Evaluating Future Microprocessors. the SimpleScalar Tool Set

Doug Buger*

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA

*Contact: dburg

Todd M. Austiri and Stee Bennett

"MicroComputer Research Labs, JF3-359
*Measurement Architecture Planning, JF1-91
Intel Corporation, 2111 NE 25thvAnue
Hillsboro, OR 97124 USA

er @s.w sc. edu

http://ww. cs.w sc. edu/ ~nscal ar/ si npl escal ar. ht m

Abstract!

This document describes the SimpleScalar tool set, a collec-
tion of publicly-available simulation tools that use detailgd-e
cution-driven to simulate modern qmessor athitectues. In
this report, we give anwerviev of the tool set, show how to
obtain, install and use it. \also discuss details about the tools’
internals, and document the SimpleScalah#ectue.

1 Overview

Modern processors areteemely complg pieces of engi-

The tool set is portable, requiring only that the GNU tools
may be installed on the host system. The tool set has been tested
extensvely on both Sparc SunOS and Solaris platforms. The
tool set is easily>@ensible—due mostly to theay in which we
define the instruction set.&\designed the instruction set to sup-
port easy annotation of instructions, without requiring a retar-
geted compiler for incremental changes. The instruction
definition method, along with the ported GNU tools, emkev
simulators easy to write, and the old onesneeasier tox@end.
Finally, the simulators hee been aggresaly tuned for perfor-
mance, and can run codes approaching “real” sizes in tractable
amounts of time.

neering. Researching aspects of processor and system design !N @ddition to the tools based on the SimpleScalar architec-

with these complicated beasts requiresedient simulation
tools. Prototyping processors in haate is &pensve and time-
consuming, particularly during the initial phases of a research
project. Mathematical performance models of current-genera-
tion processors can be inaccurate/egithe aggress use of
caches, out-of-ordetxecution, and speculation in these proces-
sors.

However, the researcher does notvays want to simulate at
the same Meel of detail. Initial studies, or isolation of one com-
ponent of the system, requireasf simulator that abstractsay
unnecessary detail. Measuring théeef of a design change on
overall processor or system performance requires a detailed
simulator that captures the interactions of all théedéht pro-

ture, we also pnade a tool that uses the SimpleScalar design
philosoply to simulate binaries compiled for aget Linux/x86
system. This tool, called SimpleScalar x86, currently runs only
on a Sparc SunOS hostjths not prohibitiely difficult to port

to other platforms (in particulaa port to a Linux/x86 host
would be trvial).

The rest of this document contains information about obtain-
ing, installing, running, using, and modifying the simulators. In
Section2 we praide a detailed procedure forwoloading the
release, installing it, and getting it up and running. pkvide
such instructions for both the main SimpleScalar release and
SimpleScalar x86. In Sectid) we discuss the SimpleScalar
architecture itself in detail. In Sectidnwe discuss the internal

cessor components. Furthermore, the pace of processo,details of the SimpleScalar processor simulators. In Sefion

improvements mandates a simulatioviesnment that is easily
extensible and fbeble—lest the intrepid graduate student finish
coding a simulator only to find it out of date.

The SimpleScalar tool set, documented in this report,
addresses the ab® concerns. The tool set pides a GCC-

we discuss some details about the SimpleScalar x86 internals. In
Section6, we praide the history of the tools’ @elopment and
conclude. Appendices A and B contain complete definitions of
the SimpleScalar instruction set and system calls, regphcti

based compiler and associated utilities that produce object code2 |nstallation and Use

tamgeted tovard the SimpleScalar architecture, which is itself a
derivation of the MIPS architecture [1].

The adwantages of the SimpleScalar tools are highilflkty,
portability, extensibility, and performance. Their Ribility is
demonstrated by the inclusion ofdiprocessor simulators in the
release. These fvare gecution-drven processor simulators for
the SimpleScalar architecture, which range from xaremely
fast functional simulator to a detailed out-of-order issue proces-
sor simulator that supports non-blocking caches and speeulati
execution.

The only restrictions on using and distiing the tool set
are that (1) the cgpight notice must accompwrall re-releases
of the tool set, and (2) third parties (i.e., you) are forbidden to
place ag additional distrilntion restrictions onxensions to the
tool set that you release. The gaght notice can be found in
the distritlution directory as well as at the head of all simulator
source files. W have included the copight here as well:

Copyright (C) 1994, 1995, 1996 bgdd M. Aistin

This tool set is distrited “as is” in the hope that it will be use-
ful. The tool set comes with no wanty, and no author or dis-

1. This research has been supported by NSF Grants CCR-9303030 andfibutor accepts anyesponsibility for the consequences of its

MIP-9505853, ONR Grant N00014-93-1-0465, a donation from Intel
Corp., and by U.S. Army Intelligence Center amdtHuachuca under
Contract ABT63-95-C-0127 and ARorder no. D346

use

Everyone is ganted permission to copmodify and edistribute
this tool set under the following conditions:

e This tool set is distrilted for non-commeial use only
Please contact the maintainer foestrictions applying to
commecial use of these tools.

e Permission is ganted to anyone to malor distritute copies
of this tool set, either agceived or modified, in any medium,
provided that all copyright notices, permission and nonwar-
ranty notices a preserved, and that the distttor grants
the recipient permission for furtheedistritution as permit-
ted by this document.

* Permission is ganted to distrilnte these tools in compiled or

executable form under the same conditions that apply for .

source codeprovided that either: (1) it is accompanied by the
corresponding mdtne-readable sowe code or (2) it is
accompanied by a written fef, with no time limit, to give
anyone a mdune-readable copy of the casponding
source code ineturn for eimkursement of the cost of distri-
bution. This written dér must permit verbatim duplication by
anyone or (3) it is distriluted by someone wheaeived only
the ecutable form, and is accompanied by a copy of the
written ofer of souce code that thereceived concuently.

In other wods, you ag welcome to useshae and impove these

tools. Yu are forbidden to forbid anyone else to ushae and

improve what you give them.

2.1 Obtainingthetools

The tools can either be obtained through the@lMMde Web,
or by cowventional ftp. Br example, to get the file “release.tm”
via the WWW enter the URL:

ftp://ftp.cs.w sc. edu/ sohi/ Code/ si npl escal ar/

rel ease.tar

and to obtain the same file with traditional ftp:
ftp ftp.cs.w sc. edu
user: anonynous
password: enter your e-nmil
cd sohi/ Code/ si npl escal ar
get release.tar
Note the “tagz” sufix: by requesting the file without the “.gz”
suffix, the ftp serer uncompresses it automaticallfo get the
compressedersion, simply request the file with the “.gz” fsxf
The two distritution files in the directory are:

¢ releasetar.gz - contains the full-blen SimpleScalar release.
This file contains the GCC source, utilities, simulator sources,
essentially eerything you will need to port the tool suite to
your system. This file is quite g—63 MB uncompressed.

e x86.tar.gz - contains the SimpleScalar x86 tool set, for simu-
lating x86 Linux binaries. Includes the x86 simulatout
does not include the GNU tools or Linux sources. Fully
installed (with GNU and Linux), it requires 170 MB (not
including tar files). Simplescalar x86 currently runs only

address here

under SunQOS, although ports to other systems are not be pro-

hibitively hard.

Once you hee selected the appropriate file, place therdo
loaded file into the desired tpat directory|If you obtained the file
with the “.gz” sufix, run the GNU decompress utilitgynzip).
The file should me@ have a “.tar” sufix. To remae the directories
from the archie:

tar xf filenane.tar

If you are devnloading the full release, you will & the follav-
ing subdirectories, which ke the follaving contents:

simplesim-0.1 - holds code for fig SimpleScalar processor

simulators and all supporting code files.

e gce-2.6.3 - holds the GNU C compiler code, gated tavard
the SimpleScalar architecture.

. binutils-2.5.2 - contains the GNU binary utilities code,
ported to the SimpleScalar architecture

e glibc-1.09 - contains the GNU libraries code, ported to the
SimpleScalar architecture.

e 2c-1994.09.27 - contains the 1994 release of & Bell

Labs’ FOR'RAN to C translator code.

test-progs - contains a battery of benchmarks that can be

used to test the simulators

e ss-bootstrap - tamget directory for the ported cross-compiler

compiled GNU binary utilities, and libraries that areytded

to the SimpleScalar architecture.

bin, include, info, lib, man - taget directories where the
compiled GNU tools and support files will be installed.

The SimpleScalar x86 release contains the code files for the
simulator and tw subdirectories,include and tests. See
Section2.3 for a description of oto obtain the other files needed
for running SimpleScalar x86.

2.2 Ingtalling and running Simplescalar

We depict a graphicalverviev of the tool sétin Figurel.
Benchmarks written in FORRAN are comerted to C using Bell
Labs’ f2c cowerter Both benchmarks written in C and those con-
verted from FORRAN are compiled using the SimpleScaler-v
sion of GCC, which generates SimpleScalar assembhe
SimpleScalar assembler and loadalong with the necessary
ported libraries, produce SimpleScalgeeutables that can then be
fed directly into one of the pvaded simulators. (The simulators
themseles are compiled with the host platfosmatve compiler).

