
Evaluating Future Microprocessors: the SimpleScalar Tool Set

Doug Burger*

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

Todd M. Austin† and Steve Bennett‡

†MicroComputer Research Labs, JF3-359
‡Measurement Architecture Planning, JF1-91

Intel Corporation, 2111 NE 25th Avenue
Hillsboro, OR 97124 USA

*Contact: dburger@cs.wisc.edu
http://www.cs.wisc.edu/~mscalar/simplescalar.html

1

Abstract1

This document describes the SimpleScalar tool set, a collec-
tion of publicly-available simulation tools that use detailed exe-
cution-driven to simulate modern processor architectures. In
this report, we give an overview of the tool set, show how to
obtain, install and use it. We also discuss details about the tools’
internals, and document the SimpleScalar architecture.

1 Overview
Modern processors are extremely complex pieces of engi-

neering. Researching aspects of processor and system design
with these complicated beasts requires excellent simulation
tools. Prototyping processors in hardware is expensive and time-
consuming, particularly during the initial phases of a research
project. Mathematical performance models of current-genera-
tion processors can be inaccurate, given the aggressive use of
caches, out-of-order execution, and speculation in these proces-
sors.

However, the researcher does not always want to simulate at
the same level of detail. Initial studies, or isolation of one com-
ponent of the system, require a fast simulator that abstracts away
unnecessary detail. Measuring the effect of a design change on
overall processor or system performance requires a detailed
simulator that captures the interactions of all the different pro-
cessor components. Furthermore, the pace of processor
improvements mandates a simulation environment that is easily
extensible and flexible—lest the intrepid graduate student finish
coding a simulator only to find it out of date.

The SimpleScalar tool set, documented in this report,
addresses the above concerns. The tool set provides a GCC-
based compiler and associated utilities that produce object code
targeted toward the SimpleScalar architecture, which is itself a
derivation of the MIPS architecture [1].

The advantages of the SimpleScalar tools are high flexibility ,
portability, extensibility, and performance. Their flexibility is
demonstrated by the inclusion of five processor simulators in the
release. These five are execution-driven processor simulators for
the SimpleScalar architecture, which range from an extremely
fast functional simulator to a detailed out-of-order issue proces-
sor simulator that supports non-blocking caches and speculative
execution.

1. This research has been supported by NSF Grants CCR-9303030 and
MIP-9505853, ONR Grant N00014-93-1-0465, a donation from Intel
Corp., and by U.S. Army Intelligence Center and Fort Huachuca under
Contract DABT63-95-C-0127 and ARPA order no. D346

The tool set is portable, requiring only that the GNU tools
may be installed on the host system. The tool set has been tested
extensively on both Sparc SunOS and Solaris platforms. The
tool set is easily extensible—due mostly to the way in which we
define the instruction set. We designed the instruction set to sup-
port easy annotation of instructions, without requiring a retar-
geted compiler for incremental changes. The instruction
definition method, along with the ported GNU tools, makes new
simulators easy to write, and the old ones even easier to extend.
Finally, the simulators have been aggressively tuned for perfor-
mance, and can run codes approaching “real” sizes in tractable
amounts of time.

In addition to the tools based on the SimpleScalar architec-
ture, we also provide a tool that uses the SimpleScalar design
philosophy to simulate binaries compiled for a target Linux/x86
system. This tool, called SimpleScalar x86, currently runs only
on a Sparc SunOS host, but is not prohibitively difficult to port
to other platforms (in particular, a port to a Linux/x86 host
would be trivial).

The rest of this document contains information about obtain-
ing, installing, running, using, and modifying the simulators. In
Section2 we provide a detailed procedure for downloading the
release, installing it, and getting it up and running. We provide
such instructions for both the main SimpleScalar release and
SimpleScalar x86. In Section3, we discuss the SimpleScalar
architecture itself in detail. In Section4, we discuss the internal
details of the SimpleScalar processor simulators. In Section5,
we discuss some details about the SimpleScalar x86 internals. In
Section6, we provide the history of the tools’ development and
conclude. Appendices A and B contain complete definitions of
the SimpleScalar instruction set and system calls, respectively.

2 Installation and Use
The only restrictions on using and distributing the tool set

are that (1) the copyright notice must accompany all re-releases
of the tool set, and (2) third parties (i.e., you) are forbidden to
place any additional distribution restrictions on extensions to the
tool set that you release. The copyright notice can be found in
the distribution directory as well as at the head of all simulator
source files. We have included the copyright here as well:

Copyright (C) 1994, 1995, 1996 by Todd M. Austin

This tool set is distributed “as is” in the hope that it will be use-
ful. The tool set comes with no warranty, and no author or dis-
tributor accepts any responsibility for the consequences of its
use.

Everyone is granted permission to copy, modify and redistribute
this tool set under the following conditions:

2

• This tool set is distributed for non-commercial use only.
Please contact the maintainer for restrictions applying to
commercial use of these tools.

• Permission is granted to anyone to make or distribute copies
of this tool set, either as received or modified, in any medium,
provided that all copyright notices, permission and nonwar-
ranty notices are preserved, and that the distributor grants
the recipient permission for further redistribution as permit-
ted by this document.

• Permission is granted to distribute these tools in compiled or
executable form under the same conditions that apply for
source code, provided that either: (1) it is accompanied by the
corresponding machine-readable source code, or (2) it is
accompanied by a written offer, with no time limit, to give
anyone a machine-readable copy of the corresponding
source code in return for reimbursement of the cost of distri-
bution. This written offer must permit verbatim duplication by
anyone, or (3) it is distributed by someone who received only
the executable form, and is accompanied by a copy of the
written offer of source code that they received concurrently.

In other words, you are welcome to use, share and improve these
tools. You are forbidden to forbid anyone else to use, share and
improve what you give them.

2.1 Obtaining the tools
The tools can either be obtained through the World Wide Web,

or by conventional ftp. For example, to get the file “release.tar.gz”
via the WWW, enter the URL:

ftp://ftp.cs.wisc.edu/sohi/Code/simplescalar/
release.tar

and to obtain the same file with traditional ftp:

ftp ftp.cs.wisc.edu
user: anonymous
password: enter your e-mail address here
cd sohi/Code/simplescalar
get release.tar

Note the “tar.gz” suffix: by requesting the file without the “.gz”
suffix, the ftp server uncompresses it automatically. To get the
compressed version, simply request the file with the “.gz” suffix.

The two distribution files in the directory are:
• release.tar.gz - contains the full-blown SimpleScalar release.

This file contains the GCC source, utilities, simulator sources,
essentially everything you will need to port the tool suite to
your system. This file is quite large—63 MB uncompressed.

• x86.tar.gz - contains the SimpleScalar x86 tool set, for simu-
lating x86 Linux binaries. Includes the x86 simulator, but
does not include the GNU tools or Linux sources. Fully
installed (with GNU and Linux), it requires 170 MB (not
including tar files). Simplescalar x86 currently runs only
under SunOS, although ports to other systems are not be pro-
hibitively hard.

Once you have selected the appropriate file, place the down-
loaded file into the desired target directory. If you obtained the file
with the “.gz” suffix, run the GNU decompress utility (gunzip).
The file should now have a “.tar” suffix. To remove the directories
from the archive:

tar xf filename.tar

If you are downloading the full release, you will have the follow-
ing subdirectories, which have the following contents:

• simplesim-0.1 - holds code for five SimpleScalar processor
simulators and all supporting code files.

• gcc-2.6.3 - holds the GNU C compiler code, targeted toward
the SimpleScalar architecture.

• binutils-2.5.2 - contains the GNU binary utilities code,
ported to the SimpleScalar architecture

• glibc-1.09 - contains the GNU libraries code, ported to the
SimpleScalar architecture.

• f2c-1994.09.27 - contains the 1994 release of AT&T Bell
Labs’ FORTRAN to C translator code.

• test-progs - contains a battery of benchmarks that can be
used to test the simulators

• ss-bootstrap - target directory for the ported cross-compiler,
compiled GNU binary utilities, and libraries that are targeted
to the SimpleScalar architecture.

• bin, include, info, lib, man - target directories where the
compiled GNU tools and support files will be installed.

The SimpleScalar x86 release contains the code files for the
simulator and two subdirectories, include and tests. See
Section2.3 for a description of how to obtain the other files needed
for running SimpleScalar x86.

2.2 Installing and running Simplescalar
We depict a graphical overview of the tool set1 in Figure1.

Benchmarks written in FORTRAN are converted to C using Bell
Labs’ f2c converter. Both benchmarks written in C and those con-
verted from FORTRAN are compiled using the SimpleScalar ver-
sion of GCC, which generates SimpleScalar assembly. The
SimpleScalar assembler and loader, along with the necessary
ported libraries, produce SimpleScalar executables that can then be
fed directly into one of the provided simulators. (The simulators
themselves are compiled with the host platform’s native compiler).

