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0. Introduction.

A classical result in the theory of ordinary differential equations con-
cerns continuity of solutions with respect to initial conditions and para-
m

meters. If for x ¢ Rn, e R, t real, we denote by x(t,g, ) the

solution of
(0.1) x = £(x, t,1L)
which satisfies the initial condition

(0.2) x(0, £, 1) = ¢

el

then the familiar result is the following. Suppose that the solution x(t, go,uo)

exists for te [0,T). Given © > 0, if we choose |¢ - gou and |u - LLOH
sufficiently small, then the solution x(t, g, 1) exists for te [o,T - &6].

Moreover, uniformly forall t € [0, T - §]
lim
(0.3) o by XL Ep) = x(GELn )
Ho= g

Of course, certain rather general conditions must be imposed upon f(x,t,1L).

These conditions as well as a proof of the result just indicated may be found,

e.g., in[t].

)
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In this paper we wish to consider differential equations with solutions
X(t), where X({t) € B(Bl’ BZ)’ ‘the Banach space of all bounded linear trans-
formations X: Bl-—-» BZ’ where Bl and B2 are themselves Banach spaces.

A

Now the usual topology used in g8 = B(Bl’ BZ) is the one induced by the

norm
0.4 FURE TR
vl =1
where | *||. is the norm in Bj . As long as we speak of continuity with
J ;

respect to this norm topology there is very little change from the results
described above as we pass from finite dimensional systems to systems
having operator valued solutions X(t}. There is, however, another topology
in B which is of frequent interest. We say that a sequence {Xn} € B
converges to X € B in the strong topology of g if for every y € Bl

(0.5) N EREE Y P

N o ©
We may then ask: given a differential equation with solutions in g, does
continuity with respect to initial conditions and parameters prevail if we
work only within the framework of the strong topology?

It is immediately clear that if any such results are obtained they must
differ somewhat fromthose already known for (0.1). For example, let B
denote the space of bounded linear transformations from the Hilbert space

2 P .
£ into itself. An element X € @B can be represented by an infinite ma'trix




11 12 13 °°
21 22 23 77

31 32 33 °

Let us denote those X represented by diagonal matrices as

X X

(0.7) X = diag (x“, 50 X3z e ) .

Consider then the differential equation

(0.8) X = X%

2 2
in B=p,27). We prescribe initial conditions

(0'9) Xn(o) :diag (“l: _I-: LEEIRE _l: l: l;,l: -°~): n= 132‘,3,-°-:

n entries
X_(0) = diag (-1, =1, =1, ... ).
It is clear that lim Xn(O) = XOO(O) in the strong topology of B . Now the

I} == 00

corresponding solutions of (0.8) are

1 1 1 1
0.10 . = di T e eee )
( ) X (0 = diag (T 1-t, l-t, 1 -t, )
n entries
. 1 1 1
X (0 =diag (T Tigr T occ)

The solution Xw(t) exists for all t = 0 while none of the solutions Xn(t)

is defined for t = | . This is a definite departure from our experience with



finite dimensional systems. Observe, however, that for all t - | s, X (1)
converges strongly to Xoo(t) 85 N> 0

In section | we will study, under fairly general assumptions, the
question of strong continuity of solutions with respect to initial conditions
and parameters. Because V\;e wish to include the case of "mild solutions"
(cf. [2]) of certain differential equations whose linear part involves an
unbounded operator, we work with the integral equation (L.6) below. This
equation is of a type general enough to include most differential eqguations
in B which are likely to be of interest.

In section 2 we will show that our results are of more than purely
mathematical interest in»that they can be applied to the study of finite dimen-
sional approximations to certain optimization problems for differential
equations in Hilbert spaces, or, in engineering parlance, distributed para-

meter systems.

1., Strong Continuity Results for Integral Equations

Let B = B(Bl’ BZ) be the Banach space of bounded linear transformations
X: B1 — B2 equipped with the norm (0.4) and let O be a compact topological
space. For X € B, L e, t,s real, 0=s =t, let F(X,u, t, s) and

G(X, L, t) be functions
2
(1.1) F: BROUR" — g ,

(1.2) G pRO®R — B, GE,L,0 = X,

with the following properties.




