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ABSTRACT

Multiprocessor operating systems (OSs) pose several unique
and conflicting challenges to System Virtual Machines (Sys-
tem VMs). For example, most existing system VMs resort to
gang scheduling a guest OS’s virtual processors (VCPUs) to
avoid OS synchronization overhead. However, gang schedul-
ing is infeasible for some application domains, and is inflex-
ible in other domains.

In an overcommitted environment, an individual guest
OS has more VCPUs than available physical processors
(PCPUs), precluding the use of gang scheduling. In such
an environment, we demonstrate a more than two-fold in-
crease in runtime when transparently virtualizing a chip-
multiprocessor’s cores. To combat this problem, we propose
a hardware technique to detect several cases when a VCPU
is not performing useful work, and suggest preempting that
VCPU to run a different, more productive VCPU. Our tech-
nique can dramatically reduce cycles wasted on OS synchro-
nization, without requiring any semantic information from
the software.

We then present a case study, typical of server consolida-
tion, to demonstrate the potential of more flexible schedul-
ing policies enabled by our technique. We propose one such
policy that logically partitions the CMP cores between guest
VMs. This policy increases throughput by 10–25% for con-
solidated server workloads due to improved cache locality
and core utilization, and substantially improves performance
isolation in private caches.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Performance attributes, C.1.2 [Processor Ar-
chitectures]: Multiple Data Stream Architectures (Multi-
processors)

General Terms: Performance, Design

Keywords: Virtual machines, synchronization overhead,
chip multiprocessors
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1. INTRODUCTION
Virtualization — the art of separating resources from the

interface used to access those resources — has been an im-
portant technique for many decades. Specifically, a System
Virtual Machine (System VM) allows an operating system
(OS) to run on a different host architecture than the one for
which it was originally developed, including a host running
multiple guest OSs. Smith and Nair provide a provide a
good overview of many VM topics [20].

A Virtual Machine Monitor (VMM) is a layer which lies
between the guest OS(s) and the hardware on which it runs,
implementing the system VM by translating the interface ex-
posed by hardware into the interface expected by the guest
OS. Successful system virtualization requires a VMM to sup-
port virtual processors, memory, and peripheral devices for
correctness, as well as manage resource allocation and main-
tain performance isolation.

Much prior system VM research has focused on the com-
plexities of virtualizing memory, processors, and peripheral
devices [2, 5, 7, 12, 25, 26]. However, there is little published
work that has tackled the unique challenges of supporting
an unmodified, modern, multiprocessor guest OS. With chip
multiprocessor (CMP) systems quickly becoming ubiquitous
even for desktops, system VMs must provide scalable sup-
port for multiprocessor OSs.

This work focuses on transparently virtualizing the pro-
cessors (i.e., processing cores) of a CMP for multiproces-
sor OSs. There are several reasons why virtualizing these
cores may be appealing, such as server consolidation, man-
aging heterogeneous cores, thermal management, and fault
tolerance. Traditionally, gang scheduling (or co-scheduling
[17]) has been used with multiprocessor virtual machines
to create a synchronization environment similar to a non-
virtualized system [12, 28]. However, in many of the ap-
plications mentioned above, a single guest VM is overcom-
mitted, i.e., the number of VCPUs exceeds the number of
active physical CPUs or PCPUs, and gang scheduling is not
feasible. In other applications, gang scheduling may not al-
low policies which optimize for throughput or performance
isolation. Therefore, it is critical to allow the system VM to
adopt more flexible scheduling policies.

In the absence of gang scheduling, several challenges arise
due to certain assumptions made by the OS to accom-
plish the intricate task of synchronization between different
CPUs. To ensure correct execution in such an environment,
the VMM must not allow these (possibly now invalid) as-
sumptions to affect correctness or cause significant perfor-



mance loss. For example, a particular VCPU may send a
software interrupt to another VCPU and simply busy wait
for the response. If the receiving VCPU is not currently
running on a PCPU (i.e., it is paused), the sender will spin
without doing any useful work, possibly long enough for the
operation to time out, panicking the kernel.

Uhlig, et al., also address managing kernel synchro-
nization transparently to the software without using gang
scheduling [26]. However, one key aspect that limits the
scope of their solution is that individual guest VMs are never
overcommitted. Therefore, it is always possible to execute
all of an OS’s VCPUs simultaneously, if necessary.

This paper makes three main contributions:

• First, we investigate the synchronization overhead of vir-
tualizing a multiprocessor OS on a typical CMP in the
absence of gang scheduling. We find that commercial
workloads running on Solaris have significant synchroniza-
tion overhead resulting from mutex locks and software-
generated interrupts (CPU cross-calls), which can result
in a 2.5 times increase in runtime. (Section 2)

• Second, we propose a novel hardware mechanism to man-
age the synchronization overhead without any software
modification. Based on a simple, yet effective, heuris-
tic, we detect when a VCPU is excessively spinning and
preempt that VCPU in order to run a more productive
VCPU. Compared to other methods, our solution does
not require any semantic information from the software,
leads to a more unified solution to detect other cases when
a VCPU is not doing any useful work (e.g., kernel idle
loop), and can be easily implemented in the hardware.
We demonstrate that this technique dramatically reduces
the synchronization overhead, and also out-performs an-
other recently proposed VMM technique [26] to manage
OS synchronization. (Sections 3 and 5)

• Third, we examine a case study, server consolidation, and
propose one example of a flexible scheduling policy — en-
abled by our technique to manage synchronization over-
head — where we concurrently execute only a subset of
each guest VM’s VCPUs. This allows us to logically par-
tition the PCPUs among the guest VMs, significantly im-
proving both cache performance and PCPU utilization
compared to gang scheduling, leading to overall perfor-
mance improvements of 10–25%. We also show that this
policy can dramatically improve performance isolation.
(Section 6)

2. CMP VIRTUALIZATION
Virtualizing processing cores in a CMP simply means that

the processors seen by the OS (virtual processors or VCPUs)
can differ from the physical processing cores (PCPUs) that
are actually executing code. The number of VCPUs can be
more, less, or the same as the number of PCPUs.