The SimpleScalar architecture,dikhe MIPS architecture [1],
supports both big-endian and little-endiae@utables. The tool set
supports compilation for either of thesegets; the names for the
big-endian and little-endian architecture asbig-na-sstrix and
sdittle-na-sstrix, respectiely. You should use the @et endian-
ness that matches your host platform; the simulators will generate
numerous &rnings and may notavk correctly if you force the
compiler to preide cross-endian supporto Tdetermine which
endian your host uses, run tredian program located in the sim-
plesim-0.1 directoryThe follaving instructions will assume a big-
endian installation for simplicity

To install the full release, first maka symbolic link to which-
ever taget architecture you desire in teebootstrap directory:
$IDIR will represent the directory in which you are installing the
tools.

cd $IDR
In -s ss-bootstrap/sshig-na-sstrix
Next, build the GNU binary utilitieg
cd $IDIR binutils-2.5.2
configure --host=$HOST --target =sshi g-na-
sstrix --with-gnu-as --with-gnu-1d --pre-
fix=$ID R

1. Figurel applies to the main SimpleScalar releasenot SimpleScalar
x86

2. You must hae GNU Male to do the majority of installations described
in this document. @ check if you hee the GNU ersion, gecute “male -

V" or “gmake -v". The GNU ‘ersion understands this switch and displays
version information.

FORTRAN
benchmark source

v
SR

C
benchmark source

SimpleScala
GCC

SimpleSc

SimpleScalar
GAS

(sotea) ——
Simplescalar
GLD

Figure 1. SimpleScalar

assembly

i Object files

R

Simulator source
(e.g., sim-outorder.c)

v

alar

Host C compile

|

—» RESULTS

SimpleScalar
executables

tool set overview

meke
make install

$HOST here is a “canonical configuration” string that represents
your host architecture and system (CPU-CQ@IMF-SYSTEM).

The string for a Sparcstation running SunO&uld be sparc-sun-
sunos4.1.3, running Solaris: sparc-sun-solaris2, a 386 running
Solaris: i386-sun-solaris2.4, etc. A complete list of supported
$HOST strings resides in $IDIR/gcc-2.6.3/INST.

Once the binutils hee been bilt, build the simulators them-
selwes. This is necessary to do befosdding gcc, since one of the
binaries is needed for the cross-compilaild You should edit
$IDIR/simplesim-0.1/Makfile to use the desired compile flags
(e.g., the correct optimizationvel) To build the simulators:

cd $IDIR/sinmplesimO0.1

make

Now, build the compiler itself:

cd $IDIR/ gcc-2.6.3

configure --host=$HOST --target=sshig-na-
sstrix --with-gnu-as --with-gnu-1d --pre-
fix=$I DR

make LANGUAGES=c

../sinplesimO0.1/simsafe ./enquire -f >!

float. h-cross
make install

We provide pre-lvilt copies of the necessary libraries in ss-
bootstrap/ssbig-na-sstrix/lib, so you do not needuittllihe code
in glibc-1.09 unless you change the library code. In thang to
build the libraries:

cd $IDIR/ glibc-1.09

configure --prefix=$lIDl R sshig-na-sstrix sshig-
na-sstrix

setenv CC $I DI R/ bi n/ sshi g-na-sstrix-gcc

unsetenv TZ

unset env. MACHI NE

make

make install

Note that you must e already installed the SimpleScalar
tools to lwild this library since the glibc tild requires a compiled
simulator to test taet machine-specific parameters such as
endian-ness.

If you hare FORTRAN benchmarks, you will need the f2c tool:

cd $I DI R/ f2c-1994. 09. 27

make

make install

Finally, build the test benchmarks:
cd $I DI R test-progs
make
The tool set should mobe ready for use.olrun a test:
cd $IDIR/ sinplesimO0.1
siminorder ../test_progs/test-math

The test should generate about a page of output, and wileryn v
quickly.

2.3 Installing Simplescalar x86

Decide where to install the GNU tools for x86, the x86 simula-
tor and the Linux sources. The tools require about 170MB of space
when installed anduilt (discounting the tar files). Set theveon-
ment \ariables GNUROT, X86ROOT and LNXROOT to be the
above three directories, respealy. Then create the directory
structures needed for installation:

nkdi r $GNUROOT/ src

nkdi r $GNUROOT/ i 486- 1 i nux

nkdi r $GNUROOT/ i 486-1 i nux/ bin

nkdi r $GNUROOT/ i 486-1inux/lib

nkdi r $GNUROOT/ i 486- 1 i nux/i ncl ude
nkdi r $GNUROOT/ bi n

nmkdi r $GNUROOT/ | i b

mkdi r $GNURCOT/ | i b/ gcc-1ib

nmkdi r $GNUROOT/ | i b/ gcc-1ib/i486-1i nux
nkdir $GNUROOT/ | i b/ gcc-1ib/i486-1inux/2.7.2
nkdi r $LNXROOT/ src

Place x86.tar in $X86RDOOT, and obtain the GNU and Linux

sources from one of the magnu/linux softvare mirrors. Down-
load the follaving files from the FTP site (the paths to the files
may be diferent if you use a diérent softvare mirror):

systems/linux/sunsite/GCC/binutils-
2.6.0.14.tar.gz
systems/gnu/gcc-2.7.2.tar.gz
systems/linux/sunsite/GCC/libc-5.0.9.tar.gz
systems/linux/sunsite/kernel/v1.2/linux-
1.2.13.tar.gz
systems/linux/sunsite/GCC/libc-5.0.9.bin.tar.gz

Now move the files from their denloaded directory to their cor-
rect directories:

cp binutils-2.6.0.14.tar.gz $GNUROOT/src
cp gce-2.7.2.tar.gz $SGNUROOT/src

cp libc-5.0.9.tar.gz $SLNXROOT/src

cp linux-1.2.13.tar.gz SLNXROOT

cp libc-5.0.9.bin.tar.gz SLNXROOT

Unpack the denloaded files:

cd SLNXROOT

gunzip linux-1.2.13.tar.gz
tar xf linux-1.2.13.tar
gunzip libc-5.0.9.bin.tar
tar xf libc-5.0.9.bin.tar

cd src

gunzip libc-5.0.9.tar.gz
tar xf libc-5.0.9.tar

cd $GNUROOT/src
gunzip binutils-2.6.0.14.tar.gz
tar xf binutils-2.6.0.14.tar
gunzip gcc.2.7.2.tar.gz
tar xf gcc-2.7.2.tar

cd $X86ROOT

tar xf x86.tar

You may vant to remwe the tar files at this point; theccupy
a great deal of disk space and are not needed after this step.
The \ersion.h include file is Wt when the Linux krnel is
compiled. Since we are not compiling therkel here, we need to
fake this include file.

cp $X86ROOT/include/version.h SLNXROOT/linux/
include/linux

2.3.1 Build binutils:

Build the \arious utility packages for use with gcc, including
the GNU loader and assemBler

cd $GNUROOT/src/binutils-2.6.0.14

configure --target=i486-linux

cd bfd

make CC=gcc headers

cd ..

make CC=gcc

Now create links to the utilities where gcc and méles will look
for them:

cd $GNUROOT/i486-linux/bin

setenv $BINROOT $GNUROOT/src/binutils-2.6.0.14
In -s $BINROOT/binutils/objdump objdump
In -s $BINROOT/binutils/size size

1. We used ftp://wuarcke.wustl.edu; you can finger fsf@prep.ai.mit.edu
for more information.
2. You must also use GNU makere to bild these files.

In -s $BINROOT/binutils/nm.new nm

In -s $BINROOT/binutils/ar ar

In -s $BINROOT/binutils/ranlib ranlib

In -s $BINROOT/Id/Id.new Id

In -s $BINROOT/gas/as.new as

cd $GNUROOT/bin

In -s $BINROOT/binutils/objdump objdump-i486
In -s $BINROOT/binutils/size size-i486
In -s $BINROOT/binutils/nm.new nm-i486
In -s $BINROOT/binutils/ar ar-i486

In -s $BINROOT/binutils/ranlib ranlib-i486
In -s $BINROOT/Id/Id.new 1d-i486

In -s $BINROOT/gas/as.new as-i486

2.3.2 Build gcc-2.7.2
Now build gcc itself. Cop the include files into $GNUBCOT/
i486-linux/include

cd $GNUROOT/i486-linux/include
cp -R SLNXROOT/linux/include/linux .
cp -R $LNXROOT/linux/include/asm-i386 .
In -s asm-i386 asm
cp -R SLNXROOT/usr/include/* .
cp $X86ROOT/include/float.h .

Set up library and include links:
cd $GNUROOT/lib/gcc-lib/i486-linux/2.7.2
In -s $GNUROQT/i486-linux/include include
In -s $GNUROQT/i486-linux/lib lib

Configure the gcc Makile:

cd $GNUROOT/src/gcc-2.7.2
configure --target=i486-linux --with-gnu-as --
with-gnu-Id --prefix=3GNUROOT
Edit the gcc Makfile to use gcc todild the cross compiler:
change “CC = cc” to “CC = gcc”
Edit the gcc Makfile to aoid squashing the float.h include file by
commenting out these three lines:

rm -f include/float.h
cp gfloat.h include/float.h
chmod a+r include/float.h

Touch the follaving library files to preent gcc from trying to cre-
ate them (and thusifing):

touch libgcc.cross libgecl.a
Build and install gcc.

make LANGUAGES=c
make LANGUAGES=c install

The compilation should end with output that looks approximately

like this:

sni
gccR]DCROSS_COMPILE -DIN_GCC -g obstack.o " case
“gcc” in “cc”) echo ““;; esac © -0 c++filt\
cxxmain.o underscore.o getopt.o getoptl.o
When this is done, there should be &aceitable ersion of gcc in
the $GNURDOT/bin/i486-linux directory Add this directory into
your search path. All the x86 tools are here.