The SimpleScalar architecture, like the MIPS architecture [1],
supports both big-endian and little-endian executables. The tool set
supports compilation for either of these targets; the names for the
big-endian and little-endian architecture aressbig-na-sstrix and
sslittle-na-sstrix, respectively. You should use the target endian-
ness that matches your host platform; the simulators will generate
numerous warnings and may not work correctly if you force the
compiler to provide cross-endian support. To determine which
endian your host uses, run theendian program located in the sim-
plesim-0.1 directory. The following instructions will assume a big-
endian installation for simplicity.

To install the full release, first make a symbolic link to which-
ever target architecture you desire in thess-bootstrap directory:
$IDIR will represent the directory in which you are installing the
tools.

cd $IDIR
ln -s ss-bootstrap/ssbig-na-sstrix

Next, build the GNU binary utilities2:

cd $IDIR/binutils-2.5.2
configure --host=$HOST --target=ssbig-na-

sstrix --with-gnu-as --with-gnu-ld --pre-
fix=$IDIR

1. Figure1 applies to the main SimpleScalar release but not SimpleScalar
x86
2. You must have GNU Make to do the majority of installations described
in this document. To check if you have the GNU version, execute “make -
v” or “gmake -v”. The GNU version understands this switch and displays
version information.

3

make
make install

$HOST here is a “canonical configuration” string that represents
your host architecture and system (CPU-COMPANY-SYSTEM).
The string for a Sparcstation running SunOS would be sparc-sun-
sunos4.1.3, running Solaris: sparc-sun-solaris2, a 386 running
Solaris: i386-sun-solaris2.4, etc. A complete list of supported
$HOST strings resides in $IDIR/gcc-2.6.3/INSTALL.

Once the binutils have been built, build the simulators them-
selves. This is necessary to do before building gcc, since one of the
binaries is needed for the cross-compiler build. You should edit
$IDIR/simplesim-0.1/Makefile to use the desired compile flags
(e.g., the correct optimization level) To build the simulators:

cd $IDIR/simplesim-0.1
make

Now, build the compiler itself:

cd $IDIR/gcc-2.6.3
configure --host=$HOST --target=ssbig-na-

sstrix --with-gnu-as --with-gnu-ld --pre-
fix=$IDIR

make LANGUAGES=c
../simplesim-0.1/sim-safe ./enquire -f >!

float.h-cross
make install

We provide pre-built copies of the necessary libraries in ss-
bootstrap/ssbig-na-sstrix/lib, so you do not need to build the code
in glibc-1.09, unless you change the library code. In that event, to
build the libraries:

cd $IDIR/glibc-1.09
configure --prefix=$IDIR/ssbig-na-sstrix ssbig-

na-sstrix
setenv CC $IDIR/bin/ssbig-na-sstrix-gcc
unsetenv TZ
unsetenv MACHINE
make
make install

Note that you must have already installed the SimpleScalar
tools to build this library, since the glibc build requires a compiled
simulator to test target machine-specific parameters such as
endian-ness.

If you have FORTRAN benchmarks, you will need the f2c tool:
cd $IDIR/f2c-1994.09.27
make
make install

Finally, build the test benchmarks:

cd $IDIR/test-progs
make

The tool set should now be ready for use. To run a test:

cd $IDIR/simplesim-0.1
sim-inorder ../test_progs/test-math

The test should generate about a page of output, and will run very
quickly.

2.3 Installing Simplescalar x86
Decide where to install the GNU tools for x86, the x86 simula-

tor and the Linux sources. The tools require about 170MB of space
when installed and built (discounting the tar files). Set the environ-
ment variables GNUROOT, X86ROOT and LNXROOT to be the
above three directories, respectively. Then create the directory
structures needed for installation:

mkdir $GNUROOT/src
mkdir $GNUROOT/i486-linux
mkdir $GNUROOT/i486-linux/bin
mkdir $GNUROOT/i486-linux/lib
mkdir $GNUROOT/i486-linux/include
mkdir $GNUROOT/bin
mkdir $GNUROOT/lib
mkdir $GNUROOT/lib/gcc-lib
mkdir $GNUROOT/lib/gcc-lib/i486-linux
mkdir $GNUROOT/lib/gcc-lib/i486-linux/2.7.2
mkdir $LNXROOT/src

Place x86.tar in $X86ROOT, and obtain the GNU and Linux

Simplescalar
GLD

FORTRAN C

SimpleScalar

Object files

SimpleScalar

SimpleScalar

SimpleScalar

SS libm.a

SS libF77.a

Host C compiler

GCC

GAS

f2c

benchmark source

assembly

executables

SS libc.a

Simulator source
(e.g., sim-outorder.c)

Simulator

benchmark source

RESULTS

Figure 1. SimpleScalar tool set overview

4

sources from one of the many gnu/linux software mirrors1. Down-
load the following files from the FTP site (the paths to the files
may be different if you use a different software mirror):

systems/linux/sunsite/GCC/binutils-
2.6.0.14.tar.gz

systems/gnu/gcc-2.7.2.tar.gz
systems/linux/sunsite/GCC/libc-5.0.9.tar.gz
systems/linux/sunsite/kernel/v1.2/linux-

1.2.13.tar.gz
systems/linux/sunsite/GCC/libc-5.0.9.bin.tar.gz

Now move the files from their downloaded directory to their cor-
rect directories:

cp binutils-2.6.0.14.tar.gz $GNUROOT/src
cp gcc-2.7.2.tar.gz $GNUROOT/src
cp libc-5.0.9.tar.gz $LNXROOT/src
cp linux-1.2.13.tar.gz $LNXROOT
cp libc-5.0.9.bin.tar.gz $LNXROOT

Unpack the downloaded files:

cd $LNXROOT
gunzip linux-1.2.13.tar.gz
tar xf linux-1.2.13.tar
gunzip libc-5.0.9.bin.tar
tar xf libc-5.0.9.bin.tar
cd src
gunzip libc-5.0.9.tar.gz
tar xf libc-5.0.9.tar
cd $GNUROOT/src
gunzip binutils-2.6.0.14.tar.gz
tar xf binutils-2.6.0.14.tar
gunzip gcc.2.7.2.tar.gz
tar xf gcc-2.7.2.tar
cd $X86ROOT
tar xf x86.tar

You may want to remove the tar files at this point; they occupy
a great deal of disk space and are not needed after this step.

The version.h include file is built when the Linux kernel is
compiled. Since we are not compiling the kernel here, we need to
fake this include file.

cp $X86ROOT/include/version.h $LNXROOT/linux/
include/linux

2.3.1 Build binutils:
Build the various utility packages for use with gcc, including

the GNU loader and assembler2.
cd $GNUROOT/src/binutils-2.6.0.14
configure --target=i486-linux
cd bfd
make CC=gcc headers
cd ..
make CC=gcc

Now create links to the utilities where gcc and make files will look
for them:

cd $GNUROOT/i486-linux/bin
setenv $BINROOT $GNUROOT/src/binutils-2.6.0.14
ln -s $BINROOT/binutils/objdump objdump
ln -s $BINROOT/binutils/size size

1. We used ftp://wuarchive.wustl.edu; you can finger fsf@prep.ai.mit.edu
for more information.
2. You must also use GNU make here to build these files.

ln -s $BINROOT/binutils/nm.new nm
ln -s $BINROOT/binutils/ar ar
ln -s $BINROOT/binutils/ranlib ranlib
ln -s $BINROOT/ld/ld.new ld
ln -s $BINROOT/gas/as.new as
cd $GNUROOT/bin
ln -s $BINROOT/binutils/objdump objdump-i486
ln -s $BINROOT/binutils/size size-i486
ln -s $BINROOT/binutils/nm.new nm-i486
ln -s $BINROOT/binutils/ar ar-i486
ln -s $BINROOT/binutils/ranlib ranlib-i486
ln -s $BINROOT/ld/ld.new ld-i486
ln -s $BINROOT/gas/as.new as-i486

2.3.2 Build gcc-2.7.2
Now build gcc itself. Copy the include files into $GNUROOT/

i486-linux/include
cd $GNUROOT/i486-linux/include
cp -R $LNXROOT/linux/include/linux .
cp -R $LNXROOT/linux/include/asm-i386 .
ln -s asm-i386 asm
cp -R $LNXROOT/usr/include/* .
cp $X86ROOT/include/float.h .