Property (i) Let X(uw,t) and XO(U‘) be continuous relative to the strong
topology of B for we @, t real. Then F(X(u, s), i, t,s) and G(XO(LL),LL, t)
are both continuous relative to the strong topology of B for pe £, t and

s real, 0= g =t

Property (ii} ~ Corresponding to any set

(1.3) 0st=sT, |[X]|=K

there is a positive number L = L(T, K) such that if Xl’ Xz, t satisfy (1.3)

then, uniformly for p e Q, 0=ss=t =T,
(1'4) “P(XZ:M:ts S) - F(Xl’“':t: S)H = L “XZ —Xl“ )

(1.5) HGMyuﬂ)-GmUu,ﬂnsLHXZ~XJ.

Theorem | . Let X(,t) be the solution of the integral equation

L

f F(X(L, 8), 1, & ) ds

(1.6) X, 1) = GIX ), 1)+
0

A

satisfying the initial condition

(1.7) X, 0) =X ()

It XO(LL) is strongly continuous for p € § there is a positive number T

such that X(.,t) is strongly continuous in the set: . € {&, te€ [0, T]

Remark. The integral equation (l.6) clearly covers the case of a differential
equation
(1.8) X = P(X,u,t)

where P(X,{,t) is a polynomial in X with coefficient operators which are

strongly continuous functions for L € Q, te R1 . This is true because



multiplication of bounded operators preserves strong continuity.

Proof of Theorem 1. The usual proof of the local existence and uniqueness

of solutions of (1.6) employs the method of successive approximations. One

sets
(1.9) Xyt = X
and thereafter

t
l“ L 2 = 3 3 3 M 3 3 b -
(1.10) X, 0,0 = G (), 1 t)4—JC F(X_(1,5),10,t, ) ds

Using properties (i) and (ii) above, one shows in a way whi_h is by now

familiar to all, that if T is sufficiently small

(L.11) lim X (1,0 - X, 0] =0

n —s
uniformly for 0 = t = T, where X{u,t) is the unique solution of (1.6) and
(L.7y .

For each fixed v ¢ Bl s XO(LL)y: Q- - B2 is continuous with respect
to the | - “Z topology of B, for u e Q. Since Q is compact there is a

positive number M(y) such that

(1.12) [Xm)v] = My), p e @

The principle of uniform boundedness [3] may then be invoked to show that

there is a positive number M such that

(1.13) [ X, =M, ue @




Using (l.13) together with the fact that the inequalities (1.4) and (1.5)

for F and G are required to hold uniformly for p e Q, O0O=s=1t=T,
it is immediately evident upon examination of the method of successive
approximations that T can be chosen independently of p € & and that
(1.11) holds uniformly for 4 € 4, te [0, T]. Moreover, there is a

positive number K = M such that
(1.14) “Xn(u,t)“ <K, we Q, te[0,T], n=0,1,2,..

For details of the method of successive approximations we suggest [1] .

’

Let “’O e, 0= Sy < tO . Since Xo(u,t) = Xo(u.) converqges strongly

to XO(HO) as g converges to L, in Q@ we may use (i) to see that
for ea¢ch v € Bl
B — 1o
T - to
and
(1.16) Lim  F(X (b, s), s tas)y = F(XqM g sghsthgs tossg)y
=g
t—=1y o0<s=st
S =5,

Combining (l.10) with (1.15) we see that

b= 1,

t-—»tO

if and only if, for all vy € B1 R \
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t .
' o
1,18) lim / F(X ,8),H,t, s ds:/ . 5 5
( o (O(M ) )y b F(XO(U,O,S),LLO, ty» s)yds .
L
t = to
Let ‘cl > tO be fixed and let sz, 0= s = tstl, E:O, t<{s = tl .
Then the continuity expressed by (1.16) implies that for 0 < s = tl s s # tO s
(1.19) lim FX sk, t,s)y = FXyMgrshng,ty,s)y .
T — tO
B Uy

The continuity (1. 16) together with the compactness of the set: | € ¢,

0=s=t=st implies the boundedness of F in that set. We may then

A

l H
apply the Lebesgue dominated convergence theorem to the integral

t
I =~ ,
L et shi, L)y ds
0 0

to obtain the desired result (1.18). The Lebesgue dominated convergence
theorem for vector valued functions is proved in [3] . We have noted that
(L.17) is implied by (l.18) and hence Xl(u, t) is strongly continuous for
e, 0=<stsT,

One now proceeds by induction, showing, just as above, that the strong
continuity of Xn(u; t) implies that of Xn—l—l(u’ t) via the equation (l.10).
Thus Xn(U«, t) is strongly continuous for Lefl, 0=t=T, n=0,1,2, ... .