Verify that $GNURDOT/bin/i486-linux/gcc is recutable. W
experienced problems with @ssion of ‘install’ on the suns. If you
run into problems during the “maekinstall” step, cop the gcc-
cross drver (or xgcc) to $GNUROT/i486-linux/bin/gcc and
$GNUROOT/bin/i486-linux-gcc. Some ersions of install put a
copy of the driver into directories of the same nameuYnay try

the following steps if this problem arises:

cd $GNUROOT/i486-linux/bin

mv gcc gcc.install

In -s gcc.install/gcc-cross gec

cd $GNUROOT/bin

myv i486-linux-gcc i486-linux-gcc.install

In -s i486-linux-gcc.install/gcc-cross 1486-
linux-gcc

2.3.3 Build GNU libc
Run the configure program.

cd $SLNXROOT/src/libc
configure
Give the configure program the falog information (NOE:
GNUROOT is the actual path without a trailing ‘fipt an eriron-
ment\ariable):
Build 386, 486 or m68k library code (486
default) 4/3/m [4] ? 4

The target platform [i486-linux] ? i486-linux
The target OS [linux] ? linux
Build targets (static/shared) s/a [a] ? s
Root path to i486-linux related files [] ?

GNUROOT

Bin pathto gcc [] ? GNUROOQOT/i486-linux/bin
The gcc version [2.6.2] ? 2.7.2
Fast build/save space (fast default) f/s [f] ? f

GNU “make’ executable [gmake] ? make
Root path to installation dirs ? GNUROOT/test
Build a NYS libc from nys y/n [n] ? n
Build the libraries:
make clean

make depend
unsetenv MACHINE
make

Coyy the libraries to the Linux library directory:

cd $GNUROOT/i486-linux/lib
cp $LNXROOT/libc/elfstatic/lib*.a .
cp SLNXROOT/libc/elfshared/crt* .

2.3.4 Building and testing SimpleScalar x86
Finally, we are ready touild the simulator itself:
cd $X86SIMROOT/xsim

If you have set the GNUROT ernvironment \ariable as described
above, no madifications of the Mekle are necessar@therwise,
you must modify the Ma¥file so that BINUTILDIR points to
$GNUROOQT/src/binutils-2.6.0.14. Ne build the simulator:

make depend
make sim-func

Build the test gecutables:

cd $X86ROOT/tests
make sun
make intel
To run a sample test program:.
cd $X86ROOT
sim-func -Wsim tests/hello-i486

The result should print “hello evld”, surrounded by simulator
comments.

3 The Simplescalar architecture

The SimpleScalar architecture is ded from the MIPS-IV
ISA [1]. The semantics are a superset with the fotig notable
differences and additions:
e There are no architected delay slots: loads, stores, and control
transfers do nobecute the succeeding instruction.

e Loads and stores supportadvaddressing modes—for all data
types—additional to those found in the MIPS architecture.
These are: inded (reyister+rgister), and auto-increment/
decrement.

¢ A square-root instruction, which implements both single- and
double-precision floating point square roots.

¢ An extended 64-bit instruction encoding

In Tablel, we list the architectedgisters in the SimpleScalar
architecture, their hardave and softare names (which are recog-
nized by the assembler), and a description or each. Both the num-
ber and the semantics of thejisters are identical to those in the
MIPS-IV ISA.

In Figure2, we depict the three instruction encodings of Sim-
pleScalar instructiongegister, immediate, andjump formats. All
instructions are 64 bits in length.

The rayister format is used for computational instructions. The
immediate format supports the inclusion of a 16-bit constant. The
jump format supports specification of 24-bit jumpytes. The rg-
ister fields are all 8 bits, to suppoxtension of the architectedge
isters to 256 iniger and floating point gisters. Each instruction
format has a fizd-location, 16-bit opcode field thaicilitates st
instruction decoding.

Theannote field is a 16-bit field that can be modified post-com-
pile, with annotations to instructions in the assembly files. The
annotation intedce is useful for synthesizing wenstructions
without hasing to change and recompile the assemlA@nota-
tions are attached to the opcode, and come dnftawors: bit and
field annotations. A bit annotation is written as fako

lw/a $4,4($5)

The annotation in thisxample is/a. It specifies that the first bit of

the annotation field should be set. Bit annotations /a through /p set
bits 0 through 15, respeetily. Field annotations are written in the
form:

IW/6:4(7) $4,4($5)

This annotation sets the specified 3-bit field (from bit 4 to bit 6
within the 16-bit annotation field) to thalue 7.

To measure instruction cache performance with architectures
that hae 32-bit instruction formats, the simulators may be run
with instruction cache blocks twice asdaras the blocks on the
32-bit taget machine. This trick will produce statistics that are
consistent with a tget that uses a 32-bit instruction encoding.
Since the undended SimpleScalar architecture may be encoded
into a 32-bit instruction, doubling the cache block size yields a
valid result. The tw timing simulators (sim-inorder and sim-out-
order discussed in the resection) currently automatically double
instruction cache block sizes. The cache module will need to be
changed for simulation of unified caches or accuragedonten-
tion on taget machines with 32-bit instructions wever.

4 Tool internals

In this section we discuss the code files of the simulators pro-
vided with the release. Each simulator has one main code file, and
shares all other support files with the other simulators. Settlon

Hardware Name | Software Name | Description

$0 $zero Zero-valued source/sink
$1 $at reserved by assembler
$2-$3 $v0-$v1 fn return result regs
$4-$7 $a0-$a3 fn argument value regs
$8-$15 $t0-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $kO-$k1 reserved by OS

$28 $gp global pointer

$29 $sp stack pointer

$30 $s8 saved regs, callee saved
$31 $ra return address reg

$hi $hi high result register

$lo $lo fow result register
$f0-$f31 $f0-$f31 floating point registers
$fcc $fcc floating point condition code

Table 1: SimpleScalar ar chitecture register definitions

. 16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt
Register format:
63 32 31 0
16-annote 16-opcode 8-rs 8-rt 16-imm
Immediate for mat:
63 32 31 0
16-annote 16-opcode 6-unused 24-taget
Jump format:
63 32 31 0

Figure 2. SimpleScalar ar chitecture instruction f ormats

through Sectiod.4 contain descriptions of the simulator files,
from the fistest and least detailed to thensdet and most detailed.

The compiler outputs binaries that are compatible with the
MIPS ECOFF object format. Library calls are handled with the
ported \ersion of GNU GLIBC and POSIX-compliant Unix sys-
tem calls. The simulators currentlyezute only uselevel code.
Plans &ist at Wisconsin to eentually etend the tool set for simu-
lation of kernel code.

The architecture is defined 8s.def, which contains a macro
definition for each instruction in the instruction set. Each macro
defines the opcode, name, flags, operand sources and destination
and actions to be tek for a particular instruction.

The instruction actions (which appear as macros) that are com-
mon to all simulators are definedsmh. Those actions that require
different implementations in dérent simulators are defined in
each simulator code file.

When running a simulatpmai n() (defined inmain.c) does
all the initialization and loads the ¢gat binary into memoryThe
routine then callssi m_mai n(), which is simulatespecific,
defined in each simulator code filesi m_nai n() pre-decodes
the entire tet sggment for &ster simulation, and thendirs simu-
lation from the taget program entry point.

4.1 Functional smulation

The fastest, least detailed simulateing-fast) resides in sim-
fast.c. sim-fst does no time accounting; Xeeutes each instruc-
tion serially performing no instructions in parallel. simst
assumes no cache.

A separate ersion of sim-ést, sim-safe, also performs func-
tional simulation, bt checks for correct alignment and access per-
missions for each memory reference. The (8afe and uncheekl
memory references) simulators are split (e.g., protection is not tog-
%Ied with a command-line gmument) to maximize performance.

either of the simulators acceptyacommand-line guments at
all. Both \ersions are ery simple: less than 300 lines of code—
they therefore mad good starting points for understanding the
internal workings of the simulators. In addition to the simulator
file, both sim-&st and sim-safe use the feliog code files (not
including header files)main.c, syscall.c, memory.c, regs.c,
loader.c, ss.c, endian.c, andmisc.c.