Set up library and include links:

cd $GNUROOT/lib/gcc-lib/i486-linux/2.7.2
ln -s $GNUROOT/i486-linux/include include
ln -s $GNUROOT/i486-linux/lib lib

Configure the gcc Makefile:

cd $GNUROOT/src/gcc-2.7.2
configure --target=i486-linux --with-gnu-as --

with-gnu-ld --prefix=$GNUROOT

Edit the gcc Makefile to use gcc to build the cross compiler:

change “CC = cc” to “CC = gcc”

Edit the gcc Makefile to avoid squashing the float.h include file by
commenting out these three lines:

rm -f include/float.h
cp gfloat.h include/float.h
chmod a+r include/float.h

Touch the following library files to prevent gcc from trying to cre-
ate them (and thus failing):

touch libgcc.cross libgcc1.a

Build and install gcc.

make LANGUAGES=c
make LANGUAGES=c install

The compilation should end with output that looks approximately
like this:

[snip]
gcc -DCROSS_COMPILE -DIN_GCC -g obstack.o ` case

“gcc” in “cc”) echo ““ ;; esac ` -o c++filt \
 cxxmain.o underscore.o getopt.o getopt1.o

When this is done, there should be an executable version of gcc in
the $GNUROOT/bin/i486-linux directory. Add this directory into
your search path. All the x86 tools are here.

Verify that $GNUROOT/bin/i486-linux/gcc is executable. We
experienced problems with a version of ‘install’ on the suns. If you
run into problems during the “make install” step, copy the gcc-
cross driver (or xgcc) to $GNUROOT/i486-linux/bin/gcc and
$GNUROOT/bin/i486-linux-gcc. Some versions of install put a
copy of the driver into directories of the same name. You may try

5

the following steps if this problem arises:
cd $GNUROOT/i486-linux/bin
mv gcc gcc.install
ln -s gcc.install/gcc-cross gcc
cd $GNUROOT/bin
mv i486-linux-gcc i486-linux-gcc.install
ln -s i486-linux-gcc.install/gcc-cross i486-

linux-gcc

2.3.3 Build GNU libc
Run the configure program.

cd $LNXROOT/src/libc
configure

Give the configure program the following information (NOTE:
GNUROOT is the actual path without a trailing ‘/’,not an environ-
ment variable):

Build 386, 486 or m68k library code (486
default) 4/3/m [4] ? 4

The target platform [i486-linux] ? i486-linux
The target OS [linux] ? linux
Build targets (static/shared) s/a [a] ? s
Root path to i486-linux related files [] ?

GNUROOT
Bin path to gcc [] ? GNUROOT/i486-linux/bin
The gcc version [2.6.2] ? 2.7.2
Fast build/save space (fast default) f/s [f] ? f
GNU `make’ executable [gmake] ? make
Root path to installation dirs ? GNUROOT/test
Build a NYS libc from nys y/n [n] ? n

Build the libraries:

make clean
make depend
unsetenv MACHINE
make

Copy the libraries to the Linux library directory:

cd $GNUROOT/i486-linux/lib
cp $LNXROOT/libc/elfstatic/lib*.a .
cp $LNXROOT/libc/elfshared/crt* .

2.3.4 Building and testing SimpleScalar x86
Finally, we are ready to build the simulator itself:

cd $X86SIMROOT/xsim

If you have set the GNUROOT environment variable as described
above, no modifications of the Makefile are necessary. Otherwise,
you must modify the Makefile so that BINUTILDIR points to
$GNUROOT/src/binutils-2.6.0.14. Now build the simulator:

make depend
make sim-func

Build the test executables:

cd $X86ROOT/tests
make sun
make intel

To run a sample test program:.

cd $X86ROOT
sim-func -Wsim tests/hello-i486

The result should print “hello world”, surrounded by simulator
comments.

3 The Simplescalar architecture
The SimpleScalar architecture is derived from the MIPS-IV

ISA [1]. The semantics are a superset with the following notable
differences and additions:
• There are no architected delay slots: loads, stores, and control

transfers do not execute the succeeding instruction.

• Loads and stores support two addressing modes—for all data
types—additional to those found in the MIPS architecture.
These are: indexed (register+register), and auto-increment/
decrement.

• A square-root instruction, which implements both single- and
double-precision floating point square roots.

• An extended 64-bit instruction encoding

In Table1, we list the architected registers in the SimpleScalar
architecture, their hardware and software names (which are recog-
nized by the assembler), and a description or each. Both the num-
ber and the semantics of the registers are identical to those in the
MIPS-IV ISA.

In Figure2, we depict the three instruction encodings of Sim-
pleScalar instructions:register, immediate, andjump formats. All
instructions are 64 bits in length.

The register format is used for computational instructions. The
immediate format supports the inclusion of a 16-bit constant. The
jump format supports specification of 24-bit jump targets. The reg-
ister fields are all 8 bits, to support extension of the architected reg-
isters to 256 integer and floating point registers. Each instruction
format has a fixed-location, 16-bit opcode field that facilitates fast
instruction decoding.

Theannote field is a 16-bit field that can be modified post-com-
pile, with annotations to instructions in the assembly files. The
annotation interface is useful for synthesizing new instructions
without having to change and recompile the assembler. Annota-
tions are attached to the opcode, and come in two flavors: bit and
field annotations. A bit annotation is written as follows:

lw/a $4,4($5)

The annotation in this example is/a. It specifies that the first bit of
the annotation field should be set. Bit annotations /a through /p set
bits 0 through 15, respectively. Field annotations are written in the
form:

lw/6:4(7) $4,4($5)

This annotation sets the specified 3-bit field (from bit 4 to bit 6
within the 16-bit annotation field) to the value 7.

To measure instruction cache performance with architectures
that have 32-bit instruction formats, the simulators may be run
with instruction cache blocks twice as large as the blocks on the
32-bit target machine. This trick will produce statistics that are
consistent with a target that uses a 32-bit instruction encoding.
Since the unextended SimpleScalar architecture may be encoded
into a 32-bit instruction, doubling the cache block size yields a
valid result. The two timing simulators (sim-inorder and sim-out-
order, discussed in the next section) currently automatically double
instruction cache block sizes. The cache module will need to be
changed for simulation of unified caches or accurate bus conten-
tion on target machines with 32-bit instructions, however.

4 Tool internals
In this section we discuss the code files of the simulators pro-

vided with the release. Each simulator has one main code file, and
shares all other support files with the other simulators. Section4.1

6

through Section4.4 contain descriptions of the simulator files,
from the fastest and least detailed to the slowest and most detailed.

The compiler outputs binaries that are compatible with the
MIPS ECOFF object format. Library calls are handled with the
ported version of GNU GLIBC and POSIX-compliant Unix sys-
tem calls. The simulators currently execute only user-level code.
Plans exist at Wisconsin to eventually extend the tool set for simu-
lation of kernel code.

The architecture is defined inss.def, which contains a macro
definition for each instruction in the instruction set. Each macro
defines the opcode, name, flags, operand sources and destinations,
and actions to be taken for a particular instruction.

The instruction actions (which appear as macros) that are com-
mon to all simulators are defined inss.h. Those actions that require
different implementations in different simulators are defined in
each simulator code file.

When running a simulator, main() (defined inmain.c) does
all the initialization and loads the target binary into memory. The
routine then callssim_main(), which is simulator-specific,
defined in each simulator code file. sim_main() pre-decodes
the entire text segment for faster simulation, and then begins simu-
lation from the target program entry point.

4.1 Functional simulation
The fastest, least detailed simulator (sim-fast) resides in sim-

fast.c. sim-fast does no time accounting; it executes each instruc-
tion serially, performing no instructions in parallel. sim-fast
assumes no cache.

A separate version of sim-fast, sim-safe, also performs func-
tional simulation, but checks for correct alignment and access per-
missions for each memory reference. The two (safe and unchecked
memory references) simulators are split (e.g., protection is not tog-
gled with a command-line argument) to maximize performance.
Neither of the simulators accept any command-line arguments at
all. Both versions are very simple: less than 300 lines of code—
they therefore make good starting points for understanding the
internal workings of the simulators. In addition to the simulator
file, both sim-fast and sim-safe use the following code files (not
including header files):main.c, syscall.c, memory.c, regs.c,
loader.c, ss.c, endian.c, andmisc.c.

