
Program Demultiplexing:
 Data-flow based Speculative Parallelization of Methods in Sequential Programs

Saisanthosh Balakrishnan and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin-Madison

{sai, sohi}@cs.wisc.edu

Abstract

We present Program Demultiplexing (PD), an
execution paradigm that creates concurrency in
sequential programs by "demultiplexing" methods
(functions or subroutines). Call sites of a demultiplexed
method in the program are associated with handlers that
allow the method to be separated from the sequential
program and executed on an auxiliary processor. The
demultiplexed execution of a method (and its handler) is
speculative and occurs when the inputs of the method are
(speculatively) available, which is typically far in advance
of when the method is actually called in the sequential
execution. A trigger, composed of predicates that are
based on program counters and memory write addresses,
launches the speculative execution of the method on
another processor.

Our implementation of PD is based on a full-system
execution-based chip multi-processor simulator with
software to generate triggers and handlers from an x86-
program binary. We evaluate eight integer benchmarks
from the SPEC2000 suite ⎯programs written in C with
no explicit concurrency and/or motivation to create
concurrency⎯ and achieve a harmonic mean speedup of
1.8x with our implementation of PD.

1. Introduction
Chip makers are turning to multicore systems as a

way to extend Moore’s law. While applications such as
web servers, database servers, and scientific programs that
have abundant software threads will immediately benefit
from the many cores, novel approaches are required for
executing traditionally-sequential applications in parallel.
A key for this will be an understanding of the nature and
characteristics of the computations that need to be
performed in the application, and the constraints
introduced when such computations are expressed in the
traditional manner as a totally ordered sequence of
instructions. Instruction-level parallel processors already
try to unravel some parallelism from this expressed
sequential order from a window of in-flight instructions.
Speculative parallelization techniques [1, 8, 9, 17, 25, 38,
40, 43] try to overcome the limitations of traditional
parallelization techniques by creating threads usually
consisting of loop iterations, method continuations, or
more generic tasks, speculatively executing many such

threads concurrently, and with additional hardware
support to detect violations of data and/or control
dependencies.

The key limitation of such approaches is the
difficulty in reaching “distant” parallelism in a program
since the instantiation of threads for speculative execution
is based on the control-flow sequence of the program. The
commit ordering of threads is also usually defined (or
tightly coupled) by this sequence. Therefore, reaching a
distant thread in a program often requires all prior threads
in the execution sequence to be identified (by prediction
or execution) and scheduled for execution. Data or
control-dependence violation(s) in one of these threads
may lead to the squashing of all subsequent threads (or as
an optimization, threads that violated data and control
dependencies) hence wasting execution resources.

This paper proposes a speculative data-flow approach
to the problem of parallelizing a sequential application,
especially in an environment where the basic processing
node is comprised of multiple processors (as in multicore
systems). In modern programming languages, a desired
sub-computation is expressed as a method (also
commonly referred to as a function, procedure, or a sub-
routine). Observing that a sequential program is a
collection of different methods that have been interleaved,
or multiplexed, both for convenience in expressing the
computation and to satisfy the default assumption of
execution on a single processor, we propose Program
Demultiplexing. In Program Demultiplexing (PD),
different methods are “demultiplexed” from the sequential
order, decoupling the execution of a method from where
it is called in the program (the call site). In sequential
execution, the call site of a method also represents the
beginning of execution of that method, while the
execution of a method in PD occurs well before that on an
auxiliary processor, albeit speculatively. This execution
usually happens after the method is ready, – i.e., after its
data dependencies are satisfied for that execution
instance. Its results are committed if they are valid, when
the call site is later reached by the program running on the
main processor.

With PD we attempt to achieve data-flow style
parallel (speculative) execution, on multiple processors,
for an application written in an imperative language for
execution on a single processor. Figure 1 illustrates the
basic idea of PD.

2

Sequential execution corresponds to a total ordering
of the methods of the application (shown on the left). In
the figure, methods with like shading have data
dependences; methods with different shading are
independent. The sequential total ordering creates
additional (false) control dependences. PD demultiplexes
the methods from the total sequential order, creating a
partial order, and allows multiple chains of the partial
order to be executed in parallel on multiple processors.
The demultiplexed methods begin speculative execution
earlier than when they are called in sequential execution,
but rarely violate data dependencies (due to the total
order), allowing a method’s execution to be overlapped
with the execution of other methods in the program.

The novel aspect of PD is the unordered
demultiplexed execution of distant parts of the program
when they are ready, i.e., according to data-flow, and not
according to control-flow, as is the case with other
speculative parallelization models. Nevertheless, previous
models are orthogonal to PD, and can be used to further
parallelize demultiplexed execution of a method. We
choose speculative execution at the granularity of
methods for two reasons. First, it allows programmers to
easily reason about unstructured parallelism that PD
exploits and to possibly create and control concurrency by
providing hints and pragmas to the runtime system and/or
compiler (unlike explicit multi-threaded programming).
Second, with wider adoption of object oriented
programming languages, future (and even current)
generation of programs are likely to be collections of
entities that are more structured and decomposed into
objects and libraries, each accessing only a well-defined
subset of the global program state, introducing more
opportunities for PD.

The rest of this paper is organized as follows: in
Section 2, we discuss the concept of Program
Demultiplexing and illustrate examples of demultiplexing

methods from some SPEC CPU2000 integer benchmarks.
In Sections 3 and 4, we present our implementation of PD
and initial evaluation results, respectively. We discuss
related work in Section 5 and conclude in Section 6.

2. Non-Sequential Execution of Methods
2.1 Methods

A method, also referred to as a function, procedure,
or a subroutine, is a sequence of one or more blocks of
program statements that performs a component task of a
larger program. The same method can be called from
different parts of the program and the location from where
it is called by the callee is the call site. When called
(perhaps, using one or more parameters), the method
carries out some computation, and may return a value
back to the caller, which continues execution with the
returned value. In this paper, we assume an Intel x86-type
architecture that communicates all parameters via the
stack. Compiler optimizations (and other architectures)
that use registers for a limited set of parameters can also
be easily accommodated with minor changes.

Computation in a method can access and modify two
types of program state: local and global. The local state
is the state that is not visible outside the method1. In a
sequential implementation, this state would typically be
implemented using a stack. The global state is visible to
other program entities outside the method. The read set
and the write set of a method’s execution are the set(s) of
global state (memory addresses) that the method reads or
modifies, respectively. The nature of these sets is defined
by the programming language. Most procedural languages

1 There are a few exceptions to this, such as when parameters
are passed by reference, in which the callee’s state is
accessed by the caller.

Figure 1. Program Demultiplexing. The left portion of the figure illustrates the sequential execution of a program.
The boxes are labeled with names of methods and their execution instances in superscript. Methods with the same

shading represent data dependent methods and hence have to be executed serially. The timeline of execution
represents runtime. The right portion of the figure illustrates PD execution of the same program. The PD timeline

indicates the program using (and thereby, committing) the execution results of demultiplexed methods finishes faster.