System virtualization can be done in a manner entirely
transparent to the guest OS (i.e., pure virtualization, as in
VMWare [28]), or in cooperation with the guest OS, (i.e.,
para virtualization, as in Xen [7], Denali [30], and the IBM
Power5 Hypervisor [5]). Both techniques have several ad-
vantages and disadvantages. Primarily, pure virtualization
can support unmodified OSs, but can suffer performance
loss when the OS makes assumptions about the hardware
that are invalid for virtualized resources [7]. Para virtu-
alization eliminates these assumptions, but sometimes re-

quires significant modification to the guest OSs and the
hardware/software interface.

In addition, there are many cases where para-
virtualization is inapplicable or unnecessary, such as when
supporting legacy software. It is hard to predict which par-
ticular approach — pure or para — if not both, will survive,
given the diverse application domain for virtualization. In
this paper, we assume the use of pure virtualization.

2.1 Motivation
Many intriguing proposals which suggested changes to the

hardware/software interface have failed to materialize, in
part due to the necessity of maintaining backward compat-
ibility. However, system VMs (particularly co-designed sys-
tem VMs [21]) have the potential to eliminate the interface
changes otherwise required for some proposals. We believe
that there are several applications that can leverage pure
virtualization of CMP cores, though the original proposals
often assumed software support:

• Hardware Scheduling on CMP Cores: Virtualiz-
ing CMP cores allows hardware to schedule computation
transparently to the software layers above. This tech-
nique can be applied to a chip with heterogeneous cores
[14] or to exploit the synergy among different threads in
homogeneous workloads as demonstrated by Computation
Spreading [8] or Cohort Scheduling [15].

• Dynamic Thermal Management: Virtualization can
be used to perform dynamic thermal management similar
to Heat-and-Run [18] transparently to the OS. This may
allow hardware designers to implement the best thermal
management policy for a particular chip, without relying
on OS vendors to provide optimized support.

• Speculative/Redundant Multithreading: A VMM
may be aware of special requirements for a particular pro-
gram or guest OS. It may then dynamically choose to
execute redundant helper threads for reliability [11], or
use multiple cores for speculative parallelization of single-
threaded programs, such as the Multiscalar system [22].

• Fault Tolerance: Virtualized CMP cores can allow the
chip to function, albeit at a lower performance, even if
multiple cores sustain permanent faults. This can be done
transparently to the OS if desired (at least while waiting
for the OS to cleanly shut down the VCPU mapped to
the faulty PCPU), and can alleviate the need to add spare
cores precisely for this purpose.

• Server Consolidation: Consolidating many separate
servers onto a single piece of hardware can provide a sig-
nificant reduction in IT costs [5, 23, 28]. Current tech-
nologies limit the scheduling flexibility.

For many of these applications, virtualization will result
in overcommitment of a single OS’s VCPUs. That is, there
will be prolonged periods when a given guest OS has more
VCPUs than available PCPUs. This paper addresses the
challenges of such a scenario.

2.2 Synchronization Overhead
Many of the challenges that arise when virtualizing an OS

are similar whether running in a multiprocessor or unipro-
cessor virtual machine, including proper handling of mem-
ory and I/O devices. We focus on the main difference be-
tween uniprocessor and multiprocessor VMs: synchroniza-
tion overheads.



Several prior proposals adopt gang scheduling (or co-
scheduling [17]) for multiprocessor virtual machines. This
technique simply ensures that either all VCPUs of a partic-
ular guest OS are executing concurrently or none are. Thus,
gang scheduling attempts to create an execution environ-
ment similar to a non-virtualized system. Gang scheduling is
used by VMWare’s ESX server [27] and Cellular Disco [12],
among others. OS synchronization overheads in this case
are similar to a non-virtualized machine. However, gang
scheduling is not always possible or appropriate, particu-
larly in an over-committed environment (either temporally
or permanently).

In the absence of gang scheduling, synchronization over-
head becomes a significant impediment to the performance
of a multiprocessor virtual machine. Below we discuss the
two major components of this overhead: mutex locks and
CPU cross-calls (software-generated interrupts).

2.2.1 Mutex Locks

A multiprocessor OS which is unaware of any virtualiza-
tion underneath assumes all its VCPUs are executing all the
time. However, this assumption does not hold for many of
the applications in Section 2.1. This leads to synchroniza-
tion problems which can result in deadlock, kernel panic,
and/or severe performance loss. The problems with this
false assumption manifests itself through the use of mutex
spin locks to protect critical sections in the OS kernel.1

For example, a Solaris kernel thread attempting to ac-
quire an adaptive mutex lock will sometime block (i.e., pre-
empt) the thread when the lock is already held, but for
performance reasons, will spin when the owner of the lock
is running on another VCPU (assuming the lock will not
be held long). If this lock-holding VCPU is not currently
executing on a PCPU, however, the thread will spin unnec-
essarily. Other, non-adaptive locks are not preemptible at
all. Linux 2.6.10, which we also use for this study, does not
use adaptive locks, and always spins, though it sometimes
uses semaphores for preemptible synchronization.2 As we
will see in Section 2.2.3, this unnecessary spinning can eas-
ily increase runtime by a factor of two or more.