4.2 Fast functional simulation with cache
The sim-cache simulator (the main file of which issim-

cache.c) takes the fast functional simulation (with unchecked
memory accesses) and adds the capability to simulate one level of
cache and/or a TLB. The cache code is located incache.c. The

Register format:

Immediate format:

Jump format:

16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt

16-imm

6-unused 24-target

16-annote 16-opcode 8-rs 8-rt

16-annote 16-opcode

63 32 31 0

63 32 31 0

63 32 31 0

Figure 2. SimpleScalar ar chitecture instruction f ormats

Hardware Name Software Name Description
$0 $zero zero-valued source/sink
$1 $at reserved by assembler
$2-$3 $v0-$v1 fn return result regs
$4-$7 $a0-$a3 fn argument value regs
$8-$15 $t0-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $k0-$k1 reserved by OS
$28 $gp global pointer
$29 $sp stack pointer
$30 $s8 saved regs, callee saved
$31 $ra return address reg
$hi $hi high result register
$lo $lo low result register
$f0-$f31 $f0-$f31 floating point registers
$fcc $fcc floating point condition code

Table 1: SimpleScalar ar chitecture register definitions

7

simulator supports simulation of split level-one instruction and
data caches, or just an instruction or just a data cache, but not a
unified I/D level-one cache (although this is a trivial change to the
simulator). The command-line arguments that it accepts are:

-dname:sets:blocksize:assoc:repl - Simulate a level-one data
cache, calledname in the statistics file, with
sets number of sets, blocks ofblocksize bytes,
assoc set-associativity, and a replacement pol-
icy of repl, whererepl is eitherl, r, or f (for
LRU, random, and FIFO, respectively). The
cache size will be
bytes in size. A two-way set associative, 64-
Kbyte, 32-byte block, LRU data cache would
thus have the parameter:
-dL1dcache:1024:32:2:l

-f Flush caches on system calls

-iname:sets:blocksize:assoc:repl - Simulate an instruction
cache, with the same parameter format as the
data cache example above.

-tname:sets:blocksize:assoc:repl - Simulate a TLB, using the
same parameter format as the instruction and
data caches above.

This simulator is ideal for performing high-level cache studies
that do not take access time of the caches into account (e.g., stud-
ies that are only concerned with miss rates). To measure the effect
of cache organization upon the execution time of real programs,
however, one of the next two timing simulators must be used.

4.3 Simulating in-order issue execution
The simulator found insim-inorder.c models an in-order issue

processor, including timing of functional units, memory latencies,
and thus gives cycle counts for programs’ executions. In addition
to cache.c and the files used for functional simulation, sim-inorder
also usesbpred.c, eventq.c, andresource.c.

This simulator assumes a four-stage pipelined processor. The
four stages are fetch, decode, execute, and writeback. Each of
these stages are handled by a different function:ifetch(),
idecode(), and execute(), in sim-inorder.c and
eventq_service_events() in eventq.c. The in-order issue
pipeline supports out-of-order completion, but stalls the pipeline
upon detection of a data hazard.

Both sim-inorder and sim-outorder (discussed in Section4.4)
perform speculative execution—they execute down a speculative
path until they detect a fault, a TLB miss, or a branch mispredic-
tion. Both simulators support dynamic and static branch predic-
tion. The dynamic prediction uses a branch target buffer with 2-bit
saturating counters.

For timing purposes, both simulators assume the following
functional unit latencies (which may easily be changed). The
latencies are presented as (cycles for one operation)/(initiation
rate). The latencies are: Integer ALU: 1/1, load/store unit: 2/1,
integer multiply: 3/1, integer division: 12/12, floating-point addi-
tion: 2/1, floating-point multiplication: 4/1, floating-point division:
12/12.

sim-inorder accepts a superset of the command-line arguments
that sim-cache allows1. In addition to those of sim-cache, sim-
inorder accepts the following arguments:

-bsize Use a branch prediction table for branch spec-

1. The arguments of sim-inorder are a superset of those of sim-cache,
except for the ‘t’ argument; TLBs are not yet fully supported in sim-inorder
or sim-outorder.

ulation, withsize entries.size must be a power
of two.

-jpenalty Set the branch misprediction penalty topen-
alty cycles. The default is 2.

-k Run with a blocking cache. This option cur-
rently has no effect.

-mlatency Defines main memory access time to be
latency cycles. This option must precede cache
definition arguments, if any, on the command
line. The default is 6 cycles.

-p Run with infinite bandwidth in terms of mem-
ory instruction issue (allow issue of multiple
load/store instructions in the same cycle).

-schoice Use static branch prediction, wherechoice is
either the string “taken” or “nottaken”.

-wwidth Sets the issue width of the processor to be
width. The argument must be a power of two
(and greater than zero).

-y If this option is declared, instruction fetch will
not continue (e.g., stop filling the decode stage
up to the issue width) on branches.

4.4 Simulating out-of-order issue execution
By far the most complicated and detailed simulator is insim-

outorder.c. This simulator supports out-of-order issue and execu-
tion, based on the Register Update Unit [2]. This scheme uses a
reorder buffer to automatically rename registers and hold the
results of pending instructions. Each cycle the reorder buffer
retires completed instructions in program order to the architected
register file.

The processor memory system employs a load/store queue.
Store values are placed in the queue if the store is speculative.
Loads are dispatched to the memory system when the addresses of
all previous stores are known. Loads may be satisfied by either the
memory system or an earlier store value sitting in the queue, if
their addresses match. Speculative loads may generate cache
misses, but speculative TLB misses stall the pipeline until the
branch condition is known.

The sim-outorder simulator file is over 2200 lines long, and
runs about an order of magnitude slower than sim-fast (150,000
cycles per second compared to about 2.5 million per second, on a
Sparc SS-10).

TLBs are not currently activated in the simulator; the code is
there but #defined out. The branch misprediction penalty has a
default of 3 cycles (as opposed to 2 in sim-inorder). The following
arguments accepted by sim-inorder are not supported in sim-out-
order: ‘-f’, ‘-k’, ‘-p’, ‘-y’. The ar guments unique to sim-outorder
are as follows:

-Dwidth Sets the decode width to bewidth, which
much be a power of two. The default is 4.

-Lsize Sets the number of entries in the load/store
queue to besize. size must be a power of two,
and is set to a default of 4.

-Rentries Sets the number of slots in the reorder buffer
to beentries. entries must be a power of two.
The default is 8.

-Wwidth Sets the issue width to bewidth, which much
be a power of two. The default is 4.

-0 Prevents the simulator from issuing mis-spec-
ulated instructions.

-1 Forces the simulator to use in-order issue.

sets blocksize assoc××

8

-9 Run with perfect branch prediction.

4.5 Common support files
The following list describes the functionality of the C code files

in the simplesim-0.1 directory, that are shared by all of the simula-
tors.
• bitmap.h: Contains support macros for performing bit-

map manipulation.

• bpred.[c,h]: Handles the creation, functionality, and
updates of the dynamic branch prediction buffer.

• cache.[c,h]: Contains general functions to support multiple
caches (e.g., TLB, instruction and data cache, BRB). Uses a
linked-list for tag comparisons in caches of low associativity
(less than or equal to four), and a hash table for tag compari-
sons in higher-associativity caches.

• endian.[c,h]: Defines a few simple functions to determine
byte- and word-order on the host and target platforms.

• eventq.[c,h]: Defines ten functions and two macros to han-
dle ordered event queues that control when writebacks occur.

• loader.[c,h]: Loads the target program into memory, sets up
the segment sizes and addresses, and obtains the target pro-
gram entry point.

• main.c: Performs all initialization and launches the
main simulator function (sim_main()).

• memory.[c,h]: Contains functions for reading from, writing
to, initializing, and dumping the contents of the target main
memory.

• misc.[c,h]: Contains support functions, most notably
argument string parsing and string manipulation functions.

• regs.[c,h]: Allocates space for the register files, and con-
tains functions to initialize them and dump their contents.

• resource.[c,h]:Contains code to manage functional unit
resources, divided up into classes. The three defined functions
create the resource pools and busy tables, return a resource (if
any are available) from a given pool, and dump the contents
of a pool.

• sim.h: Contains a few extern variable declarations
and function prototypes.

• ss.[c,h]: Defines macros to expedite the processing of
instructions, numerous constants needed across simulators,
and a function to print out individual instructions in a read-
able format.

• ss.def: Holds a list of macro calls (the macros are
defined in the simulators andss.h andss.c), each of which
defines an instruction. The macro calls accept as arguments
the opcode, name of the instruction, sources, destinations,
actions to execute, and other information. This file serves as
the definition of the instruction set.

• syscall.[c,h]: This file functions as the interface between the
SimpleScalar system calls (which are POSIX-compliant) and
the system calls on the host machine.

• sysprobe.c: Determines byte and word order on host plat-
form, and generates appropriate compiler flags.

• version.h: Defines the version number and release date of
the distribution.

5 Details of SimpleScalar x86
In this section we describe the command-line arguments for

SimpleScalar x86, discuss each of the source files, and close with a
brief description of our experiences running the simulator with the
Spec92 benchmark suite [3].

5.1 SimpleScalar x86 command-line arguments.
Currently, only a functional simulator is available for SimpleS-

calar x86. The simulator is functionally and structurally similar to
that described in Section4.1, but the code is quite different. The
command line for the simulator is:

sim-func-x86 -WbaseName [switches] executable
[arguments] < [input to target program] >
[output of target program]

The only argument required to run the simulator is as follows:

-WbaseName This switch sets the base name in the simula-
tor. It is used to name result files. It is required.