M2
1

M1
1

M3
1

M1
1 M3

1

M2
1

M1
2

M4

1

M4
1

M1
2

M3
2

M3
2

Se
qu

en
tia

l E
xe

cu
tio

n
Demultiplexed Execution

3

usually allow methods to access and make changes to the
entire program state. Therefore, after the execution of a
method, its changes could be visible to the remainder of
the program. In object-oriented languages, methods can
only directly access or make changes to an object with
which they are associated. Methods are considered as a
provider of service to an object and make changes to the
object in a way consistent with the object’s intended
behavior.

2.2 Sequential Program- Multiplex of methods
The execution of a method is dependent upon another

method’s execution if a variable (memory address(es)) in
its read set is directly (or indirectly in a transitive closure)
in the write set of the other method. Dependences
between methods result in a partial ordering of the
methods, and this partial ordering determines their
execution order. A sequential program is a multiplexing
of the methods of a program into a total order. The total
ordering of the methods provides a convenient but
implicit way to specify the dependence relationships: a
method that is dependent upon another method is placed
(and thereby, executed) after the predecessor method in
the sequential program.

 Methods in procedural and object-oriented
programming languages can have side-effects, i.e., a
method can make changes to the global program state (its
write set) that might not be easily analyzable statically.
These potential side effects create unknown dependencies.
If static analysis of a method’s side effects (or, lack
thereof) is not possible, the compiler assumes that all
methods might have side effects and that a method could
be dependent upon any prior method. This implies that the
methods should be executed in the total order in which
they are arranged by the compiler in the sequential
program.

However, many practical considerations limit the
side effects of a method. First, it is not always likely that a
given method will modify program state accessed by
another arbitrarily-chosen method. This is especially true
with applications that have unstructured parallelism often
exhibited due to the nature of application, good software
engineering practices and usage of object-oriented
programming concepts. Second, modern languages
(especially, object-oriented languages) are evolving with
strict programming specifications and require modular
programs with methods associated with a class object.
Changes made by a method are visible only to the other
methods associated with them. Therefore, two methods
with different associations and/or with disjoint read sets
are independent, and could possibly execute in parallel,
even though they are ordered in the sequential program.
We next present some motivating examples to illustrate
PD.

2.3 Motivating Examples
The methods chosen for PD could be from system

libraries, application libraries, modules used by a

program, the class objects in a program, or from the
program itself. Methods from system libraries, such as
calls to the memory allocator, file buffer, and network
packet operations, are usually low-level methods that
sometimes trap to the operating system to finish their task.
The execution of these methods rarely interferes with the
program except for the parameters and value returned by
the method. For example, malloc (or new) is one of the
most frequently executed methods. The program calls
malloc with the amount of memory needed. The
method can be demultiplexed and concurrently executed
with the program; its ordering with other memory
allocator calls (such as free, resize and other
methods that modify book-keeping structures of memory
allocation) is the only requirement for correct execution.
The parameter passed to malloc can be determined by
executing the computation in the program that creates the
parameter (which could create a dependency with the
program hence limiting the concurrency) or by predicting
it. The latter is practical with memory allocation because
programs tend to require memory of a small set of sizes
defined by the data structures they are using. For example,
in the SPEC CPU2000 benchmarks, 95% of the calls to
malloc are with parameters that have been used to call
malloc before. Multiple executions of malloc can also
be triggered with different sizes as parameters, ultimately
using the appropriate result when called.

Methods for PD in application libraries and programs
could be those associated with implementations of
abstract data structures such as linked lists, binary trees,
heaps, B-Trees, and hashes that access and modify the
data according to its semantics, methods that implement
service functions for the application, and so on. The
following are some examples from the SPEC CPU2000
benchmark suite.

254.gap implements a language and library for
computation used in group theory. In the following
example, we consider the method NewBag for
demultiplexing. The method is invoked from as many as
500 different locations in the program, and contributes
17% of the total run time – 7% from NewBag, and 10%
from the CollectGarb method that is executed within
NewBag. NewBag takes two parameters: the type of bag
to be created and its size. The ‘type’ parameter can
take 30 possible types but is limited to very few
depending on the method that calls NewBag. The ‘size’
parameter can also be easily identified depending on the
‘type’. For example, the ‘size’ is always four when
‘type’ = T_LIST. In our run with train inputs, the
method was invoked 6.8 million times and for 99% of the
calls the parameters used were the same as that of a
previous call.

175.vpr is a FPGA placement and routing
application. It spends 86% of its run time in operations on
its heap data structures. 8% of its run time is from
alloc_heap_data (Figure 2(a) and (b)), a method to

4

allocate memory in the heap structure. The program
spends the rest of the 86% in get_heap_head,
expand_neighbours, node_to_heap, and
add_to_heap methods. The application calls these
methods to alter the value of elements in the heap, get the
head of heap, and insert a new node onto the heap. We
illustrate PD with the simple example of method
alloc_heap_data. The method allocates a chunk of
data if heap_free_head is not set; otherwise, it
recycles the chunk of memory recently freed by the
method free_heap_data. We can demultiplex
alloc_heap_data, begin its execution either when its
previous execution result is used or when
heap_free_head is called.

186.crafty is a computer chess program. It
spends its execution time evaluating the chess board,
planning its moves, and eventually making them. We find
a number of methods that can benefit from PD such as
AttacksTo, a method where the application spends 6%
of its time (Figure 2(c) and (d)). The AttacksTo
method is used to produce a map of all squares that
directly attack the specified square and is called by
several methods in the program; ValidMove, which is
used to verify that a move is valid, is one of them. As it
can be seen from the figure, the AttacksTo method is
being called repeatedly with easily identifiable
parameters. The execution of AttacksTo can be made to
begin at the beginning of execution of the ValidMove

method. The execution could begin even earlier (i.e.
immediately after the read set – the state of the chess
board is available) with additional checks that determine
if AttacksTo will be called.

2.4 Program Demultiplexing framework
The goal of Program Demultiplexing is to create

concurrency in a program by executing many of the
methods early, and in parallel with the rest of the program
(or with other methods). To do this first requires the (re-)
creation of a partial ordering of a program’s methods from
the sequential total ordering, i.e., a demultiplexing of
methods from their multiplexed order. Once a likely
partial execution ordering has been established, the
program can launch methods for possible execution in
parallel. The methods can then speculatively execute and
buffer the results of execution for later use by the program
(or by other methods). When the method’s call site is
reached in the sequential program, the results of the prior
speculative execution can be used if they are still valid.

Figure 3 illustrates the concept of Program
Demultiplexing and the steps required for its possible
implementation. Suppose method M of the program has
been chosen for demultiplexed execution. First, the
parameters, if any, are generated and the method launched
for execution in a different processing core. M then
executes, recording the parameters, the read set it uses for
execution, and buffers (i.e., does not commit) the return
value and the set of changes that will be visible to the

Figure 2. Example of PD. 175.vpr (alloc_heap_data) (a) source code and (b) PD illustration.
186.crafty (AttacksTo): (c) source code and (d) PD illustration.

int ValidMove (ply, wtm, move) {
. . .
. . .
 case king:
 if (abs(From(move)-To(move)) == 2) {
 . . . if ((!(WhiteCastle(ply)&2)) ||
 And(Occupied,Shiftr(mask_3,1)) ||
 And(AttacksTo(2),BlackPieces) ||
 And(AttacksTo(3),BlackPieces) ||
 And(AttacksTo(4),BlackPieces)) . . .
 else if . . .
 And(Occupied,Shiftr(mask_2,5)) ||
 And(AttacksTo(4),BlackPieces) ||
 And(AttacksTo(5),BlackPieces) ||
 And(AttacksTo(6),BlackPieces)) . . .
 . . .
 And(Occupied,Shiftr(mask_3,57)) ||
 And(AttacksTo(58),WhitePieces) ||
 And(AttacksTo(59),WhitePieces) ||
 And(AttacksTo(60),WhitePieces)) . . .
 . . .
 And(Occupied,Shiftr(mask_2,61)) ||
 And(AttacksTo(60),WhitePieces) ||
 And(AttacksTo(61),WhitePieces) ||
 And(AttacksTo(62),WhitePieces)). . .