4.2 Fast functional smulation with cache

The sim-cache simulator (the main file of which sisn-
cachec) takes the &st functional simulation (with unchesk
memory accesses) and adds the capability to simulate @iefe
cache and/or a TLB. The cache code is locatechdhe.c. The

simulator supports simulation of splitvid-one instruction and ulation, withsize entries size must be a pwer

data caches, or just an instruction or just a data cacheiob a of two.
unified I/D level-one cache (although this is avi@l change to the -jpenalty Set the branch misprediction penaltypem-
simulator). The command-lineguments that it accepts are: alty cycles. The defult is 2.
-dname: sets: blocksize:assoc:repl - Simulate a beel-one data -k Run with a blocking cache. This option cur-
cache, calledhame in the statistics file, with rently has no ééct.

sets number of sets, blocks bfocksize bytes,
assoc set-associatity, and a replacement pol-
icy of repl, whererepl is either, r, orf (for
LRU, random, and FIFO, respestly). The
cache size will besetsx blocksizex assoc

-mlatency Defines main memory access time to be
latency cycles. This option must precede cache
definition aguments, if ap, on the command
line. The dedwlt is 6 gcles.

bytes in size. A te-way set associate, 64- P Run_ with in_finitg bandwidt_h in terms of_mem-
Kbyte, 32-byte block, LR data cache auld ory instruction issue (ake issue of multiple
thus hae the parameter: load/store instructions in the samele).
-dL1dcache: 1024:32:2:| -schoice Use static br_anc‘rj pre'fjicti“on, whet:!)ice is

r Flush caches on system calls _ either thg string .takn or “nottalen”.

. . ;)) -wwidth Sets the issue width of the processor to be

-iname: sets: bIocksze:asqc: repl - Simulate an instruction width. The agument must be a per of two
data cachoample abwe. e e (and greater than zero). |

. .)) -y If this option is declared, instruction fetch will

-tname: sets: blocksize: assoc:repl - Simulate a TLB, using the not continue (e.g., stop filling the decode stage

same parameter format as the instruction and up to the issue width) on branches.

data caches abe.

This simulator is ideal for performing highvkd cache studies 4.4 Simulating out-of-order issue execution
that do not ta& access time of the caches into account (e.g., stud-

ies that are only concerned with miss rates)nieasure the fefct By far the most complicated and detailed simulator isirm

of cache aganization upon thexecution time of real programs, ~ outorder.c. This simulator supports out-of-order issue axece-

however, one of the ne two timing simulators must be used. tion, based on the Bister Update Unit [2]. This scheme uses a
reorder biffer to automatically rename gisters and hold the

4.3 Simulating in-order issue execution results of pending instructions. Eackicle the reorder uffer

retires completed instructions in program order to the architected
The simulator found isim-inorder.c models an in-order issue register file.
processarincluding timing of functional units, memory latencies, The processor memory system emypla load/store queue.
and thus gies gcle counts for programsxecutions. In addition Store walues are placed in the queue if the store is spegilati
to cache.c and the files used for functional simulation, sim-inorder Loads are dispatched to the memory system when the addresses of

also usesdpred.c, eventg.c, andresource.c. all previous stores are kmo. Loads may be satisfied by either the
This simulator assumes a festage pipelined processdrhe memory system or an earlier storalue sitting in the queue, if

four stages are fetch, decodegeute, and writeback. Each of their addresses match. Specuiatioads may generate cache

these stages are handled by dedént function:ifetch(), misses, bt speculatie TLB misses stall the pipeline until the

i decode(), and execute(), in sim-inorder.c and branch condition is knven.

event g_servi ce_event s() in eventq.c. The in-order issue The sim-outorder simulator file isver 2200 lines long, and

pipeline supports out-of-order completiont Istalls the pipeline runs about an order of magnitudeveto than sim4ist (150,000

upon detection of a data hazard. cycles per second compared to about 2.5 million per second, on a
Both sim-inorder and sim-outorder (discussed in Seetidh Sparc SS-10).

perform speculate execution—thg execute dwn a speculatie TLBs are not currently astated in the simulator; the code is

path until thg detect adult, a TLB miss, or a branch mispredic- there it #defined out. The branch misprediction penalty has a
tion. Both simulators support dynamic and static branch predic- default of 3 gcles (as opposed to 2 in sim-inorder). The foifg

tion. The dynamic prediction uses a brancheatuffer with 2-bit arguments accepted by sim-inorder are not supported in sim-out-

saturating counters. order:; ‘-f, *-k’, ‘-p’, -y’. The arguments unique to sim-outorder
For timing purposes, both simulators assume the \iitig are as follavs:

functional unit latencies (which may easily be changed). The _pwidth Sets the decode width to tédth, which

latencies are presented agcdles for one operation)/(initiation much be a poer of two. The dedult is 4.

rate). The latencies are: Iger ALU: 1/1, load/store unit: 2/1,
integer multiply: 3/1, intger diision: 12/12, floating-point addi-
tion: 2/1, floating-point multiplication: 4/1, floating-pointiion:

-Lsize Sets the number of entries in the load/store
gueue to bsize. size must be a pwer of two,
and is set to a dafdilt of 4.

12/12. . .
sim-inorder accepts a superset of the command-lmeneents -Rentries Sets the number of slots in the reordeffdr
that sim-cache allesl. In addition to those of sim-cache, sim- to beentries. entries must be a poer of two.
inorder accepts the folldng aguments: . The de&qlt is 8. ' _ .
-bsize Use a branch prediction table for branch spec- ~ -Wwidth Sets the issue width to bedth, which much
be a pwver of two. The dedult is 4.
o) -0 Prevents the simulator from issuing mis-spec-
1. The aguments of sim-inorder are a superset of thosg of sm-cache, ulated instructions.
except for the ‘t’ agument; TLBs are not yet fully supported in sim-inorder . . .
-1 Forces the simulator to use in-order issue.

or sim-outorder

-9 Run with perfect branch prediction.

4.5 Common support files

The following list describes the functionality of the C code files
in the simplesim-0.1 directorthat are shared by all of the simula-
tors.

5 Details of SimpleScalar x86

In this section we describe the command-linguarents for
SimpleScalar x86, discuss each of the source files, and close with a
brief description of ourxeriences running the simulator with the
Spec92 benchmark suite [3].

bitmap.h Contains support macros for performing bit-
map manipulation.
bpred.[c,h} Handles the creation, functionalityand

updates of the dynamic branch predictioiffér.

cadhelc,h]: Contains general functions to support multiple
caches (e.g., TLB, instruction and data cache, BRB). Uses a
linked-list for tag comparisons in caches af lassociatiity

(less than or equal to four), and a hash table for tag compari-
sons in higheassociatiity caches.

endian.[c,h] Defines a f& simple functions to determine
byte- and wrd-order on the host and get platforms.

eventq.[c,h] Defines ten functions and dwmacros to han-

5.1 SimpleScalar x86 command-line guments.

Currently only a functional simulator isvailable for SimpleS-

calar x86. The simulator is functionally and structurally similar to
that described in Sectighl, hut the code is quite dérent. The
command line for the simulator is:

si mfunc-x86 -wWaseName switches] executable
[argunents] < [input to target progran] >
[out put of target prograni

The only agument required to run the simulator is as fo#o

-WbaseName This switch sets the base name in the simula-
tor. It is used to name result files. It is required.

The optional aguments that the simulator will accept are the

dle ordered eent queues that control when writebacks accur ~ following:

loader[c,h]: Loads the taget program into memorgets up -vinstAddr When an instruction at addresstAddris
the sgment sizes and addresses, and obtains thettaro- gncountered, becomerbose (dump trace
gram entry point information to stderr)

.) o -vttime After executingtime cycles, becomearbose.
main.c Performs all |n|t|§1I|zat|on and launches the This option currently has nofett, since we
main simulator functionsi m_mai n()). have only implemented a functional simulator
memonyc,h]: Contains functions for reading from, writing (in which gscle counts are meaningless).
to, initializing, and dumping the contents of theg&rmain -viinstCount After executinginstCountinstructions,
memory become erbose. If instCount==1, the simula-
misc.[c,h} Contains support functions, most notably tor will be erbose from the first instruction.
argument string parsing and string manipulation functions. -V Be \erbose during system calls.
regs.[c,hl Allocates space for thegister files, and con- -mcount Ex;ecute onlycountinstructions, then termi-

nate.

tains functions to initialize them and dump their contents.

resouce[c,h]:Contains code to manage functional unit
resources, dided up into classes. The three defined functions
create the resource pools angytables, return a resource (if
ary are ®ailable) from a gien pool, and dump the contents
of a pool.

sim.h Contains a f& extern \ariable declarations
and function prototypes. .
ss.[c,h] Defines macros toxpedite the processing of
instructions, numerous constants needed across simulators?
and a function to print out inddual instructions in a read-
able format.

ss.def Holds a list of macro calls (the macros are
defined in the simulators arg$.handss.g, each of which
defines an instruction. The macro calls accept gsnaents

the opcode, name of the instruction, sources, destinations,
actions to recute, and other information. This file sEs\as

the definition of the instruction set. o
syscall.[c,h] This file functions as the intexée between the
SimpleScalar system calls (which are POSIX-compliant) and
the system calls on the host machine.

syspobec: Determines byte andawd order on host plat-
form, and generates appropriate compiler flags.

version.h Defines the @rsion number and release date of
the distrilution.