Now let € > 0 be chosen and let y € Bl . Let N8 be chosen so that

(1.20) “X(;_L,t)—Xn(LL,t)ns L eQ, tel0,T],

e

for all n = NE . Then let w,t be chosen ¢lose enough to }.LO, tO in the

product topology of Q ® [0, T] so that




(L.21) [| (X (g0 tg) = X s )Y, = /2

Then we readily verify that

(1.22) [ X g t)y - Xty | = e,

and the proof of Theorem | is complete.

The result expressed by Theorem | is purely local in that strong continuity
of X(u,t) persists only over a sufficiently short interval [0, T]. The example;
(0.8) offered in the introduction shows that in general we cannot expect more.

However, we can obtain global results if we assume a certain boundedness

of the solutions.

Eheorem 2 Let it be known that, for all L € O, X(u,t) exists and satisfies

(1.6) for all t= 0 . A necessary and sufficient condition in order that X(u, t)

should be strongly continuous in the set: @ € ©, t= 0 is that there exists

a noh-—negative function K(t) (w.l.o.g. increasing) such that

(L.23) (X0, 0f s K1), pe 9, 0st= 1<

Proof. The condition is clearly necessary. If, for each vy e Bl’ X(,t)y is
continuous in the compact set: L € @, te [0, 7], then “X(LL,t)yH2 is bounded
there. The principal of uniform boundedness then shows that HX(LL, t)ll is
bounded in that set.

Now we will show that the boundedness (l.23) is sufficient for global
strong continuity of X(t,t). Let T 2> 0 be chosen and let t, e [0, T).

0

For tO < t < 1 we have



1o

t

(1.24) X, 1) = é(u,to,t) + f FX(1t,s), 1L, t,s)ds
t
0

where

t
(1.25) é(u,to, t) = G(Xo(u),u,t) +A OF(X(}.L,S),LL,t, s)ds .

Let us assume that X(L,s) is strongly continuous in the set: pe Q,

0 <= s = tO . Now Property (i) implies the boundedness of G(O,u, t) and
F(O,M, t, s), uniformly for 0 = s = t = 1. Combining this with the a priori
bound (!.23) and Property (ii) we obtain a bound on G(XO(LL L, 1) and
F(X(w, s), L, t, s} which is uniformly valid for L € Q, 0=<s=<+t=< 1. The

Lebesgue dominated convergence theorem implies that CE {(W,t.,1t) is strongly

O!
continuous for p € @, 0 =1t= 1, forthe integral in (1.25) involves
X(L,s) only for 0= s =1t . We may now apply the techniques of Theorem 1,

altered only very slightly, to extend the strong continuity from [0, 1t ] to

ol
[0, tO + ff], where the size of 'f > 0 depends only upon T, not upon tO
Starting with tO = T, the interval length found in Theorem !, a finite number
of extensions cover [0,7] and the proof is complete.

We end this section by noting that the case of a sequence Xk(t) of

solutions (as for example (0.8) - (0.10)) is included in Theorems | and 2

by taking Q = {1,2, ..., »] with a neighborhood system described by:

(1) N is a neighborhood of the finite integer n if N is any subset of
! which includes n
(ii) N is a neighborhood of « if N is a subset of ( which contains

all but finitely many n .
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Clearly 0 , as thus topologized, is compact.

2. Application to Quadratic Optimal Control Problems.

Let A be a normal operator defined on a Hilbert space H1 with

spectrum contained in some left half plane:
(2.1) od) < {u|Re®)= uyl .

Let HZ be a second Hilbert space and E HZ-—+ I—Il a bounded linear operator

which, for some x £ 0(A), can be written in the form

(2.2) E=(A—u)“lB,

where B: HZ—» Hl is also bounded. We consider the linear ordinary differ-
ential equation

dx

(2.3) ar - Ax + Bu

in Hl with initial condition

(2.4) x(0) = x_ € A = dom(A) .

0
Given a fixed time T1 > 0 let us consider the problem of finding a control

u (t) lying in the set of measurable vector-valued functions

T
1
(2.5) {u: R = H, | fo ]]u(t)llZ dt < w]

which minimizes

T
(2.6) C(u) :f Lt - nx (1), Wa-"1)x (1)
0

+(u(t), Uu®))) dt+ ((A-2AD)x (T), GA - 2I)x (T))

!
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with respect to all controls in (2.5). Here W, U and G arc bounded
self-adjoint operators. W and G are required to be positive semi-definite
while U 1is to be positive definite. Because (2.2) implies x(t) e A for
all t, C(u) is always defined.