BITBOARD AttacksTo(square) {
register BITBOARD attacks;
 . . .
attacks=And(w_pawn_attacks[square],BlackPawns);
attacks=Or(attacks,And(b_pawn_attacks[square],WhitePawns));
attacks=Or(attacks,And(knight_attacks[square],Or(BlackKnights,
 WhiteKnights)));
attacks=Or(attacks,And(AttacksBishop(square),BishopsQueens));
attacks=Or(attacks,And(AttacksRook(square),RooksQueens));
attacks=Or(attacks,And(king_attacks[square],Or(BlackKing,
 WhiteKing)));
.
return(attacks);

} (b) (d) (c)

ValidMove

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

AttacksTo

free_heap_data

alloc_heap_dat

alloc_heap_dat

static struct s_heap *alloc_heap_data (void) {
 if (heap_free_head == NULL) {
 /* No elements on the free list */
 heap_free_head = my_malloc (NCHUNK * sizeof (struct s_heap));
 . . .
 }
 temp_ptr = heap_free_head;
 heap_free_head = heap_free_head->u.next;
 return (temp_ptr);

static void node_to_heap (…) {
 hptr = alloc_heap_data ();
 . . .
 add_to_heap (hptr);
}

static void free_heap_data (hptr){
 hptr->u.next = heap_free_head;
 heap_free_head = hptr;
}

(a)

5

global state (its write set). Simultaneously, the program
executes and updates to the read sets of M are monitored.
If an update is detected before M is called by the program,
the read set has been violated and hence, the results
obtained from the execution are discarded. When the call
site for M is reached in the program, the results of the
execution are used if they have not already been
invalidated, and if the parameters that were used for the
execution match the ones in the call site. The steps needed
to implement the concept of Program Demultiplexing are
listed below, with implementation details discussed in
Section 3.

1. A handler is associated with every call site of a
method chosen for demultiplexing. The handler allows
separating the execution of the method from the call site
in a program which is written in an imperative language
and compiled for sequential execution. It sets up the
execution, may execute the method one or more time(s),
depending on the control flow in the handler, and
provides parameters for the execution(s).

2. A trigger is also associated with every call site
of a method chosen for demultiplexing. The site of the
trigger associated with a method is different from its call
site. The trigger begins the execution of the associated
handler. It is constructed to usually fire after the handler
and method are ready, i.e., their read sets are available.

3. The speculative execution of the handler and
method is scheduled on an auxiliary processor. The read
set accessed during each of the method’s executions along
with the handler is separately recorded. A hardware
implementation may also choose not to invoke the
demultiplexed execution or abort if sufficient resources
are not available or in case of system events such as
interrupts.

4. The program state that the method modifies, also
known as the write set, and its return value (usually stored
in a register), forms the results of the execution. The
results of every execution are tagged with method’s call
site and its parameters (if any) and buffered (not
committed) in an execution buffer pool. The handler’s
changes are used by the execution, but are not part of the
execution’s write set.

5. The execution of a method is invalidated when:
(a) the read set is violated by a write in the program, (b)
the parameters used in the execution and in the call do not

match, or (c) other serializing events such as interrupts
occur in the hardware.

6. The execution results are communicated from
the execution buffer pool to the program (which runs on
the main processor) or to another demultiplexed method
(nested method calls) when a call site is reached. An
execution will not be used if the program (or another
method) does not call that method. When the call site is
reached and the execution is still ongoing, the program
may stall, waiting for the demultiplexed execution to
complete, or instead abort the execution and execute the
method on the main processor.

3. Implementation
We discuss the implementation details of handlers in

Section 3.1, triggers in Section 3.2, and the hardware
support required in Section 3.3.

3.1 Handlers
A demultiplexed execution of a method is initiated

by first executing the handler. The handler has to perform
relevant tasks that the call site in the program performs
before calling a method, so that the method can be
separated from the call site. This task is usually to set up
the execution by providing parameters, if any, for the
method. Therefore, we construct handlers by slicing
(subsuming) some part of the code before a call site.

3.1.1 Slicing
 The stack is an important structure for sequential

programs (especially in C and C++ programs which we
focus on in this work). The program code before the call
site often consists of generating the parameters and
putting them on the stack. The method, when called,
accesses the parameters from the stack and performs its
computation. Clearly, to achieve separation of a
demultiplexed execution from its call site, we need to
include the call site’s program code, that generates
parameters, in the handler. However, in many programs
(as observed with the SPEC integer benchmarks) this
fragment of code cannot be easily demarcated. To
simplify this issue, we assume that the computation before
the call site to generate parameters would use the stack
exclusively. We therefore compose handlers by slicing
backward dependence chains of the parameters from the

Figure 3. Program Demultiplexing framework

Method Read Set

Method Write Set

Writes to Program
State from Trigger
to Call

 Y Call Parameter

 X Execution Parameter

M

M (X)

call M (Y)

Trigger
Handler

 ∩

 = ∅
X == YYes

Se
qu

en
tia

l E
xe

cu
tio

n

Demultiplexed Execution

Execution
Buffer Pool

processor

O
n auxillary

O
n m

ain processor

6

program, terminating them when they reach loads to the
global program state (i.e., heap). Any stores to the
program state that may happen during this process are not
included in the handler (see Figure 4(c)). As a result, the
handler may not be able to include all near-by
computation of parameters which may prevent the overlap
of demultiplexed execution with the program. On the
other hand, the handler may include a large number of
instructions due to the pervasive use of the stack in the
program, introducing significant overheads in the
demultiplexed execution. Trade-offs such as this are
considered when generating handlers. In addition, control-
flow and other method calls (interprocedural
dependencies) encountered will likely have to be (unless,
optimized) included in the handler and a brief discussion
follows. The experimental details of generating a handler
are discussed in Section 4.1.

Control-flow. In the example shown in Figure 4(a),
method M is chosen for demultiplexing, and one of the
call sites of M is shown to be present in method C.
Method C’s control-flow is shown to have an if-then-else
structure, wrapped in a loop. Basic blocks in C are
numbered 1, 2, 3, and 4. M is called from block 2, which
is where the backward slice generation for the handler
starts. Simple assignment of constants or arithmetic
evaluation for the parameters found here can be subsumed
in the handler. The control-dependency of the call site
with other blocks introduces branches and loops in the
handler. In the example, the branch in block 1 and the
loop structure are included. In the case when M is called
on both paths of a hammock (Figure 5(b)), two separate
handlers are generated for the two call sites. Each handler
evaluates the branch in block 5, and may (or may not) call
M depending on the outcome.

