1(x).
\]
So that in general
\[
\sigma_1 f_n(x) \ll f_n(x).
\]
Thus at the limit stage,
\[
\sigma_1 f_\infty(x) = \sigma_1 f(x) \ll f(x).
\]
Putting \(d_\infty(x) = \overline{c_0 + xp}\) we can state this as
\[
\sigma_1 f_\infty(x) \ll f(d(x))(x).
\]
We now set out to find a \(d_\infty\) such that \(\sigma_1 f_\infty(x) < f_\infty(x)\).

Clearly \(d_\infty(x) \in E_1\) so that \(x'\) such that
\[
\sigma_1 f_\infty(x) < f_\infty(x') \quad \forall x.
\]
In fact we claim \(c\) can be chosen \(\max\{\overline{c_0}, p\} \leq c' \leq c_0 + p\)
because if \(c = \max\{\overline{c_0}, p\}\), then
\[
f_1(c)(x) > f_1(x+c) > f_0(x+c)(x+c) > c \cdot x
\]
and
\[
c+c \cdot x < f_0(a)(f_0(x+c)(x+c)) = f_0(a+c+x)(x+c).
\]
So since \(\overline{c_0} + p > c+a\) the claim is justified. We thus have
from (B.16) that
\[
\sigma_1 f_\infty(x) \ll f_x(f(c'))(x)(x),
\]
and we notice that for \(x \geq c'+1\)
\[
f_x(f(c'))(x) \ll f_{2+x}(f(c'))(x) < f(c'+1)(x) \ll f_{3+x}(x).
\]
Thus $\sigma_1 f_\omega(x) \ll f_{x+3}(x)$ if $x > c^* + 1$. So since $c^* > 2$

B.20 $\sigma_1 f_\omega(x) \ll f_\omega(x + c^* + 1)$

\[
< f_\omega(c^* + 1)(x)
\]

\[
< (\overline{c_0} + p)(x) \forall x.
\]

So we have found that $d_\omega = \overline{c_0} + p$ is an acceptable choice.

The same analysis now shows that

B.21 $\sigma_1 f_{\omega \cdot n + 1}(x) < f_{\omega \cdot n + 1}(x)$

by taking $\overline{c_0} + np$ as $\overline{c_0}$ in the above analysis. (In general.

\[
\sigma_1 f_{\omega \cdot n + m}(x) < f_{\omega \cdot n + m}(x).
\]

Thus

\[
\sigma_1 f_{\omega \cdot n + m}(x) < f_{\omega \cdot n + m}(x).
\]

So that as before

\[
\sigma_2 f_\omega(x) < f_{\omega \cdot x}(x) < f_{(\omega \cdot x) + 3}(x)
\]

if $x > c^* + 1$. Since by 6.24

\[
f_{\alpha \cdot x} (x) < f_\alpha (x) \quad x > n
\]

It follows that

B.22 $\sigma_1 f_\omega(x) \ll f_\omega(x + c^* + 1) < f_\omega(x)$ $\forall x.

In general

B.23 $\sigma_1 f_{\omega \cdot a_1 + \ldots + a_s}(x) < f_{\omega \cdot a_1 + \ldots + a_s}(x)$

the principle being if $\sigma_1 f_{\alpha + \omega^m}(x) < f_{\alpha + \omega^m}(x)$, $(d > c_0)$, then

by taking $\overline{c_0} = d + p$ and starting the process with $f_{\alpha + \omega^m}(x)$
we obtain
\[\sigma_1 f_{\alpha + \omega^n}(x) < f_{\alpha + \omega^n}(x). \]

B.24 We can now analyse \(f_\alpha() \) for \(\alpha > \omega \) using the principle that
\[\sigma_1 f_{\omega^\beta}(x) < f_{\omega^\beta}(x) \forall x \forall \beta < \omega \).

We prove this by a simple induction. Suppose the result for \(\beta \). The \(\omega^\beta \cdot n \rightarrow \omega^\beta + 1 \) as \(n \rightarrow \omega \) so that by the above principle taking \(c_0 + p \) and \(c_0 \) and repeating the process up to \(\omega^\beta \) we have
\[\sigma_1 f_{\omega^\beta \cdot x}(x) < f_{\omega^\beta \cdot x}(x). \]

And as before

\[\sigma_1 f_{\omega^\beta + 1}(x) < f_{\omega^\beta + 1}(x) \forall x. \]

If \(\beta \) is a limit ordinal, then assume the result for all \(\alpha < \beta \), thus for all \(\beta_x \) such that \(\beta_x \rightarrow \beta \). Then

\[\sigma_1 f_{\omega^\beta}(x) = \sigma_1 f_{\omega^\beta}(x) < f_{\omega^\beta}(x) < f_{\omega^\beta}(x) \forall x. \]

This concludes the analysis of \(\sigma_1 \) because given \(f_\alpha() \), the function \(t_\alpha() \) either has the form \(t_\alpha = c_0 + d \cdot p + x \cdot p \) or \(t_\alpha(x) = c_0 + p \). In either case \(t_\alpha() \in \mathbb{E}_2 \) as was to be shown. Thus B.7 part (a) follows.