The optional arguments that the simulator will accept are the
following:

-vinstAddr When an instruction at addressinstAddr is
encountered, become verbose (dump trace
information to stderr)

-vttime After executingtime cycles, become verbose.
This option currently has no effect, since we
have only implemented a functional simulator
(in which cycle counts are meaningless).

-viinstCount After executinginstCount instructions,
become verbose. If instCount==1, the simula-
tor will be verbose from the first instruction.

-V Be verbose during system calls.
-mcount Execute onlycount instructions, then termi-

nate.
-? Display usage information

5.2 Simulator code description
Below we list the code files for the simulator with a high-level

description of their purpose:
• main.c: The main driver for the simulator.

• func.[hc]: Implements the high-level functionality of a
simple functional simulator.

• ix86.def: Captures the functionality of the instruction
set. This file is similar toss.def in the main SimpleScalar
release. The complex decoding required for x86 instructions
made this structure quite convoluted. Although messy, this
macro strategy avoids both storing a huge lookup table in
simulator memory to parse instructions, and building an
unwieldy nest of case statements that would parse the instruc-
tion stream.

• non-spec.<un>defines: Thenon-spec.defines file contains the
macros called in ix86.def that actually execute the instruc-
tions.non-spec.undefines undefines these macros. The pair of
files was needed because these files change the state of the
machine, and can not be undone. Eventually we plan to have
a corresponding pair of files for speculative execution, that
will be used after branch prediction, so that the simulator may
recover from a branch mispredictions.

• translate.[hc]: Parses the instruction byte stream, using the

9

structure in ix86.def. This file uses a lookup table that uses
only certain bits from the instructions to reduce the size of the
tables. This module also contains a “decoded instruction
cache” that speeds simulation.

• operands.[hc]:Implements operand fetch and store function-
ality. The “ops” text file in $X86ROOT contains descriptions
of every operand type.

• helper.[hc]: Contains simple, x86-specific functions such
as shift, rotate and flag manipulation.

• syscall.[hc]: Describes the operating system emulation.
Each target operating system call is mapped to either an
equivalent host operating system call, or a series of helper
routines that duplicate the functionality of the target system
call. Currently this file is only compatible with SunOS calls.

• memory.[hc]: Similar to the corresponding SimpleScalar
files.

• misc.[hc]: Contains simple functions such as sign exten-
sion and MIN/MAX error routines.

5.3 Simulator details
Using GCC and Linux (instead of DOS or Windows, for exam-

ple) eliminated many difficulties, including:
• segment register manipulation

• segment register overrides

• 16 bit addressing modes

• self-modifying code

• kernel instructions (tlb, cache, control register, etc.)

Some of the files contain code to count micro operations
(delimited by #ifdef MICRO_OPS ... #endif). This functionality is
only partially implemented, but should provide a start if you want
to extend the code to handleµops explicitly (the code currently
handles the CISC x86 instructions correctly). If you use the micro
operations code, the simulator creates 2 output files:base-
Name.ops-dist andbaseName.ops_file. The former file contains
the distribution of number ofµops per x86 instruction. The latter
file contains the number of occurrences of each x86 instruction.

To validate this functional simulator, we attempted to simulate
all of the SPEC92 benchmarks. Table2 lists the benchmarks that
we ran with their corresponding inputs. Below the table we list
specific problems that occurred when we simulated these bench-
marks.them

The integer benchmarks were simulated much more success-
fully than the floating point benchmarks. Most of the problems
with the floating-point codes involved the different formats of x86
and SPARC floating-point numbers (80 bits versus 64 bits). The
simulator currently does not support the ability of the programmer
or compiler on x86 machines to write 80-bit values to memory.
When the compiler spills the 80-bit floating point numbers, there-
fore, the simulator does not function correctly (implementing this
feature should not be prohibitively difficult).

Another difficulty that we experienced involved the curses
library when simulatingsc: the functionality of the Linux libc var-
ies from the SunOS implementation. We emphasize that the obj-
dump-i486 utility was invaluable in debugging the simulator.
Finally, we note that the Intel 486 Programmers Reference Manual
from which we worked was riddled with bugs.

a. Program executes an unimplemented instruction (fstp80)
b. Results are off slightly from the sun result, but matches when the

ascii output files are compared with spiff -r0.005
c. Completes without error, but result file does not match sun

results
d. Runs 3.7 billion instructions and then stops on a CUBLOW state-

ment (in the mdljdp2 source).
e. Errors during scanning phase of program

Program Input Tested

cc1 1recog.i

compress in (100k and 1MB versions)

elvis unix.c

eqntott input.short/int_pri_3.eqn

espresso opa.in, and others

grep input.txt and various others

perl tests.pl

yacr2 input2

xlisp 8queens

alvinn 10 iterations

doduca doducin.tiny

earb short.m22

fppppa 8 atoms

hydro2dc short

mdljdp2d built in

mdljsp2 built in

spicee short.in

su2cora built in

swm256a built in

tomcatv 100 iterations

Table 2: Test programs and inputs

6 Summary
The SimpleScalar tool set was written by Todd Austin over

about one and a half years, between 1994 and 1996. The ancestors
of the tool set date back to the mid to late 1980s, to tools written by
Manoj Franklin. Steve Bennett wrote SimpleScalar x86 during the
summer of 1995. At the time the tools were developed, both indi-
viduals were research assistants at the University of Wisconsin-
Madison Computer Sciences Department, supervised by Professor
Guri Sohi. Scott Breach provided valuable assistance with the
implementation of the proxy system calls. The release was assem-
bled, debugged, and documented by Doug Burger, also a research
assistant at Wisconsin. Much of the SimpleScalar x86 documenta-
tion in this report was only slightly modified from the report writ-
ten entirely by Steve Bennett.

These tools provide researchers with a simulation infrastructure
that is fast, flexible, and efficient. Changes in both the target hard-
ware and software may be made with minimal effort. We hope that
you find these tools useful, and encourage you to contact us with
ways that we can improve the release, documentation, and tools
themselves.

References
[1] Charles Price.MIPS IV Instruction Set, revision 3.1. MIPS

Technologies, Inc., Mountain View, California, January

10

1995.
[2] GurindarS. Sohi. Instruction Issue Logic for High-Perfor-

mance, Interruptible, Multiple Functional Unit, Pipelined
Computers.IEEE Transactions on Computers, 39(3):349–
359, March 1990.

[3] Standard Performance Evaluation Corporation.SPEC News-
letter, Fairfax, Virginia, December 1991.

A Instruction set definition
This appendix lists all SimpleScalar instructions with their

opcode, assembler format, and semantics. The semantics are
expressed as a C-style expression that uses the extended operators
and operands described in Table3. Operands that are not listed in
Table3 refer to actual instruction fields described in Figure2. For
each instruction, the next PC value (NPC) defaults to the current
PC value plus eight (CPC+8) unless otherwise specified.

A.1 Control instructions

J: Jump to absolute address.
Opcode: 0x01
Format: J target
Semantics: SET_NPC((CPC & 0xf0000000) | (TARGET<<2)))

JAL : Jump to absolute address and link.
Opcode: 0x02
Format: JAL target
Semantics: SET_NPC((CPC\&0xf0000000) | (TARGET<<2))

SET_GPR(31, CPC + 8))

JR: Jump to register address.
Opcode: 0x03
Format: JR rs
Semantics: TALIGN(GPR(RS))

SET_NPC(GPR(RS))

JALR : Jump to register address and link.
Opcode: 0x04
Format: JALR rs
Semantics: TALIGN(GPR(RS))
SET_GPR(RD, CPC + 8)

SET_NPC(GPR(RS))

BEQ: Branch if equal.
Opcode: 0x05
Format: BEQ rs,rt,offset
Semantics: if (GPR(RS) == GPR(RT))

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BNE: Branch if not equal.
Opcode: 0x06
Format: BEQ rs,rt,offset
Semantics: if (GPR(RS) != GPR(RT))

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BLEZ : Branch if less than or equal to zero.
Opcode: 0x07
Format: BLEZ rs,offset

Semantics: if (GPR(RS) <= 0)
SET_NPC(CPC + 8 + (OFFSET << 2))

else
SET_NPC(CPC + 8)

BGTZ : Branch if greater than zero.
Opcode: 0x08
Format: BGTZ rs,offset
Semantics: if (GPR(RS) > 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BLTZ : Branch if less than zero.
Opcode: 0x09
Format: BLTZ rs,offset
Semantics: if (GPR(RS) < 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BGEZ: Branch if greater than or equal to zero.
Opcode: 0x0a
Format: BGEZ rs,offset
Semantics: if (GPR(RS) >= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BC1F: Branch on floating point compare false.
Opcode: 0x0b
Format: BC1F offset
Semantics: if (!FCC)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

BC1T: Branch on floating point compare true.
Opcode: 0x0c
Format: BC1T offset
Semantics: if (FCC)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

A.2 Load/store instructions

LB : Load byte signed, displaced addressing.
Opcode: 0x20
Format: LB rt,offset(rs) inc_dec
Semantics: SET_GPR(RT, READ_SIGNED_BYTE(GPR(RS) +

OFFSET))

LB : Load byte signed, indexed addressing.
Opcode: 0xc0
Format: LB rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_SIGNED_BYTE(GPR(RS)+GPR(RD)))

LBU: Load byte unsigned, displaced addressing.
Opcode: 0x22
Format: LBU rt,offset(rs) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_BYTE(GPR(RS)+OFFSET))

LBU: Load byte unsigned, indexed addressing.