Interprocedural. A value in the slice may be live
earlier than the method in which the call site is present (in
the example shown in Figure 5(a), method C). In this
case, the slicing can continue to be performed on the call
site of that method. However, this is not possible (in the
unoptimized case), with a single handler when there are
multiple call sites, as in the example where C can be
called by both A and B.

3.1.2 Example and Optimizations
Figure 5(a) gives an example of code from 300.twolf.

The generated handler for method add_penal (call site at
last line) is listed in Figure 5(b). Statements included in
the handler are highlighted in the source code listing.

Numerous opportunities exist for choosing and
optimizing handlers (none of which we have implemented
currently). First of all, programmers, with support from
the programming language, may be able to express how
the method can begin its demultiplexed execution. With
additional book-keeping state of a method’s executions, a
handler can predict its parameters. The code for
predictions may be based on the parameters passed during
previous calls to the method, the call site, the program
path that led to the call, and so on. Other optimizations
include: (a) having multiple call sites in one handler, (b)
optimizing a handler by omitting infrequently executed
program paths to eliminate some program dependence and
increase the opportunity for hiding demultiplexed
execution with the rest of program, and (c) using handlers
for other optimizations such as slicing of other global
dependences in a method.

3.2 Triggers
A trigger is associated with every call site of a

demultiplexed method. Like handlers, triggers are
generated by software, with additional hardware support
for evaluating them. A trigger is conceptually composed
of one or more predicates joined by logical operators
(such as AND and OR). When the expression of the
trigger evaluates to true, it is said to have fired and begins
demultiplexed execution of the handler on a processing
core. The predicates supported in the current
implementation are: (i) a program counter predicate of
the form (PC == X) which evaluates to true when the
program counter of committed instruction is X and (ii) a
memory address write predicate of the form
(STORE_ADDR == Y) which evaluates to true when the
program writes to memory address Y. The steps required
for constructing the trigger are described next.

First, we annotate all memory write instructions in
the program, the memory read operations in a given
demultiplexed method and in the instructions included in

2

M

A

B
3

1

4

 C
5

call M(X) call M(Y)

 (a) (b) (c)

1: G = N
2: if (…)
3: X = G + 2
4: else
5: X = G * 2;
…
6: M (X)

Figure 4. Generating Handlers for Method M. (a) Basic block 2 in C calls M. C can be called by A and B. (b) M is
called in both the paths of a hammock. Two separate handlers are constructed in the unoptimized case. (c) Example
code segment where variable G is global and therefore, line 1 is not included in the handler which hinders the overlap

of demultiplexed execution

7

the handler for a particular call site of that method.
Annotations log the program counter, memory addresses,
and whether they are stack or global data addresses. The
program with the annotations is executed to create a
profile.

For a given call site, the read set R of the method and
its handler for the execution are collected from the profile.
This includes unmatched global heap references and any
unmatched stack references (which will exist depending
on the backward slice terminating conditions for
generating the handler). We then identify when all the
references in the read set R are available in the program
from the program’s profile. This point in the program,
called the trigger point, is the earliest that the method can
execute without violating data dependencies, and is
collected for several executions of the method. Figure 5(c)
illustrates this step.

The trigger points are then studied and the set of
predicates for the trigger are chosen so that demultiplexed
execution, when begun, will rarely, if ever, be invalid.
The predicates may be chosen to allow earlier execution
which may result in more overlap, but may also increase
the number of invalid executions.

3.3 Hardware Support
We now discuss the hardware support required for

evaluating triggers, performing demultiplexed executions,
storing and invalidating executions, and using the results
of valid executions. A thorough discussion is not provided
in this paper due to space constraints and is left for future
work.

Triggers. The generated triggers are registered with
the hardware for evaluation. For this, we require
extensions to the instruction set architecture and storage
of predicates. The predicates are evaluated based on the
(logical address of) program counters and memory write
addresses of instructions committed by the program. The
search can be effectively implemented with minimal
overheads by means of filtering (for example, Bloom
filters [5]).

Demultiplexed execution. When triggered,
demultiplexed methods are scheduled on available
auxiliary processors on a first-come first-serve basis. A
part of the cache hierarchy is used to store the results
during the demultiplexed execution. (We assume a typical
multiprocessor system.) Cache lines that are used for
execution are augmented with access bits, used to identify
any cache line references made during the execution.
When a trigger is fired, the program counter of the
associated handler is communicated to an available
auxiliary processor. The access bits are cleared, the
processor switches to speculative mode during which
writes do not send invalidate messages to other processors
and do not request exclusive access of cache lines. The
changes in a handler should be stored and provided to the
speculative execution for a demultiplexed method, but
discarded at the end of execution. The access bit is set
when the corresponding cache line is accessed. Eviction
of a dirty line from the cache terminates execution as it
indicates lack of hardware resources to buffer execution.
At the end of the execution, the following operations are
performed: (i) the read set, which is the set of all

 ;; a, b, ablock, block
;; are global variables
mov 0x80e9468,%ebx
mov 0x80e9414,%ecx
mov 0x80e9730,%edi
mov 0x80e9780,%edx
mov %edx,0xffffff7c(%ebp)
mov 0x80e9778,%esi
lea (%edi,%esi,1),%edi
mov %edi,%eax
sub %ebx,%eax
cltd
idiv %ecx
mov %eax,0xffffffa8(%ebp)
mov 0xffffff7c(%ebp),%eax
add %eax,%esi
mov %esi,%eax
sub %ebx,%eax
cltd
idiv %ecx
mov %eax,%ebx
mov %esi,0x4(%esp,1)
mov 0xffffffa8(%ebp),%ecx
mov 0x80e97cc,%eax
mov %edi,(%esp,1)
mov %ecx,0xc(%esp,1)
mov %ebx,0x10(%esp,1)
mov %eax,0x8(%esp,1)
call 8049ab0 <add_penal>

delta_vert_cost = 0
acellptr = carray[a]
axcenter = acellptr->cxcenter
aycenter = acellptr->cycenter
aorient = acellptr->corient
atileptr = acellptr->tileptr
aleft = atileptr->left
aright = atileptr->right
atermptr = atileptr->termsptr
bcellptr = carray[b]
bxcenter = bcellptr->cxcenter
bycenter = bcellptr->cycenter
borient = bcellptr->corient
btileptr = bcellptr->tileptr
bleft = btileptr->left
bright = btileptr->right
btermptr = btileptr->termsptr
newbinpenal = binpenal
newrowpenal = rowpenal
newpenal = penalty
new_old(bright-bleft-aright+aleft)
find_new_pos() ;
a1LoBin = SetBin(startxa1 = axcenter + aleft)
a1HiBin = SetBin(endxa1 = axcenter + aright)
b1LoBin = SetBin(startxb1 = bxcenter + bleft)
b1HiBin = SetBin(endxb1 = bxcenter + bright)
a2LoBin = SetBin(startxa2 = anxcenter + aleft)
a2HiBin = SetBin(endxa2 = anxcenter + aright)
b2LoBin = SetBin(startxb2 = bnxcenter + bleft)
b2HiBin = SetBin(endxb2 = bnxcenter + bright)
old_assgnto_new2(a1LoBin, a1HiBin, b1LoBin,
sub_penal(startxa1, endxa1, ablock, a1LoBin
sub_penal(startxb1, endxb1, bblock, b1LoBin
add_penal(startxa2, endxa2, bblock, a2LoBin
add_penal(startxb2, endxb2, ablock, b2LoBin,
b2HiBin)

M

 H

Program state
available for H + M

Pr
og

ra
m

 st
at

e

re
qu

ir
ed

 fo
r

H
 +

 M

No writes to state used
by H + M

Figure 5. Example of Handler and Generating Triggers. (a) Program code from 300.twolf. Lines in the
handler generated for the add_penal method (last line) are highlighted, (b) Generated Handler. (c)

Identifying the trigger point for an execution of method M.