B.27 We now turn to a look at the overhead computing and \(\sigma_0 f_\alpha() \). The first overhead steps arise in computing \(f_\omega() \). The overhead, \(L_\omega() \), satisfies \(L_\omega(x) < d_1 \cdot \exp_2(x)(1) + x \cdot b + d_2 \) where \(b \) is the number of steps required to load
an iteration subprogram (we will look at a general method
of estimating $L_\omega(x)$ below). Thus $L_\omega(x) < E_2$ so that there
exists m such that

$$L_\omega(x) < f_2(m)(x)$$

and there exists s_ω such that

$$\sigma_0 f_\omega(s_\omega) = L_\omega(x) < f_{x+2}(x) < f_\omega(s_\omega)(x) \quad \forall x.$$

Now applying techniques used above to the iteration process
we can infer

$$B.28 \quad \sigma_0 f_{\omega+1}(x) = \sigma_0 f_\omega(s_\omega) + \sigma_0 f_\omega(f_\omega(s_\omega)) + \ldots + \sigma_0 f_\omega(f_\omega(s_\omega-x-1)(x))$$

$$< (s_\omega+x-1) \cdot f_\omega(x)$$

$$< (s_\omega+p+x)$$

$$< f_\omega(x)$$

so that

$$\sigma_0 f_{\omega+1}(x) < f_{\omega+1}(x).$$

Continuing as before we generalize to

$$B.29 \quad \sigma_0 f_{\omega+n+1}(x) < f_{\omega+m+n+1}(x) < f_{\omega+n+1}(x).$$

At stage $\omega \cdot 2$ we have an added complication. We can conclude

as before that

$$B.30 \quad \sigma_0 f_{\omega \cdot x}(x) < f_{\omega \cdot x}(x) < f_{\omega \cdot 2}(x).$$

But now

$$\sigma_0 f_{\omega \cdot 2}(x) = L_{\omega \cdot 2}(x) + \sigma_0 f_{\omega \cdot x}(x).$$

We can easily show that there exists $s_{\omega \cdot 2}$ such that

$$L_{\omega \cdot 2}(x) < f_{\omega \cdot 2}(x).$$

So that combining the above two lines yields

$$B.31 \quad \sigma_0 f_{\omega \cdot 2}(x) < f_{\omega \cdot 2}(x) + f_{\omega \cdot 2}(x) <$$
Now assuming $s_\omega < s_{\omega^2}$ we have
\[(a + \max\{s_\omega, 2, s_\omega + p\}) < f_{\omega^2}(x). \]

B.32 $\sigma_0 f_{\omega^2}(x) < f_{\omega^2}(x).$

Starting the analysis again with $a + p + s_{\omega^2}$ for s_ω and continuing inductively with the assumption that

B.33 $s_\omega \cdot n < s_\omega \cdot n + 1$

we have
\[(n(a + p) + s_\omega \cdot n) < f_{\omega \cdot n}(x) \forall x. \]

Now we want to show that $\lambda x \, x(a + p) + s_{\omega \cdot n} \in E_2$ (this will be done in more generality below). Then finding s_ω^2 such that
\[(s_\omega^2) \]
\[L_2(x) < f_\omega^2(x) \]
and finding s_ω^2 such that
\[(x(a + p) + s_\omega \cdot x) < f_\omega^2(x) < f_\omega^2(x) \forall x \]
we have
\[(s_\omega^2) \]
B.35 $\sigma_0 f_{\omega^2}(x) < f_{\omega^2}(x) + f_2(a + p + s_\omega^2)(x) < (a + \max\{s_\omega, 2, (a + p) + s_\omega^2\}) < f_{\omega^2}(x).$

Now assuming

B.36 $s_\omega^2 > s_\omega^2$

we have
\[(2a + p) + s_\omega^2 \]
B.37 $\sigma_0 f_{\omega^2}(x) < f_{\omega^2}(x).$
Given the assumptions

B.38 (1) \(s^\alpha_n \geq s^\alpha_{n'} \)