11

Opcode: 0xc1
Format: LBU rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_BYTE(GPR(RS)+GPR(RD)))

LH: Load half signed, displaced addressing.
Opcode: 0x24
Format: LH rt,offset(rs) inc_dec
Semantics: SET_GPR(RT,

READ_SIGNED_HALF(GPR(RS)+OFFSET))

LH: Load half signed, indexed addressing.
Opcode: 0xc2
Format: LH rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_SIGNED_HALF(GPR(RS)+GPR(RD)))

LHU: Load half unsigned, displaced addressing.
Opcode: 0x26
Format: LHU rt,offset(rs) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_HALF(GPR(RS)+OFFSET))

LHU: Load half unsigned, indexed addressing.
Opcode: 0xc3

Format: LHU rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_UNSIGNED_HALF(GPR(RS)+GPR(RD)))

LW: Load word, displaced addressing.
Opcode: 0x28
Format: LW rt,offset(rs) inc_dec
Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+OFF-

SET))

LW: Load word, indexed addressing.
Opcode: 0xc4
Format: LW rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_WORD(GPR(RS)+GPR(RD)))

DLW: Double load word, displaced addressing.
Opcode: 0x29
Format: DLW rt,offset(rs) inc_dec
Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+OFF-

SET))
SET_GPR(RT+1, READ_WORD(GPR(RS)+OFF-
SET+4))

DLW: Double load word, indexed addressing.

Operator/operand Semantics

FS same as field RS
FT same as field RT
FD same as field RD
UIMM IMM field unsigned-extended to word value
IMM IMM field sign-extended to word value
OFFSET IMM field sign-extended to word value
CPC PC value of executing instruction
NPC next PC value
SET_NPC(V) Set next PC to value V
GPR(N) General purpose register N
SET_GPR(N,V) Set general purpose register N to value V
FPR_F(N) Floating point register N single-precision value
SET_FPR_F(N,V) Set floating point register N to single-precision value V
FPR_D(N) Floating point register N double-precision value
SET_FPR_D(N,V) Set floating point register N to double-precision value V
FPR_L(N) Floating point register N literal word value
SET_FPR_L(N,V) Set floating point register N to literal word value V
HI High result register value
SET_HI(V) Set high result register to value V
LO Low result register value
SET_LO(V) Set low result register to value V
READ_SIGNED_BYTE(A) Read signed byte from address A
READ_UNSIGNED_BYTE(A) Read unsigned byte from address A
WRITE_BYTE(V,A) Write byte value V at address A
READ_SIGNED_HALF(A) Read signed half from address A
READ_UNSIGNED_HALF(A) Read unsigned half from address A
WRITE_HALF(V,A) Write half value V at address A
READ_WORD(A) Read word from address A
WRITE_WORD(V,A) Write word value V at address A
TALIGN(T) Check target T is aligned to 8 byte boundary
FPALIGN(N) Check register N is wholly divisible by 2
OVER(X,Y) Check for overflow when adding X to Y
UNDER(X,Y) Check for overflow when subtraction Y from X
DIV0(V) Check for division by zero error with divisor V

Table 3: Operator/operand semantics

12

Opcode: 0xce
Format: DLW rt,(rs+rd) inc_dec
Semantics: SET_GPR(RT,

READ_WORD(GPR(RS)+GPR(RD)))
SET_GPR(RT+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

L.S: Load word into floating point register file, dis-
placed addressing.

Opcode: 0x2a
Format: L.S ft,offset(rs) inc_dec
Semantics: SET_FPR_L(FT, READ_WORD(GPR(RS)+OFF-

SET))

L.S: Load word into floating point register file,
indexed addressing.

Opcode: 0xc5
Format: L.S ft,(rs+rd) inc_dec
Semantics: SET_FPR_L(RT,

READ_WORD(GPR(RS)+GPR(RD)))

L.D: Load double word into floating point register
file, displaced addressing.

Opcode: 0x2b
Format: L.D ft,offset(rs) inc_dec
Semantics: SET_FPR_L(FT, READ_WORD(GPR(RS)+OFF-

SET))
SET_FPR_L(FT+1,
READ_WORD(GPR(RS)+OFFSET+4))

L.D: Load double word into floating point register
file, indexed addressing.

Opcode: 0xcf
Format: L.D ft,(rs+rd) inc_dec
Semantics: SET_FPR_L(RT,

READ_WORD(GPR(RS)+GPR(RD)))
SET_FPR_L(RT+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

LWL: Load word left, displaced addressing.
Opcode: 0x2c
Format: LWL offset(rs)
Semantics: Seess.def or [Kane:92] for a detailed description

of this instruction’s semantics. NOTE: LWL
does not support pre-/post- inc/dec.

LWR: Load word right, displaced addressing.
Opcode: 0x2d
Format: LWR offset(rs)
Semantics: Seess.def or [Kane:92] for a detailed description

of this instruction’s semantics. NOTE: LWR
does not support pre-/post- inc/dec.

SB: Store byte, displaced addressing.
Opcode: 0x30
Format: SB rt,offset(rs) inc_dec
Semantics: WRITE_BYTE(GPR(RT), GPR(RS)+OFFSET)

SB: Store byte, indexed addressing.
Opcode: 0xc6
Format: SB rt,(rs+rd) inc_dec
Semantics: WRITE_BYTE(GPR(RT), GPR(RS)+GPR(RD))

SH: Store half, displaced addressing.
Opcode: 0x32
Format: SH rt,offset(rs) inc_dec

Semantics: WRITE_HALF(GPR(RT), GPR(RS)+OFFSET)

SH: Store half, indexed addressing.
Opcode: 0xc7
Format: SH rt,(rs+rd) inc_dec
Semantics: WRITE_HALF(GPR(RT), GPR(RS)+GPR(RD))

SW: Store word, displaced addressing.
Opcode: 0x34
Format: SW rt,offset(rs) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+OFFSET)

SW: Store word, indexed addressing.
Opcode: 0xc8
Format: SW rt,(rs+rd) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+GPR(RD))

DSW: Double store word, displaced addressing.
Opcode: 0x35
Format: DSW rt,offset(rs) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+OFFSET)

WRITE_WORD(GPR(RT+1), GPR(RS)+OFF-
SET+4)

DSW: Double store word, indexed addressing.
Opcode: 0xd0
Format: DSW rt,(rs+rd) inc_dec
Semantics: WRITE_WORD(GPR(RT), GPR(RS)+GPR(RD))

WRITE_WORD(GPR(RT+1),
GPR(RS)+GPR(RD)+4)

DSZ: Double store zero, displaced addressing.
Opcode: 0x38
Format: DSW rt,offset(rs) inc_dec
Semantics: WRITE_WORD(0, GPR(RS)+OFFSET)

WRITE_WORD(0, GPR(RS)+OFFSET+4)

DSZ: Double store zero, indexed addressing.
Opcode: 0xd1
Format: DSW rt,(rs+rd) inc_dec
Semantics: WRITE_WORD(0, GPR(RS)+GPR(RD))

WRITE_WORD(0, GPR(RS)+GPR(RD)+4)

S.S: Store word from floating point register file,
displaced addressing.

Opcode: 0x36
Format: S.S ft,offset(rs) inc_dec
Semantics: WRITE_WORD(FPR_L(FT), GPR(RS)+OFFSET)

S.S: Store word from floating point register file,
indexed addressing.

Opcode: 0xc9
Format: S.S ft,(rs+rd) inc_dec
Semantics: WRITE_WORD(FPR_L(FT), GPR(RS)+GPR(RD))

S.D: Store double word from floating point register
file, displaced addressing.

Opcode: 0x37
Format: S.D ft,offset(rs) inc_dec
Semantics: WRITE_WORD(FPR_L(FT), GPR(RS)+OFFSET)

WRITE_WORD(FPR_L(FT+1), GPR(RS)+OFF-
SET+4)

S.D: Store double word from floating point register
file, indexed addressing.