 (a) (b) (c)

8

“accessed” but not dirty cache lines, and the write set,
which is the set of all “dirty” cache lines, are identified
and sent to an execution buffer pool, (ii) the dirty cache
lines are marked invalid, and (iii) the processor returns
from speculative mode. As it may be expensive to scan
the cache for the read and write sets, additional set of
buffers or filters can be used to identify accessed and dirty
cache lines. Such optimizations have been used in
previous speculative parallelization proposals (for
example, [41]).

Storage of executions. The identified read and
write sets of a demultiplexed execution are named with
the method’s call site and its parameters and stored in an
execution context in the buffer pool. The execution buffer
pool is an additional cache-line based storage required to
hold the results of various demultiplexed executions until
their use or invalidation. The execution buffer pool is a
central (shared) hardware structure in our current
implementation. Additional logic to invalidate executions
on violations is described next.

Invalidating executions. All committed program
writes occurring in the sequential program are sent to the
execution buffer pool, in addition to the invalidates that
are sent to other processors as a part of the coherence
mechanism. The read set of the executions in the buffer
pool are searched for the program write address to
identify those that violated data dependencies. This search
can be efficiently implemented with address filters and
can be pipelined into many stages, if needed. An
invalidate request received by a processor with an on-

going demultiplexed execution on an “accessed” cache
line terminates and invalidates the execution. Some
system events such as timer and device interrupts can also
terminate an ongoing demultiplexed execution.

Using executions. Results of a demultiplexed
execution can be used by the program or in the case of
nested method calls, by another demultiplexed execution.
On occurrence of a call, a search operation is initiated in
the execution buffer pool for the given method and on
auxiliary processors that may have an execution ongoing.
In the latter case, the processor may decide to stall until
the execution completes and then use the results, or
perform the execution of the method itself, hence aborting
the demultiplexed execution. If a valid execution is found
in the execution buffer pool (if there are more than one,
the first one is used), the write set is copied into the
processor’s cache that is requesting the results. This
action leads to the committing of the results when
performed by the main processor, or speculative
integration of the results if requested by an auxiliary
processor. To reduce the overhead of committing the
results of an execution, the main processor may continue
executing the rest of program exploiting method-
continuation based parallelism [7, 45].

4. Evaluation
4.1 Infrastructure

Full-system Simulator. The evaluation in this
paper is based on a full-system, execution-based timing
simulator that simulates multiple processors based on
Virtutech Simics and the Intel x86 ISA. Table 1 describes
the parameters in the simulation infrastructure. An
important aspect of this work is implementing speculative
execution of a sequential application in the presence of an
operating system on a full-system simulator. Running
arbitrary code (in our case, speculative executions) on
OS-visible processors without the operating system’s
knowledge is catastrophic to the system (OS may panic
and crash). The issues that we consider include: handling
of intermittent timer and device interrupts, dealing with
OS task switches, handling of TLB misses, exceptions,
and system calls in demultiplexed executions, all of which
require the operating system to be aware of the
speculative execution, and handle it if possible.

Software Toolchain. We use the Diablo toolset
[44] and modified binutils and gcc compiler tool chain for
extracting debugging information, and reconstructing
basic blocks, control-flow graphs, and program
dependence graphs from the application binary. They are
exported into the simulator which, along with dynamic
profile information, is used to generate handlers and
construct triggers automatically. Our current
implementation is able to handle control-flow and
interprocedural dependencies encountered in the program,
as well as other obscure architectural features such as
Intel/x86’s stack style usage of floating-point registers.
Since handlers are obtained directly from the application

Table 1. Experimental Evaluation

System

Virtutech Simics 2.0. Multiprocessor system with
upto six Intel Pentium 4 processors on an 875P
chipset with IDE disks running Debian Linux
(Kernel 2.6.8).

Processor
Core

3-GHz out-of-order 4-wide superscalar processor
with 7 pipeline stages. No cracking of
instructions to micro-ops. 64-entry reorder
buffer. 1024-entry YAGS branch predictor, 64-
entry return address stack. Load instruction
issues only after all prior stores are resolved.

Memory
System

Level-1 private instruction cache is 64-KB, 2-
way, with 2-cycle hit latency with fetch buffer
that prefetches the next line. Level-1 private data
cache is 64-KB, 2-way with 3-cycle hit latency,
write-back and write-allocate with MSI states for
cache coherence. Level-2 private inclusive and
unified cache is 1-MB, 4-way, with 12-cycle hit
latency and MSI states for cache coherence. Line
size is 64 bytes for all caches. Cache-to-cache
transfers take 12-cycles. 512 MB DRAM with
400 cycle access latency.

PD
Execution

First-come first-serve policy of scheduling
demultiplexed executions on first-available
processor. 5-cycles to communicate the program
counter of the handler. Communication with
buffer pool takes 15-cycles. Up to 4-lines
transferred concurrently.

9

binary, manipulations to the stack pointer (such as push,
pop, call, and ret instructions) encountered while slicing
are included. This ensures that the parameters are written
in the position on the stack that the instructions in the
method will read them from. Our implementation of
triggers uses only program counter predicates. Other
forms of predicates will be useful for optimizing the
triggers.

Benchmarks. We use 8 of the 12 integer programs
in SPEC CPU2000 benchmark suite compiled for the x86
architecture using the GNU gcc compiler version 3.3.3
with optimization flag -O2 –fno-inline –fno-
optimize-sibling-calls2. (The other benchmarks
in the suite are not supported by our toolset.) The
benchmarks are run with train inputs for 200 million
instructions after the initialization phase.