2.2.2 CrossCalls

A multiprocessor OS often employs cross-calls (using syn-
chronous software interrupts) to communicate between dif-
ferent CPUs. An example of this is TLB shootdowns [19]
where one CPU wishes to change a virtual-to-physical page
mapping (e.g., to invalidate an entry or update the protec-
tion bits) that may be cached in other CPUs’ TLBs. An-
other example, prevalent in the Solaris kernel, is the use of
cross-calls to preempt one or more remote CPU(s) to run a
higher priority thread. Linux does not use cross-calls for this
type of scheduling action. When a cross-call is invoked, the
software busy waits until the hardware notifies it that the
interrupt has actually been delivered to the remote CPU.

For SPARC, the remote CPU sends a NACK when it
already has an outstanding software interrupt, in which
case, the sender must continue to retry until the request

1Spin locks can affect user code as well, but we focus on
non-scientific applications, which typically do not make the
same assumptions as the OS and do not spin.
2The Linux 2.6.16 kernel added support for adaptive mutex
locks using a similar policy as Solaris, but not in time for us
to rebuild our workloads for this study.
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Figure 1: Relative Instruction Count. Five bars for
each benchmark (from left to right) represent results
for 10µs, 20µs, 50µs, 100µs and 200µs timeslices. Re-
sults are normalized to the 10µs timeslice (lower is
better).

is ACKed. Other architectures, such as x86, also require
software to ensure that these interrupts are not lost.

Fast execution of cross-calls becomes challenging in an
overcommitted virtual machine where all the VCPUs of a
VM are not running concurrently. Since OSs typically do
not use nested locking, the forward progress of the lock-
holder is always guaranteed in a simple mutex lock. But in
a cross-call, the forward progress of the initiating VCPU,
which is often holding a lock (such as page table lock or
run-queue lock), is dependent upon the recipient VCPUs.
For example, when multiple VCPUs send interrupts to a
paused VCPU before they can be handled, one or more of
the senders will continue to spin until its interrupt can be
delivered. In other words, when any responding VCPU is
paused with a pending software interrupt, it will thwart the
forward progress of the interrupt initiator, which in turn
will cause a cascading affect on other VCPUs attempting to
acquire the lock held by the initiator.

Modifying the interface between the OS and hardware to
allow (and guarantee delivery of) an unlimited number of
outstanding interrupts might alleviate this problem. How-
ever, for the purpose of this paper, we do not investigate
such interface modifications.

2.2.3 Experimental Results

To expose the challenges of virtualizing a multiprocessor
OS in an overcommitted environment, we consider the case
of a single guest VM with 24 VCPUs running on an eight
core (8 PCPU) CMP system. In other words, there are hun-
dreds of software threads that the OS schedules among its 24
VCPUs, the VMM then selects 8 VCPUs to execute on the
PCPUs at any given time. To maintain cache and TLB affin-
ity, we assume that three VCPUs are statically mapped to a
given PCPU, though only one is executing at a time (main-
taining load balance in a real system would mean that this
mapping could change dynamically). To maintain forward
progress for all VCPUs, each PCPU preempts the running



VCPU after a given timeslice so that the other VCPUs can
run; preemption occurs independently for each PCPU. The
workload setup and target CMP will be described in more
detail in Section 4.

Figure 1 shows the breakdown of instructions executed by
the user code and the OS, respectively, for various VCPU
timeslices, while performing the same amount of work (i.e.,
the same number of workload transactions). While the ag-
gregate user instructions executed remain very stable across
different timeslices, we notice a dramatic increase in OS in-
structions for larger timeslices. For example, OLTP exe-
cutes 2.2 times more instructions with a timeslice of 200µs
compared to 10µs, almost entirely due to OS instructions.
Longer timeslices, such as 1ms, can cause a kernel panic in
several Solaris workloads. For Apache on Solaris, the run-
time (not shown) of the 200µs timeslice is more then 2.5
times that of the 10µs case. We also see that the workloads
running on Linux show significantly less overhead due to
additional OS instructions compared to their Solaris coun-
terparts, largely due to the absence of frequent cross-calls.
However, Apache on Linux also shows excessive spinning
when using longer timeslices (data not shown).

While a timeslice as low as 10µs can mitigate the OS spin
problem, it can also destroy cache locality (in addition to
incurring other overheads). For example, OLTP, despite a
more than two-fold increase in instructions due to spinning,
has 20% fewer L1 misses with a timeslice of 200µs than 10µs
(data not shown for brevity). Pmake on Linux, which has
no synchronization overhead, sees a 35% reduction in L1
misses. Clearly we want a better solution which will allow
us to give VCPUs a longer timeslice when they are doing
useful work. Traditional gang scheduling can allow longer
timeslices, but we are seeking solutions with more flexibility
and feasibility across a range of VM applications.