(2) \(\lambda x s^\alpha_x \in E^\alpha \)

(3) \(s^\alpha+n \cdot < s^\alpha+n+1 \)

we find that the form \((2a+p)+s^\alpha_x\) is the basic form for the \(\sigma_0\) analysis in the same sense that \((c_0+p)\) was the basic form for the \(\sigma_1\) analysis (with \((2a+p)\) corresponding to \(p\) and \(s^\alpha_x\) corresponding to \(c_0\)). To see this, take \(a+(a+p)+s^\omega_2\) for \(s^\omega\) in the preceding analysis. Use the above assumptions and proceed with an inductive argument as in B.19 - B.26 to conclude

\[
\sigma_0^f n_1 a_1^+ \ldots n_r a_r (x)
\]

is less than

\[
(\bigwedge_{i=1}^{r} a_i \cdot (2a+p)+s^\omega n_1 a_1^+ \ldots n_r a_r (x),
\]

\[
\bigwedge_{i=1}^{r} a_i \cdot \omega_1 a_1^+ \ldots \omega_r a_r
\]

We can carry this over to \(n_1 = \beta_1, \beta < c_0\) just as in B.24.

B.39 In order to justify the assumptions (1), (2), (3) which are sufficient to complete our analysis of \(\sigma_0^f \alpha(\)\), we must examine the form of the \(L_\alpha(\) \omega \alpha < c_0\). The overhead computing procedure involves the following basic steps:

1. breaking down \(\alpha\), this involves the functions \((\)\) \(2(\)\) and \((\)\) \(3(\)\),
2. computing $\exp_2^*(x)(1)$,

3. building α back up with $\exp_2^*(x)(1)$ as a new term, this involves $\exp_2^*(\)$, $\exp_3^*(\)$ and $p^*(\)$.

4. copying main program which is c_n lines long.

5. copying iteration subprograms each b lines long.

We can estimate the number of steps involved in terms of α and x if we have estimates for $\exp_2^*(n)$, $\exp_3^*(n)$, $\exp_2^*(1)$, $\exp_3^*(1)$ and $p^*(z)(x,y)$. Very crude estimates are given by the following (recalling that proper subtraction is a basic operation).

$$B. n \quad (a) \quad \exp_2^*(n) < 2 \cdot (c_1 \cdot x) + 3 \cdot (n^2 \cdot x)$$

$$\quad \quad \quad \quad \quad (b) \quad \exp_3^*(n) < 2 \cdot (c_1 \cdot x) + 3 \cdot (n^2 \cdot x)$$

To see (a) and (b) we consider the program which computes $(x)_y$.

$$\begin{array}{l}
\text{b } \leftarrow 0 \\
\text{x } = 0 \Rightarrow \text{ error} \\
\text{x } = 1 \Rightarrow \text{ (4)} \\
\text{(1) a } \leftarrow 0 \\
\text{(2) a } \leftarrow \text{a+1} \\
\text{x+y.a=0 } \Rightarrow \text{ (3)} \\
\text{TO (2)} \\
\text{(3) x } = \text{y.a } \Rightarrow \text{ (5)} \\
\text{(4) OUT } \leftarrow \text{b} \\
\text{(5) x } \leftarrow \text{a} \\
\text{TO (1)}
\end{array}$$

Since $+$, \cdot, and \div are primitive and since $x/d+x/d^2+\ldots+x/d^n < x$ for $d = 2$ or 3 we have (a) and (b). By similar analysis it is clear that the following hold.

$$(c) \quad \gamma \exp_2^*(x)(y) < c_2 \cdot \exp_2^*(x-1)(y) < \exp_2^*(x)(y)$$
(d) \(\sigma \exp_3^{(x)}(y) \leq c_2 \cdot \exp_3^{(x-1)}(y) < \exp_3^{(x)}(y) \)

(e) \(\sigma p(z)(x,y) \leq c_3 \cdot (p(z-1)(x,y)+y) < p(z)(x,y) \)

With these estimates at hand it is easy to provide a crude but workable bound on \(L_\alpha(\) \). We associate a bound with each of the steps 1. - 5. of B.39: 1. \(2 \cdot c_1 \cdot \overline{\alpha} \),
2. \(\exp_2^{(x)}(1) \), 3. \(c_4 \cdot \overline{\alpha} \), 4. \(c_m \), 5. \(b \cdot x \). Taking \(c = \max\{c_1, \ldots, c_4\} \) and summing we find

B.41 \(L_\alpha(x) < 3 \cdot c \cdot \overline{\alpha} + \exp_2^{(x)}(1) + b \cdot x + c_m \).