Opcode: 0xd2

13

Format: S.D ft,(rs+rd) inc_dec
Semantics: WRITE_WORD(FPR_L(FT), GPR(RS)+GPR(RD))

WRITE_WORD(FPR_L(FT+1),
GPR(RS)+GPR(RD)+4)

SWL: Store word left, displaced addressing.
Opcode: 0x39
Format: SWL rt,offset(rs)
Semantics: Seess.def or [Kane:92] for a detailed

description of this instruction’s semantics.
NOTE: SWL does not support pre-/post- inc/
dec.

SWR: Store word right, displaced addressing.
Opcode: 0x3a
Format: SWR rt,offset(rs)
Semantics: Seess.def or [Kane:92] for a detailed

description of this instruction’s semantics.
NOTE: SWR does not support pre-/post- inc/
dec.

A.3 Integer instructions

ADD: Add signed (with overflow check).
Opcode: 0x40
Format: ADD rd,rs,rt
Semantics: OVER(GPR(RT),GPR(RT))

SET_GPR(RD, GPR(RS) + GPR(RT))

ADDI: Add immediate signed (with overflow check).
Opcode: 0x41
Format: ADDI rd,rs,rt
Semantics: OVER(GPR(RS),IMM)

SET_GPR(RT, GPR(RS) + IMM)

ADDU: Add unsigned (no overflow check).
Opcode: 0x42
Format: ADDU rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) + GPR(RT))

ADDIU: Add immediate unsigned (no overflow check).
Opcode: 0x43
Format: ADDIU rd,rs,rt
Semantics: SET_GPR(RT, GPR(RS) + IMM)

SUB: Subtract signed (with underflow check).
Opcode: 0x44
Format: SUB rd,rs,rt
Semantics: UNDER(GPR(RS),GPR(RT))

SET_GPR(RD, GPR(RS) - GPR(RT))

SUBU: Subtract unsigned (without underflow check).
Opcode: 0x45
Format: SUBU rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) - GPR(RT))

MULT: Multiply signed.
Opcode: 0x46
Format: MULT rs,rt
Semantics: SET_HI((RS * RT) / (1<<32))

SET_LO((RS * RT) % (1<<32))

MULTU: Multiply unsigned.
Opcode: 0x47
Format: MULTU rs,rt
Semantics: SET_HI(((unsigned)RS * (unsigned)RT)/(1<<32))

SET_LO(((unsigned)RS*(unsigned)RT) %
(1<<32))

DIV: Divide signed.
Opcode: 0x48
Format: DIV rs,rt
Semantics: DIV0(GPR(RT))

SET_LO(GPR(RS) / GPR(RT))
SET_HI(GPR(RS) % GPR(RT))

DIVU Divide unsigned.
Opcode: 0x49
Format: DIVU rs,rt
Semantics: DIV0(GPR(RT))

SET_LO((unsigned)GPR(RS)/ (unsigned)GPR(RT))
SET_HI((unsigned)GPR(RS)%(unsigned)GPR(RT)
)

MFHI: Move from HI register.
Opcode: 0x4a
Format: MFHI rd
Semantics: SET_GPR(RD, HI)

MTHI: Move to HI register.
Opcode: 0x4b
Format: MTHI rs
Semantics: SET_HI(GPR(RS))

MFLO: Move from LO register.
Opcode: 0x4c
Format: MFLO rd
Semantics: SET_GPR(RD, LO)

MTLO: Move to LO register.
Opcode: 0x4d
Format: MTLO rs
Semantics: SET_LO(GPR(RS))

AND: Logical AND.
Opcode: 0x4e
Format: AND rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) & GPR(RT))

ANDI: Logical AND immediate.
Opcode: 0x4f
Format: ANDI rd,rt,imm
Semantics: SET_GPR(RT, GPR(RS) & UIMM)

OR: Logical OR.
Opcode: 0x50
Format: OR rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) | GPR(RT))

ORI: Logical OR immediate.
Opcode: 0x51
Format: ORI rd,rt,imm
Semantics: SET_GPR(RT, GPR(RS) | UIMM)

XOR: Logical XOR.
Opcode: 0x52
Format: XOR rd,rs,rt
Semantics: SET_GPR(RD, GPR(RS) ^ GPR(RT))

XORI: Logical XOR immediate.
Opcode: 0x53

14

Format: ORI rd,rt,uimm
Semantics: SET_GPR(RT, GPR(RS) ^ UIMM)

NOR: Logical NOR.
Opcode: 0x54
Format: NOR rd,rs,rt
Semantics: SET_GPR(RD, ~(GPR(RS) | GPR(RT)))

SLL: Shift left logical.
Opcode: 0x55
Format: SLL rd,rt,shamt
Semantics: SET_GPR(RD, GPR(RT) << SHAMT)

SLLV: Shift left logical variable.
Opcode: 0x56
Format: SLLV rd,rt,rs
Semantics: SET_GPR(RD, GPR(RT) << (GPR(RS) & 0x1f))

SRL: Shift right logical.
Opcode: 0x57
Format: SRL rd,rt,shamt
Semantics: SET_GPR(RD, GPR(RT) >> SHAMT)

SRLV: Shift right logical variable.
Opcode: 0x58
Format: SRLV rd,rt,rs
Semantics: SET_GPR(RD, GPR(RT) << (GPR(RS) & 0x1f))

SRA: Shift right arithmetic.
Opcode: 0x59
Format: SRA rd,rt,shamt
Semantics: SET_GPR(RD, SEX(GPR(RT) >> SHAMT, 31 -

SHAMT))

SRAV: Shift right arithmetic variable.
Opcode: 0x59
Format: SRAV rd,rt,rs
Semantics: SET_GPR(RD, SEX(GPR(RT) >> SHAMT, 31 -

(GPR(RD) & 0x1f)))

SLT: Set register if less than.
Opcode: 0x5b
Format: SLT rd,rs,rt
Semantics: SET_GPR(RD, (GPR(RS) < GPR(RT)) ? 1 : 0)

SLTI: Set register if less than immediate.
Opcode: 0x5c
Format: SLTI rd,rs,imm
Semantics: SET_GPR(RD, (GPR(RS) < IMM) ? 1 : 0)

SLTU: Set register if less than unsigned.
Opcode: 0x5d
Format: SLTU rd,rs,rt
Semantics: SET_GPR(RD,

((unsigned)GPR(RS)<(unsigned)GPR(RT)) ? 1 : 0)

SLTIU: Set register if less than unsigned immediate.
Opcode: 0x5d
Format: SLTIU rd,rs,imm
Semantics: SET_GPR(RD,

((unsigned)GPR(RS)<(unsigned)GPR(RT)) ? 1 : 0)

A.4 Floating-point instructions

ADD.S: Add floating point, single precision.

Opcode: 0x70
Format: ADD.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD, FPR_F(FS) + FPR_F(FT)))

ADD.D: Add floating point, double-precision.
Opcode: 0x71
Format: ADD.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_D(FD, FPR_D(FS) + FPR_D(FT)))

SUB.S: Subtract floating point, single precision.
Opcode: 0x72
Format: SUB.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD, FPR_F(FS) - FPR_F(FT)))

SUB.D: Subtract floating point, double precision.
Opcode: 0x73
Format: SUB.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_D(FD, FPR_D(FS) - FPR_D(FT)))

MUL.S: Multiply floating point, single precision.
Opcode: 0x74
Format: MUL.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD,FPR_F(FS)*FPR_F(FT)))

MUL.D: Multiply floating point, double precision.
Opcode: 0x75
Format: MUL.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_D(FD, FPR_D(FS) * FPR_D(FT)))

DIV.S: Divide floating point, single precision.
Opcode: 0x76
Format: DIV.S fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
DIV0(FPR_F(FT))
SET_FPR_F(FD, FPR_F(FS) / FPR_F(FT)))

DIV.D: Divide floating point, double precision.
Opcode: 0x77
Format: DIV.D fd,fs,ft
Semantics: FPALIGN(FD)

FPALIGN(FS)
FPALIGN(FT)
DIV0(FPR_D(FT))
SET_FPR_D(FD, FPR_D(FS) / FPR_D(FT)))

ABS.S: Absolute value, single precision.
Opcode: 0x78
Format: ABS.S fd,fs

15

Semantics: FPALIGN(FD)
FPALIGN(FS)
SET_FPR_F(FD, fabs((double)FPR_F(FS))))

ABS.D: Absolute value, double precision.
Opcode: 0x79
Format: ABS.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, fabs(FPR_D(FS))))

MOV.S: Move floating point value, single precision.
Opcode: 0x7a
Format: MOV.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD, FPR_F(FS))

MOV.D: Move floating point value, double precision.
Opcode: 0x7b
Format: MOV.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, FPR_D(FS))

NEG.S: Negate floating point value, single precision.
Opcode: 0x7c
Format: NEG.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD, -FPR_F(FS))

NEG.D: Negate floating point value, double precision.
Opcode: 0x7d
Format: NEG.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, -FPR_D(FS))