4.2 Results
We begin the discussion by presenting the potential

for PD, which is the ability to begin the execution of a
method well before its call site in the sequential program.
Figure 6 plots the ratio of the cycles elapsed between
when the method and its handler are ready to execute, i.e.,
the trigger point, and when the method is called by the
program, to the cycles it takes to execute the method. We
assume the execution of the method in an auxiliary
processor with no overheads – as if the execution
happened on the main processor running the program. In

2 Intel x86 program binaries use the stack for passing parameters.
GNU gcc provides a flag –mregparm=N that allows using N
registers for this purpose instead. However, it requires recompilation
of the entire system (libraries) with the same flag, as this
optimization is not commonly used. This is beyond our reach.
Another flag -funit-at-a-time introduced in gcc 3.4, among
other optimizations, uses registers for passing parameters within a
compilation unit of functions. This improves performance only by
~1% and therefore, we do not use it.

the case when a method invokes another method (nested
calls), we include all program references made by that
nested method only if it is not considered for
demultiplexing. Each point in the graph indicates a call
site of a method. All call sites of methods with greater
than 2% of the total execution time are evaluated for this
study. The Y-axis presents the ratio on a logarithmic
scale. The ratio gives an idea of how well a
demultiplexed execution could be overlapped. A ratio
close to 0 indicates the read set of an execution is
available only just before the method is called, therefore
no overlap is possible. A ratio close to 1 indicates the
method can be executed immediately after the read set is
ready; it may finish execution just before it is called when
overheads are considered. A ratio >> 1 indicates ample

Table 2. Program Demultiplexing implementation statistics

Pr
og

ra
m

s

Dynamic
instructions

from method

Dynamic
instructions

from handler

Ratio of
demultiplexed

to local
execution time

Cache lines
written

Cache lines
read

Buffer
pool

entries

Cycles
held in

the pool

PC
triggers

 Represented as Minimum / Average / Maximum Avg/Max Avg Avg/Max

Columns 2 3 4 5 6 7 8 9

crafty 14 300 2K 2 42 240 0.6 1.8 4.0 0 3 13 2 8 42 15 52 900 2 18

gap 11 80 245 0 8 32 0.6 2.2 3.8 1 5 11 1 8 19 13 32 590 2 12

gzip 28 62 180 0 7 20 1.2 1.5 2.0 2 4 7 7 10 14 1 8 70 1 2

mcf 11 13 543 0 12 20 3.0 5.0 7.0 2 18 83 3 24 111 4 28 520 3 7

parser 10 55 455 0 9 79 0.5 2.0 3.9 2 10 94 5 10 12 12 52 413 3 14

twolf 72 455 1K 0 16 37 1.0 1.4 2.1 2 7 17 2 22 60 3 9 244 2 4

vortex 35 45 63 9 18 38 0.5 1.3 5.0 3 6 11 6 13 22 2 16 160 2 27

vpr 28 220 945 1 9 32 1.0 1.0 1.1 2 3 18 1 7 22 4 23 308 1 8

Figure 6. Potential for PD. Ratio of cycles between the
trigger point and the call site, to the execution cycles of

the method without overheads

0.01

0.1

1

10

100

1000

10000

Tr
ig

ge
r p

oi
nt

 to
 c

al
l c

yc
le

 E
xe

cu
tio

n
cy

cl
es

 o
f m

et
ho

d

cr
af

ty

ga
p

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rte

x

vp
r

10

opportunity for completely overlapping the execution
even with overheads. From the graph, we see that many
call sites could begin execution well before they are
called.

In Table 2 we present several statistics from our
current implementation of PD. Column 2 presents the
minimum, average, and maximum number of dynamic
instructions executed per demultiplexed execution.
Column 3 presents the minimum, average, and maximum
(dynamic) instructions in the generated handler. Handlers
contribute 4% to 100% of additional instructions to the
demultiplexed execution of a method.

Column 4 presents the overheads of demultiplexed
execution, introduced due to the setting up of execution,
the execution of the handler, and the additional cycles
spent in the cache misses since the cache lines accessed
by the demultiplexed method are not available in the local
cache. However, they benefit from valid cache lines in the
local cache accessed by previous demultiplexed
executions in the same processor. We further minimize
the overheads by prefetching the lines used in the
previous execution of that method. This however, is not
useful for methods that require different program state
during each of its demultiplexed executions. Benchmark
mcf, has 5x overhead because of small (in terms of
number of dynamic instructions) methods that frequently
cache miss when accessing different nodes of a
dynamically allocated data structure. For other
benchmarks, the average overheads are between 1x to 2x.
We observe that some demultiplexed executions of large
methods finish faster than when executed on the main
processor due to lower cache conflict misses.

Column 5 and 6 present the minimum, average, and
maximum number of cache lines written and read by
demultiplexed executions. They denote the write and read
set respectively. Column 7 presents the average and
maximum number of entries used in the execution buffer
pool. Column 8 presents the average number of
demultiplexed executions held in the buffer pool, sampled
every 50 cycles. Demultiplexed executions that are
ongoing when requested by the main processor are not
held in the execution buffer pool. Finally, the last column
presents the average and maximum number of predicates
that are required for constructing triggers. To prevent mis-
speculations in our implementation, we disable

demultiplexed execution of methods if the triggers we
identify are not stable and may lead to invalid execution
results.

We present speedup in Figure 7 with one to five
auxiliary processors for demultiplexed executions (i.e., a
total of two to six processors). Speedups range from 1.3x
to 2.7x. Benchmarks such as crafty, gap, parser,
and vpr benefit from more than two (but less than four)
auxiliary processors with speedups of greater than or
equal to 2. Other benchmarks achieve speedups of 1.4x
due to limited opportunities. There are several possiblities
to further speed up the programs ranging from
optimizations to the current implementation of PD,
compiler optimizations and source code changes for more
opportunities, and further parallelization with other
speculative parallelization proposals.

5. Related Work
Multiscalar is an early proposal for the speculative

parallelization of sequential programs [38]. The hardware
speculatively executes tasks in parallel that are created by
statically partitioning the control flow graph. Other recent
proposals [1, 8, 9, 17, 18, 25, 28, 30, 39, 40, 43] limit
parallelization to specific portions of control flow graph
such as loops and method-continuations and/or use data
speculation to facilitate this kind of parallelization.
Marcuello and Gonzalez [26] and Renau et al. [33]
observed that out-of-order instantiation of speculative
threads in the scope of such proposals improves
performance significantly. TCC [18] proposed using
transactions [19], specified by programmers for control-
flow speculative parallelization of sequential programs
and also allowed unordered commits of transactions.
Unlike these speculative parallelization models that
sequence speculative threads according to the program’s
control-flow, PD achieves speculative data-flow style
concurrent execution of a sequential program by means of
triggers and handlers derived from the program. PD can
therefore, execute distant parts of the program well ahead
of the control flow, rarely mis-speculating, if ever.

Lam and Wilson [23] evaluated the limits of control
flow on speculative parallelization. Warg et. al [45]
evaluated the limits of speculative parallelization of
methods in imperative and object-oriented programming
languages. Martel et. al [27] presented different
parallelization strategies to exploit distant parallelism in
the SPECint95 suite. The Mitosis compiler [32]
speculatively begins execution of loops with fork
instructions inserted in the program and generates live-ins
for the threads by executing backward slices of
instructions from the loop to the site of fork. Handlers and
triggers in PD are conceptually similar but are
unrestricted (fork in Mitosis is placed in the same function
at the same basic-block level) and broader in scope, which
leads to unordered speculative executions. The master-
slave speculative parallelization model [50] divides a
program into tasks, executing a distilled program

Figure 7. Performance evaluation

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

crafty gap gzip mcf parser twolf vortex vpr

Sp
ee

du
p

1 aux 2 aux 3 aux 4 aux 5 aux

11

generated with aggressive optimizations for the common
case, and verifying their execution by concurrently
executing the unoptimized task achieving slipstreamed
execution [42].