3. MANAGING OS SYNCHRONIZATION

3.1 Current Solutions
The problems associated with preempting a lock holder

are well understood in the context of user programs [4, 31,
32]. In any parallel application (a multiprocessor OS being
a complex and interesting example), there are two generic
approaches to mitigate the synchronization problem among
threads which are not concurrently executing: a) avoid pre-
empting a thread holding a lock or b) pro-actively preempt
a thread excessively spinning to acquire a lock in favor of
executing a more productive thread.

In an optimized parallel application, the length of critical
sections is typically short. Thus, avoiding preemption of the
lock holder can often yield good performance for such appli-
cations. However, this approach requires precise information
about the lock holder. While this information may be avail-
able from a user application, it is more subtle and largely
impossible to ascertain from an unmodified multiprocessor
OS running in a virtual machine.

However, one can use more conservative information to
derive a software-transparent solution as shown by Uhlig, et
al., [26]. They make the observation that a VCPU executing
in user mode is not holding a kernel lock, and can be safely
preempted. These preemptible locations are referred to as
safe points. A VCPU executing in the OS may be holding a
kernel lock, and thus, the VMM will try not to preempt it

at that point.3 However, this scheme fails to efficiently han-
dle the frequent cross-calls seen in the applications running
Solaris. We discuss the reasons in Section 5.

The second approach to reduce the synchronization over-
head is to detect when a VCPU is excessively spinning on a
lock and preempt the VCPU at that point. This is similar in
concept to helping locks proposed by Hohmuth, et al. [13].
Most current solutions for identifying spin locks and loops
(including the OS idle loop) involve OS-intrusive modifica-
tions or kernel PC annotations. Several existing projects use
this method (often just for the idle loop), including IBM’s
Power5 Hypervisor[5], Cellular Disco [12], and one of the
solutions offered by [26]. Instead, we propose a simple yet
effective heuristic to dynamically determine spin loops in
hardware without requiring any software modification.

3.2 Detecting Spins in Hardware
We make the observation that a program executing in

a spin loop has a distinctive execution pattern. Typically,
while waiting for certain events and not making any for-
ward progress, it makes very few, if any, modifications to
the program state. We can infer this lack of program state
modifications from the absence of store instructions that
change values in memory. Consequently, this execution pat-
tern can also be easily recognized by observing few unique
stores committed by the program in a given interval, where
the uniqueness of a store is determined by having an address
or value different from other stores.

An important exception to the above observation arises
when a memory location is register allocated. For example,
while searching an array structure, a program may not exe-
cute any store instructions since the array index variable is
likely to be register allocated. Therefore, during long search
operations, predominantly found in user code, a program
may not execute any store instructions. To avoid such false
positive spin detections, we also check for unique load in-
structions (uniqueness determined by the load address only)
when executing user code.

Thus, we detect a kernel spin when the number of unique
stores executed within N committed instructions is less than
some pre-defined threshold. On the other hand, a user spin
will be detected when both unique stores and loads are less
than that threshold. In our experiments, we find that for a
period of N=1024 committed instructions, a threshold value
of eight is effective to detect all known spin loops with few
false positives. We also find that this technique leads to a
more unified solution by automatically detecting other cases
where a VCPU is not doing useful work, such as the OS idle
loop and spins in user code.

3.3 Spin Detection Buffer: Implementation
We propose a simple hardware structure, the Spin Detec-

tion Buffer (SDB), to implement spin detection functional-
ity. We employ two fully associative, eight entry content-
addressable memory (CAM) structures to hold the unique
stores and loads, respectively. During a given period (of

3To determine safe preemption points while inside the OS,
they also investigate injecting additional safe points into OS
execution by installing a fake device driver and sending in-
terrupts from the VMM to this driver. Since they assume
the OS is not holding a lock while executing this driver, they
can safely preempt the VCPU at that point. Our evaluation
in Section 5 does not implement this additional complexity.



1024 instructions in our simulations), each committed store
(and load when in user mode) searches the appropriate CAM
to determine if its address/value is unique. A unique load
or store then inserts its address/value into the appropriate
CAM array. Once either array becomes full, subsequent in-
structions need not search the CAM.

At the end of the period of committed instructions, we
simply check the number of entries in each array. If there
are less than eight valid entries in the store array and the
VCPU is executing in the OS, the SDB indicates a spin.
If there are less than eight entries in both arrays and the
VCPU is executing user code, the SDB again indicates a
spin. Otherwise, the arrays are flushed and it is assumed
that the VCPU is making forward progress. If a user/OS
mode change occurs within the period, forward progress is
assumed regardless of the number of entries in the arrays.

Updates to these structures are not on the critical path,
since they are performed after instructions commit. Because
these arrays do not have a strict correctness requirement,
other optimizations could be performed to avoid using a
CAM, if desired.

4. EXPERIMENTAL EVALUATION
In this section, we describe our evaluation methodology

and the target CMP system in more detail, including the
hardware virtualization support we assume.

4.1 Methodology
We evaluate several multithreaded applications running

under both Solaris 9 and Linux 2.6.10. For this study, we
use Virtutech Simics [16], an execution driven, full-system
simulator which functionally models a SunFire 6800 server
in sufficient detail to boot unmodified operating systems and
run unmodified commercial workloads. This system models
UltraSPARC IIICu CPUs, which implement the SPARC V9
ISA. We use Simics as a functional simulator only, and model
cache latencies and bandwidth using a detailed memory hi-
erarchy timing simulator. For the study in Sections 5, we are
considering only one guest OS, and have no need to virtu-
alize I/O, memory, or privileged instructions. In Section 6,
we assume the use of a software VMM that virtualizes I/O,
memory, and privileged instructions, but we do not model
the overhead of this software VMM.