Recalling from A.16 the construction of the \(\overline{\alpha} \), we observe that \(\overline{\alpha} \) is at worst in \(E_2 \) for all \(\alpha < \varepsilon_0 \). Thus B.41 yields B.7 part (c).

Now to verify assumptions (1) to (3) of B.38 we must define \(s_\alpha \) and \(s^\alpha \). We can easily see that an adequate (but crude) choice for \(s_\alpha \) is just \(\overline{\alpha} + m \) where \(m = 3 + c + b + c + e \) and \(e \) satisfies \(\exp_2^{(x)}(1) < f_2^{(e)}(x) \) \(\forall x \) since

B.42 \(L_\alpha(x) < f_2^{(\overline{\alpha}+m)}(x) \).

For reasons which will be clear below we include another term, \(3 \cdot c \cdot (M+a) \), in \(s_\alpha \). Thus define

B.43 \(s_\alpha = 3 \cdot c \cdot (M+a) \cdot \overline{\alpha} + m \in E_2 \).

Notice, assumption (2) of B.38 is justified.

Now to define \(s^\alpha \), notice that if \(p \) satisfies

B.44 \(\alpha < f_2^{(p_\alpha)}(x) \),

then
where the last inequality follows by the methods of B.21 - B.24. So

\[B.46 \quad s^\alpha = p_\alpha + m + 2. \]

We now find a uniform method for choosing \(p \) and then show that \(s \geq s \) and in the process that \(s < s \) if \(x < y \). The idea here is that we want to choose \(p_\alpha \) to be small. The only fact we must really show to prove \(s^\alpha > s^\alpha \) is that there is a uniform method of choosing \(s^\alpha \) large and \(s^\alpha \) small simultaneously. The fact is intuitively clear because \(\lambda x s^\alpha \in E_2 \) and we can use any \(f_a(\) \) \(a \in \omega \) to majorize the \(s^\alpha \). The details which follow are tedious but quite elementary. (It should be noted that even if \(s^\alpha > s^\alpha \) did not hold, we could still prove the main result on \(\sigma_0 f_\alpha(\) \), but the arguments might be even more tedious.)

The numbers \(\alpha \) and the functions \(\alpha_x \) arise from compositions of \(p(\), \exp_2(1) \) and \(\exp_3(\) \), e.g.,

\[\omega^2 \cdot 3 + \omega^3 \cdot 2 + \omega^2 \cdot 3 + \omega \]

is equal to

\[p(2)(p(1)(p(2)(\exp_3(1), \exp_2(1)), \exp_2(2)(1)), \exp_3(2)) \]

we know \(\exists \tilde{p} \), \(e_2 \), \(e_3 \) such that
B.47 (a) \(p^{(x)}(q,r) < f_2^{(p)}(x+q+r) \)
(b) \(\exp_2^{(x)}(s) < f_2^{(e_2)}(x+s) \) and
\(\exp_3^{(x)}(s) < f_2^{(e_3)}(x+s) \)

B.48 Let \(M = \max\{\bar{p}, e_1, e_2\} \) and consider a composition of the following type
\[
p(x)(p^{(a_1)}(q,t), r).
\]
Then using the inequalities above

B.49 \(p(x)(p^{(a_1)}(q,t), r) < f_2(x+f_2(M)(a_1+s+t)+r) < f_2^{(2\cdot M+a)}(x+a_1+q+t+r).\)

B.50 Likewise for compositions of the types \(\exp_3^{(x)}(A) \)
and \(p^{(x)}(A,B) \) where \(A \) and \(B \) are \(\exp_2^{(A)}(), \exp_2^{(B)}() \) or \(p^{(x)}() \). Continuing inductively on the levels of composition we can conclude that

B.51 \(\bar{a}_x < f_2^{(n\cdot M+n\cdot a)}(x+\sum_{i=1}^{n} a_i), \)
where \(n \) is the level of nesting in \(\bar{a} \) (defined in A.18 as the total number of \(p() \), \(\exp_2() \) and \(\exp_3() \)'s in representation of \(\bar{a} \)) and \(a_1 \) are iteration parameters of \(p() \) and \(\exp() \).