The above problem has been considered in detail by D. L. Lukes and
the present author in [4], where it is shown that the minimizing control
u *(t) is generated by the feedback law

(2.7) ) = - BT - ap e - x %, (1)

i

D(t) x,,(t)

which gives rise to responses x,(t) satisfying

(2.8) ' %?_;i‘i = [A +'§D(t)] % (t) .

The bounded linear operator Q(t): Hl-» Hl is given for t = Tl as the

unique strongly continuous solution of the integral equation

(2.9) Q) = & (T D AT -

ST e 1w _
j N [~W + Q(s)(BU lB')Q(s)] Plst)

t

ds

An optimal control theory formulated in such an abstract setting is of
very little val ue to the engineer unless it represents a limiting case relative
to some approximating sequence of finite dimensional problems. In practice
the spectrum of A is usually discrete, consisting of a sequence of complex
eigenvalues, and the corresponding eigenvectors form a complete orthonormal
set in H, . Thus, a natural way to define finite dimensional approximations

1

is to restrict attention to finite dimensional subspaces of Hl spanned by
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finitely many of the eigenvectors of A . H[2 may already be finite dimen-

sional (this is usually the case) but if not it will also be necessary Lo con-
sider finite dimensional subspaces of it.

We arrange the eigenvalues of A in a sequence; Xl, Xz, x3, ..., and

we let Ek denote the orthogonal projection from H., onto the space H

1 1k

spanned by the eigenvectors of A corresponding to the first k eigenvalues

Xl’ >\'Z’ ...,N . The projections E

K commute with A and converge strongly

k

to the identity as k -~ o, Also, we let {Bk] be a similar collection of
orthogonal projections on HZ which commute with the self~adjoint operator

U. For k=1,2,3,... we put

(2.10) T, =E TE, E TE, E TE_or E TE

according as T: Hl —> Hl, T: HZ—-> Hl’ T: Hl-—r HZ or T: HZ—> HZ )
respectively. Also, we set

(2.11) x = E x, =E, u

k- Tk Yy

We consider now the finite dimensional systems

ka_ ~
= A x +Bkuk,

(2.12) <t T Pk %k

k=1,2,3,...,

with initial conditions

(2.13) xk(O) = ka
One then seeks for a control uk*(t) minimizing
Tl -
s b _"\.
(2.14) ck(uk) j:) {( (Ak )y Ek)xk(t), Wk(Ak Ek)xk(t))

£ (uylth Uy u(0))dt+ (B - E)
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Again one shows that the minimizing control ukw(t) is generated by
-]~ « N .
2.15 = - RIAT - -\ - ‘

yielding responses Xk>"(t) satisfying

dxy g _ ~
(2.16) k¥ = [A, +B D ()] % () .
Here (AQk(t) satisfies

(2.17) 6]<(t) - Ak(T -1 erAk(Tl - t)

AT

-

t

1 eA]ﬁ( Ay (s-t)

w1 Qe U BYQ, ()]s @

N

It should be emphasized that in general ék # Qk’ Dk # Dk’ u, .. and
- Xk:}: F/ X:::k

The real test of this approximation procedure is provided by asking if,

for O0=st=sT

l 3
(2.18) ‘lim uk*(t) = u*(t) .
K= oo
(2.19) kimoo (B, - NE X () = (A -2D) x, (1) .

Evidently both of these will be true if, again for 0 < t < T1 s

(2.20) lim Q. (t)y=Q(tly, yeH

k e o

1

-~

i.e. if Qk(t) converges strongly to Q(t) as k— « ,

If we reverse the time sense in equations (2.9) and (2.17) and attach
an index " «" to Q(t), the equations (2.17), k =1,2,... and (2.9)

satisfy all of the conditions set down in section 1 . The parameter space
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§) consists of 1,2,3, ..., © topologized as indicated at the end of section 1 .

Theorem 1 then implies the validity of (2.2()) for t sufficiently closc to

‘Tl, i = Tl . The result is obtained in the complete interval 0

1A

<
t_.Tl

by showing that “ék(t)“’ ||Q(t)|| are uniformly bounded for 0 < t = T

thus permitting the application of Theorem 2 . This boundedness is rigorously

demonstrated in [4] and is a consequence of the observation that the quadratic

forms (y, Q(t)y), (yk, Qk(t)y]() represent the minimum costs associated with

problems of the above type posed on the interval [t, Tl] with initial con-

ditions x(t) = (A - XI)-ly, Xk(t) = (Ak— XEk)—l Yy -
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