A brief description of each workload is provided in Table
1. Two workloads, Apache web server and pmake, are eval-
uated on both OSs, while other commercial workloads on
Solaris only, and Spec2000Mix on Linux. All workloads are
run for several simulated seconds to warm up the workload
and OS disk cache before a checkpoint is taken that is used
by our timing simulations. Workloads are warmed up on a
(simulated) system with as many PCPUs as VCPUs.

Due to inherent variability in these workloads (primarily
from interrupt processing and OS scheduling decisions) as
described by Alameldeen, et al. [3], we add a small random
variation to the main memory latency, and run several trials
of each benchmark per experiment. We present average re-
sults, and include the 95% confidence interval on the graphs
when it is significant and appropriate.

4.2 Target CMP System
The relevant configuration parameters for our target CMP

system are shown in Table 2. The private L2 caches main-
tain coherence using an invalidate-based MOSI directory

Apache
(Solaris

& Linux)

We use the Surge client [6] to drive the
open-source Apache web server, version
2.0.48. We do not use any think time in
the Surge client to reduce OS idle time.
The timing runs are for 15,000 transac-
tions on Solaris and 30,000 transactions
on Linux.

pmake
(Solaris

& Linux)

Parallel compile using GNU make and
the Sun Forte Developer 7 C compiler
(on Solaris) or gcc-3.3.4 (on Linux). We
do not include serial phases. Timing
runs are for 1.5 billion user instructions.

Zeus
(Solaris)

We use the Surge client to drive the com-
mercial Zeus web server, configured simi-
larly to the Apache web server. The tim-
ing runs are for 7500 transactions.

OLTP
(Solaris)

OLTP uses the IBM DB2 database to
run queries from TPC-C. The database
is scaled down from TPC-C specification
to about 800MB and runs 192 concurrent
user threads with no think time. The
timing runs are for 750 transactions.

pgbench
(Solaris)

Pgbench runs TPC-B like queries on
the PostgreSQL database [1].We run for
3000 transactions.

Spec2000
(Linux)

We concurrently run all Spec2000 bench-
marks, except the FORTRAN90 FP
benchmarks. Instead, we run two copies
of gcc, mcf, and art to keep all 24 VCPUs
busy. We run 1 billion user instructions.

Table 1: Workloads used for this study

Processor cores 8 single-issue, single-stage, 1GHz
Priv. L1 instr cache 16kB, 2-way, 1-cycle, coherent
Priv. L1 data cache 16kB, 2-way, 1-cycle, write-back

Private L2 unified
cache

512kB, 4-way assoc, 15 cycle
load-to-use, 4 banks, 4-stage
pipelined, inclusive

On-chip shared L3
cache

8MB, 16-way, 55-cycle load to
use, 8 banks, pipelined, exclusive

On-chip
interconnect

Point-to-point links, avg 10-cycle
latency

Main Memory 365 cycle load-to-use, 40GB/sec

Table 2: Microarchitecture parameters

protocol. The directory maintains shadow tags of the pri-
vate L2s, and is located with the appropriate L3 bank. The
L3 is shared and strictly exclusive with the L2s. We use
a point-to-point crossbar-like interconnect which maintains
FIFO ordering among source-destination pairs. CMP cores
(PCPUs) are modeled as simple single-issue, single stage,
blocking cores to speed simulations.

4.3 Hardware Support for Virtualization
We evaluate a VMM assuming very low level software

(e.g., microcode) with hardware support. However, most
of the issues and many of the techniques we describe are
similarly applicable to a fully software VMM. Though we



do not model the overhead of microcode, the primary VMM
cost which affects processor virtualization is the process of
migrating VCPUs on and off the PCPUs, which we do model
faithfully.

As described in Section 2.2, the VMM will often need to
switch the VCPU running on a particular CMP core (e.g., a
particular PCPU) by saving and restoring the state of that
VCPU to other backing storage (such as a cache). A VCPU’s
architected state, which consists of its memory and register
values, must be preserved by the VMM. The memory state
can simply be communicated as needed via the on-chip co-
herence network that is already required to support shared
memory multiprocessing. Registers must be saved and re-
stored, similar to an OS saving the state of a process when
it is context-switched.

The UltraSPARC IIICu architecture we model has a large
number of architected registers. Including windowed, al-
ternate global, floating-point, privileged, ASI-mapped, and
TLB control registers, this comprises 277 64-bit registers, or
2.2kB (nearly half of this is SPARC register windows).

SPARC V9 uses a software managed TLB. We only trans-
fer the locked TLB entries, since the OS cannot tolerate a
miss for these, but will handle misses to unlocked entries.
Since SPARC V9 uses context IDs to tag TLB entries, we
allow multiple VCPUs of the same VM to share the (un-
locked) TLB entries, though we flush the TLB when switch-
ing between VCPUs of different VMs (in Section 6).