Letting \(A_n = \sum_{i=1}^{n} a_i \) we have

B.52 \(3\cdot c\cdot (M+a)\cdot \bar{a}_x < f_2^{((n+2) \cdot (M+a)+A_n+3\cdot c)}(x) \forall x. \)

Thus put \(p_\alpha = n \cdot (M+a)+A_n. \)

We now turn to showing that \(s_\alpha > s_\alpha ^\alpha \). We have
\[3 \cdot c \cdot (M+a) \cdot \alpha + m = s \alpha \]

and

\[s \alpha = p + m+2. \]

We check that

\[3 \cdot c \cdot (M+a) \cdot \alpha \geq p \alpha + 2 = (n+2) \cdot (M+a) + A_n + 3 \cdot c + 2. \]

Proceeding by induction, for \(n=1 \) the least transfinite \(\alpha \) is \(3 = \exp_3(1) \) so we have

\[3 \cdot c \cdot (M+a) \cdot 3^x \geq 3 \cdot (M+a) + x \cdot 3 \cdot c + 2 \quad \text{for} \quad x = 1, 2, 3, \ldots \]

Since \((M+a) > 3\) and \(c > 1 \), taking \(x = 1 \)

\[3 \cdot 3 \cdot c \cdot (M+a) > 3 \cdot c \cdot (M+a) + 3 \cdot c + 3 > 3 \cdot (M+a) + 3 \cdot c + 3 \]

so clearly the result holds for all \(x \geq 1 \).

Now suppose the result for \(n \). Then \(\alpha \) has the form \(\exp_{3}^{(x)}(A) \) or \(p^{(x)}(A, B) \) where \(A \) and \(B \) are level \(n \) expressions. In the case of \(\exp_{3}^{(x)}(A) \), we have by the induction hypothesis

\[3 \cdot c \cdot (M+a) \cdot A \geq (n+2) \cdot (M+a) + A_n + 3 \cdot c + 2 \]

where clearly \(A \geq A_n \) and \(A \geq 3 \). Thus as above for \(x = 1, 2, \ldots \)

\[3 \cdot c \cdot (M+a) \cdot \exp_{3}^{(x)}(A) \geq (n+3) \cdot (M+a) + (A_n+3) \cdot c + 2. \]

In the case \(p^{(x)}(A, B) \) we know

\[3 \cdot c \cdot (M+a) \cdot A \geq (n_1+2) \cdot (M+a) + A_n + 3 \cdot c + 2 \]

\[3 \cdot c \cdot (M+a) \cdot B \geq (n_2+2) \cdot (M+a) + B_n + 3 \cdot c + 2 \]

where \(n_1 + n_2 \leq n \).

To show

\[3 \cdot c \cdot (M+a) \cdot p^{(x)}(A, B) > (n+2) \cdot (M+a) + (A_n + B_n + x) + 3 \cdot c + 2 \]

just notice

\[3 \cdot c \cdot (M+a) \cdot p^{(x)}(A, B) \geq 3 \cdot c \cdot (M+a) \cdot (A+B) + 2 \cdot (M+a) + x \]
\[\geq (n_1+n_2+4)\cdot(M+a)+(A_n+B_n+x)+6\cdot c+4 \]
\[\geq (n+2)\cdot(M+a)+(A_n+B_n+x)+3\cdot c+2. \]

We have now verified assumptions (1) and (2) of B.38. To verify (3), that \(s_{\alpha+\omega\cdot n} < s_{\alpha+\omega\cdot n+1} \) we need only verify that \(\alpha+\omega\cdot n < \alpha+\omega\cdot n+1 \).

This is easy since \(\omega\cdot n = p^{(n-1)}(3,1) < p^{(n)}(3,1) = \omega\cdot n+1 \) and to form \(\alpha+\omega\cdot n \) we can use \(\alpha+\omega\cdot n \) which we see by induction satisfies
\[a < b \implies c\circ a < c\circ b \]

This concludes the case for \(\sigma_{1\alpha}(\) \), namely B.7 part (b), and we recall that B.41 gives part (c). This concludes proof of B.7 and thus by B.8, B.1 is proved.

q.e.d.
Appendix C Arithmetizing the RASP

In this appendix we prove the following theorem referred to in Chapter 7.

C.1 Normal Form Theorem for RASP. $M_1(\Sigma)$, Computable functions. There exist predicates $T^{S}_{m}(\cdot)$ elementary in $S = h_1(\cdot), \ldots, h_n(\cdot)$ and there exists an elementary function $U(\cdot)$ such that if $g(\cdot) : \mathbb{N} \rightarrow \mathbb{N}$ and $g(\cdot) \in M_1(\Sigma)$ computable, then $\exists e$ such that

(a) $g(X) = U(\mu y T^{S}_{n+2}(e, X, y))$ \hspace{1cm} $X \in \mathbb{N}^n$.