Helper thread models [10, 14, 24, 35, 49] are used to
mitigate performance degrading events such as cache
misses and branch mis-predictions in a processor by
creating helper threads, which are dependence chains that
lead up to the event, and executing them well before they
are reached by the program. Therefore, the event is
overlapped with the rest of program, mitigating its
harmful effects on performance.

Data-flow machines [11, 12, 16, 29] used special
languages [2, 13] that excelled in expressing parallelism
but have been less popular due to the lack of features
widely available in imperative languages. To handle the
enormous scheduling and communication overheads of
fine-grained data flow architectures, Sarkar and Hennessy
[36] and Iannucci [21] proposed statically partitioning a
data-flow program into subprograms and executing them
in a data flow order; subprograms by themselves were
executed sequentially. PD also uses partitioned sub-
programs (methods) written in imperative languages, and
executes them according to their data dependencies.

There has been extensive work in functional
languages to extract method-level parallelism
automatically as they do not have any side-effects [15,
37]. MultiLisp [34] implements parallel evaluation of
parameters that allow programmers to explicitly express
the concurrency of a method. Knight [22] presented
speculative parallelization of Lisp programs that allows
methods to have side-effects.

PD resembles message-passing based parallel
programming paradigms such as Linda [6] and Actors
[20]. Time-shifted modules [48] proposed a software-
based approach to concurrently execute modules which
have limited interaction with the program. Recently,
object-oriented languages have introduced primitives for
programmers to express and exploit such forms of
concurrency [3, 4].

Triggers in PD are similar to watchpoints which are a
familiar concept for debugging programs. Prvulovic and
Torrellas [31] used watchpoints for memory locations to
identify race conditions in multi-threaded programs. Zhou
et al. [46, 47] proposed efficient hardware support for
monitoring memory accesses in a program for software
debugging and detecting bugs.

6. Summary
We introduced Program Demultiplexing, an

execution paradigm that demultiplexes the total ordering
of methods or functions —the subprograms in a
program— in a sequential program into partially ordered
methods that execute concurrently. Unlike sequential
execution, methods are not executed at the call site, but
well before they are called by the program. Call sites of
methods are associated with triggers and handlers. A
trigger is composed of a set of predicates based on

program counters and memory writes. When fired, the
execution of the handler generates the parameters of the
method, if needed, and begins the speculative execution
of the method on an auxiliary processor. The results of
execution of demultiplexed methods are buffered, and
later used by the main program or by other demultiplexed
executions. The set of global data read by a demultiplexed
method’s execution is monitored and violation of this read
set invalidates the execution.

PD exploits the data-flow distance (in terms of
execution cycles) that is created due to the sequential
control-flow in a program, speculatively executing distant
parts of the program when its data is ready and later
committing the results when the control flow reaches it.
This work demonstrated the presence of opportunities
even on programs in the SPEC CPU2000 integer
benchmark suite, that were written with no intention of
creating concurrency. We believe that wider usage of
object-oriented programming languages and their strict
programming requirements, will significantly increase the
opportunities for PD, and make the data-driven concurrent
speculative execution at the granularity of methods an apt
choice for future multicore systems.

We presented motivating examples for PD, details of
our current implementation of PD, as well as the results of
an evaluation using program from the SPEC CPU2000
integer suite. We achieve 1.8x speedup (harmonic mean)
on a system, with modest hardware support needed for
triggers, buffering demultiplexed executions and detecting
violations of executions; many of these features are also
needed for supporting control-driven speculative
parallelization.

Acknowledgements
This work was supported in part by National Science

Foundation grants CCR-0311572 and EIA-0071924.

References
[1] H. Akkary and M. Driscoll, "A Dynamic Multithreading
Processor," In Proc. of the 31st Annual Intl. Symp. on Microarch.,
pp. 226-36, 1998.
[2] K. Arvind and R. S. Nikhil. Executing a Program on the MIT
Tagged-Token Dataflow Architecture. IEEE Trans. Comput., vol. 39,
pp. 300-18, 1990.
[3] N. Benton, L. Cardelli, et al., "Modern Concurrency Abstractions
for C#," In Proc. of the 16th European Conf. on Object-Oriented
Programming, pp. 415-40, 2002.
[4] G. Bierman, E. Meijer, et al., "The Essence of Data Access in
Cw," In Proc. Of the 19th European Conf. On Object-Oriented
Programming, pp. 287-311, 2005.
[5] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Commun. ACM, vol. 13, pp. 422-6, 1970.
[6] N. Carriero and D. Gelernter. Linda in Context. Communications
of the ACM, vol. 32, pp. 444-58, 1989.
[7] M. K. Chen and K. Olukotun, "Exploiting Method-Level
Parallelism in Single-Threaded Java Programs," In Proc. of the Intl.
Conf. on Parallel Architectures and Compilation Techniques, pp.
176, 1998.
[8] M. K. Chen and K. Olukotun, "The Jrpm System for
Dynamically Parallelizing Java Programs," In Proc. Of the 30th
Annual Intl. Symp. On Comp. Arch., pp. 434-46, 2003.