CVT.S.D: Convert double precision to single precision.
Opcode: 0x80
Format: CVT.S.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD, -FPR_D(FS))

CVT.S.W: Convert integer to single precision.
Opcode: 0x81
Format: CVT.S.W fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD, (float)FPR_L(FS))

CVT.D.S: Convert single precision to double precision.
Opcode: 0x82
Format: CVT.D.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD,(double)FPR_F(FS))

CVT.D.W: Convert integer to double precision.
Opcode: 0x83
Format: CVT.D.W fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_D(FD,(double)FPR_L(FS))

CVT.W.S: Convert single precision to integer.
Opcode: 0x84
Format: CVT.W.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_L(FD, (long)FPR_F(FS))

CVT.W.D: Convert double precision to integer.
Opcode: 0x85
Format: CVT.W.D fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_L(FD, (long)FPR_D(FS))

C.EQ.S: Test if equal, single precision.
Opcode: 0x90
Format: C.EQ.S fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_F(FS) == FPR_F(FT))

C.EQ.D: Test if equal, double precision.
Opcode: 0x91
Format: C.EQ.D fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_D(FS) == FPR_D(FT))

C.LT.S: Test if less than, single precision.
Opcode: 0x92
Format: C.LT.S fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_F(FS) < FPR_F(FT))

C.LT.D: Test if less than, double precision.
Opcode: 0x93
Format: C.LT.D fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_D(FS) < FPR_D(FT))

C.LE.S: Test if less than or equal, single precision.
Opcode: 0x94
Format: C.LE.S fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_F(FS) <= FPR_F(FT))

C.LE.D: Test if less than or equal, double precision.
Opcode: 0x95
Format: C.LE.D fs,ft
Semantics: FPALIGN(FS)

FPALIGN(FT)
SET_FCC(FPR_D(FS) <= FPR_D(FT))

SQRT.S: Square root, single precision.
Opcode: 0x96
Format: SQRT.S fd,fs
Semantics: FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD,sqrt((double)FPR_F(FS)))

SQRT.D: Square root, double precision.
Opcode: 0x97
Format: SQRT.D fd,fs
Semantics: FPALIGN(FD)

16

FPALIGN(FS)
SET_FPR_D(FD, sqrt(FPR_D(FS)))

A.5 Miscellaneous instructions

NOP: No operation.
Opcode: 0x00
Format: NOP
Semantics:

SYSCALL : System call.
Opcode: 0xa0
Format: SYSCALL
Semantics: See AppendixB for details

BREAK : Declare a program error.
Opcode: 0xa1
Format: BREAK uimm
Semantics: Actions are simulator-dependent. Typically, an

error message is printed and abort() is called.

LUI : Load upper immediate.
Opcode: 0xa2
Format: LUI uimm
Semantics: SET_GPR(RT, UIMM << 16)

MFC1: Move from floating point to integer register
file.

Opcode: 0xa3
Format: MFC1 rt,fs
Semantics: SET_GPR(RT, FPR_L(FS))

MTC1 : Move from integer to floating point register
file.

Opcode: 0xa5
Format: MTC1 rt,fs
Semantics: SET_FPR_L(FS, GPR(RT))

B System call definitions
This appendix lists all system calls supported by the simulators

with their system call code (syscode), interface specification, and
appropriate POSIX Unix reference. Systems calls are initiated
with the SYSCALL instruction. Prior to execution of a SYSCALL
instruction, register $v0 should be loaded with the system call
code. The arguments of the system call interface prototype should
be loaded into registers $a0 - $a3 in the order specified by the sys-
tem call interface prototype,e.g., for:

read(int fd, char *buf, int nbyte),

0x03 is loaded into $v0, fd is loaded into $a0, buf into $a1, and
nbyte into $a2.

EXIT : Exit process.
Syscode: 0x01
Interface: void exit(int status);
Semantics: See exit(2).

READ: Read from file to buffer.
Syscode: 0x03
Interface: int read(int fd, char *buf, int nbyte);
Semantics: See read(2).

WRITE : Write from a buffer to a file.
Syscode: 0x04
Interface: int write(int fd, char *buf, int nbyte);

Semantics: See write(2).

OPEN: Open a file.
Syscode: 0x05
Interface: int open(char *fname, int flags, int mode);
Semantics: See open(2).

CLOSE: Close a file.
Syscode: 0x06
Interface: int close(int fd);
Semantics: See close(2).

CREAT: Create a file.
Syscode: 0x08
Interface: int creat(char *fname, int mode);
Semantics: See creat(2).

UNLINK : Delete a file.
Syscode: 0x0a
Interface: int unlink(char *fname);
Semantics: See unlink(2).

CHDIR : Change process directory.
Syscode: 0x0c
Interface: int chdir(char *path);
Semantics: See chdir(2).

CHMOD : Change file permissions.
Syscode: 0x0f
Interface: int chmod(int *fname, int mode);
Semantics: See chmod(2).

CHOWN: Change file owner and group.
Syscode: 0x10
Interface: int chown(char *fname, int owner, int group);
Semantics: See chown(2).

BRK : Change process break address.
Syscode: 0x11
Interface: int brk(long addr);
Semantics: See brk(2).

LSEEK : Move file pointer.
Syscode: 0x13
Interface: long lseek(int fd, long offset, int whence);
Semantics: See lseek(2).

GETPID : Get process identifier.
Syscode: 0x14
Interface: int getpid(void);
Semantics: See getpid(2).

GETUID : Get user identifier.
Syscode: 0x18
Interface: int getuid(void);
Semantics: See getuid(2).

ACCESS: Determine accessibility of a file.
Syscode: 0x21
Interface: int access(char *fname, int mode);
Semantics: See access(2).

STAT: Get file status.
Syscode: 0x26

17

Interface: struct stat
{

short st_dev;
long st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
short st_rdev;
int st_size;
int st_atime;
int st_spare1;
int st_mtime;
int st_spare2;
int st_ctime;
int st_spare3;
long st_blksize;
long st_blocks;
long st_gennum;
long st_spare4;

};
int stat(char *fname, struct stat *buf);

Semantics: See stat(2).

LSTAT: Get file status (and don’t dereference links).
Syscode: 0x28
Interface: int lstat(char *fname, struct stat *buf);
Semantics: See lstat(2).

DUP: Duplicate a file descriptor.
Syscode: 0x29
Interface: int dup(int fd);
Semantics: See dup(2).

PIPE: Create an interprocess comm. channel.
Syscode: 0x2a
Interface: int pipe(int fd[2]);
Semantics: See pipe(2).

GETGID: Get group identifier.
Syscode: 0x2f
Interface: int getgid(void);
Semantics: See getgid(2).

IOCTL: Device control interface.
Syscode: 0x36
Interface: int ioctl(int fd, int request, char *arg);
Semantics: See ioctl(2).

FSTAT: Get file descriptor status.
Syscode: 0x3e
Interface: int fstat(int fd, struct stat *buf);
Semantics: See fstat(2).

GETPAGESIZE: Get page size.
Syscode: 0x40
Interface: int getpagesize(void);
Semantics: See getpagesize(2).

GETDTABLESIZE: Get file descriptor table size.
Syscode: 0x59
Interface: int getdtablesize(void);
Semantics: See getdtablesize(2).

DUP2: Duplicate a file descriptor.

Syscode: 0x5a
Interface: int dup2(int fd1, int fd2);
Semantics: See dup2(2).

FCNTL: File control.
Syscode: 0x5c
Interface: int fcntl(int fd, int cmd, int arg);
Semantics: See fcntl(2).

SELECT: Synchronous I/O multiplexing.
Syscode: 0x5d
Interface: int select (int width, fd_set *readfds, fd_set

*writefds, fd_set *exceptfds, struct timeval
*timeout);

Semantics: See select(2).

GETTIMEOFDAY: Get the date and time.
Syscode: 0x74
Interface: struct timeval {

long tv_sec;
long tv_usec;

};
struct int {
timezone tz_minuteswest;
int tz_dsttime;

};
int gettimeofday(struct timeval *tp,
struct timezone *tzp);

Semantics: See gettimeofday(2).

WRITEV: Write output, vectored.
Syscode: 0x79
Interface: int writev(int fd, struct iovec *iov, int cnt);
Semantics: See writev(2).

UTIMES: Set file times.
Syscode: 0x8a
Interface: int utimes(char *file, struct timeval *tvp);
Semantics: See utimes(2).

GETRLIMIT: Get maximum resource consumption.
Syscode: 0x90
Interface: int getrlimit(int res, struct rlimit *rlp);
Semantics: See getrlimit(2).

SETRLIMIT: Set maximum resource consumption.
Syscode: 0x91
Interface: int setrlimit(int res, struct rlimit *rlp);
Semantics: See setrlimit(2).