4.4 Implementation
For VMMs that may require frequent VCPU switching,

hardware support is useful to reduce the latency of this
switching. We propose using a simple mechanism with min-
imal additional hardware and no special-purpose storage by
simply storing the VCPU state in the memory subsystem.
A portion of the physical address space is set aside for this
storage, and microcode is used to load and store the state
values. When the VMM chooses to pause a VCPU, it in-
terrupts the corresponding PCPU, which flushes its pipeline
and executes the microcode to save the current VCPU state
and also restore the state for the next VCPU (as specified
by the VMM). The latency of this operation is then de-
termined by the available memory read (and write) ports
and the cache bandwidth. While this solution incurs some
cache overhead, it is a small fraction of the multi-megabyte
caches found on current chips. If the VMM chooses to run
the paused VCPU on another CMP core, the VCPU state
can be transparently migrated using the on-chip coherence
protocol.

Recently, both Intel and AMD have introduced hardware
virtualization support with their Virtualization Technology
(VT) and SVM project, respectively. Though the microar-
chitectural details are not yet clear, both support hardware
VCPU switching and migration at the direction of a soft-
ware VMM. We expect the actual mechanisms to be similar
to those we evaluate.

5. RESULTS
This section examines the ability of several techniques to

mitigate the synchronization overhead apparent from Sec-
tion 2.2.3. We again expose the challenges of an overcom-
mitted VM by using a single guest OS with 24 VCPUs run-
ning on an 8 PCPU system.

5.1 Implementing Safe Points
Though conceptually appealing, implementing safe point

aware preemption is not straightforward. To avoid starva-
tion of other VMs, Uhlig., et al. [26], suggest using a 1ms
grace period, after which point a VCPU will be preempted
even if it has not reached a safe point. When the number of
VCPUs exceeds the number of PCPUs, this grace period is
also necessary to avoid deadlock in a single VM.

In Solaris, which frequently sends software interrupts to
implement cross-calls, it is critical to schedule the inter-
rupted VCPU as soon as possible to ensure forward progress
of the sender. But when several running VCPUs are either
sending cross-calls or attempting to acquire a lock held by
one of the senders, most executing VCPUs start spinning
in the kernel (and are thus considered unsafe to preempt).
Often no PCPU is available to run the interrupted VCPUs
until the grace periods for these spinning VCPUs expire.
There are a range of possible strategies for dealing with this
problem, including reducing the grace period when paused
VCPUs have outstanding interrupts, or delaying scheduling
the interrupted VCPU until it can be scheduled on its cur-
rently assigned PCPU (to maintain affinity). We find that
the best overall policy is to maintain the 1ms grace period,
but run the interrupted VCPU on the next available PCPU,
regardless of cache affinity. While this results in frequent
VCPU migrations, and requires a centralized control point,
it greatly reduces the synchronization overhead compared to
the other alternatives.

Uhlig, et al., do not observe this seemingly pathological
cross-call behavior with their evaluation methodology, since
a) this mode of synchronization is fairly uncommon in Linux,
and b) they do not consider overcommitted VMs, and can
thus concurrently schedule all VCPUs of a given guest VM
when necessary.

5.2 Comparison of Synchronization Manage
ment Techniques

In Figure 2, we present the relative instruction count
with different policies for managing synchronization over-
heads. From left to right, the bars for each benchmark rep-
resent timeslices of 100µs and 10µs (without any additional
synchronization management), safe point-aware preemption
(with a 100µs timeslice and 1ms grace period) and our SDB
scheme with a 100µs timeslice, respectively. The results
are normalized to the 100µs timeslice. Several observations
can be made from this figure. First, we find that, except
for Zeus and pgbench, safe point-aware preemption is quite
effective in reducing the instruction overhead due to syn-
chronization. For these two benchmarks, on the other hand,
the safe point-aware preemption scheme was often unable
to find preemptible VCPUs during concurrent cross-calls (as
discussed in Section 5.1), leading to a dramatic increase in
synchronization overhead. Second, we find that our SDB
is the most effective technique at reducing the instruction
overheads in almost all cases. For example, Zeus and OLTP
execute 3.15X and 1.87X fewer instructions compared to the
100µs timeslice, respectively.

While all three techniques for spin management (10µs
timeslice, safe-points, and SDB) are effective at reducing
extra committed instructions compared to the 100µs times-
lice, they have different effects on cache performance. Figure
3 shows the total memory stall time due to L1 misses, rela-
tive to the 100µs timeslice. This is total memory stall, for a
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Figure 2: Relative instruction counts of synchro-
nization management techniques. Four bars for each
benchmark (from left to right) represents results for
a 100µs timeslice, 10µs timeslice, safe point aware
preemption and SDB. Results are normalized to the
100µs timeslice (lower is better).
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Figure 3: Relative memory stall time of synchro-
nization management techniques. Four bars for each
benchmark (from left to right) represents results for
a 100µs timeslice, 10µs timeslice, safe point aware
preemption and SDB, respectively. Results are nor-
malized to the 100µs timeslice (lower is better).

given amount of work, regardless of the number of instruc-
tions. Stall time is broken up into stalls occurring at the
local L2, and other stalls (from remote L2s, the on-chip L3,
or main memory). Similar to the study of scheduling poli-
cies for cache affinity by Torrellas, et al. [24], we see that
for most cases, the 10µs timeslice has a much larger mem-
ory stall time than the 100µs timeslice. Apache is the only
exception because its spin loops incur L2 coherence traffic.
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Figure 4: Relative performance of of synchroniza-
tion management techniques (higher is better).