Display usage information

5.2 Simulator code description

Below we list the code files for the simulator with a highele

description of their purpose:

main.c: The main dwer for the simulator

func.[hc]: Implements the high-el functionality of a
simple functional simulator

ix86.def Captures the functionality of the instruction
set. This file is similar tss.defin the main SimpleScalar
release. The comptedecoding required for x86 instructions
made this structure quite oaruted. Although messyhis
macro stratgy avoids both storing a huge lookup table in
simulator memory to parse instructions, anglding an
unwieldy nest of case statements thatid parse the instruc-
tion stream.

non-spec.<un>define§ henon-spec.definede contains the
macros called in ix86.def that actuallyeeute the instruc-
tions.non-spec.undefinasidefines these macros. The pair of
files was needed because these files change the state of the
machine, and can not be undoneeliwually we plan to he

a corresponding pair of files for speculatixecution, that

will be used after branch prediction, so that the simulator may
recover from a branch mispredictions.

translate[hc]: Parses the instruction byte stream, using the

structure in ix86.def. This file uses a lookup table that uses
only certain bits from the instructions to reduce the size of the Program Input Tested
tables. This module also contains a “decoded instruction =
cache” that speeds simulation. cel Lrecog.i _
operands.[hc]:Implements operand fetch and store function- compress n .(100k and 1MB ersions)
ality. The “ops” tet file in $X86ROCOT contains descriptions elvis unix.c
of every operand type. eqgntott input.short/int_pri_3.egn
helper.[hc]: Contains simple, x86-specific functions such | SSPresso opa.in, and others
as shift, rotate and flag manipulation. grep input.txt and @rious others
syscall.[hc]: Describes the operating system emulation. | Pe" tests.pl
Each taget operating system call is mapped to either an | Yacr2 input2
equivalent host operating system call, or a series of helper| Xlisp 8queens
routines that duplicate the functionality of thegetrsystem alvinn 10 iterations
call. Currently this file is only compatible with SunOS calls. dodué doducin.tiry
memory.[hc]: Similar to the corresponding SimpleScalar | eaP short.m22
files. fpppp? 8 atoms
misc.[hc]: Contains simple functions such as sigtea- hydro2d short
sion and MIN/MAX error routines. mdljdpZ” built in
mdljsp2 built in
5.3 Simulator details spicé short.in
Using GCC and Linux (instead of DOS ointfows, for exam- su2cof! built in
ple) eliminated mandifficulties, including: swm256' built in
« s@ment rgister manipulation tomcatv 100 iterations

* segment rgister werrides
¢ 16 bit addressing modes

Table 2: Test programs and inputs

. a. Program executes an unimplemented instruction (fstp80)
+ self-modifying code b. Results are off slightly from the sun result, but matches when the
« kernel instructions (tlb, cache, controfjiger etc.) ascii output files are compared with spiff -r0.005

Some of the files contain code to count micro operations ¢ Completes without error, but result file does not match sun
(delimited by #ifdef MICRD_OPS ... #endif). This functionality is resuts ,
only partially implemented,ut should preide a start if you ant d. Runs 3.7 billion |_nstruct|ons and then stops on a CUBLOW state-
to extend the code to hand|eops eplicitly (the code currently ment (in the mdljdp2 source).
handles the CISC x86 instructions correctly). If you use the micro € Errors during scanning phase of program
operations code, the simulator creates 2 output fitese-
Name.ops-dist andbaseName.ops_file. The former file contains
the distritution of number ofiops per x86 instruction. The latter
file contains the number of occurrences of each x86 instruction.

To validate this functional simulatowe attempted to simulate
all of the SPEC92 benchmarksabile2 lists the benchmarks that
we ran with their corresponding inputs. Belthe table we list
specific problems that occurred when we simulated these bench
marks.them

The intgger benchmarks were simulated much more success-
fully than the floating point benchmarks. Most of the problems
with the floating-point codes\nlved the diferent formats of x86
and SRRC floating-point numbers (80 bitersus 64 bits). The
simulator currently does not support the ability of the programmer
or compiler on x86 machines to write 80-bélwes to memory
When the compiler spills the 80-bit floating point numbers, there-
fore, the simulator does not function correctly (implementing this
feature should not be prohilwiéily difficult).

Another dificulty that we e&perienced imolved the curses
library when simulatingc: the functionality of the Linux libcar-
ies from the SunOS implementationeWWmphasize that the obj-
dump-i486 utility was irvaluable in debgging the simulator
Finally, we note that the Intel 486 Programmers Reference Manual
from which we vorked was riddled with bgs.

6 Summary

The SimpleScalar tool setas written by ©dd Austin @er
about one and a half years, between 1994 and 1996. The ancestors
of the tool set date back to the mid to late 1980s, to tools written by
Manoj Franklin. Stee Bennett wrote SimpleScalar x86 during the
‘summer of 1995. At the time the tools werealeped, both indi-
viduals were research assistants at thevétaity of Wsconsin-
Madison Computer Sciences Department, supervised by Professor
Guri Sohi. Scott Breach priled \aluable assistance with the
implementation of the proxy system calls. The releaa® agsem-
bled, delngged, and documented by Doug @err also a research
assistant at \consin. Much of the SimpleScalar x86 documenta-
tion in this report \&s only slightly modified from the report writ-
ten entirely by Stee Bennett.

These tools pndde researchers with a simulation infrastructure
that is Bst, flxible, and diicient. Changes in both the g@t hard-
ware and softare may be made with minimafef. We hope that
you find these tools useful, and encourage you to contact us with
ways that we can impve the release, documentation, and tools
themseles.

References

[1] Charles PriceMIPS IV Instruction Set, revision 3.1. MIPS
Technologies, Inc., Mountain i&v, California, January

1995.

[2] GurindarS. Sohi. Instruction Issue Logic for High-Perfor-
mance, Interruptible, Multiple Functional Unit, Pipelined
Computers.|EEE Transactions on Computers, 39(3):349—
359, March 1990.

[3] Standard Performance &uation CorporationrSPEC News-
letter, Fairfax, Mrginia, December 1991.

A Instruction set definition

This appendix lists all SimpleScalar instructions with their
opcode, assembler format, and semantics. The semantics ar
expressed as a C-stylgpression that uses thgtended operators
and operands described inble3. Operands that are not listed in
Table3 refer to actual instruction fields described in Figurgor
each instruction, the rePC \alue (NPC) dedults to the current
PC \alue plus eight (CPC+8) unless otherwise specified.

A.1 Control instructions

J: Jump to absolute address.
Opcode: 0x01
Format: J taget
Semantics: SET_NPC((CPC & 0xf0000000) |ARGET<<2)))
JAL: Jump to absolute address and link.
Opcode: 0x02
Format: JAL target
Semantics: SET_NPC((CPC\&0xf0000000) | ARGET<<2))
SET_GPR(31, CPC + 8))
JR: Jump to rgister address.
Opcode: 0x03
Format: JR 1S
Semantics: TALIGN(GPR(RS))
SET_NPC(GPR(RS))
JALR: Jump to rgister address and link.
Opcode: 0x04
Format: JALR rs
Semantics: TALIGN(GPR(RS))
SET_GPR(RD, CPC + 8)
SET_NPC(GPR(RS))
BEQ: Branch if equal.
Opcode: 0x05
Format: BEQ rs,rt,ofset
Semantics: if (GPR(RS) == GPR(R))
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)
BNE: Branch if not equal.
Opcode: 0x06
Format: BEQ rs,rt,ofset
Semantics: if (GPR(RS) != GPR(R))
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)
BLEZ: Branch if less than or equal to zero.
Opcode: 0x07
Format: BLEZ rs,ofset

10

Semantics:

BGTZ:

Opcode:
Format:

Semantics:

LTZ:

Opcode:
Format:

Semantics:

BGEZ:

Opcode:
Format:

Semantics:

BC1F:

Opcode:
Format:

Semantics:

BC1T:

Opcode:
Format:

Semantics:

if (GPR(RS) <= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

Branch if greater than zero.
0x08
BGTZ rs,ofset
if (GPR(RS) > 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if less than zero.
0x09
BLTZ rs,ofset
if (GPR(RS) < 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if greater than or equal to zero.
0x0a
BGEZ rs,ofset
if (GPR(RS) >= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

Branch on floating point comparalse.
0x0b
BC1F ofset
if (FCC)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

Branch on floating point compare true.
0x0c
BCL1T ofset
if (FCC)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

A.2 Load/store instructions

LB:

Opcode:
Format:

Semantics:

LB:

Opcode:
Format:

Semantics:

LBU:

Opcode:
Format:

Semantics:

LBU:

Load byte signed, displaced addressing.
0x20
LB rt,offset(rs) inc_dec

SET_GPR(R,READ_SIGNED_BYTE(GPR(RS)+

OFFSET))

Load byte signed, inded addressing.
0xc0

LB rt,(rs+rd) inc_dec

SET_GPR(R,

READ_SIGNED_BYTE(GPR(RS)+GPR(RD)))

Load byte unsigned, displaced addressing.

0x22
LBU rt,offset(rs) inc_dec
SET_GPR(R,

READ_UNSIGNED_BYTE(GPR(RS)+OFFSET))

Load byte unsigned, inded addressing.