12

[9] M. Cintra, J. Martinez, et al., "Architectural Support for Scalable
Speculative Parallelization in Shared-Memory Multiprocessors," In
Proc. of the 27th Annual Intl. Symp. on Comp. Arch., pp. 13-24,
2000.
[10] J. D. Collins, D. M. Tullsen, et al., "Dynamic Speculative
Precomputation," In Proc. Of the 34th Annual Intl. Symp. On
Microarch., pp. 306-17, 2001.
[11] A. L. Davis, "The Architecture and System Method of DDM1:
A Recursively Structured Data Driven Machine," In Proc. Of the 5th
Annual Symp. On Comp. Arch., pp. 210-5, 1978.
[12] J. B. Dennis, "A Preliminary Architecture for a Basic Data-Flow
Processor," In Proc. Of the 2nd Intl. Symp. On Comp. Arch., pp. 125-
31, 1975.
[13] J. B. Dennis, "First Version of Data Flow Procedure Language,"
MIT Laboratory for Computer Science MAC TM61, 1991.
[14] A. Farcy, O. Temam, et al., "Dataflow Analysis of Branch
Mispredictions and Its Application to Early Resolution of Branch
Outcomes," In Proc. Of the 31st Annual Intl. Symp. On Microarch.,
pp. 59-68, 1998.
[15] B. Goldberg and P. Hudak, "Implementing Functional Programs
on a Hypercube Multiprocessor," In Proc. Of the Third Conf. On
Hypercube Concurrent Computers and Applications: Architecture,
Software, Computer Systems, and General Issues, pp. 489-504, 1988.
[16] V. G. Grafe, G. S. Davidson, et al., "The Epsilon Dataflow
Processor," In Proc. Of the 16th Annual Intl. Symp. On Comp. Arch.,
pp. 36-45, 1989.
[17] L. Hammond, M. Willey, et al., "Data Speculation Support for a
Chip Multiprocessor," In Proc. Of the 8th Intl. Conf. On
Architectural Support for Programming Languages and Operating
Systems, pp. 58-69, 1998.
[18] L. Hammond, B. D. Carlstrom, et al., "Programming with
Transactional Coherence and Consistency (TCC)," In Proc. Of the
11th Intl. Conf. On Architectural Support for Programming
Languages and Operating Systems: ACM Press, pp. 1-13, 2004.
[19] M. Herlihy and J. E. B. Moss, "Transactional Memory:
Architectural Support for Lock-Free Data Structures," In Proc. Of
the 20th Annual Intl. Symp. On Comp. Arch., pp. 289-300, 1993.
[20] C. Hewitt. Viewing Control Structures as Patterns on Passing
Messages. Journal of Artificial Intelligence, vol. 8, pp. 323-64, 1977.
[21] R. A. Iannucci, "Toward a Dataflow/Von Neumann Hybrid
Architecture," In Proc. of the 15th Annual Intl. Symp. on Comp.
Arch., pp. 131-40, 1988.
[22] T. Knight, "An Architecture for Mostly Functional Languages,"
In Proc. of the Annual Conf. on LISP and Functional Programming,
pp. 105-12, 1986.
[23] M. S. Lam and R. P. Wilson, "Limits of Control Flow on
Parallelism," In Proc. Of the 19th Annual Intl. Symp. On Comp.
Arch., pp. 46-57, 1992.
[24] C.-K. Luk, "Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors," In Proc. Of the 28th Annual Intl. Symp. On Comp.
Arch., pp. 40-51, 2001.
[25] P. Marcuello, A. Gonzalez, et al., "Speculative Multithreaded
Processors," In Proc. of the 12th Intl. Conf. on Supercomputing, pp.
77-84, 1998.
[26] P. Marcuello and A. Gonzalez, "A Quantitative Assessment of
Thread-Level Speculation Techniques," In Proceedings of the 14th
Intl. Symp. On Parallel and Distributed Processing, pp. 595, 2000.
[27] I. Martel, D. Ortega, et al., "Increasing Effective IPC by
Exploiting Distant Parallelism," In Proc. of the 13th Intl. Conf. on
Supercomputing, pp. 348-55, 1999.
[28] J. T. Oplinger, D. L. Heine, et al., "In Search of Speculative
Thread-Level Parallelism," In Proc. of the Intl. Conf. on Parallel
Architectures and Compilation Techniques, pp. 303, 1999.
[29] G. M. Papadopoulos and D. E. Culler, "Monsoon: An Explicit
Token-Store Architecture," In Proc. of the 17th Annual Intl. Symp.
on Comp. Arch., pp. 82-91, 1990.
[30] M. K. Prabhu and K. Olukotun, "Exposing Speculative Thread
Parallelism in Spec2000," In Proc. of 10th Annual Intl. Symp. on

Principles and Practice of Programming Languages, pp. 142-52,
2005.
[31] M. Prvulovic and J. Torellas, "Reenact: Using Thread-Level
Speculation Mechanisms to Detect Data Races in Multithreaded
Code," In Proc. of the 30th Annual Intl. Symp. on Comp. Arch., pp.
110-21, 2003.
[32] C. Quinones, C. Madriles, et al., "Mitosis Compiler: An
Infrastructure for Speculative Threading Based on Pre-Computation
Slices," In Proc. of the 31st Annual Intl. Conf. on Programming
Language Design and Implementation, pp. 269-75, 2005.
[33] J. Renau, J. Tuck, et al., "Tasking with out-of-Order Spawn in
Tls Chip Multiprocessors: Microarchitecture and Compilation," In
Proceedings of the 19th annual Intl. Conf. on Supercomputing, pp.
179-88, 2005.
[34] J. Robert H. Halstead. MULTILISP: A Language for
Concurrent Symbolic Computation. ACM Transactions on
Programming Languages and Systems, vol. 7, pp. 501-38, 1985.
[35] A. Roth and G. S. Sohi, "Speculative Data-Driven
Multithreading," In Proc. Of the 7th Intl. Symp. On High-Perf.
Comp. Arch., pp. 37, 2001.
[36] V. Sarkar and J. Hennessy, "Partitioning Parallel Programs for
Macro-Dataflow," In Proc. of the 1986 ACM Conf. on LISP and
Functional Programming, pp. 202-11, 1986.
[37] K. E. Schauser, D. E. Culler, et al., "Compiler-Controlled
Multithreading for Lenient Parallel Languages," In Proc. Of the 5th
Acm Conf. On Functional Programming Languages and Comp.
Arch., pp. 50-72, 1991.
[38] G. S. Sohi, S. E. Breach, et al., "Multiscalar Processors," In
Proc. Of the 22nd Annual Intl. Symp. On Comp. Arch., pp. 414-25,
1995.
[39] G. S. Sohi and A. Roth. Speculative Multithreaded Processors.
Computer, vol. 34, pp. 66-73, 2001.
[40] J. Steffan and T. Mowry, "The Potential for Using Thread-Level
Data Speculation to Facilitate Automatic Parallelization," In Proc. of
the 4th Intl. Symp. on High-Perf. Comp. Arch., pp. 1-12, 1998.
[41] J. G. Steffan, C. B. Colohan, et al., "A Scalable Approach to
Thread-Level Speculation," In Proceedings of the 27th Annual Intl.
Symp. On Comp. Arch., pp. 1-12, 2000.
[42] K. Sundaramoorthy, Z. Purser, et al., "Slipstream Processors:
Improving Both Performance and Fault Tolerance," In Proc. of the
ninth Intl. Conf. on Architectural support for programming
languages and operating systems, pp. 257-68, 2000.
[43] J.-Y. Tsai, J. Huang, et al. The Superthreaded Processor
Architecture. IEEE Transactions on Computers, vol. 48, pp. 881-
902, 1999.
[44] L. Van Put, B. De Sutter, et al., "LANCET: A Nifty Code
Editing Tool," In Proc. of the Sixth Workshop on Program Analysis
for Software Tools and Engineering, pp. 75-81, 2005.
[45] F. Warg and P. Stenstrom, "Limits on Speculative Module-
Level Parallelism in Imperative and Object-Oriented Programs on
Cmp Platforms," In Proc. of the 12th Annual Intl. Conf. on Parallel
Architectures and Compilation Techniques, pp. 221-30, 2001.
[46] P. Zhou, W. Liu, et al., "Accmon: Automatically Detecting
Memory-Related Bugs Via Program Counter-Based Invariants," In
Proc. of the 37th Annual Intl. Symp. on Microarch., pp. 260-80,
2004.
[47] P. Zhou, F. Qin, et al., "Iwatcher: Efficient Architectural
Support for Software Debugging," In Proc. of the 31st Annual Intl.
Symp. on Comp. Arch., pp. 224-35, 2004.
[48] C. B. Zilles and G. S. Sohi, "Time-Shifted Modules: Exploiting
Code Modularity for Fine Grain Parallelism," University of
Wisconsin-Madison, Computer Sciences Dept. TR1430, 2001.
[49] C. B. Zilles and G. S. Sohi, "Execution-Based Prediction Using
Speculative Slices," In Proc. Of the 28th Annual Intl. Symp. On
Comp. Arch., pp. 2-13, 2001.
[50] C. B. Zilles and G. S. Sohi, "Master/Slave Speculative
Parallelization," In Proc. of the 35th Annual Intl. Symp. on
Microarch., pp. 85-96, 2002.