The safe-points scheme and the SDB typically have simi-
lar stall time from the local L2, but the safe-points scheme
often has a larger L2 miss component. Since the safe point-
aware preemption scheme schedules VCPUs eagerly across
many PCPUs when they have pending software interrupts
(in order to reduce spin instructions as much as possible), it
can hurt cache affinity.

We also show the relative performance of these four config-
uration in Figure 4 (normalized to the 10µs timeslice). For
application where there is little spinning, the 100µs timeslice
outperforms the 10µs timeslice due to better cache behavior.
For application where spins are a problem, the 10µs timeslice
is better due to substantial reduction in committed instruc-
tions. For benchmarks where the safe-points scheme is effec-
tive at mitigating spin and does not incur extra L2 misses,
it performs similarly to the SDB. On the other hand, safe-
points performs poorly for many benchmarks which exhibit
a significant spin overhead. In every case except pmake on
Linux and SpecMix, the SDB outperforms the other schemes
by a significant margin.

While it is clear that the SDB is effective in reducing the
synchronization overheads, it is difficult to precisely deter-
mine how accurate it is. After carefully browsing the kernel
source and observing program execution, we are unaware
of any case where it fails to detect a spin (false negative).
It also generates very few false positives in our workloads.
For Spec2000Mix, which is a multi-programmed workload
(single-threaded SPEC benchmarks) without any spin loops
in user code, it triggers about 130 false positives in the
course of over one billion committed instructions.

6. SERVER CONSOLIDATION STUDY
In this section, we present a case study to demonstrate

the effectiveness of using our spin detection techniques for
CMP core virtualization on a simple server consolidation
setup. Server consolidation is an emerging application which
aims to simplify the operation and reduce the cost of an
organization’s multiple servers by using virtualization to run
multiple services on the same physical server [5, 10, 23, 28].



While gang scheduling is not possible for many applica-
tions described in Section 2.1, it is often a viable option for
server consolidation. However, gang scheduling is inflexible,
and in this section, we show that pursuing other policies can
improve both throughput and performance isolation.

6.1 Traditional Gang Scheduling
Consider the case of two services, currently set up and op-

timally configured and tuned to run on different 8-processor
servers that are being consolidated onto one 8-processor
server. Each original server can run as a guest VM on the
new hardware platform with minimal configuration changes
(one goal of consolidation), if each guest VM is configured
to see eight VCPUs. The VCPUs of each VM are then gang
scheduled, so that PCPUs alternate between the two guest
VMs, allowing each to run for a given timeslice.

While it may be possible to share read-only code and data
between multiple VMs running the same OS version [28], we
do not allow this in our experiments. It is thus desirable to
choose a longer timeslice to avoid thrashing in the caches
and TLBs [24]. However, most applications cannot sustain
an arbitrarily long delay in responses (for requests to a VM
that is not scheduled). For example, low response times for
Multiplayer Online Game (MOG) servers are critical in or-
der to provide a satisfactory user experience [9]. Therefore,
timeslices in the range of less than one to several millisec-
onds are generally used.

An alternative is to set up these guest VMs to only see four
VCPUs each, but this has two drawbacks. First, it requires
modifying the previously tuned configuration of each server,
and second, it does not allow one guest VM to utilize all of
the PCPUs to handle a burst in demand.

When many VCPUs of a guest VM are idle, gang schedul-
ing leads to inefficient use of the processors since idle VC-
PUs of one VM are scheduled even when non-idle VCPUs
of another VM could run. To combat this problem, some
gang schedulers use techniques to identify the idle loop of
the guest OSs [12]. However, even with precise information
about which VCPUs of VM A are idle, it is not straightfor-
ward to allow only some of VM B’s VCPUs to execute, since
they will be seriously affected by kernel synchronization un-
less all non-idle VCPUs of VM B can be co-scheduled.

6.2 Logical Partitioning
Our proposed hardware technique to manage the synchro-

nization overhead can allow much more flexibility in choos-
ing a scheduling policy. A VMM designer can then choose
a policy that best serves the specific needs (e.g., one that
provides maximum performance isolation in a untrusted en-
vironment while maintaining low response latency).

As an alternative to gang scheduling, we propose to use
Logical Partitioning, to demonstrate the potential of a more
flexible policy. In this scheme, we distribute PCPUs among
guest VMs, and only execute a subset of each VM’s VCPUs
at a time. Since guest VMs are allocated fewer PCPUs than
VCPUs (for an extended period of time, if not permanently),
they are overcommitted. Especially when running shared
memory applications where different VCPUs from the same
VM share instructions and data, logical partitioning can lead
to better cache locality by improving constructive interfer-
ence in the private structures of a PCPU (within a logi-
cal partition) while eliminating destructive interference from
the other VM. Simple extensions to this policy, for example

to allow dynamic load balancing, might make it appropriate
for a wider range of application domains, and are not the
focus of this case study. Instead, we show the effectiveness
of this policy at increasing throughout and improving per-
formance isolation, when compared to gang scheduling for
one particular setup. Some systems, such as the Power5 [5],
have an interface to avoid synchronization overheads, and
could already take advantage of this policy.