Operator/operand

Semantics

FS same as field RS

FT same as field RT

FD same as field RD

UIMM IMM field unsigned-extended to word value

IMM IMM field sign-extended to word value

OFFSET IMM field sign-extended to word value

CPC PC value of executing instruction

NPC next PC value

SET_NPC(V) Set next PC to value V

GPR(N) General purpose register N

SET_GPR(N,V) Set general purpose register N to value V
FPR_F(N) Floating point register N single-precision value
SET_FPR_F(N,V) Set floating point register N to single-precision value V
FPR_D(N) Floating point register N double-precision value
SET_FPR_D(N,V) Set floating point register N to double-precision value V
FPR_L(N) Floating point register N literal word value
SET_FPR_L(N,V) Set floating point register N to literal word value V
HI High result register value

SET_HI(V) Set high result register to value V

LO Low result register value

SET_LO(V) Set low result register to value V

READ_SIGNED_BYTE(A)

Read signed byte from address A

READ_UNSIGNED_BYTE(A)

Read unsigned byte from address A

WRITE_BYTE(VA)

Write byte value V at address A

READ_SIGNED_HALF(A)

Read signed half from address A

READ_UNSIGNED_HALF(A)

Read unsigned half from address A

WRITE_HALF(V,A)

Write half value V at address A

READ_WORD(A)

Read word from address A

Write word value V at address A

WRITE_WORD(VA)

TALIGN(T) Check target T is aligned to 8 byte boundary
FPALIGN(N) Check register N is wholly divisible by 2
OVER(X,Y) Check for overflow when adding X to Y
UNDER(X,Y) Check for overflow when subtraction Y from X
DIVO(V) Check for division by zero error with divisor V
Table 3: Operator/operand semantics
Opcode: Oxcl Format: LHU rt,(rstrd) inc_dec
Format: LBU rt,(rs+rd) inc_dec Semantics: SET_GPR(RT,
Semantics: SET_GPR(RT, READ_UNSIGNED_HALF(GPR(RS)+GPR(RD)))
READ_UNSIGNED_BY TE(GPR(RS)+GPR(RD)))
LW: Load word, displaced addressing.
LH: Load half signed, displaced addressing. Opcode: 0x28
Opcode: 0x24 Format: LW rt,offset(rs) inc_dec
Format: LH rt,offset(rs) inc_dec Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+OFF-
Semantics: SET_GPR(RT, SET))
READ_SIGNED_HALF(GPR(RS)+OFFSET))
LW: Load word, indexed addressing.
LH: Load half signed, indexed addressing. Opcode: oxc4
Opcode: 0oxc2 Format: LW rt,(rstrd) inc_dec
Format: LH rt,(rs+rd) inc_dec Semantics: SET_GPR(RT,
Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+GPR(RD)))
READ_SIGNED_HALF(GPR(RS)+GPR(RD)))
DLW: Double load word, displaced addressing.
LHU: Load half unsigned, displaced addressing. Opcode; 0x29
Opcode: 0x26 Format: DLW rt,offset(rs) inc_dec
Format: LHU rt,offset(rs) inc_dec Semantics: SET_GPR(RT, READ_WORD(GPR(RS)+OFF-
Semantics: SET_GPR(RT, SET))
READ_UNSIGNED_HALF(GPR(RS)+OFFSET)) SET_G)I;’R(RT+1, READ_WORD(GPR(RS)+OFF-
SET+4
LHU: Load half unsigned, indexed addressing.) .
Opcode: 0xc3 DLW: Double load word, indexed addressing.

11

Opcode:
Format:

Semantics:

L.S

Opcode:
Format:

Semantics:

L.S

Opcode:
Format:

Semantics:

L.D:

Opcode:
Format:

Semantics:

L.D:

Opcode:
Format:

Semantics:

LWL:

Opcode:
Format:

Semantics:

LWR:

Opcode:
Format:

Semantics:

SB:

Opcode:
Format:

Semantics:

SB:

Opcode:
Format:

Semantics:

SH:

Opcode:
Format:

Oxce

DLW rt,(rs+rd) inc_dec
SET_GPR(R,
READ_WORD(GPR(RS)+GPR(RD)))
SET_GPR(R+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

Load word into floating point mgister file, dis-
placed addressing.

Ox2a

L.S ft,offset(rs) inc_dec
SET_FPR_L(FTREAD_WORD(GPR(RS)+OFF-
SET))

Load word into floating point mgister file,
indexed addressing.

0xc5

L.S ft,(rs+rd) inc_dec

SET_FPR_L(R,
READ_WORD(GPR(RS)+GPR(RD)))

Load double wrd into floating point rgister
file, displaced addressing.

0x2b

L.D ft,offset(rs) inc_dec
SET_FPR_L(FTREAD_WORD(GPR(RS)+OFF-
SET))

SET_FPR_L(FT+1,
READ_WORD(GPR(RS)+OFFSET+4))

Load double wrd into floating point rgister
file, indexed addressing.

Oxcf

L.D ft,(rs+rd) inc_dec

SET_FPR_L(R,
READ_WORD(GPR(RS)+GPR(RD)))
SET_FPR_L(R+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

Load word left, displaced addressing.

0x2c

LWL offset(rs)

Seess.debr [Kane:92]for a detailed description
of this instructiors semantics. NTE: LWL
does not support pre-/post- inc/dec.

Load word right, displaced addressing.

0x2d

LWR offset(rs)

Seess.debr [Kane:92] for a detailed description
of this instructions semantics. NTE: LWR
does not support pre-/post- inc/dec.

Store byte, displaced addressing.

0x30

SB rt,ofset(rs) inc_dec
WRITE_BYTE(GPR(F), GPR(RS)+OFFSET)

Store byte, indeed addressing.

0xc6

SB rt,(rs+rd) inc_dec
WRITE_BYTE(GPR(R'), GPR(RS)+GPR(RD))

Store half, displaced addressing.

0x32
SH rt,ofset(rs) inc_dec

12

Semantics:

SH:

Opcode:
Format:

Semantics:

SW:
Opcode:
Format:

Semantics:

SW:
Opcode:
Format:

Semantics:

DSW:

Opcode:
Format:

Semantics:

DSW:

Opcode:
Format:

Semantics:

DSZ:

Opcode:
Format:

Semantics:

DSZ:

Opcode:
Format:

Semantics:

S.S

Opcode:
Format:

Semantics:

S.S

Opcode:
Format:

Semantics:

S.D:

Opcode:
Format:

Semantics:

S.D:

Opcode:

WRITE_HALF(GPR(R), GPR(RS)+OFFSET)

Store half, indeed addressing.

0xc7

SH rt,(rs+rd) inc_dec
WRITE_HALF(GPR(R'), GPR(RS)+GPR(RD))

Store vord, displaced addressing.

0x34

SW rt,ofset(rs) inc_dec
WRITE_WORD(GPR(R), GPR(RS)+OFFSET)

Store vord, indexed addressing.

0xc8

SW rt,(rs+rd) inc_dec
WRITE_WORD(GPR(R'), GPR(RS)+GPR(RD))

Double store wrd, displaced addressing.
0x35

DSW rt,ofset(rs) inc_dec
WRITE_WORD(GPR(R), GPR(RS)+OFFSET)
WRITE_WORD(GPR(R +1), GPR(RS)+OFF-
SET+4)

Double store wrd, indexed addressing.
0xdo

DSW rt,(rs+rd) inc_dec
WRITE_WORD(GPR(R'), GPR(RS)+GPR(RD))
WRITE_WORD(GPR(R+1),
GPR(RS)+GPR(RD)+4)

Double store zero, displaced addressing.
0x38

DSW rt,ofset(rs) inc_dec
WRITE_WORD(0, GPR(RS)+OFFSET)
WRITE_WORD(0, GPR(RS)+OFFSET+4)

Double store zero, inded addressing.
Oxdl

DSW rt,(rs+rd) inc_dec
WRITE_WORD(0, GPR(RS)+GPR(RD))
WRITE_WORD(0, GPR(RS)+GPR(RD)+4)

Store vord from floating point rgister file,
displaced addressing.

0x36

S.S ft,ofset(rs) inc_dec
WRITE_WORD(FPR_L(FT), GPR(RS)+OFFSET)

Store word from floating point rgister file,
indexed addressing.

0xc9

S.S ft,(rs+rd) inc_dec
WRITE_WORD(FPR_L(FT), GPR(RS)+GPR(RD))

Store double wrd from floating point rgister
file, displaced addressing.

0x37

S.D ft,ofset(rs) inc_dec
WRITE_WORD(FPR_L(FT), GPR(RS)+OFFSET)
WRITE_WORD(FPR_L(FT+1), GPR(RS)+OFF-
SET+4)

Store double wrd from floating point rgister
file, indexed addressing.
0xd2

Format:
Semantics:

SWL:
Opcode:
Format:
Semantics:

SWR:
Opcode:
Format:
Semantics:

S.D ft,(rs+rd) inc_dec
WRITE_WORD(FPR_L(FT), GPR(RS)+GPR(RD))
WRITE_WORD(FPR_L(FT+1),
GPR(RS)+GPR(RD)+4)

Store vord left, displaced addressing.

0x39

SWL rt,offset(rs)

Seess. def or[Kane:92] for a detailed
description of this instructioa’semantics.
NOTE: SWL does not support pre-/post- inc/
dec.

Store vord right, displaced addressing.