(b) if there exists a program π_g for $g(\cdot)$ with respect to Σ such that $\sigma g(X) < h(X)$ $\forall X \in \mathbb{N}^n$ then $\exists b(\cdot) \in \mathcal{E}(h(\cdot))$ such that $g(X) = U(\mu y \leq b(X)$ $T(e, X, y))$ so that $g(\cdot) \in \mathcal{E}(h(\cdot))$.

(c) applying the above for $\Sigma = \Sigma_0$. if $g(\cdot) \in E_\alpha$, then $g(\cdot) \in \mathcal{E}(f_\alpha(\cdot))$.

We prove this theorem in the standard manner, by arithmetizing the theory of RASP, $M_1(\Sigma)$, computability. The T-predicate here will have the meaning $T(e, X, y)$ iff e is the number of an initial condition and y is the number of a sequence of instantaneous descriptions for a computation $\sigma_0, \sigma_1, \ldots, \sigma_n, \ldots$ which satisfies the initial condition e at X on a RASP $M_1(\Sigma)$.

C.2 The initial condition for a RASP is the triple $<D, \pi, V>$ where D is the array of input locations, π is a program and V is the array of output locations. For
\(g(\cdot):N^n \rightarrow N \), \(D \) has the form \((d_1,\ldots,d_n)\) and \(V \) has the form \(v_1'\).

We first arithmetize the notion of a program. Suppose \(\Sigma_S = \{+,-,x,T,C,h_1(\),\ldots,h_q(\)\} \), and suppose that the standard designation (c.f. 2.3 and 2.14) assigns operation codes (op codes) to the instructions by the correspondence

\[
\begin{array}{ccccccc}
+ & - & x & T & C & h_1(\) & \ldots & h_q(\) \\
2 & 3 & 5 & 7 & 11 & 13 & p_{4+q}
\end{array}
\]

To an instruction \(h_i(x_1,\ldots,x_s,y) \) is assigned the number

\[
\bar{e}_{i,3} \cdot x_1,\ldots,p_{s+1}^y \text{ where } \bar{h}_i \text{ is the op code.}
\]

Given a program \(\pi = <p(\),a_0,e_1,\ldots,e_m> \) it will be represented by \(\bar{\pi} = \left<\bar{a}_0,p(a_0)\right>,<\bar{a}_1,p(a_1)\>,\ldots,<\bar{a}_{n-1},p(a_{n-1})\>,p_n^e,p_{n-1}^e,\ldots,p_2^e,p_1^e\)

where \(<\bar{x},y> = 2^{\bar{x}}\cdot3^y\).

To represent the initial condition \(<D,\pi,V> \) we first represent \(D = (d_1,d_2,\ldots,d_n) \) by \(\bar{D} = 2^{d_1} \cdot 3^{d_2} \cdot \ldots \cdot p_{n-1}^{d_n} \), and then the initial condition is represented by \(2^{\bar{D}} \cdot 3^\bar{\pi} \cdot 5^V \).

C.3 We now consider the representation of a computation, which is a sequence of states, \(\sigma_0,\sigma_1,\ldots,\sigma_n,\ldots \). We actually represent a sequence of pairs called instantaneous descriptions \(<a_1,\bar{m}_1,m_1> \) where \(a_1 \) is the control location of \(\sigma_1 \) and \(<\bar{m}_1,m_1> \) is a representation of a finite section of memory. The only memory we need represent is the part that is active during the computation. So we start with the
registers holding the program and then add to this segment any registers referred to in the computation. Since \(M_1(\) \) is finitely determined, the memory represented in \(\sigma_0, \sigma_1, \ldots, \sigma_n \) is only finite. Let

\[
m_i = p_0 \cdot p_1 \cdot \ldots \cdot p_{\bar{m}_i - 1}^{b_i}
\]

for some integer \(\bar{m}_i \). The number \(\bar{m}_i \) bounds the memory actually needed at state \(\sigma_i \) and \(m_i \) is a numerical representation of the segment of core containing the addresses 0, 1, \ldots, \(\bar{m}_i - 1 \) and for which register \(r < \bar{m}_i \) contains \(b_{r+1} \). Thus \(\langle \bar{m}_i, m_i \rangle \) represents the active memory at \(\sigma_i \).