6.3 Throughput Comparison
For this comparison, we have set up eight server-

consolidation workloads running Solaris on the 8-PCPU
CMP system described in Section 4. Each workload com-
bines two 8-VCPU guest VMs running benchmarks (on So-
laris) from Section 4. Each guest VM is configured with its
own I/O devices and physical memory space, but VMs dy-
namically share the processors, caches, and TLBs. We are
assuming the use of a software VMM, similar to VMWare,
which virtualizes I/O, memory, and privileged instructions.
Since we are only investigating processor virtualization, we
do not model the overhead of this software VMM. The two
guest OSs are allocated enough physical memory so that the
VMM does not need to swap real memory.

One set of the these workloads combines two guest VMs,
where each guest VM is warmed up and fully utilizes all 8
VCPUs (i.e., it achieves near 0% idle time when run by it-
self on an 8-processor CMP). The other set combines guest
VMs where each guest is warmed up, but only utilizes ap-
proximately 50% of the 8 VCPUs when run by itself. The
full utilization case represents a worst-case load for the con-
solidated server, while the half-utilization represents the ex-
pected common case. To cover workloads from different do-
mains, we evaluate gang scheduling with two different times-
lices: 10ms (which is used by many OSs as a scheduling
timeslice) and 100µs (to ensure low response time in envi-
ronments like MOG).

In Figure 6 we show the performance of the consolidated
workloads for three experiments: a) gang scheduling with a
100µs timeslice, b) gang scheduling with a timeslice of 10ms,
and c) partitioning the PCPU resources evenly between the
guest VMs (with a 100µs timeslice). Performance is relative
to gang scheduling at 100µs. Speedup, for two experiments
ExpA and ExpB is simply the average speedup of the two
VMs and is calculated as:

Speedup =
1

2

 

UserIPC
ExpB

V M0

UserIPC
ExpA
V M0

+
UserIPC

ExpB

V M1

UserIPC
ExpA
V M1

!

where UserIPC is the number of committed user instruc-
tions over the total number of cycles. Based on our own
experiments (e.g., Figure 1) and recent literature [29], we
find that user instructions committed is a good proxy for
throughput metrics in commercial workloads. The graph
breaks down the speedup component from each VM.

We also show the relative L2 misses incurred in each
of these experiments in Figure 5. Partitioning the PCPU
resources, along with private caches and TLBs, results in
18–29% fewer private L2 misses than gang scheduling with
the 100µs timeslice, causing an overall speedup of 10–25%
as evident from the graph. The best speedups are from
the lower utilization workloads due to better core manage-
ment. Longer (10ms) timeslices for gang scheduling improve
throughput, as expected. When the VMs are fully utiliz-
ing the processors, both runtime and L2 misses of gang
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scheduling are similar to partitioning. However, much longer
timeslices (100ms or more) do not continue to improve gang
scheduling for most benchmarks. A timeslice of 1ms, used
in other systems [26], performs in-between 100µs and 10ms.

6.4 Performance Isolation
For this study, we designed a set of experiments which pair

a VM running one of the workloads described in Section
4 with a VM running one of two microbenchmarks. The
first, labeled Comp is computationally intensive with a small
cache footprint. The second, labeled Stream is extremely
cache intensive: it streams through a large array, effectively
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Figure 7: Performance isolation. Bars repre-
sent performance when a commercial workload in
one VM is paired with a second VM running ei-
ther a computationally-intensive (Comp), or cache-
intensive (Stream), microbenchmark.

replacing the entire private L2 caches (but only a fraction of
the shared L3). We use a 1ms timeslice for gang scheduling
in this experiment.

Figure 7 compares the performance of configurations
which perform gang scheduling and partitioning PCPUs.
We show the relative performance of the VM running
the commercial workloads only (i.e., we are not measur-
ing the performance of the microbenchmarks), relative to
gang scheduling with the Comp microbenchmark. When
combined with the Comp microbenchmark, the commercial
workloads with partitioning are slightly slower than gang
scheduling (up to 2.5%) as expected, since spreading the
commercial workloads across all eight private L2s yields
more aggregate cache space. However, when combined
with the Stream microbenchmark, the commercial work-
loads’ performance suffers substantially with gang schedul-
ing (by 11–18%). The partitioning policy also leads to per-
formance loss when combined with the Stream microbench-
mark, largely due to the additional capacity and bandwidth
pressure on the shared L3. However, the relative perfor-
mance lost due to partitioning is several times lower than
that of gang scheduling.

7. CONCLUSIONS
Traditionally, gang scheduling has been employed to run

multiprocessor OSs in virtual machines. However, support-
ing emerging architecture and application trends, such as
efficient server consolidation, dynamic thermal management
and speculative or redundant multithreading, requires more
flexible scheduling policies. In the absence of gang schedul-
ing, which concurrently runs all VCPUs of a guest OS, kernel
synchronization overhead becomes a significant impediment
to the performance of these virtual machines.

We propose a simple hardware technique to detect when a
VCPU is spinning, without requiring any software modifica-
tion, and preempt that VCPU in favor of one which is mak-
ing forward progress. Our results show that the synchro-
nization overhead can be substantially reduced using this



technique, thereby allowing more flexible scheduling policies
than are possible with gang scheduling.

Finally, we perform a server consolidation case study to
examine the benefits of more flexible scheduling enabled by
our spin detection technique. We propose a policy to par-
tition a subset of the physical cores, along with private re-
sources like caches and TLBs, among guest VMs. We show
that this partitioning achieves 10–25% speedup over gang
scheduling by reducing private L2 cache misses and improv-
ing hardware resource utilization, and improves performance
isolation of private caches.
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