0x3a

SWR rt,ofset(rs)

Seess. def or [Kane:92] for a detailed
description of this instructioa’semantics.
NOTE: SWR does not support pre-/post- inc/
dec.

A.3Integer instructions

ADD:
Opcode:
Format:
Semantics:

ADDI:
Opcode:
Format:
Semantics:

ADDU:
Opcode:
Format:
Semantics:

ADDIU:
Opcode:
Format:
Semantics:

SUB:
Opcode:
Format:
Semantics:

SUBU:
Opcode:
Format:
Semantics:

MULT:
Opcode:
Format:
Semantics:

MULTU:
Opcode:
Format:
Semantics:

Add signed (with werflow check).
0x40

ADD rd,rs,rt
OVER(GPR(R),GPR(R))
SET_GPR(RD, GPR(RS) + GPRI{}}

Add immediate signed (withverflov check).
0x41

ADDI rd,rs,rt

OVER(GPR(RS),IMM)

SET_GPR(R, GPR(RS) + IMM)

Add unsigned (noerflow check).
0x42

ADDU rd,rs,rt

SET_GPR(RD, GPR(RS) + GPRI(RB

Add immediate unsigned (noverflov check).
0x43

ADDIU rd,rs,rt

SET_GPR(R, GPR(RS) + IMM)

Subtract signed (with underflocheck).
0x44

SUB rd,rs,rt

UNDER(GPR(RS),GPR(R)
SET_GPR(RD, GPR(RS) - GPRIR

Subtract unsigned (without underflecheck).
0x45

SUBU rd,rs, It

SET_GPR(RD, GPR(RS) - GPRIR

Multiply signed.

0x46

MULT rs,rt

SET_HI((RS * R) / (1<<32))
SET_LO((RS * R) % (1<<32))

Multiply unsigned.

0x47

MULTU rs,rt

SET_HI(((unsigned)RS * (unsigned)(1<<32))

13

DIV:

Opcode:
Format:

Semantics:

DIvU

Opcode:
Format:

Semantics:

MFHI:

Opcode:
Format:

Semantics:

MTHI:

Opcode:
Format:

Semantics:

MFLO:

Opcode:
Format:

Semantics:

MTLO:
Opcode:
Format:

Semantics:

AND:

Opcode:
Format:

Semantics:

ANDI:

Opcode:
Format:

Semantics:

OR:

Opcode:
Format:

Semantics:

ORI:
Opcode:
Format:

Semantics:

XOR:

Opcode:
Format:

Semantics:

XORI:
Opcode:

SET_LO(((unsigned)RS*(unsigned)R%
(1<<32))

Divide signed.

0x48

DIV rs,it

DIVO(GPR(RT))
SET_LO(GPR(RS) / GPR{R)
SET_HI(GPR(RS) % GPRR)

Divide unsigned.

0x49

DIVU rs,rt

DIVO(GPR(RT))

SET_LO((unsigned)GPR(RS)/ (unsigned)GPR(R
SET_HI((unsigned)GPR(RS)%(unsigned)GPR(R
)

Move from HI rayister
Ox4a

MFHI rd
SET_GPR(RD, HI)

Move to HI register
0x4b

MTHI rs
SET_HI(GPR(RS))

Move from LO r@ister
Ox4c

MFLO rd
SET_GPR(RD, LO)

Move to LO reister
0x4d

MTLO rs
SET_LO(GPR(RS))

Logical AND.

Ox4e

AND rd,rs,rt

SET_GPR(RD, GPR(RS) & GPR(R

Logical AND immediate.

Ox4f

ANDI rd,rt,imm

SET_GPR(R, GPR(RS) & UIMM)

Logical OR.

0x50

OR rd,rs,rt

SET_GPR(RD, GPR(RS) | GPR(R

Logical OR immediate.

0x51

ORI rd,rt,imm

SET_GPR(R, GPR(RS) | UIMM)

Logical XOR.

0x52

XOR rd,rs,rt

SET_GPR(RD, GPR(RS) * GPRI}

Logical XOR immediate.
0x53

Format:
Semantics:

NOR:
Opcode:
Format:
Semantics:

SLL:
Opcode:
Format:
Semantics:

SLLV:
Opcode:
Format:
Semantics:

SRL:
Opcode:
Format:
Semantics:

SRLV:
Opcode:
Format:
Semantics:

SRA:
Opcode:
Format:
Semantics:

SRAV:
Opcode:
Format:
Semantics:

SLT:
Opcode:
Format:
Semantics:

SLTI:
Opcode:
Format:
Semantics:

SLTU:
Opcode:
Format:
Semantics:

SLTIU:
Opcode:
Format:
Semantics:

ORI rd,rt,uimm
SET_GPR(R, GPR(RS) * UIMM)

Logical NOR.

0x54

NOR rd,rs,rt

SET_GPR(RD, ~(GPR(RS) | GPR{R)

Shift left logical.

0x55

SLL rd,rt,shamt

SET_GPR(RD, GPR(R << SHAMT)

Shift left logical variable.

0x56

SLLV rd,rt,rs

SET_GPR(RD, GPR(R << (GPR(RS) & 0x1f))

Shift right logical.

0x57

SRL rd,rt,shamt

SET_GPR(RD, GPR(R >> SHAMT)

Shift right logical ariable.

0x58

SRLV rd,rt,rs

SET_GPR(RD, GPR(R << (GPR(RS) & 0x1f))

Shift right arithmetic.

0x59

SRA rd,rt,shamt

SET_GPR(RD, SEX(GPR{R >> SHAMT, 31 -
SHAMT))

Shift right arithmetic ariable.

0x59

SRAV rd,rt,rs

SET_GPR(RD, SEX(GPR{R >> SHAMT, 31 -
(GPR(RD) & 0x1f)))

Set r@ister if less than.

0x5b

SLT rd,rs,rt

SET_GPR(RD, (GPR(RS) < GPR{J3 ? 1 : 0)

Set r@ister if less than immediate.
0Ox5¢

SLTI rd,rs,imm

SET_GPR(RD, (GPR(RS) < IMM) ? 1 : 0)

Set r@ister if less than unsigned.

0x5d

SLTU rd,rs,rt

SET_GPR(RD,
((unsigned)GPR(RS)<(unsigned)GPR}R? 1 : 0)

Set r@ister if less than unsigned immediate.

0x5d

SLTIU rd,rs,imm

SET_GPR(RD,
((unsigned)GPR(RS)<(unsigned)GPRJR? 1 : 0)

A.4 Floating-point instructions

ADD.S:

Add floating point, single precision.

Opcode:
Format:

Semantics:

ADD.D:

Opcode:
Format:

Semantics:

SUB.S:

Opcode:
Format:

Semantics:

SUB.D:

Opcode:
Format:

Semantics:

MUL.S:

Opcode:
Format:

Semantics:

MUL.D:

Opcode:
Format:

Semantics:

DIV.S:

Opcode:
Format:

Semantics:

DIV.D:

Opcode:
Format:

Semantics:

ABS.S:

Opcode:
Format:

0x70

ADD.S fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_F(FD, FPR_F(FS) + FPR_F(FT)))

Add floating point, double-precision.
Ox71

ADD.D fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_D(FD, FPR_D(FS) + FPR_D(FT)))

Subtract floating point, single precision.
0x72

SUB.S fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_F(FD, FPR_F(FS) - FPR_F(FT)))

Subtract floating point, double precision.
0x73

SUB.D fd,fs,ft

FPALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_D(FD, FPR_D(FS) - FPR_D(FT)))

Multiply floating point, single precision.
Ox74

MUL.S fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)
SET_FPR_F(FD,FPR_F(FS)*FPR_F(FT)))

Multiply floating point, double precision.
Ox75

MUL.D fd,fs,ft

FPALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_D(FD, FPR_D(FS) * FPR_D(FT)))

Divide floating point, single precision.
0x76

DIV.S fd,fs,ft

FPALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

DIVO(FPR_F(FT))

SET_FPR_F(FD, FPR_F(FS) / FPR_F(FT)))

Divide floating point, double precision.
0x77

DIV.D fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

DIVO(FPR_D(FT))

SET_FPR_D(FD, FPR_D(FS) / FPR_D(FT)))

Absolute \alue, single precision.
0x78
ABS.S fd,fs

Semantics:

ABS.D:

Opcode:
Format:

Semantics:

MOV.S:

Opcode:
Format:

Semantics:

MOV.D:

Opcode:
Format:

Semantics:

NEG.S:

Opcode:
Format:

Semantics:

NEG.D:

Opcode:
Format:

Semantics:

CVT.SD:

Opcode:
Format:

Semantics:

CVT.SW:

Opcode:
Format:

Semantics:

CVT.D.S

Opcode:
Format:

Semantics:

CVT.D.W:

Opcode:
Format:

Semantics:

FRALIGN(FD)
FRALIGN(FS)
SET_FPR_F(FD,dbs((double)FPR_F(FS))))

Absolute walue, double precision.
0x79

ABS.D fd,fs

FRALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD,dbs(FPR_D(FS))))

Move floating point @lue, single precision.
Ox7a

MOV.S fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_F(FD, FPR_F(FS))

Move floating point alue, double precision.
0x7b

MOV.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_D(FD, FPR_D(FS))

Negate floating point @alue, single precision.
Ox7c

NEG.S fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_F(FD, -FPR_F(FS))

Negate floating point @lue, double precision.
0x7d

NEG.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_D(FD, -FPR_D(FS))

Convert double precision to single precision.