C.4 We next consider a notion of cause and effect between id's (instantaneous descriptions), i.e., we define \(C_i \rightarrow C_{i+1} \) for \(C_i \). \(C_{i+1} \) id's and we say that \(C_i \) causes \(C_{i+1} \) or \(C_i \) yields \(C_{i+1} \). Suppose \(C_i = \langle a_i, \langle \bar{m}_i, m_i \rangle \rangle \), then \(C_i \rightarrow C_{i+1} = \langle a_{i+1}, \langle \bar{m}_{i+1}, m_{i+1} \rangle \rangle \) iff \(a_i < \bar{m}_i \) and

(a) if \((m_i)_{a_i} = 2^3 \cdot 3^1 \cdot 5^2 \cdot 7^3 \), then

\[a_{i+1} = a_i + 1 \quad \text{and} \quad \bar{m}_{i+1} = \max \{ m_i, x_1, x_2, x_3 \} \quad \text{and} \quad (m_{i+1})_j = (m_i)_j \quad \text{if} \quad j < \bar{m}_i \quad \text{and} \quad j \neq x_3 \]

\[(m_{i+1})_{x_3} = (m_i)_{x_1} + (m_i)_{x_2} \]

\[(m_{i+1})_j = 0 \quad \text{if} \quad \bar{m}_i < j < \bar{m}_{i+1} \quad \text{and} \quad j \neq x_3. \]

(b) if \((m_i)_{a_i} = 2^3 \cdot 3^1 \cdot 5^2 \cdot 7^3 \), then \(a_{i+1} = a_i + 1 \) and
\(m_{i+1} = \max \{ m_1, x_1, x_2, x_3 \} \) and

\((m_{i+1})_j \) is just as above replacing + by \(\cdot \).

(c) if \((m_1)_{a_1} = 2^5.3.1.5.2.7 \cdot x_3\), then repeat the above replacing \(\cdot \) by \(x \).

(d) if \((m_1)_{a_1} = 2^7.3.1.5.2\), then

\[a_{i+1} = a_{i+1} \] and

\[m_{i+1} = \max \{ m_1, x_1, x_2 \} \] and

\[(m_{i+1})_j = (m_1)_j \] if \(j < \bar{m}_1 \) and \(j \neq x_2 \)

\[(m_{i+1})_x = (m_1)_x \]

\[(m_{i+1})_j = 0 \] if \(\bar{m}_1 < j < \bar{m}_{i+1} \) and \(j \neq x_3 \).

(e) if \((m_1)_{a_1} = 2^{11.3}.1.5.2.7 \cdot x_3\), then

if \((m_1)_{x_1} = (m_1)_{x_2}\), then \(a_{i+1} = x_3 \)

otherwise \(a_{i+1} = a_{i+1} \) and

\[\bar{m}_{i+1} = \bar{m}_1, \] \(m_{i+1} = m_1 \).

(f) if \((m_1)_{a_1} = 2^p.3.1.5.2 \cdot \ldots \cdot p_s. p_{s+1} \) for \(p \leq q \), then

\[a_{i+1} = a_{i+1} \] and

\[\bar{m}_{i+1} = \max \{ \bar{m}_1, x_1, \ldots, x_s, y \} \] and

\[(m_{i+1})_j = (m_1)_j \] if \(j < \bar{m}_1 \), \(j \neq y \)

\[(m_{i+1})_y = h((m_1)_{x_1}, \ldots, (m_1)_{x_s}) \]

\[(m_{i+1})_j = 0 \] if \(\bar{m}_1 < j < \bar{m}_{i+1} \)

(g) otherwise \(a_{i+1} = a_1 \) and \(m_{i+1} = m_1 \). This is equivalent to the machine halting.
C.5 Let $I_{\pi} = \{ i \mid ((\pi)_i)_j = 0 \forall j \ 0 < j < \pi \}$

We now say that a computation $\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_n, \ldots$ satisfies the initial condition $e = <D, \pi, V>$ at x iff

(i) $(m_0)_1 = x_1$

(ii) $(m_0)_1 = ((\pi)_1)_0 = ((\pi)_i)_1 \forall i \in I_{\pi}$

(iii) $(m_0)_j = 0$ if $j \not\in (I_{\pi} \cup \{d_1, \ldots, d_n\})$.

C.6 We let $\bigwedge_{i=0}^n p_i^{<a_i, \bar{m}_i, m_i>}$ represent the sequence of instantaneous descriptions $<a_i, \bar{m}_i, m_i> \ 1 = 1, 2, \ldots, n$.

We now show that the predicate $T^S(e, X, y) \equiv e$ is the number of an initial condition and y is the number of a sequence of instantaneous descriptions for a computation $\sigma_0, \sigma_1, \ldots, \sigma_n, \ldots$ which satisfies the initial condition e at X for a RASP $M_1(\Sigma_\delta)$ is elementary in S.