0x80

CVT.S.D fd,fs

FRALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD, -FPR_D(FS))

Corvert intgger to single precision.
0x81

CVT.S.W fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_F(FD, (float)FPR_L(FS))

Convert single precision to double precision.

0x82

CVT.D.Sfd,fs

FRALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD,(double)FPR_F(FS))

Corvert integer to double precision.
0x83

CVT.D.W fd,fs

FRALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD,(double)FPR_L(FS))

15

CVT.W.S

Opcode:
Format:

Semantics:

CVT.W.D:

Opcode:
Format:

Semantics:

C.EQ.S
Opcode:
Format:

Semantics:

C.EQ.D:
Opcode:
Format:

Semantics:

CLTS

Opcode:
Format:

Semantics:

C.LT.D:
Opcode:
Format:

Semantics:

C.LE.S:

Opcode:
Format:

Semantics:

C.LE.D:
Opcode:
Format:

Semantics:

SQRT.S:
Opcode:
Format:

Semantics:

SQRT.D:
Opcode:
Format:

Semantics:

Corvert single precision to inger
0x84

CVT.W.S fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_L(FD, (long)FPR_F(FS))

Corvert double precision to inger.
0x85

CVT.W.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_L(FD, (long)FPR_D(FS))

Test if equal, single precision.
0x90

C.EQ.S fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_F(FS) == FPR_F(FT))

Test if equal, double precision.
0x91

C.EQ.D fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_D(FS) == FPR_D(FT))

Test if less than, single precision.
0x92

C.LT.S fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_F(FS) < FPR_F(FT))

Test if less than, double precision.
0x93

C.LT.D fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_D(FS) < FPR_D(FT))

Test if less than or equal, single precision.
0x94

C.LE.S fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_F(FS) <= FPR_F(FT))

Test if less than or equal, double precision.
0x95

C.LE.D fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_D(FS) <= FPR_D(FT))

Square root, single precision.

0x96

SQR.S fd,fs

FPALIGN(FD)

FPALIGN(FS)
SET_FPR_F(FD,sqrt((double)FPR_F(FS)))

Square root, double precision.
0x97

SQRI.D fd,fs

FRALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD, sqrt(FPR_D(FS)))

A.5 Miscellaneous instructions

NOP:
Opcode:
Format:
Semantics:

SYSCALL:
Opcode:
Format:
Semantics:

BREAK :
Opcode:
Format:
Semantics:

LUI:
Opcode:
Format:
Semantics:

MFC1:

Opcode:
Format:
Semantics:

MTC1:

Opcode:
Format:
Semantics:

No operation.
0x00
NOP

System call.

Oxa0

SYSCALL

See AppendiB for details

Declare a program error

Oxal

BREAK uimm

Actions are simulatedependent. yipically, an
error message is printed and abort() is called.

Load upper immediate.
Oxa2

LUI uimm

SET_GPR(R, UIMM << 16)

Move from floating point to intger register
file.

Oxa3

MFC1 rt,fs

SET_GPR(R, FPR_L(FS))

Move from intger to floating point mgister
file.

O0xa5

MTC1 rt,fs

SET_FPR_L(FS, GPR{B)

B System call definitions

This appendix lists all system calls supported by the simulators

with their system call code (syscode), inded specification, and

appropriate POSIX Unix reference. Systems calls are initiated

with the SYSCALL instruction. Prior taxecution of a SYSCALL
instruction, rgister 0 should be loaded with the system call
code. The guments of the system call inteck prototype should
be loaded into gisters 0 - $a3 in the order specified by the sys-
tem call interfce prototypee.g., for:

read(int fd,

char *buf, int nbyte),

0x03 is loaded into\®, fd is loaded into &, buf into $al, and

nbyteinto $a2.

EXIT:

Syscode:
Interface:
Semantics:

READ:

Syscode:
Interface:
Semantics:

WRITE :

Syscode:
Interface:

Exit process.

0x01

void eit(int status);
See git(2).

Read from file to bffer.

0x03

int read(int fd, char *bf, int nbyte);
See read(2).

Write from a luffer to a file.

0x04
int write(int fd, char *lf, int nbyte);

16

Semantics:

OPEN:

Syscode:
Interface:

Semantics:

CLOSE:
Syscode:
Interface:

Semantics:

CREAT:

Syscode:
Interface:

Semantics:

UNLINK :

Syscode:
Interface:

Semantics:

CHDIR:
Syscode:
Interface:

Semantics:

CHMOD:

Syscode:
Interface:

Semantics:

CHOWN:

Syscode:
Interface:

Semantics:

BRK:

Syscode:
Interface:

Semantics:

LSEEK:

Syscode:
Interface:

Semantics:

GETPID:

Syscode:
Interface:

Semantics:

GETUID:
Syscode:
Interface:

Semantics:

ACCESS

Syscode:
Interface:

Semantics:

STAT:
Syscode:

See write(2).

Open afile.

0x05

int open(char *fname, int flags, int mode);
See open(2).

Close afile.
0x06

int close(int fd);
See close(2).

Create a file.

0x08

int creat(char *fname, int mode);
See creat(2).

Delete a file.

0x0a

int unlink(char *fname);
See unlink(2).

Change process directory
0x0c

int chdir(char *path);

See chdir(2).

Change file permissions.

0xOf

int chmod(int *fname, int mode);
See chmod(2).

Change file wner and group.

0x10

int chavn(char *fname, int wner, int group);
See chan(2).

Change process break address.
Ox11

int brk(long addr);

See brk(2).

Move file pointer

0x13

long Iseek(int fd, long déet, int whence);
See Iseek(2).

Get process identifier
0x14

int getpid(\oid);

See getpid(2).

Get user identifier
0x18

int getuid(\oid);
See getuid(2).

Determine accessibility of a file.
0x21

int access(char *fname, int mode);
See access(2).

Get file status.
0x26

Interface:

Semantics:

LSTAT:
Syscode:
Interface:
Semantics:

DUP:
Syscode:
Interface:
Semantics:

PIPE:
Syscode:
Interface:
Semantics:

GETGID:
Syscode:
Interface:
Semantics:

IOCTL:
Syscode:
Interface:
Semantics:

FSTAT:
Syscode:
Interface:
Semantics:

GETPAGESIZE:

Syscode:
Interface:
Semantics:

struct stat

{
short st_de;
long st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid,;
short st_gid;
short st_rde;
int st_size;
int st_atime;
int st_sparel;
int st_mtime;
int st_spare2;
int st_ctime;
int st_spare3;
long st_blksize;
long st_blocks;
long st_gennum;
long st_spare4;

h

int stat(char *fname, struct statuf);
See stat(2).

Get file status (and dardereference links).

0x28
int Istat(char *fname, struct statuf);
See Istat(2).

Duplicate a file descriptor
0x29

int dup(int fd);

See dup(2).

Create an interprocess comm. channel.
0x2a

int pipe(int fd[2]);

See pipe(2).

Get group identifier
Ox2f

int getgid(\oid);
See getgid(2).

Device control interéce.

0x36

int ioctl(int fd, int request, char *gJ;
See ioctl(2).

Get file descriptor status.
Ox3e

int fstat(int fd, struct stat *f);
See fstat(2).

Get page size.

0x40

int getpagesizeid);
See getpagesize(2).

GETDTABLESIZE: Get file descriptor table size.

Syscode:
Interface:
Semantics:

DUP2:

0x59
int getdtablesize@id);
See getdtablesize(2).

Duplicate a file descriptor

17

Syscode:
Interface:

Semantics:

FCNTL:

Syscode:
Interface:

Semantics:

SELECT:

Syscode:
Interface:

Semantics:

0Ox5a
int dup2(int fd1, int fd2);
See dup2(2).

File control.

0x5c¢c

int fentl(int fd, int cmd, int ay);
See fentl(2).

Synchronous I/0 multipieéng.
0x5d

int select (int width, fd_set *readfds, fd_set

*writefds, fd_set *&ceptfds, struct timel
*timeout);
See select(2).

GETTIMEOFDAY: Get the date and time.

Syscode:
Interface:

Semantics:

WRITEV:

Syscode:
Interface:

Semantics:

UTIMES:

Syscode:
Interface:

Semantics:

GETRLIMIT:

Syscode:
Interface:

Semantics:

SETRLIMIT:
Syscode:
Interface:

Semantics:

Ox74

struct timeal {
long tv_sec;
long tv_usec;

struct int {
timezone tz_minuteswest;
int tz_dsttime;

iﬁt gettimeofday(struct timal *tp,
struct timezone *tzp);
See gettimeofday(2).

Write output, ectored.

0x79

int writev(int fd, struct ioec *iov, int cnt);
See write(2).

Set file times.

Ox8a

int utimes(char *file, struct timal *tvp);
See utimes(2).

Get maximum resource consumption.
0x90

int getrlimit(int res, struct rlimit *rlp);
See getrlimit(2).

Set maximum resource consumption.
0x91

int setrlimit(int res, struct rlimit *rlp);
See setrlimit(2).