To see that $T^S(\)$ is elementary in S we first recall that if a function $f(\)$ is elementary in S, then the predicate $f(X) = y \ X \in \mathbb{N}^n$ is elementary in S. Furthermore if the predicates $P_1(\), P_2(\)$ are elementary, then so are $P_1(\) \& P_2(\), P_1(\) \vee P_2(\)$ and $\neg P_1(\)$ and so are $Q_1(X, y) = \exists x \leq y \ P(X, x)$ and $Q_2(X, x) = \forall x \leq y \ P(X, y)$. Using this information we look at the definition of "sequence of instantaneous descriptions for a computation" and "sequence of instantaneous descriptions which satisfies the initial condition e at X".

The first definition merely requires that we show $x \rightarrow y$.
is an elementary predicate because if it is, then to verify
that \(z = p_0 \cdot p_1 \cdot \ldots \cdot p_n \) is the number of a sequence of id's
for a computation we need only check that \(\forall i \leq z \, P(z, i) \) holds
where \(P(z, i) \equiv \{(z)_i \neq 0 \& (z)_{i+1} \neq 0 \implies (z)_i \rightarrow (z)_{i+1}\} \).

To see that \(P(\) \) is elementary in \(S \) we merely notice
that \((\)_i \) is elementary as are \(-, x \) and \([/]\) so that all
clauses in the definition of \(\rightarrow \) are elementary in \(S \), for
example consider clause \((f) \).

In that case, for \(C_i = 2^{a_i} \cdot 3^{m_i} \cdot 3^{n_i} \) the condition for \(\rightarrow \)
is \(C_i \rightarrow C_{i+1} \) iff
\[
\begin{align*}
((C_i)_1)_0 &= p \& \\
((C_i)_1)_n_p &= 0 \& \\
(C_{i+1}) &= (C_i)+1 \& \\
((C_{i+1})_1)_0 &= \max_j \{((C_i)_1)_0 \cdot ((C_i)_1)_j \} \\
\forall j < ((C_i)_1)_0 \\
\{((C_{i+1})_1)_j = ((C_i)_1)_j \& j \neq ((C_i)_1)_n_p \} \& \\
((C_{i+1})_1)_1 \cdot ((C_i)_1)_n_p \} \\
h_p((C_i)_1)_1, \ldots, ((C_i)_1)_n_p \& \\
\forall j < ((C_i)_1)_0 \\
\{((C_{i+1})_1)_j = 0 \& ((C_i)_1)_0 < j \}.
\end{align*}
\]
All the conjuncts are predicates elementary in \(h_p(\) \), so
clause \((f) \) is elementary in \(h_p(\) \).

The definition of a sequence of id's satisfying an ini-
tial condition is clearly elementary by the same reasoning.
Thus the predicate $T^S(\)$ is elementary in S, being a conjunction of predicates elementary in S.

C.7 We now turn to considering parts (b) and (c) of the Normal Form Theorem, namely if $\exists \pi_g$ and $h(\)$ such that $\pi_g(x) < h(\max X) \quad X \in \mathbb{N}^\mathbb{N}$, then there is a function $b(\) \in \mathcal{E}h(\)$ such that

$$\exists e \ g(x) = \mu(y \leq b(x) \ T(e, x, y)).$$

Let e be the number of the initial condition $<D, \pi, V>$. Since $f_0(\)$ is normal for E_0, the largest new number that can be introduced into a computation satisfying the initial condition e is $f_0(d)$ where $d = \max\{\max X, \text{ program constants}\}$. Surely $d \leq e$, thus we can use $f_0(e)$. After s computing steps, the largest possible value of the number z representing the sequence of id's for s steps satisfies $z < 2 \cdot f_0(s)(e) \cdot 3^d(s, e)$

$$= b(s, e)$$

where $d(s, e) = P_u^{s}$ where $u = f_0(s)(e)$. We first observe that $b(x, e)$ is elementary. This follows since $f_0(y)(x)$ can be defined by limited recursion from $W_1(\)$ as we observed in Chapter 7 and since the operations of multiplication, exponentiation, and $p_n = n$-th prime are elementary (see Kleene p. 230 & p. 285). Thus $b(h(\max X), e)$ is elementary in $h(\)$. Take $b(\) = b(h(\), e)$.

For part (c) notice that according to the Actual Time Theorem, if $g(\) \in E_\alpha$, then $\exists d$ such that $\pi_g(X) < f_\alpha(d)(\max X)$ and observe that for fixed d $f_\alpha(d)(\max X)$ is elementary in $f_\alpha(\)$.

q.e.d.
BIBLIOGRAPHY

